## **Supplementary information**

## Multimodel assessments of human and climate impacts on mean annual streamflow in China

Xingcai Liu<sup>1,2</sup>, Wenfeng Liu<sup>2,3</sup>, Hong Yang<sup>2,4</sup>, Qiuhong Tang<sup>1,5</sup>, Martina Flörke<sup>6</sup>, Yoshimitsu Masaki<sup>7</sup>, Hannes Müller Schmied<sup>8,9</sup>, Sebastian Ostberg<sup>10</sup>, Yadu Pokhrel<sup>11</sup>, Yusuke Satoh<sup>12,13</sup>, Yoshihide Wada<sup>12</sup>

<sup>1</sup>Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, A11, Datun Road, Chaoyang District, Beijing, China

<sup>2</sup>Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland

<sup>3</sup>Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France

<sup>4</sup>Department of Environmental Sciences, MGU, University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland

<sup>5</sup>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

<sup>6</sup>Center for Environmental Systems Research, University of Kassel, Kassel, Germany

<sup>7</sup>Graduate School of Science and Technology, Hirosaki University, Hirosaki, Japan

<sup>8</sup>Institute of Physical Geography, Goethe-University Frankfurt, Altenhöferallee 1, 60438 Frankfurt, Germany

<sup>9</sup>Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt, Germany

<sup>10</sup>Earth System Analysis, Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany

<sup>11</sup>Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824 United States of America

<sup>12</sup>International Institute for Applied Systems Analysis, Laxenburg, Austria

<sup>13</sup>National Institute for Environmental Study, Tsukuba, Japan

Correspondence to: Qiuhong Tang (tangqh@igsnrr.ac.cn)

| Model      | Water use                          | Dam and Reservoirs                                          | Source of irrigation water     |
|------------|------------------------------------|-------------------------------------------------------------|--------------------------------|
|            |                                    |                                                             | withdrawal                     |
| DBH        | modeled irrigation                 | Use GRanD dataset, the number of dams and reservoirs varies | river, reservoirs              |
|            |                                    | according to the construction year for the VARSOC runs.     |                                |
| H08        | modeled irrigation                 | Use GRanD dataset, the number of dams and reservoirs varies | river, reservoirs, groundwater |
|            | prescribed domestic and            | according to the construction year for the VARSOC runs.     |                                |
|            | industrial water use               |                                                             |                                |
| LPJmL      | modeled irrigation                 | Use GRanD dataset, the number of dams and reservoirs varies | river, reservoirs              |
|            | prescribed domestic, industrial    | according to the construction year for the VARSOC runs.     |                                |
|            | and livestock                      | Evaporation from reservoir surface is calculated.           |                                |
| MATSIRO    | modeled irrigation                 | Use GRanD dataset, the number of dams and reservoirs varies | river, reservoirs, groundwater |
|            | prescribed domestic and            | according to the construction year for the VARSOC runs.     |                                |
|            | industrial water use               |                                                             |                                |
| PCR-GLOBWB | modeled irrigation, domestic,      | Use GRanD dataset, the number of dams and reservoirs varies | river, reservoirs, groundwater |
|            | industrial and livestock water use | according to the construction year for the VARSOC runs.     |                                |
|            |                                    | Evaporation from reservoir surface is calculated.           |                                |
| WaterGAP2  | modeled irrigation, domestic,      | Use GRanD dataset, the number of dams and reservoirs varies | river, reservoirs, lakes,      |
|            | industrial and livestock water use | according to the construction year for the VARSOC runs.     | groundwater                    |

Table S1. Main characteristics of human impacts in the GHMs used in this study.

|              | <-30 | <-20 | <-10  | <-5   | <0    | <5    | <10   | <20  | <30  | >30  |
|--------------|------|------|-------|-------|-------|-------|-------|------|------|------|
| $\Delta Q_c$ | 2.56 | 5.24 | 16.32 | 13.47 | 16.42 | 15.76 | 10.55 | 6.84 | 3.55 | 9.29 |
| $\Delta Q_h$ | 2.28 | 1.00 | 3.83  | 9.04  | 54.27 | 26.80 | 1.29  | 0.85 | 0.13 | 0.50 |
| $\Delta Q_a$ | 3.13 | 7.13 | 17.11 | 13.40 | 16.29 | 15.69 | 9.86  | 5.87 | 3.83 | 7.69 |

Table S2. The proportions of river segments of China categorized by MAF changes. "<-10" in the header means the river segment showing MAF changes in [-20%, -10%), and so on.

