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Abstract. Hydrological models can be used to assess the impact of hydrologic alteration on the river ecosystem. However, 

there are considerable limitations and uncertainties associated with the replication of the required, ecologically relevant 

hydrological indicators. Vogel and Sankarasubramanian's 2003 (Water Resources Research) covariance approach to model 

parameterisation represents a shift away from traditional algorithmic calibration-validation focussed on objective functions. 10 

Using the covariance structures of the observed input and simulated output time-series, the plausible parameter space, the 

region of parameter space which best captures (replicates) the characteristics of a hydrological indicator, may be identified. In 

this study, a modified covariance approach is applied to five hydrologically diverse case study catchments with a view to 

replicating a suite of ecologically relevant hydrological indicators identified through catchment-specific hydroecological 

models. The identification of the plausible parameter space (here n ≈ 20) is based on the statistical importance of these 15 

indicators. Evaluation is with respect to performance and consistency across each catchment, parameter set, and the 40 

ecologically relevant hydrological indicators considered. Timing and rate of change indicators are the best and worst replicated 

respectively. Relative to previous studies, an overall improvement in consistency is observed. This study represents an 

important advancement towards the robust application of hydrological models for ecological flow studies.  

1 Introduction 20 

Increases in societal water demand and climatic variability raise questions over the long-term sustainability of water resources 

(Gleick, 1998; Klaar et al., 2014; Davis et al., 2015; Gleick, 2016). As the ecological role of flow is better understood, it has 

become widely acknowledged as the major determinant of the ecological health of the riverine ecosystem (e.g. Power et al. 

(1995); Lytle and Poff (2004); Arthington et al. (2006)). Consequently, changes to flow threatens both the ecological health 

of rivers and their ability to provide the vital ecosystem services upon which humans depend (Vörösmarty et al., 2010; 25 

Arthington, 2012). 

Beginning in the late 1940s in the United States, the need to balance the conflicting demands of both human society and those 

of the ecosystem saw the emergence of the environmental flow movement. Environmental flows have been defined under the 

Brisbane Declaration (2007) as: “…the quantity, timing, and quality of water flows required to sustain freshwater and 
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estuarine ecosystems and the human livelihood and well-being that depend on…”. Tharme (2003) documented that over 200 

formal environmental flow assessment methods had been developed.  

Quantifying the relationship between flow and ecology is pivotal for the determination of environmental flows (Bunn and 

Arthington, 2002; Arthington et al., 2006; Poff et al., 2010; McManamay et al., 2013). Richter et al. (1996) identified five 

facets of the flow regime required to support the riverine ecosystem: magnitude, frequency, duration, timing and rate of change. 5 

Alteration of the flow regime invariably leads to significant ecologic change. To date, over 200 ecologically relevant 

hydrologic indices (ER HIs) have been proposed (Olden and Poff, 2003; Monk et al., 2006; Thompson et al., 2013). Poff et al. 

(2010) and Peters et al. (2012) each describe environmental flow frameworks, which call for the determination of ER HIs via 

hydrological model simulations of flow. At the time of publication (of these frameworks), the application of hydrological 

models for the determination of ER HIs was in its infancy (Knight et al., 2011). Indeed, early work was largely based on 10 

regional statistical approaches which had been in use since the 1960s in the United States (for the determination of water 

resource relevant HIs; for example see Knight et al. (2011) and Carlisle et al. (2010)). Murphy et al. (2012) compared such ER 

HIs against those determined from simulated flows, finding that, without targeted calibration to specific HIs, “the widespread 

application of general hydrologic models to ecological flow studies is problematic” (p. 667). However, such statistical 

approaches are unsuitable when assessing the impact of hydrological change on the river ecosystem (e.g. as a result of 15 

engineering intervention or under a changed climate) or for the simulation of ecological flows in ungauged catchments. A 

hydrological modelling approach is thus necessary. 

Model performance and consistency are watchwords for this study. After Euser et al. (2013), model performance is defined as 

the ability to mimic the behaviour of catchment hydrological processes; consistency represents the ability of the hydrological 

model to reproduce a suite of ER HIs across parameter sets, hydrological models and catchments.  20 

Significant bias has been observed in hydrological models calibrated following traditional approaches (based on the use of 

objective functions; Grayson and Blöschl (2001); Blöschl and Montanari (2010); Westerberg et al. (2011); Pushpalatha et al. 

(2012)). In context, when evaluating the suitability of model simulated HIs (six water resource relevant HIs and 32 ER HIs), 

Shrestha et al. (2014) observed that the water resource relevant HIs were well-replicated whilst notable differences were 

observed for the ER HIs related to the facets of the flow regime duration and rate of change. Informed by recent advances in 25 

hydrological modelling more generally (Seibert, 2000; Efstratiadis and Koutsoyiannis, 2010), Vis et al. (2015) compared the 

ability of single and multi-criteria objective functions to replicate twelve ER HIs. The best performance was achieved with 

multi-criteria objective functions, though a consistent negative bias was observed. Despite these advances, overall performance 

was inconsistent, being dependent upon the ER HI considered. Blöschl and Montanari (2010) observed that the reliability of 

hydrological modelling approaches which try to ‘model everything’ is analogous to simply ‘throwing the dice’. To address 30 

this, they call for a move towards simpler models, tuned to focus on specific characteristics of the flow regime; successful 

applications of such an approach include Westerberg et al. (2011). Most recently, Pool et al. (2017) considered an array of 

multi-criteria objective functions using Nash Sutcliffe Efficiency (NSE) and 13 ER HIs. Overall, results were positive, with 
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ER HIs generally well-replicated in calibration; validation performance was subject to greater variability. Those ER HIs not 

explicitly included in the objective function exhibited greatest uncertainty.  

