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Dear Professor Pierre Gentine, 

We would like to thank you and the reviewers for your reconsideration of the manuscript. We have made every effort to 

address the issues raised by the reviewers; for details see our responses below. We trust this will allow you to sign off on the 

paper happily.  

Yours sincerely, 5 

Annie Visser-Quinn (Corresponding author) 

Reviewer 1 

P1L12: fix "From this the plausible..." 

P3L9: fix "focussed"  

P3L10: add "but" or "while" prior to "the ability of the..." 10 

P7L11: simplified exemplar --> simplified example 

P14L21: The subsection title of "4.1.1" should be on a new line, and the preceding paragraph should not be in BOLD. 

P16L21: subsection 4.2.2?? 

P17L5: The subsection title of "4.3" should be on a new line, and the preceding paragraph should not be in BOLD. 

Response: We thank the reviewer for their useful editorial notes, the changes have been made as suggested. We have not 15 

changed the spelling of focussed as we have been consistent in the use of British-English throughout. We trust that the 

copyeditor will ensure the consistency in the style of English, whether it be British or American. 

Reviewer 2 

1) P11 L 24-25: The introduction now includes a part that defines the “traditional” approach. However, the definition is still 

relatively vague, mostly because there is a lack of examples. Is the Nash-Sutcliffe efficiency a traditional objective function? 20 

What about the Kling-Gupta efficiency? What about the flow duration curve? These questions can be easily clarified by 

adding the information (e.g. “…traditional objective functions, such as the NSE and KGE…”). Also, it would be interesting 

to know which objective function was used in the studies that are referenced right after the definition (Shresta et al., 2014; 

Vis et al, 2015). This would certainly help to define what a traditional objective function is.  

Response: We have made a minor change to the introduction in an effort to better reflect our meaning of the traditional 25 

approach. The emphasis is on objective functions AND algorithms is the traditional approach, not the functions themselves. 

2) P12 L10: You mention the selection of ER HIs to guide model parameterisation as one limitation you want to address in 

this study. The limits of acceptability concept of the covariance approach also needs a selection of ER HIs. Can you shortly 

comment on where the difference is? 
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Response: We would like to stress that the focus is not on the selection of ER HIs, but rather the identification or 

determination. The semantics are very important in the context of this work. 

Under the proposed approach, the statistical importance is a vital part in the model parametrisation. As Pool et al. (2017) 

highlight, no other approach considers the relative importance of the indicators, this removes the current issue of subjectivity 

(see 4.2.2). We feel that this is sufficiently discussed throughout the paper.  5 

3) P12 L11 and P28 L27-32: Is the recalibration of a model, such as GRJ, really a limitation in terms of computational 

power? I assume the bigger challenge is rather to find a set of parameters that manages to replicate multiple ER HIs. Having 

such a “common” set of parameters is hydrologically more meaningful than having a separate set of parameters for different 

ER HIs.  

Please note that this statement was made with reference to Pool et al. (2017). 10 

4) Table 1: Catchment steepness is missing for the Tarland Burn catchment. I assume that it could be calculated relatively 

easily using the catchment outline and a digital elevation model.  

Response: The Tarland Burn is not an NRFA catchment, therefore the data availability is considerably less. The James 

Hutton Institute who provided the data could not provide a suitable digital elevation model for the area. To avoid confusion, 

we simply state in the Table caption that the data was not available.  15 

5) This comment is on step 2 and 3 of the covariance approach. In Fig. 1 and the corresponding text you make a clear 

distinction between step 2 and step 3. I am not convinced that it is meaningful to separate the two steps. To my 

understanding you do the following: In step 2, you make a plot of the observed and n simulated covariances and each ER HI. 

If the observed moments lie inside the “cloud” of simulated moments, then the model structure is valid. In step 3, you take a 

subset of the “cloud” that is within the limits of acceptability. This gives you the valid parameter sets. You therefore use a 20 

stricter test to validate parameter sets than to validate the model structure.  

My question is now: does that make sense?  

An extreme example: imagine you have 10,000 parameter sets, a validated model structure, but only 1 parameter set is 

within the limits of acceptability. Would you say you have a valid model structure if only 1 parameter set actually manages 

to give you simulations of covariance and ER HI that are realistic enough to work with? Personally, I would doubt that my 25 

model structure is valid.  

Based on your text and comments I understand that step 2 is exactly as proposed by Vogel and Sankrasubramanian and that 

step 3 is the extension. However, I think what you want to do is modifying their approach to 1) use it for multiple indicators, 

and 2) to weight indicators according to their importance. To do so, you can skip step 2 and directly apply step 3. 

Response: We would argue that the evaluation of the model structure in this way is central to the approach. On page 6 we 30 

discussed that model parameterisation typically presupposes that the selected hydrological model is able to capture the 

underlying processes in the given catchment without evidence base. We consider model evaluation a separate step to 

emphasise the importance. 

Additionally, we would like to highlight that the limits of acceptability are ultimately determined by the user.  
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6) P28 L23: As you mention, equifinality is reaching the same outcome by different means. This is mainly due to 

uncertainties in data and model structure/parameters and the limited type of data used to evaluate the model. Given the same 

model and data, I don’t fully understand why the covariance approach reduces equifinality compared to a traditional 

approach.  

Response: We would argue that we do not make this claim. On page 17 we are careful to state that the “uncertainty 5 

associated with equifinality is reduced”. By this we mean that the epistemic uncertainty associated with accounting for 

equifinality, rather than the uncertainty of equifinality. To improve clarity, we have modified the text accordingly. 

7) P30 L8: You mention that an improvement in consistency is reached by the covariance approach. Is this due to the 

covariance approach or due to the fact that all available ER HIs are used to select parameter sets, i.e. the ER HIs are part of 

the calibration?  10 

Response: We would like to highlight that on page 15 we note that no approach has been able to achieve this level of 

consistency prior (despite their use of ER HIs).  

8) Finally, I fully agree that your approach is different from the GLUE approach proposed by Beven and Binley (1992). 

However, they have a lot of similarity and this is why I think it is fair to shortly comment on that somewhere in the 

manuscript (two to three sentences are enough). I would like to add some thoughts to your previous answer to this topic: a) 15 

both, the GLUE and the covariance approach need a performance metric (you use the covariance and ER HIs; any objective 

function (also called likelihood function) can be used in GLUE), b) statistical importance could be considered in GLUE 

using the approach of fuzzy limits of acceptability (Beven, 2006), and c) a range of indicators can be considered in GLUE 

(e.g.Blazkova and Beven, 2009). 

Response:  We take the points of the reviewer on board. However, the focus of our paper is on improvements over the 20 

described traditional approach. Whilst GLUE is commonplace in hydrological modelling, it is not in the parameterisation of 

hydrological models for the assessment of hydrologic alteration. We therefore feel that the discussion of GLUE is outwith 

the scope of this paper. Additionally, we would again like to highlight that Vogel and Sankarasubramanian (2003), in their 

more general paper, did not liken their approach to the GLUE methodology. 