| Forcing       | Model            | CN    | SH     | LR     | NW     | НА     | YR     | HU    | YZ    | SE    | SW    | PR    |
|---------------|------------------|-------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|
|               | H08              | -1.21 | -6.64  | -0.85  | 19.89  | -4.34  | -2.29  | 1.71  | -1.56 | -4.67 | 2.35  | 1.96  |
|               | DBH              | 1.30  | -4.29  | -6.88  | 6.98   | -13.29 | -5.81  | 2.92  | 2.13  | -1.48 | 5.77  | 3.10  |
| DCMED 2       | LPJmL            | 0.54  | -3.06  | -1.51  | 5.69   | -9.79  | -8.85  | 0.28  | 0.78  | -3.22 | 2.68  | 3.81  |
| PGMFD V.2     | PCR-GLOBWB       | -1.04 | -7.51  | -5.99  | 6.00   | -7.80  | -2.32  | -5.50 | -0.95 | -2.95 | 3.13  | 0.79  |
|               | WaterGAP2        | 0.39  | -3.16  | -2.48  | 4.21   | -11.09 | -3.76  | 1.84  | 0.34  | -4.30 | 3.85  | 1.81  |
|               | MATSIRO          | -2.43 | -10.04 | -3.90  | 31.15  | -6.60  | -6.37  | -0.51 | -2.67 | -4.94 | 1.77  | -1.44 |
|               | H08              | -0.42 | -5.26  | -8.20  | 6.79   | -14.20 | -12.15 | 9.84  | 0.22  | 5.10  | -0.23 | 3.57  |
|               | DBH              | -0.66 | -4.80  | -12.31 | 16.98  | -23.13 | -10.53 | 3.09  | 0.47  | 0.99  | 2.30  | -0.17 |
| CSWD2         | LPJmL            | -0.87 | -2.67  | -8.30  | 12.96  | -13.56 | -16.26 | 4.17  | -0.21 | 2.52  | -0.19 | 2.59  |
| USWF5         | PCR-GLOBWB       | -2.14 | -6.90  | -8.17  | 11.08  | -12.07 | -7.35  | -0.84 | -1.43 | 1.37  | 0.60  | -1.12 |
|               | WaterGAP2        | -1.00 | -3.34  | -9.60  | 15.45  | -21.38 | -18.03 | 4.49  | -0.46 | 1.49  | 0.28  | 0.31  |
|               | MATSIRO          | 1.09  | 0.73   | -11.25 | 22.81  | -33.18 | -24.49 | 6.21  | 1.72  | 2.79  | -1.13 | 2.37  |
|               | H08              | -6.74 | -7.50  | -6.16  | 4.51   | -18.85 | -14.18 | 3.31  | -6.50 | -4.76 | -4.34 | -6.75 |
|               | DBH              | -6.38 | -8.75  | -11.96 | -3.84  | -26.26 | -18.47 | -4.47 | -5.05 | -3.46 | -2.85 | -6.48 |
| WEDEI         | LPJmL            | -4.12 | -4.16  | -7.66  | 8.27   | -14.78 | -16.88 | 0.61  | -3.29 | -4.59 | -3.73 | -4.84 |
| WFDEI         | PCR-GLOBWB       | 2.82  | -1.94  | -1.93  | 31.61  | -7.33  | -0.83  | -0.05 | 3.35  | 1.28  | 4.87  | 2.65  |
|               | WaterGAP2        | -4.69 | -4.77  | -8.08  | 9.55   | -22.00 | -23.05 | 0.62  | -3.88 | -5.04 | -3.87 | -5.27 |
|               | MATSIRO          | 10.43 | 43.02  | 9.82   | 178.78 | -0.42  | 27.95  | 11.69 | 11.24 | 2.80  | 5.33  | 4.04  |
|               |                  |       |        |        |        |        |        |       |       |       |       |       |
|               | Median           | -0.93 | -4.53  | -7.27  | 10.32  | -13.43 | -9.69  | 1.78  | -0.34 | -2.22 | 1.19  | 1.30  |
| All ensembles | 25 <sup>th</sup> | -2.36 | -6.83  | -8.28  | 6.20   | -20.75 | -16.72 | 0.03  | -2.40 | -4.52 | -0.90 | -1.36 |
|               | 75 <sup>th</sup> | 0.51  | -3.09  | -2.84  | 19.16  | -8.30  | -4.27  | 3.95  | 0.70  | 1.46  | 3.01  | 2.64  |

Table S3. Ensemble members of streamflow changes ( $\Delta Q_a$ , % of MAF) between 1971-1990 and 1991-2010.