The past ten years has seen the replication of ER HIs evolve from statistical approaches to single and multi-objective rainfall-

runoff modelling. Whilst improvements have been notable, to date no approach has been able to achieve performance and 

consistency concurrently, raising questions as to whether these approaches are able to achieve the ‘right answer for the right 5 

reasons’. Further, Pool et al. (2017) highlight two points which remain unaddressed: (1) a need to determine which ER HIs are 

relevant in order to guide model parameterisation; and (2) laborious recalibration of the hydrological model is necessary if the 

suite of HIs is changed. In this paper we look to redress these limiting factors through the application of a modified covariance 

approach. The objective of Vogel and Sankarasubramanian’s (2003) covariance approach is to identify the plausible parameter 

space which captures (replicates) the characteristics of a specified HI. This is achieved by focussing on the ability of the 10 

hydrological model to capture the observed covariance structure of the input and output time-series. The use of covariance 

relationships in this way is not new, with examples including the modelling of ice sheets (Wu et al., 2010) and ocean salinity 

(Haines et al., 2006). Vogel and Sankarasubramanian’s covariance approach is limited by its focus on a single HI, preventing 

its use for the determination of a suite of ER HIs. This paper builds on the covariance approach, adapting the methodology to 

consider a suite of ecologically relevant hydrological indicators; the determination of these ER HIs is based on the outcomes 15 

of hydroecological modelling using an Information Theory approach. To determine the ability of the modified covariance 

approach in replicating ER HIs, the method is applied to five case study catchments across the UK using the daily models from 

the GR (Génie Rural) suite of hydrological models (GR4J, GR5J and GR6J, 4-6 free parameters; Coron et al. (2018)). 

2 Methods 

2.1 Study areas 20 

To illustrate the generality of the modified covariance approach, it is necessary to apply the proposed methodological approach 

to a range of catchments with differing characteristics (Andreassian et al., 2006; Gupta et al., 2014). The UK is home to a wide 

range of hydrological environments, with 18 different river types specified under the WFD (Rivers Task Team, 2004). Under 

the modified covariance approach, hydroecological models inform the parameterisation of the hydrological model. In the past, 

a mismatch between the co-location of sampling sites as well as the length of time-series  represented limiting factor (Monk 25 

et al., 2006; Knight et al., 2008). In the UK,  this is avoided by the recent publication of the UK BIOSYS archive (long-term 

ecological monitoring data from across the UK; Environment Agency (2018)). In this study, we consider a total of five 

catchments across the UK, from the north of Scotland to the south-west of England (Fig. A1), of varying size, altitude, baseflow 

index (BFI) and land use; catchment characteristics are summarised in Table 1.  

  30 
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Table 1. Summary of case study catchment characteristics. 

  Tarland Burn River Trent River Ribble River Nar River Thrushel 
F

lo
w

 g
a

u
g

e 
a

n
d

 

ca
tc

h
m

en
t 

Location Aboyne Stoke-On-Trent Arnford Marham Hayne Bridge 

Longitude -2.7758 -2.1624 -2.2471 0.5472 -4.2424 

Latitude 57.0777 53.0175 53.9962 52.6783 50.6584 

BFI 0.66 0.44 0.25 0.91 0.39 

Drainage area (km2) 70.9 53.2 204 153 57.6 

Principal land use* 
Mountain, heath 

and bog 

Urban and 

grassland 
Grassland 

Arable and 

horticulture 
Grassland 

D
a

ta
 Years 2003-2016 1989-2016 2000-2016 1961-2015 1989-2016 

Flow data source 
JHI (2018) 

NRFA (2018) 

Climate data source Met Office (2018a) and Met Office (2018b) 

2.2 Hydrological model 

The principle of parsimony, known as Occam’s razor, posits that a solution should be no more complex than necessary. In the 

context of hydrological modelling, model simplicity relative to performance is thus made key (Kokkonen and Jakeman, 2002; 

Perrin et al., 2003; Beven, 2012). To this end, the three lumped models from the GR-J series of daily hydrological models was 5 

selected (Perrin et al., 2003): GR4J, GR5J and GR6J (4, 5 and 6 free parameters respectively; Perrin et al. (2003); Le Moine 

(2008); Pushpalatha et al. (2011)). The GR-J series of models have been applied in a variety of hydrological contexts, examples 

include: Perrin et al. (2008); Coron et al. (2012); Smith et al. (2012); Coron et al. (2017). 

The three models are based on soil moisture accounting (Fig. A2). The model inputs, P, the catchment rainfall depth, and E, 

the average depth of (potential) evapotranspiration), fill the production store with a capacity of x1 mm. The routed depth of 10 

water, Pr, is determined by the rate of percolation, F(S, x1), as well as water in excess of the storage capacity. To simulate the 

time difference between rainfall event and flow peak, Pr is divided into two flow components and routed through unit 

hydrographs, time base F(x4) days. Finally, the groundwater exchange term gw, F(x2), acts on the routed, Qr, and direct flow, 

Qd, components; a positive value indicates inflow from groundwater whilst a negative represents water export. The total flow, 

Q, is determined by summing the routed and direct flows. With the aim of improving general modelling efficiency (Anderson 15 

Michael et al., 2004; Hughes, 2004), GR5J sees the addition of functions representing the interaction between channel and 

aquifer flows (Le Moine, 2008); the corresponding free parameter, x5, represents the inter-catchment exchange threshold which 

acts at the same points as x2 (groundwater exchange). With a view to improving low-flow simulations specifically (Pushpalatha 

et al., 2011), the GR6J model sees the addition of a parallel store with capacity x6. The models are applied using the R package 

airGR (Version 1.0.15.2; Coron et al. (2017); Coron et al. (2018). Parameter limits are summarised in Table A1.  20 



5 

 

2.3 Data 

The ER HIs were determined based on the outcomes of hydroecological modelling for each catchment. Following Visser et al. 

(2018a), the hydroecological model was developed using multiple linear regression with an information theory approach; a 

summary of the modelling approach is provided in Appendix A.2. The information theory approach provides a measure of the 

statistical importance of each ER HI (measure of the statistical weight of evidence for the inclusion of the index in the model) 5 

in addition to minimising and quantifying uncertainties (structural and parameter). Consequently, more conclusive statements 

may be made with regards to the model and the relevance of the selected ER HIs. Definitions of the ER HIs included in the 

hydroecological models, and their importance, are available in Table B1. To reflect seasonality in the flow regime, the indices 

are differentiated by hydrological season: winter (ONDJFM) and summer (AMJJAS). A summary of the distribution of the 

ER HIs per facet of the flow regime, season and river is provided in Table 2. 10 

Table 2. Number of ER HIs per facet of the flow regime, season (W and S denote summer and winter respectively) and river. Sum 

totals are detailed in the final columns and rows. 