4 

 

Replication of ecologically relevant hydrological indicators following 

a modified covariance approach to hydrological model 

parameterisation 

Annie Visser-Quinn1, Lindsay Beevers1, Sandhya Patidar1 

1Institute for Infrastructure and Environment, Heriot-Watt University, Edinburgh, EH14 4AS, UK 5 

Correspondence to: Annie Visser-Quinn (a.visser-quinn@hw.ac.uk) 

Abstract. Hydrological models can be used to assess the impact of hydrologic alteration on the river ecosystem. However, 

there are considerable limitations and uncertainties associated with the replication of ecologically relevant hydrological 

indicators. Vogel and Sankarasubramanian's 2003 (Water Resources Research) covariance approach to model evaluation and 

parameterisation represents a shift away from algorithmic model calibration with traditional performance measures (objective 10 

functions). Using the covariance structures of the observed input and simulated output time-series, it is possible to assess 

whether the selected hydrological model is able to capture the relevant underlying processes. From this the plausible parameter 

space, the region of parameter space which best captures (replicates) the characteristics of a hydrological indicator, may be 

identified. In this study, a modified covariance approach is applied to five hydrologically diverse case study catchments with 

a view to replicating a suite of ecologically relevant hydrological indicators identified through catchment-specific 15 

hydroecological models. The identification of the plausible parameter space (here n ≈ 20) is based on the statistical importance 

of these indicators. Evaluation is with respect to performance and consistency across each catchment, parameter set, and the 

40 ecologically relevant hydrological indicators considered. Timing and rate of change indicators are the best and worst 

replicated respectively. Relative to previous studies, an overall improvement in consistency is observed. This study represents 

an important advancement towards the robust application of hydrological models for ecological flow studies.  20 

1 Introduction 

Increases in societal water demand and climatic variability raise questions over the long-term sustainability of water resources 

(Gleick, 1998; Klaar et al., 2014; Davis et al., 2015; Gleick, 2016). As the ecological role of flow is better understood, it has 

become widely acknowledged as the major determinant of the ecological health of the riverine ecosystem (e.g. Power et al. 

(1995); Lytle and Poff (2004); Arthington et al. (2006)). Consequently, changes to flow threatens both the ecological health 25 

of rivers and their ability to provide the vital ecosystem services upon which humans depend (Vörösmarty et al., 2010; 

Arthington, 2012). 

Beginning in the late 1940s in the United States, the need to balance the conflicting demands of both human society and those 

of the ecosystem saw the emergence of the environmental flow movement. Environmental flows have been defined under the 

Brisbane Declaration (2007) as: “…the quantity, timing, and quality of water flows required to sustain freshwater and 30 
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estuarine ecosystems and the human livelihood and well-being that depend on…”. Tharme (2003) documented that over 200 

formal environmental flow assessment methods had been developed.  

Quantifying the relationship between flow and ecology is pivotal for the determination of environmental flows (Bunn and 

Arthington, 2002; Arthington et al., 2006; Poff et al., 2010; McManamay et al., 2013). Richter et al. (1996) identified five 

facets of the flow regime required to support the riverine ecosystem: magnitude, frequency, duration, timing and rate of change. 5 

Alteration of the flow regime invariably leads to significant ecologic change. To date, over 200 ecologically relevant 

hydrologic indices (ER HIs) have been proposed (Olden and Poff, 2003; Monk et al., 2006; Thompson et al., 2013). Poff et al. 

(2010) and Peters et al. (2012) each describe environmental flow frameworks, which call for the determination of ER HIs via 

hydrological model simulations of flow. At the time of publication (of these frameworks), the application of hydrological 

models for the determination of ER HIs was in its infancy (Knight et al., 2011). Indeed, early work was largely based on 10 

regional statistical approaches which had been in use since the 1960s in the United States (for the determination of water 

resource relevant HIs; for example, see Knight et al. (2011) and Carlisle et al. (2010)). Murphy et al. (2012) compared such 

ER HIs against those determined from simulated flows, finding that, without targeted calibration to specific HIs, “the 

widespread application of general hydrologic models to ecological flow studies is problematic” (p. 667). However, such 

statistical approaches are unsuitable when assessing the impact of hydrological change on the river ecosystem (e.g. as a result 15 

of engineering intervention or under a changed climate) or for the simulation of ecological flows in ungauged catchments. A 

hydrological modelling approach is thus necessary. 

Model performance and consistency are watchwords for this study. After Euser et al. (2013), model performance is defined as 

the ability to mimic the behaviour of catchment hydrological processes; consistency represents the ability of the hydrological 

model to reproduce a suite of ER HIs across parameter sets, hydrological models and catchments.  20 

Significant bias has been observed in hydrological models calibrated following algorithmic model calibration with traditional 

objective functions and performance measures (Grayson and Blöschl (2001); Blöschl and Montanari (2010); Westerberg et al. 

(2011); Pushpalatha et al. (2012)); hereafter this is termed the ‘traditional approach’. For example, when evaluating the 

suitability of model simulated HIs (six water resource relevant HIs and 32 ER HIs), Shrestha et al. (2014) observed that water 

resource relevant HIs were well-replicated whilst notable differences were observed for ER HIs related to the facets of the 25 

flow regime duration and rate of change. Informed by recent advances in hydrological modelling more generally (Seibert, 

2000; Efstratiadis and Koutsoyiannis, 2010), Vis et al. (2015) compared the ability of single and multi-criteria objective 

functions to replicate twelve ER HIs. The best performance was achieved with multi-criteria objective functions, though a 

consistent negative bias was observed. Despite these advances, overall performance was inconsistent, being dependent upon 

the ER HI considered. Blöschl and Montanari (2010) observed that the reliability of hydrological modelling approaches which 30 

try to ‘model everything’ is analogous to simply ‘throwing the dice’. To address this, they call for a move towards simpler 

models, tuned to focus on specific characteristics of the flow regime; successful applications of such an approach include 

Westerberg et al. (2011). Most recently, Pool et al. (2017) considered an array of multi-criteria objective functions using Nash 

Sutcliffe Efficiency (NSE) and 13 ER HIs. Results were positive, with ER HIs generally well-replicated, though the 
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transposability of the model was subject to greater variability. Those ER HIs not explicitly included in the objective function 

exhibited greatest uncertainty overall.  

The past ten years has seen the replication of ER HIs evolve from statistical approaches to single and multi-objective rainfall-

runoff modelling. Whilst improvements have been notable, to date no approach has been able to achieve performance and 

consistency concurrently, raising questions as to whether these approaches are able to achieve the ‘right answer for the right 5 

reasons’. Pool et al. (2017) highlight two points which remain unaddressed: (1) a need to determine which ER HIs are relevant 

in order to guide model parameterisation; and (2) laborious recalibration of the hydrological model is necessary if the suite of 

HIs is changed. In addition, model evaluation in these studies is singularly focussed on the goodness of fit of the observed-

simulated data, while the ability of the hydrological model to capture the relevant hydrological processes is not considered. In 

this paper we look to redress these limiting factors through the application of a modified covariance approach. The objective 10 

of Vogel and Sankarasubramanian’s (2003) covariance approach is to identify the plausible parameter space which captures 

(replicates) the characteristics of a specified HI. This is achieved by focussing on the ability of the hydrological model to 

capture the observed covariance structure of the input and output time-series. The use of covariance relationships in this way 

is not new, with examples including the modelling of ice sheets (Wu et al., 2010) and ocean salinity (Haines et al., 2006). 