| Forcing       | Model            | CN    | SH     | LR     | NW    | HA     | YR     | HU    | YZ    | SE    | SW    | PR    |
|---------------|------------------|-------|--------|--------|-------|--------|--------|-------|-------|-------|-------|-------|
|               | H08              | -0.82 | -6.55  | -2.25  | 7.20  | -7.06  | -0.54  | 2.47  | -0.99 | -5.03 | 0.35  | 2.30  |
|               | DBH              | 2.31  | -2.15  | -2.55  | 11.29 | -0.32  | 0.93   | 7.26  | 2.47  | -0.96 | 3.76  | 3.05  |
| DCMED v 2     | LPJmL            | 1.70  | -1.99  | 0.33   | 4.41  | -3.76  | 0.20   | 4.88  | 1.94  | -2.87 | 0.12  | 4.43  |
| PGMFD V.2     | PCR-GLOBWB       | 0.33  | -5.87  | -3.44  | 1.09  | -2.98  | 0.21   | 2.90  | 0.42  | -2.24 | 1.34  | 2.23  |
|               | WaterGAP2        | 1.19  | -2.73  | -0.06  | 5.34  | -3.93  | -0.23  | 7.57  | 1.12  | -3.86 | 2.04  | 2.47  |
|               | MATSIRO          | -3.79 | -13.87 | -8.12  | -5.06 | -14.63 | -20.25 | -8.49 | -3.69 | -4.73 | -2.05 | -1.90 |
|               | H08              | 0.02  | -4.41  | -8.83  | 10.51 | -15.67 | -10.08 | 11.16 | 0.72  | 4.85  | -1.53 | 3.92  |
|               | DBH              | 0.63  | -1.54  | -1.94  | 28.33 | -7.97  | -5.12  | 8.66  | 0.93  | 1.42  | 2.02  | -0.11 |
| CSWD3         | LPJmL            | 0.39  | -1.19  | -4.20  | 16.21 | -8.16  | -8.63  | 9.36  | 0.75  | 2.83  | -1.54 | 3.11  |
| US WF 5       | PCR-GLOBWB       | -0.72 | -5.45  | -5.20  | 10.00 | -8.34  | -5.57  | 6.40  | -0.16 | 1.93  | -0.05 | 0.21  |
|               | WaterGAP2        | -0.08 | -2.55  | -6.78  | 27.65 | -14.24 | -15.34 | 11.99 | 0.39  | 1.94  | -0.54 | 0.86  |
|               | MATSIRO          | -0.77 | -3.21  | -16.35 | 12.44 | -53.34 | -40.28 | 5.67  | 0.19  | 3.03  | -3.49 | 1.70  |
|               | H08              | -6.12 | -7.13  | -6.60  | 5.11  | -19.75 | -11.21 | 4.52  | -5.75 | -5.03 | -5.93 | -6.47 |
|               | DBH              | -4.87 | -6.37  | -6.11  | 2.70  | -13.98 | -12.34 | 1.91  | -4.00 | -2.90 | -4.28 | -6.02 |
| WEDEI         | LPJmL            | -2.73 | -2.91  | -4.42  | 12.00 | -10.50 | -9.73  | 6.45  | -1.97 | -4.10 | -4.83 | -4.04 |
| WIDEI         | PCR-GLOBWB       | 4.71  | -0.30  | 1.13   | 30.71 | -2.89  | 1.44   | 7.22  | 4.99  | 1.97  | 4.93  | 4.05  |
|               | WaterGAP2        | -3.77 | -4.03  | -5.46  | 17.37 | -15.51 | -18.55 | 8.14  | -2.93 | -4.44 | -5.38 | -4.47 |
|               | MATSIRO          | -1.28 | 1.25   | -6.82  | 96.98 | -13.82 | -20.52 | 4.85  | -0.40 | -0.52 | -3.67 | -3.94 |
|               |                  |       |        |        |       |        |        |       |       |       |       |       |
|               | Median           | -0.29 | -3.06  | -4.81  | 17.86 | -9.42  | -9.35  | 6.43  | 0.17  | -1.60 | 0.55  | 1.28  |
| All ensembles | 25 <sup>th</sup> | -2.24 | -5.77  | -6.73  | 11.71 | -14.53 | -14.85 | 4.61  | -1.89 | -4.04 | -1.17 | -3.43 |
|               | 75 <sup>th</sup> | 0.49  | -2.03  | -2.32  | 33.21 | -4.71  | -0.51  | 7.99  | 0.76  | 1.94  | 2.82  | 2.90  |

Table S4. Ensemble members of streamflow changes induced by climate change ( $\Delta Q_c$ , % of MAF) between 1971-1990 and 1991-2010.