 
  

Tarland 

Burn 

River 

Ribble 
River Trent River Nar 

River 

Thrushel 
Sum 

per 

facet    W S W S W S W S W S 

Magnitude 

Statistic 1 1 1 2 1   1 2  9 

Ratios – Log quantile 
     2 1   1 4 

Ratios – Median-quantile 
   4 2   3 1 2 12 

Monthly 2    1    1  4 

Duration  2 1  2    1  6 

Frequency 1  1 1 1 1   2  7 

Timing  1  2 2    1  6 

Rate of change    1  1 1 1 1  5 

Sum per season per river 4 4 3 10 9 4 2 5 9 3 53 

 

Continuous (daily) time-series of mean flow, precipitation and potential evapotranspiration serve as model input; flow and 

climate data availability are summarised in Table 1 previously. Potential evapotranspiration was estimated using a temperature-15 

based PE model (Oudin et al., 2005). 

2.4 Covariance approach 

The covariance approach was developed by Vogel and Sankarasubramanian (2003), where the aim was to replicate a specific 

HI rather than the flow time-series. The modification of the covariance approach in this study allows for the consideration of 

a suite of ecologically relevant HIs. The modified covariance approach is implemented over three stages (Fig. 1); stages 1 and 20 

2 are as in Vogel and Sankarasubramanian (2003), with the exception that multiple ER HIs are calculated, with the final stage 

representing the modification introduced in this study. 
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Figure 1. Overview of the three stages of the modified covariance approach to model parameterisation. 

Stage 1, data preparation: The parameter space of the three hydrological model structures was sampled within the limits 

specified in Table A1. With a view to addressing both parameter sensitivity (Tong and Graziani, 2008; Wu et al., 2017) and 

the number of parameter sets considered, the parameter space was sampled uniformly based on Sobol quasi-random sequences 5 

(a Quasi-Monte Carlo method). The River Nar catchment served as the ‘proof-of-concept’, consequently, for this catchment, 

100,000, 150,000 and 200,000 independent parameter sets were selected for the GR4J, GR5J and GR6J hydrological models 

respectively; for the remaining four catchments, 10,000 parameter sets were considered (per hydrological model).  

For each parameter set, flow time-series were simulated based on the full time-series of the observed climate data. For each of 

these flow time-series, a corresponding set of covariances (between observed climate and simulated flow) and HIs were 10 

computed. The observed covariance and HIs are also determined. 

Stage 2, validation: Under the traditional approach, the hydrological model is validated following calibration using an 

optimisation algorithm; this presupposes that the selected hydrological model is suitable. However, with a covariance 

approach, the model structure is validated prior to parameterisation. The model is validated when the observed moments lie 

within the simulated moments (sampled parameter space). This may be facilitated through plots of the observed and simulated 15 

relationship between the (a) covariance between precipitation and flow, 𝜌(𝑃, 𝑄), and HIs; and (b) covariance between potential 

evapotranspiration and flow, 𝜌(𝑃𝐸, 𝑄), and HIs. If the moments do not agree, the model is invalidated. An exemplar for the 

River Nar is provided in Fig. A3. The moments may also be used to determine model equifinality (the existence of multiple 

behavioural parameter sets; Beven (2006); Efstratiadis and Koutsoyiannis (2010)). 

In addition to the above, validation of the hydrological model in this way avoids the need for split-sampling (calibration and 20 

validation time-periods), thereby allowing the use of the full length of the hydroclimatological time-series in both the validation 

and subsequent parameterisation.  

Stage 3, parameterisation: Selection of a model parameter set was based on a specified limit of acceptability (summarised in 

Fig. 2), i.e. the ability to replicate or minimise the error (percentage difference) between the observed & simulated covariance 

structures and ER HIs. In Vogel and Sankarasubramanian (2003) the focus was on the replication of a single index, whilst, in 25 
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this study, the objective was the replication of multiple indices. To this end, a limit of acceptability was specified per index, 

with each ER HI assigned maximum error threshold based on their normalised or relative importance. The ER HI importance 

(Table B1) was normalised (rescaled to a range from zero to one) per catchment and the covariances assigned a relative 

importance of one, equal to the most important index. The catchment specific limits of acceptability were specified as the 

relationship between the relative importance and a user-specified allowable error range. If no parameter sets are selected, the 5 

model structure is invalidated.  

In this study, an exponential model of the form 𝑦 = 𝑒𝑚𝑥+𝑐 was specified for each catchment. In order to account for 

equifinality, the maximum error was set such that the feasible parameter space was limited to approximately 20 distinct 

parameter sets. In Fig. 2 an exemplar is presented where the limits of acceptability are adjusted with a view to identifying the 

plausible parameter space where n = 3. 10 

 

Figure 2. Conceptualisation of the limits of acceptability, depicted here as the log-linear relationship between relative importance 

and the allowable (absolute) error thresholds per indicator and covariance. The limits of acceptability are reduced until n = 3 

parameter sets lie within the plausible parameter space. In this example, the error threshold ranges from 5%, where the relative 

importance is one, to a maximum of 50%. The maximum allowable error per example indicator is marked. 15 
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2.5 Model evaluation 

The ability of the parameterised models in replicating the ecologically relevant hydrological indicators was evaluated through 

the evaluation metrics detailed in Table 3 (determined with reference to prior studies with similar modelling objectives: 

Shrestha et al. (2014); Vis et al. (2015); Pool et al. (2017)). Metrics were determined across the full time-series for each 

catchment~parameter set (e.g. for the River Nar, 54 years of seasonal ER HIs were determined for each of the 23 parameter 5 

sets). Three statistical tests were applied, where the goal is the rejection of the null hypothesis (𝛼 = 0.001). Welch’s t-test 

considers the correlation between the means of the observed and simulated indicators, whilst the KS and CvM (Cramér, 1928; 

Anderson, 1962) tests look to the distribution of the interquartile range and tails respectively; agreement indicates a relationship 

between the observed and simulated ER HIs. The hydrologic alteration factor (HAF) is adapted from the IHA approach 

(Mathews and Richter, 2007). It is a measure of the simulated and observed frequencies of values within three target percentile 10 

ranges: 0-25th, 25-75th, and 75-100th. As a measure of distribution, HAF is essentially a simplification of the distribution 

function. The acceptable range of HAF values is defined as ±0.33. Finally, two measures of error are determined: model 

efficiency, or the Nash-Sutcliffe Efficiency criterion (NSE), and the mean arctangent absolute percentage error (MAAPE), 

designed to address the limitations inherent to mean absolute relative error (Kim and Kim, 2016).  