Vogel and Sankarasubramanian’s covariance approach is limited by its focus on a single HI, preventing its use for the 15 

determination of a suite of ER HIs. This paper builds on the covariance approach, adapting the methodology to consider a suite 

of ecologically relevant hydrological indicators; the determination of these ER HIs is based on the outcomes of hydroecological 

modelling using an Information Theory approach. To determine the ability of the modified covariance approach in replicating 

ER HIs, the method is applied to five case study catchments across the UK using the daily models from the GR (Génie Rural) 

suite of hydrological models (GR4J, GR5J and GR6J, 4-6 free parameters; Coron et al. (2018)). 20 

2 Methods 

2.1 Study areas 

The UK is home to a wide range of hydrological environments, with 18 different river types (based on catchment area, mean 

altitude and geology) specified under the Water Framework Directive (Rivers Task Team, 2004). Therefore, to illustrate the 

generality of the modified covariance approach, it is necessary to apply the proposed methodological approach to a range of 25 

catchments with differing characteristics (Andreassian et al., 2006; Gupta et al., 2014).  Hydroecological models inform the 

parameterisation of the hydrological models. A mismatch between the co-location of sampling sites as well as the length of 

time-series  is a known limiting factor in hydroecological modelling (Monk et al., 2006; Knight et al., 2008). In the UK,  

thisUK, this may be addressed, in part, by the recent publication of the UK BIOSYS archive (long-term ecological monitoring 

data from across England and Wales; Environment Agency (2018)). In this study, ecological and flow time-series were paired, 30 

and catchments assessed in terms of length of the paired dataset (> 10 years), number of sampling sites (> 5), location, 

catchment area, altitude, catchment steepness (m/km), baseflow index (BFI) and land use. A total of five catchments were 
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selected across the UK, from the north of Scotland to the south-west of England (Fig. A1); catchment characteristics are 

summarised in Table 1.  

Table 1. Summary of case study catchment characteristics. Catchment steepness is unavailable for the Tarland Burn. 

  Tarland Burn River Trent River Ribble River Nar River Thrushel 

F
lo

w
 g

a
u

g
e 

a
n

d
 c

a
tc

h
m

en
t 

Location Aboyne Stoke-On-Trent Arnford Marham Hayne Bridge 

Longitude -2.7758 -2.1624 -2.2471 0.5472 -4.2424 

Latitude 57.0777 53.0175 53.9962 52.6783 50.6584 

Altitude, gauge 

(mAOD) 
125 113 117 5 67 

Altitude, max 

(mAOD) 
616 331 691 85 273 

Catchment steepness 

(m/km) 
- 68 100 23 94 

Bedrock geology 
Mafic and felsic 

igneous 

Mud/siltstone, 

sandstone 

Mud/siltstone, 

sandstone; 

limestone 

Chalk 
Mud/siltstone, 

sandstone 

Baseflow index 0.66 0.44 0.25 0.91 0.39 

Drainage area (km2) 70.9 53.2 204 153 57.6 

Principal land use 
Mountain, heath 

and bog 

Urban and 

grassland 
Grassland 

Arable and 

horticulture 
Grassland 

D
a

ta
 Years 2003-2016 1989-2016 2000-2016 1961-2015 1989-2016 

Flow data source 
JHI (2018) 

NRFA (2018) 

Climate data source Met Office (2018a) and Met Office (2018b) 

2.2 Hydrological model 

The principle of parsimony, known as Occam’s razor, posits that a solution should be no more complex than necessary. In the 5 

context of hydrological modelling, model simplicity relative to performance is thus made key (Kokkonen and Jakeman, 2002; 

Perrin et al., 2003; Beven, 2012). To this end, the three lumped models from the GR-J series of daily hydrological models was 

selected (Perrin et al., 2003): GR4J, GR5J and GR6J (4, 5 and 6 free parameters respectively; Perrin et al. (2003); Le Moine 

(2008); Pushpalatha et al. (2011)). The GR-J series of models have been applied in a variety of hydrological contexts, including 

climate change impact assessment, water resources forecasting and prediction in ungauged catchments; for examples, see: 10 

Rojas-Serna et al. (2006); Perrin et al. (2008); Coron et al. (2012); Smith et al. (2012); Coron et al. (2017). 

The three models are based on soil moisture accounting (Fig. A2); precipitation and potential evapotranspiration serve as input. 

Water is directed to a production store with capacityx1 mm, split into routed and direct components, and input to unit 

hydrographs with time base F(x4) days. The routed flow is directed to a routing store with capacity x3 mm.  Finally, a 

groundwater exchange term F(x2), acts on the routed and direct flow components. The total flow, Q, is the sum of the routed 15 

and direct flow. To improve general model efficiency (Anderson Michael et al., 2004; Hughes, 2004), GR5J sees the addition 

of the inter-catchment exchange threshold, x5, a function representing the interaction between channel and aquifer flows (Le 
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Moine, 2008). To improve simulations of low-flowslow flows, the GR6J model includes a parallel store with capacity x6 mm 

(Pushpalatha et al., 2011). The models are applied using the R package airGR (Version 1.0.15.2; Coron et al. (2017); Coron 

et al. (2018). Parameter limits are summarised in Table A1.  

2.3 Determination of ecologically relevant hydrological indicators 

The ER HIs were determined based on the outcomes of hydroecological modelling for each catchment. Following Visser et al. 5 

(2018), hydroecological models were developed using multiple linear regression with an information theory (IT) approach; 

see Appendix A.2 for details. The IT approach provides a measure of the statistical importance of each ER HI. Consequently, 

more conclusive statements may be made with regards to the model and the relevance of the ER HIs. To reflect seasonality in 

the flow regime, the indices are differentiated by hydrological season: winter (ONDJFM) and summer (AMJJAS). Definitions 

of the ER HIs included in the hydroecological models, and their importance, are available in Table B1. A summary of the 10 

distribution of the ER HIs per facet of the flow regime, season and river is provided in Table 2.  

Table 2. Number of ER HIs per facet of the flow regime, season (W and S denote summer and winter respectively) and river. Sum 

totals are detailed in the final columns and rows. 

Facet of the flow regime 

Tarland 

Burn 

River 

Ribble 
River Trent River Nar 

River 

Thrushel 

Sum 

per 

facet 

W S W S W S W S W S  

(M) Magnitude 

Statistic 1 1 1 2 1   1 2  9 

Ratios – Log quantile 
     2 1   1 4 

Ratios – Median-quantile 
   4 2   3 1 2 12 

Monthly 2    1    1  4 

(D) Duration  2 1  2    1  6 

(F) Frequency 1  1 1 1 1   2  7 

(T) Timing  1  2 2    1  6 

(R) Rate of change    1  1 1 1 1  5 

Sum per season per river 4 4 3 10 9 4 2 5 9 3 53 

2.4 Covariance approach 

Continuous (daily) time-series of mean flow, precipitation and potential evapotranspiration serve as input to the hydrological 15 

models; flow and climate data availability are summarised in Table 1 previously. Potential evapotranspiration was estimated 

using a temperature-based PE model (Oudin et al., 2005). 

The covariance approach was developed by Vogel and Sankarasubramanian (2003), where the aim was to replicate a specific 

HI rather than the flow time-series. The modification of the covariance approach in this study allows for the consideration of 

a suite of ecologically relevant HIs. The modified covariance approach is implemented over three stages (Fig. 1); stages 1 and 20 
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2 are as in Vogel and Sankarasubramanian (2003), with the exception that multiple ER HIs are calculated, with the final stage 

representing the modification introduced in this study. 