Table 3. Descriptions, definitions and optimal values for the applied evaluation metrics. For the statistical tests, the optimal value of 15 
p < 0.001 represents the significance threshold (𝜶 = 0.001).  

 Metric Description 
Definition  

(or R-function) 

Optimal 

value 

S
ta

ti
st

ic
a

l 
te

st
s Welch’s t-test 

Variation on correlation where the two samples 

have unequal variances. Hypothesis is that two 

populations have equal means. 

stats::t.test(…) 
p < 

0.001 

Kolmogorov-Smirnov test 

(KS) 

Tests whether samples come from the same 

population, i.e. follow the same distribution.  
stats::ks.test(…) 

p < 

0.001 

Cramér-von Mises (CvM) 

Addresses limitations of KS test: (1) less 

focused on the central distribution; (2) more 

equal weighting on the tails of the distribution. 

cramer::cramer.test(…) 

(Franz, 2014) 

p < 

0.001 

D
is

tr
ib

u
ti

o
n

 

Hydrologic alteration factor 

(HAF) 

A factor developed as part of the Indicators of 

Hydrologic Alteration (Mathews and Richter, 

2007). Tests the replicability of sections of the 

probability distribution (lower-tail, IQR and 

upper-tail) for a given index. 

𝐹𝑠𝑖𝑚 − 𝐹𝑜𝑏𝑠
𝐹𝑜𝑏𝑠

 

Where F is frequency, the 

no. values lying within the 

probability distribution. 

0 

M
ea

su
re

s 
o

f 
er

ro
r 

Mean arctangent absolute 

percentage error (MAAPE)  

A modification of MARE. Considers the relative 

error as an angle rather than a slope, reducing 

the bias of large errors. 

1

𝑛
∑arctan⁡(

𝐼𝑜𝑏𝑠 − 𝐼𝑠𝑖𝑚
𝐼𝑜𝑏𝑠

) 

Where I is the index value 

and n the no. observations. 

0 

Model efficiency (NSE) Nash Sutcliffe efficiency. A measure of the 

goodness of fit of the HI to the 1:1 line.  1 −
∑(𝐼𝑜𝑏𝑠 − 𝐼𝑠𝑖𝑚)

2

∑(𝐼𝑜𝑏𝑠 − 𝐼𝑜𝑏𝑠̅̅ ̅̅ ̅)2
 

Where I is the index value. 

1 
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3 Results 

3.1 Model parameters 

For all catchments the low-flow optimised six-parameter GR6J model was invalidated; GR5J was invalidated for all 

catchments with the exception of the Tarland Burn and River Trent. A summary of the number of parameter sets (per model 

per catchment) and inter-quartile ranges is presented Table 4. For further details see Fig. B1. Being related in function, the 5 

parameters of the production (x1) and routing (x3) store capacities exhibit the greatest range. The groundwater exchange 

coefficient (x4) and inter-catchment exchange threshold (x5; where applicable) appear more consistent, whilst the time elapsed 

for the routing of flow appears inversely related to BFI.  

Table 2. Interquartile (IQR) range across the parameter sets for each catchment. 

 Tarland Burn River Ribble River Trent River Nar 
River 

Thrushel 

No. free parameters 4 5 4 4 5 4 4 

No. parameter sets 15 4 24 12 4 23 18 

x1  322.8 837.3 533.1 49.1 90.9 342.2 492.9 

x2 3.9 1.4 7.7 3.2 2.3 1.1 2.1 

x3 154.7 244.9 176.5 71.6 497.1 298.7 169.4 

x4 2.7 2.6 0.9 3.1 1.1 0.3 0.7 

x5 - 1.4 - - 2.4 - - 

3.2 Model evaluation 10 

The ability of the covariance approach in the replication of the ER HIs is considered in terms of performance and consistency. 

The models are evaluated with reference to the metrics summarised in Table 3 previously. Results are considered by metric, 

with a focus on the ER HIs with the best and worst performance and consistency.   

3.2.1 Statistical tests 

A series of tests were applied with a view to determining if, statistically speaking, the observed and simulated ER HIs come 15 

from the same population. The tests focus on the mean (t-test), the central distribution (KS) and tails of the distribution (CVM 

test). Table B1 in the appendix details, per ER HI and catchment, the percentage of the parameter sets which did not show a 

significant level of agreement. 

The statistical tests saw perfect agreement across all six timing indicators. With respect to the magnitude indices, the ER HI 

BFIr and the three skewness indicators do not satisfy any of the tests; performance appears irrespective of importance indicated 20 

by the hydroecological model or catchment. Magnitude median-quantile ratios agreement was mixed, with high and low flows 

achieving poor and good agreement respectively. Broadly, frequency indicators indicate a lack of agreement, with only the 

PlsFld index in the River Thrushel exhibiting performance and consistency. The role of statistical importance in the replication 

of these more complex indicators is also suggested, with PlsQ75 replicated well in the Tarland (importance 0.69) and poorly 
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in the Trent (importance 0.03). More broadly, log-transformed indicators saw better agreement; for example, the more 

important MaxMonthlyVar generally performed poorly, whilst MaxMonthlyLogVar saw agreement across all tests and 

parameter sets.  

3.2.2 Distribution – Hydrologic alteration factor (HAF) 

The hydrologic alteration factor (HAF) is a test of the replicability of the shape of the probability distribution. Fig. 3 5 

summarises the HAF value across the central distribution and tails for each ER HI. There is agreement across the percentile 

ranges for the majority of the ER HIs considered. Notably, the 19 (of 22; statistics, log-ratios and quantile-median ratios) 

magnitude indicators not pictured achieved optimal HAF of zero. The three-monthly indicators (depicted) again highlight 

relative success in replicating a log-transformed index. 

The performance of the six indicators capturing flow pulse events is varied: the central distribution of flood pulses is well-10 

replicated whilst the upper tail exhibits a consistent large negative bias. The HAF values also serve to highlight some 

inconsistencies in the performance of the timing indicators. A variable negative bias is in evidence for the index Mn7MaxJD, 

however, in this case, it is worth noting that it is inherently more difficult for a hydrological model to detect and replicate 

(multiple) short-term events (Pool et al., 2017). Perhaps surprisingly, Mn90MnJD is subject to a large positive bias in the lower 

tail, i.e. the range of the distribution is underestimated. In contrast to Mn7MaxJD, this discrepancy may be due to the long(er)-15 

term duration; with seasons of approximately 180 days in length, there are a limited number of values the indicator can take. 
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Figure 3. Hydrologic alteration factor (HAF) values for the three percentile ranges for each ER HI. The acceptable range of HAF 

values is defined as ±0.33 (red dashed line); HAF > 0 represents an increase in frequenecy relative to the observed whilst HAF < 0 

represents a decrease. All magnitude statistic and ratio ER HIs achieved optimal values (HAF = 0) and are not depicted. The 4- and 

5-parameter results are adjacent, left and right respectively, for the Tarland Burn and River Trent. 5 

3.2.3 Error – MAAPE and NSE 

Two measures of error were applied, MAAPE, a modification of the mean absolute relative error (MARE) which reduces the 

bias of large errors, as well as the more commonplace Nash Sutcliffe efficiency (NSE).  

The MAAPE for each ER HI is depicted in Fig. 4; to ensure consistency with HAF, acceptable boundaries are specified as 

±0.33 (depicted, horizontal red lines). Overall, the same general patterns may be observed; for example, skew indicators are 10 

not well replicated, log-transformation improves the monthly index performance, and timing, with the exception of 
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Mn90MinJD, achieves consistently good performance. However, it is clear that the consideration of multiple parameter sets 

per catchment model leads to variation in the simulated ER HI which may not have been detected by the previous metrics. 

MAAPE also serves to highlight the difference in performance across the median-quantile ratios, extreme high-flow indices 

(Qmax to Q05) are over-estimated whilst the replication of low-flow indices is subject to considerably less (negative) bias. 

 5 

Figure 4. Mean arctangent absolute percentage error (MAAPE) values for each ER HI. As per HAF, the acceptable range is defined 

as ±0.33 (red dashed line). The 4- and 5-parameter results are adjacent, left and right respectively, for the Tarland Burn and River 

Trent. 

The NSE is a measure of the efficiency or skill of the model relative to the observational mean (the 1:1 line; Murphy (1988); 

Gupta et al. (2009)), NSE < 0 indicates that the mean may be a better estimate. In Fig. 5, only ER HI with NSE > 0 are depicted 10 

with the number of parameter sets described as n; for all ER HI see Fig. B2. 
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Seventeen ER HI achieved NSE values greater than zero; further, the low values of n which are in evidence indicate a lack of 

consistency across parameter sets. Those ER HI which have already been shown to perform well are indicated, examples 

include the low flow median-quantile ratios, the log-transformed monthly index and the timing indicators more generally. 

 

Figure 5. Nash Sutcliffe Efficiency (NSE) for each ER HI where NSE > 0 (model skill greater than observational mean); see Fig. B2 5 
for all NSE. The 4- and 5-parameter results are adjacent, left and right respectively, for the Tarland Burn and River Trent. 

3.2.5 Catchment level 

In order to validate the modified covariance approach a range of catchments were considered; the main differences were in the 

BFI, length of the available time-series and the ER HIs considered. In this study, BFI ranged from 0.25 to 0.91, essentially 

flashy to groundwater-fed. With the exception of model parameterisation, there was no discernible difference in the replication 10 

of ER HIs. Similarly, the length of the available time-series appears to have made no observable difference to the replicability 
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of the ER HI distributions specifically. In terms of error, MAAPE and NSE, lower overall performance for the shorter time-

series is expected as a result of sample size sensitivity. Finally, despite consideration of a range of ER HIs with different 

associated importance, there appears a consistent message in terms of the performance and consistency of similar indices and 

the facets of the flow regime more broadly. 

4 Discussion 5 

There is a clear need to understand the impact of hydrologic change on the river ecosystem. To this end, hydrological models 

are used to simulate flow time-series from which ecologically relevant hydrological indicators are derived. Previous studies 

(e.g. Vis et al. (2015), Shrestha et al. (2014) and Pool et al. (2017)) have highlighted the inability of hydrological models to 

simulate a range, or suite, of ER HIs concurrently. In this study, a modification of Vogel and Sankarasubramanian (2003) 

covariance approach was applied to five hydrologically distinct catchments; the focus was on the replication of a suite of ER 10 

HIs identified through catchment-specific hydroecological models. The ability of this modified covariance approach was 

assessed through a series of evaluation metrics.  

4.1 Performance and consistency 

The consideration of a range of catchments provides a clear picture of the capacities of the hydrological models as well as the 

relative success of the covariance approach. Overall, replication of the ER HIs was good. Timing and log-transformed 15 

indicators (logQVar, MaxMonthlyLogVar and the log quantile ratios) were among the most consistent and well-replicated 

across the range of catchments, whilst difficulties were observed in replicating frequency and rate of change indices. 

Replication of indicators incorporating the seasonal median flow (Q50) was also poor, with large positive biases frequently 

observed. This may be observed directly through comparison of the replication of Q01 and Q01Q50 in the River Trent where 

the degree of error can be seen to markedly increase.  20 

4.2 Advantages and limitations of the modified covariance approach 

In this section we consider the general advantages of the modified covariance approach, over traditional calibration approaches, 

followed by the hydroecological modelling requirements. It is clear that no approach has been able to achieve adequate 

performance and consistency in the replication of more complex ER HIs, specifically those related to rate of change. Shrestha 

et al. (2014) observed difficulties in replicating low flows, the duration of flow pulses, and monthly flows specifically. In this 25 

study, no such observations have been made with regards to low flows and duration, indeed, these may be considered to be 

relatively well-replicated across all catchments. Poor replication of monthly ER HIs does however persist; log-transformed 

variations of these indicators may represent a viable alternative. Whilst Pool et al., 2017 saw improvements (relative to Shrestha 

et al. (2014) and Vis et al. (2015)), the need to calibrate the model to each ER HI in question would strongly call into question 

the reliability of the hydrological model (due to the inability of the hydrological model to simulate catchment hydrological 30 
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processes simultaneously). The consistency with which (the majority of the) ER HIs are replicated here illustrates that this is 

not a necessary limitation of hydrological models. A lack of consistency in ER HIs demonstrating elevated levels of variability, 

such as high flows, is to be expected due to the dynamic nature of inter-annual weather patterns (Pool et al., 2017). 