 

Figure 1. Overview of the three stages of the modified covariance approach to model parameterisation. 

Stage 1, data preparation: The parameter space of the three hydrological model structures was sampled within the limits 5 

specified in Table A1. With a view to addressing both parameter sensitivity (Tong and Graziani, 2008; Wu et al., 2017) and 

the number of parameter sets considered, the parameter space was sampled uniformly based on Sobol quasi-random sequences 

(a Quasi-Monte Carlo method). The River Nar catchment served as the ‘proof-of-concept’, consequently, for this catchment, 

100,000, 150,000 and 200,000 independent parameter sets were selected for the GR4J, GR5J and GR6J hydrological models 

respectively; for the remaining four catchments, 10,000 parameter sets were considered (per hydrological model).  10 

For each parameter set, flow time-series were simulated based on the full time-series of the observed climate data. For each of 

these flow time-series, a corresponding set of covariances (between observed climate and simulated flow) and HIs were 

computed. The observed covariance and HIs are also determined. 

Stage 2, evaluation: Under the traditional approach, the hydrological model is evaluated (commonly termed validation) 

following calibration using an optimisation algorithm; this presupposes that the selected hydrological model is able to capture 15 

the underlying processes (Oreskes and Belitz, 2001). The covariance approach sees the evaluation of the model structure prior 

to identification of the plausible parameter space. The model is invalidated, i.e. rejected, when the observed moments lie 

outwith the simulated moments (sampled parameter space). This may be facilitated through plots of the observed and simulated 

relationship between the (a) covariance between precipitation and flow, 𝜌(𝑃, 𝑄), and HIs; and (b) covariance between potential 

evapotranspiration and flow, 𝜌(𝑃𝐸, 𝑄), and HIs. An exeamplare for the River Nar is provided in Fig. A3. The moments may 20 

also be used to assess model equifinality (the existence of multiple behavioural parameter sets; Beven (2006); Efstratiadis and 

Koutsoyiannis (2010)). With a focus on evaluating the hydrological model structure, stage 2 allows consideration of the full 

length of the hydroclimatological time-series; split-sampling may be considered in the parameterisation of the model in stage 

3. Stage 3, parameterisation: Selection of a model parameter set was based on a specified limit of acceptability (summarised 

in Fig. 2), i.e. the ability to replicate or minimise the error (percentage difference) between the observed & simulated covariance 25 
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structures and ER HIs. In Vogel and Sankarasubramanian (2003) the focus was on the replication of a single index, whilst, in 

this study, the objective was the replication of multiple indices. To this end, a limit of acceptability was specified per index, 

with each ER HI assigned maximum error threshold based on their normalised or relative importance. The ER HI importance 

(Table B1) was normalised (rescaled to a range from zero to one) per catchment and the covariances assigned a relative 

importance of one, equal to the most important index. The catchment specific limits of acceptability were specified as the 5 

relationship between the relative importance and a user-specified allowable error range. If no parameter sets are selected, the 

model structure is invalidated and rejected.  

Given the large number of ER HIs identified for some catchments, an exponential model of the form 𝑦 = 𝑒𝑚𝑥+𝑐 was specified 

for each catchment, thereby ensuring a focus on the most important indicators (see Fig. 2). In order to account for equifinality, 

the maximum error was set such that the feasible parameter space was limited to approximately n = 20 distinct parameter sets 10 

(a discretionary choice made in the absence of any established rule). In Fig. 2, a simplified exampleexemplar is presented 

where the limits of acceptability are adjusted with a view to identifying a plausible parameter space where n = 3. 

Note that: dependent on modelling objective, spatio-temporal transposability may be tested in stage 3 following a split-sample 

approach (Klemeš, 1986). As in Vogel and Sankarasubramanian (2003), the focus here is on methodological development, 

thus spatio-temporal transposability is not considered. 15 

 

Figure 2. Conceptualisation of the limits of acceptability, depicted here as the log-linear relationship between relative importance 

and the allowable (absolute) error thresholds per indicator and covariance. The limits of acceptability are reduced until n = 3 

parameter sets lie within the plausible parameter space. In this example, the error threshold ranges from 5%, where the relative 

importance is one, to a maximum of 50%. The maximum allowable error per example indicator is marked. 20 
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2.5 Model performance and consistency 

In this study, the ability of the parameterised models in replicating the ecologically relevant hydrological indicators was 

evaluated through the evaluation metrics detailed in Table 3 (determined with reference to prior studies with similar modelling 

objectives: Shrestha et al. (2014); Vis et al. (2015); Pool et al. (2017)). Metrics were determined across the full time-series for 

each catchment~parameter set (e.g. for the River Nar, 54 years of seasonal ER HIs were determined for each of the 23 5 

parameter sets). Three statistical tests were applied, where the goal is the rejection of the null hypothesis (𝛼 = 0.001). Welch’s 

t-test considers the correlation between the means of the observed and simulated indicators, whilst the KS and CvM (Cramér, 

1928; Anderson, 1962) tests look to the distribution of the interquartile range and tails respectively; agreement indicates a 

relationship between the observed and simulated ER HIs. The hydrologic alteration factor (HAF) is adapted from the IHA 

approach (Mathews and Richter, 2007). It is a measure of the simulated and observed frequencies of values within three target 10 

percentile ranges: 0-25th, 25-75th, and 75-100th. As a measure of distribution, HAF is essentially a simplification of the 

distribution function. The acceptable range of HAF values is defined as ±0.33. Finally, two measures of error are determined: 

model efficiency, or the Nash-Sutcliffe Efficiency criterion (NSE), and the mean arctangent absolute percentage error 

(MAAPE), designed to address the limitations inherent to mean absolute relative error (Kim and Kim, 2016).  

Table 3. Descriptions, definitions and optimal values for the applied evaluation metrics. For the statistical tests, the optimal value of 15 
p < 0.001 represents the significance threshold (𝜶 = 0.001).  

 Metric Description 
Definition  

(or R-function) 

Optimal 

value 

S
ta

ti
st

ic
a

l 
te

st
s Welch’s t-test 

Variation on correlation where the two samples 

have unequal variances. Hypothesis is that two 

populations have equal means. 

stats::t.test(…) 
p < 

0.001 

Kolmogorov-Smirnov test 

(KS) 

Tests whether samples come from the same 

population, i.e. follow the same distribution.  
stats::ks.test(…) 

p < 

0.001 

Cramér-von Mises (CvM) 

Addresses limitations of KS test: (1) less 

focused on the central distribution; (2) more 

equal weighting on the tails of the distribution. 

cramer::cramer.test(…) 

(Franz, 2014) 

p < 

0.001 

D
is

tr
ib

u
ti

o
n

 

Hydrologic alteration factor 

(HAF) 

A factor developed as part of the Indicators of 

Hydrologic Alteration (Mathews and Richter, 

2007). Tests the replicability of sections of the 

probability distribution (lower-tail, IQR and 

upper-tail) for a given index. 

𝐹𝑠𝑖𝑚 − 𝐹𝑜𝑏𝑠
𝐹𝑜𝑏𝑠

 

Where F is frequency, the 

no. values lying within the 

probability distribution. 

0 

M
ea

su
re

s 
o

f 
er

ro
r Mean arctangent absolute 

percentage error (MAAPE)  

A modification of MARE. Considers the relative 

error as an angle rather than a slope, reducing 

the bias of large errors. 