4.2.1 General advantages 

Here follows a brief discussion of the general advantages of the modified covariance approach. First, uncertainty is reduced 5 

via a number of avenues:  

• Disinformative data: Models calibrated following a traditional approach are particularly sensitive to measurement error 

(Westerberg et al., 2011). Lack of agreement in the observed-simulated time-series, even for a single event, may bias 

the objective function, leading to rejection of an otherwise well-performing parameter set (Beven, 2010; Westerberg et 

al., 2011).  Methods which do not focus on the replication of time-series directly, such as the modified covariance 10 

approach, are known to limit the influence of input uncertainty (Westerberg et al., 2011; Euser et al., 2013). 

• Validation of model structure: Consideration of the observed and simulated moments allows the user to validate the 

ability of the hydrological model structure in capturing the hydrological processes in the catchment, thus ensuring the 

selection of the optimal model. 

• Equifinality: Equifinality, reaching the same outcome by different means, is a major challenge of hydrological 15 

modelling. In the modified covariance approach the entire parameter space is considered at the outset. A plausible 

parameter space is determined by focussing on the region which is best able to replicate the characteristics of the HIs, 

thereby reducing the uncertainty associated with equifinality (Wu et al., 2017).  

Finally, whilst the large number of simulations required under the modified covariance approach may seem prohibitive, this 

demand may be offset. Unlike the calibration-validation paradigm, where selection algorithms may introduce issues of speed 20 

and accuracy (Seibert, 2000), finite time is needed to apply the covariance approach. All simulations of the hydrological model 

are performed at the outset; once the full suite of parameter sets have been simulated the hydrological model need not be run 

again. Under a more traditional approach, such as in (Pool et al., 2017) where the ER HIs serve as the objective, the HIs must 

be specified at the outset. This is not the case in the modified covariance approach, where the n Monte Carlo simulations can 

be performed in advance of HI selection. Thus, multiple suites of ER HIs may be considered (e.g. all rate of change or 25 

magnitude indicators) with limited additional time outlay. 

4.2.1 Hydroecological model requirements 

The explicit consideration of the outcomes of hydroecological modelling is perhaps both the most significant advantage and 

disadvantage of the modified covariance approach. Whilst hydrological modelling informed by the outcomes of hydroecological 

studies is not new, for instance, Pool et al. (2017) was informed by Knight et al. (2014), the novelty of this approach lies in the 30 

explicit consideration of the statistical importance of the ER HIs, identified through hydroecological modelling.  
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Following a traditional calibration approach, there is a practical limit to the number of ER HIs which may be considered; for 

instance, Pool et al. (2017)limited their multi-criteria objective function to five equally weighted indicators. However, by 

considering the relative importance of each ER HI, the modified covariance approach allows a large suite of ER HIs (seven to 

thirteen) to be considered with no apparent penalties. Further, contrary to expectations, a large number of important ER HIs 

(> 0.5) has no impact on replicability. In the case of the River Ribble, where a total of thirteen ER HIs were considered, seven 5 

had an importance greater than 0.5. Similarly, through this approach, a high weighting is not needlessly attributed to ER HIs 

with low importance.   

The need for a hydroecological model represents the major limiting factor due to the requirement for long-term hydroecological 

time-series. Historically, hydrological and ecological data were collected for different objectives (Poff and Allan, 1995; Knight 

et al., 2008; Monk et al., 2008), leading to a mismatch in temporal and spatial coverage. High levels of disparity in sampling 10 

and gauging sites inevitably introduce noise into the model. However, the availability of national ecological datasets, such as 

BIOSYS in the UK , may serve to offset the issue of data availability. Such datasets may be used to develop regional 

hydroecological models based on flow regime type and the assumption of homogeneity in environmental conditions. The 

modified covariance approach may also be applied without a numerical measure of the relative importance of each indicator, 

this would however introduce an element of subjectivity into the parameterisation of the model.  15 

4.3 General observations 

4.3.1 Suitability of ER HIs in hydrological modelling 

This, and previous studies, have observed difficulties in the replication of frequency ER HIs (flow pulses). This begs the 

question: Is this a product of the covariance approach? An inherent limitation of hydrological models more generally? Or is 

this related to the nature of the indicator itself? A review of the simulated flow suggests the latter. There is a tendency for the 20 

simulations to identify shorter more frequent pulses, whilst the observed pulses are longer and less frequent. For instance, the 

median error (MAAPE) for PlsQ50 (the number of pulses above a baseline Q50 threshold) on the River Trent was 0.75; this 

falls to 0.368 if the focus is on the total duration of the pulses. The pooling of events with an inter-event time below some 

threshold, as per the inter-event time and volume criterion (Gustard and Demuth, 2009) for example, may serve to improve 

the replication of the pulse indicators. It should be noted that, in this study, this limitation does not extend to flood pulses 25 

(FldPls) due to the much larger inter-event time, thus allowing for better replication of flood pulses overall.  

In multiple cases, this study observed difficulties in replicating those ER HIs which are considered relative to the median 

seasonal flow. Comparison of the indicators Q01 and Q01Q50 in the same catchment indicates that the lack of direct 

consideration of median flows in the parameterisation of the model may be a limiting factor. Indeed, it may be that the 

decomposition of such indicators into their component parts, e.g. Q01 and Q50, may lead to better replicability overall. 30 

Similarly, the results indicate that log-transformation of flows may lead to improvements in the replicability of certain ER HIs.  

Further work is required to confirm this premise. 
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4.3.2 Suitability of evaluation metrics 

There is a lack of consistency in the evaluation metrics considered in the evaluation of hydrological model performance. 

Further, these studies make use of metrics which exhibit known bias, for example, mean absolute relative error (MARE; Kim 

and Kim (2016) and NSE (Gupta et al., 2009; Pushpalatha et al., 2012; Vis et al., 2015). For the measure of error, this study 

replaced the former with MAAPE (see Table 3). The reasons for the consideration of NSE in this study were twofold: (1) 5 

application of NSE is the norm; and (2) to illustrate the limitations of this measure. The limitations of NSE are frequently cited 

as low scores where there is high variability (Gupta et al., 2009) as well as a bias towards high flows (Pushpalatha et al., 2012). 

Additionally, the NSE is scaled by the standard deviation, rendering it incomparable across catchments (Gupta et al., 2009). 

In this study, only seventeen of the ER HIs achieved NSE > 1, i.e. the simulations are better than an estimation based on the 

observed mean. Similar observations were made in Vis et al. (2015). It can be concluded that, given this lack of robustness, 10 

NSE is not a suitable evaluation metric in studies such as this one. 

4.4 Wider applicability and further work 

The modified covariance approach is able to provide statistically robust simulations and projections of ER HIs for applications 

such as environmental flow assessment or in assessing the hydroecological impact of climate change as in Visser et al. (2018b) 

and Visser et al. (2019). However, the applicability of the approach is not limited to hydroecological studies and the simulation 15 

of ER HIs, being suited to the simulation of any HIs or hydrological signatures. Indeed, a focus on hydrological signatures 

may serve to improve the simulation of underlying hydrological processes more generally (Seibert, 2000; Euser et al., 2013). 

In this context, example applications include the replication of water resource management indicators (monthly, seasonal and 

annual flows). Such applications would require consideration of a statistical model for the determination of the statistical 

importance of indicators. The approach may also be used in the development of regional hydrological models, thereby 20 

facilitating the simulation of HIs in ungauged catchments. Finally, the clarity with which model structures are accepted or 

rejected makes the approach ideally suited for use in combination with model selection frameworks such as the Framework 

for Assessing the Realism of Model Structures (FARM; Euser et al. (2013)). 

5 Concluding remarks 

This study considered the performance and consistency of a modified covariance approach in the replication of ecologically 25 

relevant hydrological indicators. Application across five hydrologically diverse catchments showed a consistent level of 

performance across the majority of ER HIs; the timing facets of the flow regime were best replicated, whilst rate of change 

indicators saw the poorest performance and consistency. Relative to similar studies, there was an overall improvement in 

consistency, thus, this study represents an important advancement towards the robust application of hydrological models for 

ecological flow studies. The explicit consideration of hydroecological modelling outcomes allows the hydrological model to 30 

be tuned to parameters based on statistical importance. A further major advantage of the modified covariance approach lies in 
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the identification of the plausible parameter space which best captures (replicates) the characteristics of the ER HIs, thereby 

providing a greater understanding of the suitability, limitations and uncertainties of the hydrological model structure. 

Data availability: The hydroclimatological data used for all catchments (except the Tarland Burn) is freely available from the 
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Appendix A – Method 

A.1 Case studies 

 

Figure A1. Distribution of the case study catchments across the UK. 
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A.2 Hydroecological modelling 

Based on Olden and Poff (2003) and Monk et al. (2006), daily mean flow data was used to derive 63 hydrological indices per 

hydrological season: winter (ONDJFM) and summer (AMJJAS); for data source, see Table 1. Principal Component Analysis 

(PCA) was applied to identify those indices which describe the major aspects of the flow regime whilst minimising redundancy. 

Macroinvertebrates serve as the proxy for ecological response. Response is determined using the Lotic-Invertebrate Index for 5 

Flow Evaluation, accounting for macroinvertebrate flow velocity preferences (Extence et al., 1999). For four out of five case 

studies LIFE scores were determined to family level; data for the River Nar, obtained directly from the Environment Agency, 

was available to species level. The modelling focused on spring ecological activity (the period of peak activity and largest 

consistent availability of data). 

After Visser et al. (2019), an Information Theory approach to modelling was taken in order to provide a quantitative measure 10 

of support for parameters and candidate models. Inference is made from multiple models through model averaging. In 

summary: (1) the candidate models are evaluated with respect to the second-order bias corrected Akaike Information Criterion 

(AICc) (after Burnham and Anderson (2002); see also Visser et al. (2019)); (2) a best approximating model is inferred from a 

weighted combination of all the candidate models; (3) the parameters are ranked, such that the highest value represents the 

most important in the model; (4) filters are applied to remove parameters where the estimate and confidence intervals are zero 15 

(i.e. certainty that the index is not to be included) and to reduce the model to the parameters which describe 95% of the 

cumulative information. For further details, see Visser et al. (2018a) and Visser et al. (2019). 

A.3 Hydrological modelling 

Table A1. Parameter limits for the hydrological models. 

 Description Limits 

x1 Capacity of production store (mm) (100,1200} 

x2 Groundwater transfer (mm/day; positive indicates flow from aquifer) (-5,25} 

x3 Capacity of routing store (mm) (20,1000} 

x4 Time lag between rainfall event and flow (days) (0.5,30} 

x5 Inter-catchment exchange threshold (-) (-5,25} 

x6 Capacity of parallel routing store (mm) (20,1000} 

 20 
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Figure A2. Structure of the GR4J hydrological model; based on Perrin et al. (2003). The 5-parameter GR5J sees the addition of x5, 

inter-catchment exchange parameter, at the same locations as x2, whilst GR6J sees the addition of a store parallel, capacity x6, to 

the routing store. 

 5 

 

Figure A3. Observed and simulated moments for the 100,000 Monte Carlo simulations using the GR4J model for the River Nar case 

study. The grey boxes depict the boundaries of the limits of acceptability per index. One of the selected parameter sets, i = 73,952, is 

highlighted (yellow). 
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Appendix B – Supplementary results 

B.1 Ecologically relevant hydrological indices and test statistics 

Table B1. Ecologically relevant hydrological index descriptions; grouping is by facet of the flow regime. Seasons are indicated through no shading (winter) 

and shading (summer). Subsequent columns are catchment specific, denoting ER HI importance, and the results of the statistical tests detailed in Table 3. 