1

𝑛
∑arctan(

𝐼𝑜𝑏𝑠 − 𝐼𝑠𝑖𝑚
𝐼𝑜𝑏𝑠

) 

Where I is the index value 

and n the no. observations. 

0 

Model efficiency (NSE) Nash Sutcliffe efficiency. A measure of the 

goodness of fit of the HI to the 1:1 line 

(observational mean) normalised by the 

variance. 

1 −
∑(𝐼𝑜𝑏𝑠 − 𝐼𝑠𝑖𝑚)

2

∑(𝐼𝑜𝑏𝑠 − 𝐼𝑜𝑏𝑠̅̅ ̅̅ ̅)2
 

Where I is the index value. 

1 
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3 Results 

3.1 Model parameters 

For all catchments, the low-flow optimised six-parameter GR6J model was invalidated; GR5J was invalidated for all 

catchments with the exception of the Tarland Burn and River Trent. A summary of the number of parameter sets (per model, 

per catchment) and interquartile ranges is presented Table 4 normalised (by the parameter limits specified in Table A1). For 5 

further details see Fig. B1. Being related in function, the parameters of the production (x1) and routing (x3) store capacities 

exhibit the greatest range. The groundwater exchange coefficient (x4) and inter-catchment exchange threshold (x5; where 

applicable) appear more consistent, whilst the time elapsed for the routing of flow appears inversely related to BFI.  

Table 4. Normalised interquartile (IQR) range across the parameter sets for each catchment. The average and mean values across 

all catchments and models are also indicated. The model GR6J was invalidated, therefore parameter x6 is omitted. 10 

 
Tarland Burn 

River 

Ribble 
River Trent 

River 

Nar 

River 

Thrushel Summary 

No. free parameters 4 5 4 4 5 4 4 

No. parameter sets 15 4 24 12 4 23 18 Average Median 

x1  0.29 0.76 0.48 0.04 0.08 0.31 0.45 0.35 0.31 

x2 0.13 0.05 0.26 0.11 0.08 0.04 0.07 0.10 0.08 

x3 0.16 0.25 0.18 0.07 0.51 0.30 0.17 0.24 0.18 

x4 0.09 0.09 0.03 0.11 0.04 0.01 0.02 0.06 0.04 

x5 - 0.05 - - 0.08 - - 0.06 0.06 

3.2 Model performance and consistency 

The ability of the covariance approach in the replication of the ER HIs is considered in terms of performance and consistency. 

The models are evaluated with reference to the metrics summarised in Table 3 previously. Results are considered by metric, 

with a focus on the ER HIs with the best and worst performance and consistency.   

3.2.1 Statistical tests 15 

A series of tests were applied with a view to determining if, statistically speaking, the observed and simulated ER HIs come 

from the same population. The tests focus on the mean (t-test), the central distribution (KS) and tails of the distribution (CVM 

test). Table B1 in the appendix details, per ER HI and catchment, the percentage of the parameter sets which did not show a 

significant level of agreement. 

The statistical tests saw perfect agreement across all six timing indicators. With respect to the magnitude indices, the ER HI 20 

BFIr and the three skewness indicators do not satisfy any of the tests; performance appears irrespective of importance indicated 

by the hydroecological model or catchment. Magnitude median-quantile ratios agreement was mixed, with high and low flows 

achieving poor and good agreement respectively. Broadly, frequency indicators indicate a lack of agreement, with only the 

PlsFld index in the River Thrushel exhibiting performance and consistency. The role of statistical importance in the replication 
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of these more complex indicators is also suggested, with PlsQ75 replicated well in the Tarland (importance 0.69) and poorly 

in the Trent (importance 0.03). More broadly, log-transformed indicators saw better agreement; for example, the more 

important MaxMonthlyVar generally performed poorly, whilst MaxMonthlyLogVar saw agreement across all tests and 

parameter sets.  

3.2.2 Distribution – Hydrologic alteration factor (HAF) 5 

The hydrologic alteration factor (HAF) is a test of the replicability of the shape of the probability distribution. Fig. 3 

summarises the HAF value across the central distribution and tails for each ER HI. There is agreement across the percentile 

ranges for the majority of the ER HIs considered. Notably, the 19 (of 22; statistics, log-ratios and quantile-median ratios) 

magnitude indicators not pictured achieved optimal HAF of zero. The three-monthly indicators (depicted) again highlight 

relative success in replicating a log-transformed index. 10 

The performance of the six indicators capturing flow pulse events is varied: the central distribution of flood pulses is well-

replicated whilst the upper tail exhibits a consistent large negative bias. The HAF values also serve to highlight some 

inconsistencies in the performance of the timing indicators. A variable negative bias is in evidence for the index Mn7MaxJD, 

however, in this case, it is worth noting that it is inherently more difficult for a hydrological model to detect and replicate 

(multiple) short-term events (Pool et al., 2017). Perhaps surprisingly, Mn90MnJD is subject to a large positive bias in the lower 15 

tail, i.e. the range of the distribution is underestimated. In contrast to Mn7MaxJD, this discrepancy may be due to the long(er)-

term duration; with seasons of approximately 180 days in length, there are a limited number of values the indicator can take. 
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Figure 3. Hydrologic alteration factor (HAF) values for the three percentile ranges for each ER HI; ER HIs are grouped by facet of 

the flow regime: magnitude (M), duration (D), frequency (F), timing (T) and rate of change (R). The acceptable range of HAF values 

is defined as ±0.33 (red dashed line); HAF > 0 represents an increase in frequenecy relative to the observed whilst HAF < 0 represents 

a decrease. All magnitude statistic and ratio ER HIs achieved optimal values (HAF = 0) and are not depicted. The 4- and 5-parameter 5 
results are adjacent, left and right respectively, for the Tarland Burn and River Trent. 

3.2.3 Error – MAAPE and NSE 

Two measures of error were applied, MAAPE, a modification of the mean absolute relative error (MARE) which reduces the 

bias of large errors, as well as the more commonplace Nash Sutcliffe efficiency (NSE). The MAAPE for each ER HI is depicted 

in Fig. 4; to ensure consistency with HAF, acceptable boundaries are specified as ±0.33 (depicted, horizontal red lines). 10 

Overall, the same general patterns may be observed; for example, skew indicators are not well replicated, log-transformation 

improves the monthly index performance, and timing, with the exception of Mn90MinJD, achieves consistently good 
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performance. However, it is clear that the consideration of multiple parameter sets per catchment model leads to variation in 

the simulated ER HI which may not have been detected by the previous metrics. MAAPE also serves to highlight the difference 

in performance across the median-quantile ratios, extreme high-flow indices (Qmax to Q05) are over-estimated whilst the 

replication of low-flow indices is subject to considerably less (negative) bias. 

 5 

Figure 4. Mean arctangent absolute percentage error (MAAPE) values for each ER HI; ER HIs are grouped by facet of the flow 

regime: magnitude (M), duration (D), frequency (F), timing (T) and rate of change (R). As per HAF, the acceptable range is defined 

as ±0.33 (red dashed line). The 4- and 5-parameter results are adjacent, left and right respectively, for the Tarland Burn and River 

Trent. 

The NSE is a measure of model efficiency where values less than zero suggests that the observational mean may be a better 10 

estimate. In Fig. 5, only ER HI with NSE > 0 are depicted with the number of parameter sets described as n; for all ER HI see 

Fig. B2. 
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Seventeen ER HI achieved NSE values greater than zero; further, the low values of n which are in evidence (Fig. 5) indicate a 

lack of consistency across parameter sets. Those ER HI which have already been shown to perform well are indicated, examples 

include the low flow median-quantile ratios, the log-transformed monthly index and the timing indicators more generally. 

 

Figure 5. Nash Sutcliffe Efficiency (NSE) for each ER HI where NSE > 0 (model skill greater than observational mean); 5 

see Fig. B2 for all NSE. The ER HIs are grouped by facet of the flow regime: magnitude (M), duration (D), frequency 

(F), timing (T) and rate of change (R). The 4- and 5-parameter results are adjacent, left and right respectively, for the 

Tarland Burn and River Trent.4 Discussion 

There is a clear need to understand the impact of hydrologic change on the river ecosystem. To this end, hydrological models 

are used to simulate flow time-series from which ecologically relevant hydrological indicators are derived. Previous studies 10 
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(e.g. Vis et al. (2015), Shrestha et al. (2014) and Pool et al. (2017)) have highlighted the inability of hydrological models to 

simulate a range, or suite, of ER HIs concurrently. In this study, a modification of Vogel and Sankarasubramanian (2003) 

covariance approach was applied to five hydrologically distinct catchments; the focus was on the replication of a suite of ER 

HIs identified through catchment-specific hydroecological models. The ability of this modified covariance approach, in terms 

of performance and consistency, was assessed through a series of evaluation metrics.  5 

A range of catchments was, with the main differences lying in the catchment BFI, length of the available time-series and the 

ER HIs. In this study, BFI ranged from 0.25 to 0.91, essentially flashy to groundwater-fed. With the exception of model 

parameterisation, there was no discernible difference in the replication of ER HIs. Similarly, the length of the available time-

series appears to have made no observable difference to the replicability of the ER HI distributions specifically. In terms of 

error, MAAPE and NSE, lower overall performance for the shorter time-series is expected as a result of sample size sensitivity. 10 

Finally, despite consideration of a range of ER HIs with different associated importance, there appears a consistent message 

in terms of the performance and consistency of similar indices and the facets of the flow regime more broadly. 

4.1 Performance and consistency 

The consideration of a range of catchments provides a clear picture of the capacities of the hydrological models as well as the 

relative success of the covariance approach. Overall, replication of the ER HIs was good. Timing and log-transformed 15 

indicators (logQVar, MaxMonthlyLogVar and the log quantile ratios) were among the most consistent and well-replicated 

across the range of catchments. The results are broadly consistent with a number of recent studies (Melsen et al., 2018; Mackay 

et al., 2019; Worthington et al., 2019) where timing and duration indicators are among the indicators with the highest prediction 

accuracy. Difficulties were observed in replicating frequency and rate of change indices. Replication of indicators 

incorporating the seasonal median flow (Q50) was also poor, with large positive biases frequently observed. This may be 20 

observed directly through comparison of the replication of Q01 and Q01Q50 in the River Trent where the degree of error can 

be seen to markedly increase. Recent studies by Mackay et al. (2019) and Worthington et al. (2019) also observed higher error 

rates for monthly indicators. 

4.1.1 Suitability of ER HIs in hydrological modelling 

This, and previous studies, have observed difficulties in the replication of frequency ER HIs (flow pulses). This begs the 25 

question: Is this a product of the covariance approach? An inherent limitation of hydrological models more generally? Or is 

this related to the nature of the indicator itself? A review of the simulated flow suggests the latter. There is a tendency for the 

simulations to identify shorter more frequent pulses, whilst the observed pulses are longer and less frequent. For instance, the 

median error (MAAPE) for PlsQ50 (the number of pulses above a baseline Q50 threshold) on the River Trent was 0.75; this 

falls to 0.368 if the focus is on the total duration of the pulses. The pooling of events with an inter-event time below some 30 

threshold, as per the inter-event time and volume criterion (Gustard and Demuth, 2009) for example, may serve to improve 
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the replication of the pulse indicators. It should be noted that, in this study, this limitation does not extend to flood pulses 

(FldPls) due to the much larger inter-event time, thus allowing for better replication of flood pulses overall.  

In multiple cases, this study observed difficulties in replicating those ER HIs which are considered relative to the median 

seasonal flow. Comparison of the indicators Q01 and Q01Q50 in the same catchment indicates that the lack of direct 

consideration of median flows in the parameterisation of the model may be a limiting factor. Indeed, it may be that the 5 

decomposition of such indicators into their component parts, e.g. Q01 and Q50, may lead to better replicability overall. 

Similarly, the results indicate that log-transformation of flows may lead to improvements in the replicability of certain ER HIs.  

Further work is required to confirm this premise. 

4.1.2 Suitability of evaluation metrics 

There is a lack of consistency in the evaluation metrics considered in the evaluation of hydrological model performance. 10 

Further, these studies make use of metrics which exhibit known bias, for example, mean absolute relative error (MARE; Kim 

and Kim (2016) and NSE (Gupta et al., 2009; Pushpalatha et al., 2012; Vis et al., 2015). For the measure of error, this study 

replaced the former with MAAPE (see Table 3). The reasons for the consideration of NSE in this study were twofold: (1) 

application of NSE is the norm; and (2) to illustrate the limitations of this measure. The limitations of NSE are frequently cited 

as low scores where there is high variability (Gupta et al., 2009) as well as a bias towards high flows (Pushpalatha et al., 2012). 15 

Additionally, the NSE is scaled by the standard deviation, rendering it incomparable across catchments (Gupta et al., 2009). 

In this study, only seventeen of the ER HIs achieved NSE > 1, i.e. the simulations are better than an estimation based on the 

observed mean. Similar observations were made in Vis et al. (2015). It can be concluded that, given this lack of robustness, 

NSE is not a suitable evaluation metric in studies such as this one. 

4.2 Advantages and limitations of the modified covariance approach 20 

In this section we consider the general advantages of the modified covariance approach, relative to the traditional approach, ; 

this is followed by consideration of the hydroecological modelling requirements. It is clear that no approach has been able to 

achieve adequate performance and consistency in the replication of more complex ER HIs, specifically those related to rate of 

change. Shrestha et al. (2014) observed difficulties in replicating low flows, the duration of flow pulses, and monthly flows 

specifically. In this study, no such observations have been made with regards to low flows and duration, indeed, these may be 25 

considered to be relatively well-replicated across all catchments. Poor replication of monthly ER HIs does however persist; 

log-transformed variations of these indicators may represent a viable alternative. Whilst Pool et al., 2017 saw improvements 

(relative to Shrestha et al. (2014) and Vis et al. (2015)), the need to calibrate the model to each ER HI in question would 

strongly call into question the reliability of the hydrological model (due to the inability of the hydrological model to simulate 

catchment hydrological processes simultaneously). The consistency with which (the majority of the) ER HIs are replicated 30 

here illustrates that this is not a necessary limitation of hydrological models. A lack of consistency in ER HIs demonstrating 
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elevated levels of variability, such as high flows, is to be expected due to the dynamic nature of inter-annual weather patterns 

(Pool et al., 2017). 