In the table, a flood threshold is the flow equivalent for a flood recurrence interval of 1.67 years (on the baseline).  

*Four and five parameter models were applied to both the Tarland Burn and River Trent. Single digit entries should be interpreted as being the same 

across both models; where entries are separated, e.g. for 10R90Log, the former represents GR4J and the latter GR5J. 
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Magnitude - Statistic 

IQR 
Interquartile 
range of flow. 

m3s-1 0.43 0 0 0 0                     

Var 
Variance in 

flow. 
- 0.46 0 0 0 0                     

Q01 

Q1 flow 

(extreme high 
flow). 

m3s-1      0.32 0 83.3 70.8 87.5                

Sk 

Skewness, 

mean relative 

to median. 

-      0.11 0 100 100 100           0.88 0 100 100 100 

SkRel 

Relative 

skewness, mean 

minus median, 
relative to median.  

-      0.09 0 100 100 100                

Sk100 
Range relative 

to the median. 
-                     0.38 0 100 100 100 

logQVar 

Variance in log-

transformed 
flow. 

-                0.37 0 0 0 0      

BFIr 

The seasonal 

BFI relative to 

baseline BFI. 

-           0.03 0 100 100 100           



22 

 

Magnitude - Ratios - Log quantile 

10R90 
Log 

Log-
transformed 

ratio, xxth to 

yyth percentile 
flow. 

- 

          0.97 100 0 

8.3 

— 

100 

0 0.86 100 0 0 0      

20R80 
Log 

               

 

 
 

  

    0.94 100 0 0 0 

25R75 
Log 

          0.97 100 0 

8.3 

— 

100 

0           

Magnitude - Ratios - Median-quantile 

MaxQ50 

Max. flow 

relative to 
median (extreme 

high flow). 

-                     0.32 0 100 100 100 

Q01Q50 

Qxx flow 

relative to 

median (high 
flow). 

- 

     0.53 0 100 100 100 0.03 0 100 100 100           

Q05Q50      0.4 0 100 100 100                

Q20Q50           0.03 0 

16.7 

—

100 

66.7 

— 

100 

58.3 

— 

100 

          

Q60Q50 

Qxx flow 

relative to 

median (low 
flow). 

- 

                    0.97 0 72.2 33.3 72.2 

Q70Q50      0.88 0 83.3 66.7 83.3      0.09 0 0 0 0 0.99 0 77.8 55.6 72.2 

Q80Q50      0.38 0 83.3 75 87.5      0.51 0 0 0 0      

Q90Q50                0.19 0 0 0 0      
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Magnitude - Monthly 

Max 
Monthly 

Med 

Median of 
max. monthly 

flow. 

m3s-1 0.7 0 
0 

— 

25 

0 0                     

Max 
Monthly 

Var 

Variability in 
max. monthly 

flow. 

- 0.45 0 0 0 0      0.92 100 
33.3 
— 

100 

91.7 
— 

100 

91.7 
— 

100 

          

Max 

Monthly 
LogVar 

Variability in 
max. monthly 

log-transformed 

flow. 

-                     0.45 100 0 0 0 

Duration 

Mn7 

Max 

Mean of the 7-

day cumulative 
max. flow. 

m3s-1 0.53 0 0 0 0 0.14 0 20.8 33.3 25           0.5 0 94.4 77.8 88.9 

Mn90 

MaxQ50 

Mean of the 

90-day 
cumulative 

max. flow 

relative to the 
median. 

- 0.53 0 0 0 0      0.06 0 

25 

— 
100 

16.7 

— 
100 

33.3 

— 
100 

          

PlsDur 
Fld 

Duration of 

pulses above a 
(baseline) flood 

threshold.  

Days           0.02 100 0 0 

50 

— 

25 

          

PlsDur 

Q75Var 

Variation in the 

duration of 

pulses below a 
Q75 (baseline) 

threshold. 

-                          
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Frequency 

PlsFld 

No. of pulses 

above a 

(baseline) flood 
threshold.  

Count                     0.41 100 0 0 55.6 

PlsQ25w 
No. of pulses 
above a Qxx 

(baseline) 

threshold. 

Count 

     0.64 0 91.7 83.3 95.8                

PlsQ25s      0.58 0 66.7 70.8 83.3                

PlsQ50             0.04 0 100 100 100           

PlsQ75 

No. of pulses 

below a Qxx 
(baseline) 

threshold. 

Count 0.69 0 0 0 0      0.03 0 100 100 100           

Timing 

JDRng 

Range in the 

Julian days for 

the max. and 

min. daily 

mean flow. 

JD      0.73 0 0 0 0                

Mn7 

MaxJD 

Julian day of 

the mean 7-day 
max. flow. 

JD 0.78 0 0 0 0      0.94 0 0 0 0           

Mn30 

MinJD 

Julian day of 

the mean 30-
day min. flow. 

JD      0.67 0 0 0 0                

Mn90 

MaxJD 

Julian day of 

the mean 90-

day max. flow. 

JD           0.03 100 0 0 0           

Mn90 
MinJD 

Julian day of 

the mean 90-

day min. flow. 

JD                     0.88 100 0 0 0 
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Rate of change 

RevPos 

No. days when 

flow increases 

(positive 
reversals). 

Days                0.8 0 100 100 100      

riseMn 
Mean rise rate 
(flow 

increasing). 

m3s-1                0.07 0 0 0 0      

riseLog 

Med 

Median log-
transformed rise 

rate (flow 

increasing). 

m3s-1      0.55 0 0 0 4.17                

fallVar 

Variation in fall 

rate (flow 
decreasing). 

-                     0.16 0 100 100 100 

fallLog 
Med 

Median log-

transformed fall 
rate (flow 

decreasing). 

m3s-1           0.93 100 

91.7 

— 

75 

100            
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B.2 Model parameters 

 

Figure B1. Boxplots of the parameter values across the 100 selected models. The whiskers represent the maximum and 

minimum values observed.  
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B.3 Nash Sutcliffe Efficiency 

 

Figure B2. Nash Sutcliffe Efficiency (NSE) for each ER HI; see Fig. 5 for NSE > 0. The 4- and 5-parameter results are adjacent, left 

and right respectively, for the Tarland Burn and River Trent.
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