4.2.1 General advantages 

Here follows a brief discussion of the general advantages of the modified covariance approach. First, uncertainty is reduced 

via a number of avenues:  5 

• Disinformative data: Models calibrated following a traditional approach are particularly sensitive to measurement error 

(Westerberg et al., 2011). Lack of agreement in the observed-simulated time-series, even for a single event, may bias 

the objective function, leading to rejection of an otherwise well-performing parameter set (Beven, 2010; Westerberg et 

al., 2011).  Methods which do not focus on the replication of time-series directly, such as the modified covariance 

approach, are known to limit the influence of input uncertainty (Westerberg et al., 2011; Euser et al., 2013); 10 

• Validation of model structure: Consideration of the observed and simulated moments allows the user to evaluate the 

ability of the hydrological model structure in capturing the hydrological processes in the catchment, thus ensuring the 

selection of the optimal model (structure); 

• Equifinality: Equifinality, reaching the same outcome by different means, is a major challenge of hydrological 

modelling. In the modified covariance approach the entire parameter space is considered at the outset. A plausible 15 

parameter space is determined by focussing on the region which is best able to replicate the characteristics of the HIs, 

thereby reducing the epistemic uncertainty associated with accounting for equifinality (Wu et al., 2017).  

Finally, whilst the large number of simulations required under the modified covariance approach may seem prohibitive, this 

demand may be offset. Unlike the traditional approach, where selection algorithms may introduce issues of speed and accuracy 

(Seibert, 2000), finite time is needed to apply the covariance approach. All simulations of the hydrological model are performed 20 

at the outset; once the full suite of parameter sets have been simulated the hydrological model need not be run again. Under a 

more traditional approach, such as in (Pool et al., 2017) where the ER HIs serve as the objective, the HIs must be specified at 

the outset. This is not the case in the modified covariance approach, where the n Monte Carlo simulations can be performed in 

advance of HI selection. Thus, multiple suites of ER HIs may be considered (e.g. all rate of change or magnitude indicators) 

with limited additional time outlay. 25 

4.2.21 Hydroecological model requirements 

The explicit consideration of the outcomes of hydroecological modelling is perhaps both the most significant advantage and 

disadvantage of the modified covariance approach. Whilst hydrological modelling informed by the outcomes of hydroecological 

studies is not new, for instance, Pool et al. (2017) was informed by Knight et al. (2014), the novelty of this approach lies in the 

explicit consideration of the statistical importance of the ER HIs, identified through hydroecological modelling. The consideration 30 

of the relative importance of each ER HI allows a large suite of ER HIs (seven to thirteen) to be considered with no apparent 

penalties. Further, contrary to expectations, a large number of important ER HIs (> 0.5) has no impact on replicability. In the 
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case of the River Ribble, where a total of thirteen ER HIs were considered, seven had an importance greater than 0.5. Similarly, 

through this approach, a high weighting is not needlessly attributed to ER HIs with low importance.   

The need for a hydroecological model represents the major limiting factor due to the requirement for long-term hydroecological 

time-series. Historically, hydrological and ecological data were collected for different objectives (Poff and Allan, 1995; Knight 

et al., 2008; Monk et al., 2008), leading to a mismatch in temporal and spatial coverage. High levels of disparity in sampling 5 

and gauging sites inevitably introduce noise into the model. However, the availability of national ecological datasets, such as 

BIOSYS in the UK, may serve to offset the issue of data availability. Such datasets may be used to develop regional 

hydroecological models based on flow regime type and the assumption of homogeneity in environmental conditions. The 

modified covariance approach may also be applied without a numerical measure of the relative importance of each indicator, 

this would however introduce an element of subjectivity into the parameterisation of the model.  10 

4.3 Wider applicability and further work 

The modified covariance approach is able to provide statistically robust simulations and projections of ER HIs for applications 

such as environmental flow assessment or in assessing the hydroecological impact of climate change such as in Visser et al. 

(2019a) and Visser et al. (2019b). However, the applicability of the approach may not be limited to hydroecological studies 

and the simulation of ER HIs (e.g. replication of hydrological signatures). In this context, example applications could include 15 

the replication of water resource management indicators (monthly, seasonal and annual flows). Such applications would 

require consideration of a statistical model for the determination of the statistical importance of indicators. The approach may 

also be used in the development of regional hydrological models, thereby facilitating the simulation of ER HIs in ungauged 

catchments. Finally, the clarity with which model structures are accepted or rejected makes the approach apt for use in 

combination with model selection frameworks such as the Framework for Assessing the Realism of Model Structures (FARM; 20 

Euser et al. (2013)). 

5 Concluding remarks 

This study considered the performance and consistency of a modified covariance approach in the replication of ecologically 

relevant hydrological indicators. Application across five hydrologically diverse catchments showed a consistent level of 

performance across the majority of ER HIs; the timing facets of the flow regime were best replicated, whilst rate of change 25 

indicators saw the poorest performance and consistency. Relative to similar studies, there was an overall improvement in 

consistency, thus, this study represents an important advancement towards the robust application of hydrological models for 

ecological flow studies. The explicit consideration of hydroecological modelling outcomes allows the hydrological model to 

be tuned to parameters based on statistical importance. A further major advantage of the modified covariance approach lies in 

the identification of the plausible parameter space which best captures (replicates) the characteristics of the ER HIs, thereby 30 

providing a greater understanding of the suitability, limitations and uncertainties of the hydrological model structure. 
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Appendix A – Method 

A.1 Case studies 10 

 

Figure A1. Distribution of the case study catchments across the UK. 
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A.2 Hydroecological modelling 

Based on Olden and Poff (2003) and Monk et al. (2006), daily mean flow data was used to derive 63 hydrological indices per 

hydrological season: winter (ONDJFM) and summer (AMJJAS); for data source, see Table 1. Principal Component Analysis 

(PCA) was applied to identify those indices which describe the major aspects of the flow regime whilst minimising redundancy. 

Macroinvertebrates serve as the proxy for ecological response. Response is determined using the Lotic-Invertebrate Index for 5 

Flow Evaluation, accounting for macroinvertebrate flow velocity preferences (Extence et al., 1999). For four out of five case 

studies LIFE scores were determined to family level; data for the River Nar, obtained directly from the Environment Agency, 

was available to species level. The modelling focused on spring ecological activity (the period of peak activity and largest 

consistent availability of data). 

After Visser et al. (2019b), an Information Theory approach to modelling was taken in order to provide a quantitative measure 10 

of support for parameters and candidate models. Inference is made from multiple models through model averaging. In 

summary: (1) the candidate models are evaluated with respect to the second-order bias corrected Akaike Information Criterion 

(AICc) (after Burnham and Anderson (2002); see also Visser et al. (2019b)); (2) a best approximating model is inferred from 

a weighted combination of all the candidate models; (3) the parameters are ranked, such that the highest value represents the 

most important in the model; (4) filters are applied to remove parameters where the estimate and confidence intervals are zero 15 

(i.e. certainty that the index is not to be included) and to reduce the model to the parameters which describe 95% of the 

cumulative information. For further details, see Visser et al. (2018) and Visser et al. (2019b). 

A.3 Hydrological modelling 

Table A1. Parameter limits for the hydrological models. 

 Description Limits 

x1 Capacity of production store (mm) (100,1200} 

x2 Groundwater transfer (mm/day; positive indicates flow from aquifer) (-5,25} 

x3 Capacity of routing store (mm) (20,1000} 

x4 Time lag between rainfall event and flow (days) (0.5,30} 

x5 Inter-catchment exchange threshold (-) (-5,25} 

x6 Capacity of parallel routing store (mm) (20,1000} 

 20 
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Figure A2. Structure of the GR4J hydrological model; based on Perrin et al. (2003). The 5-parameter GR5J sees the addition of x5, 

inter-catchment exchange parameter, at the same locations as x2, whilst GR6J sees the addition of a store parallel, capacity x6, to 

the routing store. 

 5 

 

Figure A3. Observed and simulated moments for the 100,000 Monte Carlo simulations using the GR4J model for the River Nar case 

study. The grey boxes depict the boundaries of the limits of acceptability per index. One of the selected parameter sets, i = 73,952, is 

highlighted (yellow). 
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Appendix B – Supplementary results 

B.1 Ecologically relevant hydrological indices and test statistics 

Table B1. Ecologically relevant hydrological index descriptions; grouping is by facet of the flow regime. Seasons are indicated through no shading (winter) 

and shading (summer). Subsequent columns are catchment specific, denoting ER HI importance, and the results of the statistical tests detailed in Table 3. 

In the table, a flood threshold is the flow equivalent for a flood recurrence interval of 1.67 years (on the baseline).  

*Four and five parameter models were applied to both the Tarland Burn and River Trent. Single digit entries should be interpreted as being the same 

across both models; where entries are separated, e.g. for 10R90Log, the former represents GR4J and the latter GR5J. 
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Magnitude - Statistic 

IQR 
Interquartile 
range of flow. 

m3s-1 0.43 0 0 0 0                     

Var 
Variance in 

flow. 
- 0.46 0 0 0 0                     

Q01 

Q1 flow 

(extreme high 
flow). 

m3s-1      0.32 0 83.3 70.8 87.5                

Sk 

Skewness, 

mean relative 

to median. 

-      0.11 0 100 100 100           0.88 0 100 100 100 

SkRel 

Relative 

skewness, mean 

minus median, 
relative to median.  

-      0.09 0 100 100 100                

Sk100 
Range relative 

to the median. 
-                     0.38 0 100 100 100 

logQVar 

Variance in log-

transformed 
flow. 

-                0.37 0 0 0 0      

BFIr 

The seasonal 

BFI relative to 

baseline BFI. 

-           0.03 0 100 100 100           
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Magnitude - Ratios - Log quantile 

10R90 
Log 

Log-
transformed 

ratio, xxth to 

yyth percentile 
flow. 

- 

          0.97 100 0 

8.3 

— 

100 

0 0.86 100 0 0 0      

20R80 
Log 

               

 

 
 

  

    0.94 100 0 0 0 

25R75 
Log 

          0.97 100 0 

8.3 

— 

100 

0           

Magnitude - Ratios - Median-quantile 

MaxQ50 

Max. flow 

relative to 
median (extreme 

high flow). 

-                     0.32 0 100 100 100 

Q01Q50 

Qxx flow 

relative to 

median (high 
flow). 

- 

     0.53 0 100 100 100 0.03 0 100 100 100           

Q05Q50      0.4 0 100 100 100                

Q20Q50           0.03 0 

16.7 

—

100 

66.7 

— 

100 

58.3 

— 

100 

          

Q60Q50 

Qxx flow 

relative to 

median (low 
flow). 

- 

                    0.97 0 72.2 33.3 72.2 

Q70Q50      0.88 0 83.3 66.7 83.3      0.09 0 0 0 0 0.99 0 77.8 55.6 72.2 

Q80Q50      0.38 0 83.3 75 87.5      0.51 0 0 0 0      

Q90Q50                0.19 0 0 0 0      
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Magnitude - Monthly 

Max 
Monthly 

Med 

Median of 
max. monthly 

flow. 

m3s-1 0.7 0 
0 

— 

25 

0 0                     

Max 
Monthly 

Var 

Variability in 
max. monthly 

flow. 

- 0.45 0 0 0 0      0.92 100 
33.3 
— 

100 

91.7 
— 

100 

91.7 
— 

100 

          

Max 

Monthly 
LogVar 

Variability in 
max. monthly 

log-transformed 

flow. 

-                     0.45 100 0 0 0 

Duration 

Mn7 

Max 

Mean of the 7-

day cumulative 
max. flow. 

m3s-1 0.53 0 0 0 0 0.14 0 20.8 33.3 25           0.5 0 94.4 77.8 88.9 

Mn90 

MaxQ50 

Mean of the 

90-day 
cumulative 

max. flow 

relative to the 
median. 

- 0.53 0 0 0 0      0.06 0 

25 

— 
100 

16.7 

— 
100 

33.3 

— 
100 

          

PlsDur 
Fld 

Duration of 

pulses above a 
(baseline) flood 

threshold.  

Days           0.02 100 0 0 

50 

— 

25 

          

PlsDur 

Q75Var 

Variation in the 

duration of 

pulses below a 
Q75 (baseline) 

threshold. 

-                          
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Frequency 

PlsFld 

No. of pulses 

above a 

(baseline) flood 
threshold.  

Count                     0.41 100 0 0 55.6 

PlsQ25w 
No. of pulses 
above a Qxx 

(baseline) 

threshold. 

Count 

     0.64 0 91.7 83.3 95.8                

PlsQ25s      0.58 0 66.7 70.8 83.3                

PlsQ50             0.04 0 100 100 100           

PlsQ75 

No. of pulses 

below a Qxx 
(baseline) 

threshold. 

Count 0.69 0 0 0 0      0.03 0 100 100 100           

Timing 

JDRng 

Range in the 

Julian days for 

the max. and 

min. daily 

mean flow. 

JD      0.73 0 0 0 0                

Mn7 

MaxJD 

Julian day of 

the mean 7-day 
max. flow. 

JD 0.78 0 0 0 0      0.94 0 0 0 0           

Mn30 

MinJD 

Julian day of 

the mean 30-
day min. flow. 

JD      0.67 0 0 0 0                

Mn90 

MaxJD 

Julian day of 

the mean 90-

day max. flow. 

JD           0.03 100 0 0 0           

Mn90 
MinJD 

Julian day of 

the mean 90-

day min. flow. 

JD                     0.88 100 0 0 0 
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Rate of change 

RevPos 

No. days when 

flow increases 

(positive 
reversals). 

Days                0.8 0 100 100 100      

riseMn 
Mean rise rate 
(flow 

increasing). 

m3s-1                0.07 0 0 0 0      

riseLog 

Med 

Median log-
transformed rise 

rate (flow 

increasing). 

m3s-1      0.55 0 0 0 4.17                

fallVar 

Variation in fall 

rate (flow 
decreasing). 

-                     0.16 0 100 100 100 

fallLog 
Med 

Median log-

transformed fall 
rate (flow 

decreasing). 

m3s-1           0.93 100 

91.7 

— 

75 

100            
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B.2 Model parameters 

 

Figure B1. Boxplots of the parameter values across the 100 selected models. The whiskers represent the maximum and 

minimum values observed.  
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B.3 Nash Sutcliffe Efficiency 

 

Figure B2. Nash Sutcliffe Efficiency (NSE) for each ER HI; see Fig. 5 for NSE > 0. The 4- and 5-parameter results are adjacent, left 

and right respectively, for the Tarland Burn and River Trent.
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