| Forcing       | Model            | CN    | SH    | LR     | NW     | HA     | YR    | HU    | YZ    | SE    | SW    | PR    |
|---------------|------------------|-------|-------|--------|--------|--------|-------|-------|-------|-------|-------|-------|
|               | H08              | -0.42 | -0.09 | 1.39   | -2.93  | 2.72   | -1.51 | -0.76 | -0.44 | 0.36  | -0.06 | -0.34 |
|               | DBH              | -0.98 | -2.13 | -4.33  | -6.68  | -12.98 | -6.49 | -4.35 | -0.20 | -0.52 | -0.08 | 0.06  |
| DCMED v 2     | LPJmL            | -1.40 | -1.07 | -1.85  | -2.53  | -6.03  | -8.76 | -4.60 | -1.11 | -0.35 | -0.27 | -0.62 |
| PGMFD V.2     | PCR-GLOBWB       | -1.32 | -1.64 | -2.55  | -0.93  | -4.83  | -2.24 | -8.39 | -1.12 | -0.71 | -0.19 | -1.44 |
|               | WaterGAP2        | -0.86 | -0.43 | -2.42  | -4.40  | -7.15  | -3.28 | -5.73 | -0.67 | -0.44 | -0.05 | -0.66 |
|               | MATSIRO          | 1.09  | 3.83  | 4.22   | -4.91  | 8.03   | 14.39 | 7.98  | 1.10  | -0.21 | 0.01  | 0.45  |
|               | H08              | -0.51 | -0.85 | 0.63   | -5.07  | 1.47   | -1.88 | -1.33 | -0.44 | 0.25  | -0.05 | -0.35 |
|               | DBH              | -1.12 | -3.26 | -10.37 | -12.44 | -15.16 | -5.24 | -5.57 | -0.31 | -0.43 | -0.08 | -0.06 |
| CSWD2         | LPJmL            | -1.31 | -1.48 | -4.10  | -4.66  | -5.40  | -7.31 | -5.19 | -0.87 | -0.31 | -0.25 | -0.52 |
| US WP5        | PCR-GLOBWB       | -1.14 | -1.45 | -2.97  | -1.63  | -3.72  | -1.59 | -7.24 | -0.95 | -0.56 | -0.15 | -1.33 |
|               | WaterGAP2        | -0.93 | -0.79 | -2.82  | -12.67 | -7.13  | -2.33 | -7.50 | -0.79 | -0.45 | -0.03 | -0.54 |
|               | MATSIRO          | 1.59  | 3.94  | 5.10   | -6.67  | 20.16  | 16.41 | 0.54  | 1.57  | -0.25 | 0.17  | 0.67  |
|               | H08              | -0.65 | -0.37 | 0.44   | -4.36  | 0.89   | -2.76 | -1.21 | -0.58 | 0.26  | -0.05 | -0.28 |
|               | DBH              | -1.45 | -2.38 | -5.85  | -5.73  | -12.28 | -5.93 | -6.38 | -0.87 | -0.56 | -0.05 | -0.46 |
| WEDEI         | LPJmL            | -1.43 | -1.25 | -3.24  | -6.81  | -4.28  | -6.81 | -5.84 | -1.13 | -0.49 | -0.30 | -0.80 |
| WFDEI         | PCR-GLOBWB       | -1.32 | -1.63 | -3.06  | -3.35  | -4.44  | -1.98 | -7.27 | -1.07 | -0.69 | -0.16 | -1.40 |
|               | WaterGAP2        | -1.03 | -0.73 | -2.62  | -12.11 | -6.48  | -4.21 | -7.52 | -0.86 | -0.60 | -0.02 | -0.79 |
|               | MATSIRO          | 11.57 | 41.77 | 16.64  | -5.89  | 13.41  | 49.06 | 6.84  | 11.98 | 3.32  | 7.34  | 7.98  |
|               |                  |       |       |        |        |        |       |       |       |       |       |       |
|               | Median           | -1.04 | -0.96 | -2.58  | -7.96  | -4.63  | -2.60 | -5.38 | -0.74 | -0.44 | -0.07 | -0.49 |
| All ensembles | 25 <sup>th</sup> | -1.40 | -1.60 | -3.20  | -15.58 | -6.97  | -5.84 | -7.03 | -0.96 | -0.55 | -0.19 | -0.76 |
|               | 75 <sup>th</sup> | -0.57 | -0.39 | 0.58   | -5.90  | 1.33   | -1.71 | -1.24 | -0.35 | -0.22 | -0.05 | -0.11 |

Table S5. Ensemble members of streamflow changes induced by DHI change ( $\Delta Q_h$ , % of MAF) between 1971-1990 and 1991-2010.

| Period |              | 1981-1990            |                     |              | 1991-2000            |                     |              | 2001-2010            |                     |
|--------|--------------|----------------------|---------------------|--------------|----------------------|---------------------|--------------|----------------------|---------------------|
| Region | $\Delta Q_h$ | $\Delta Q_h_{25}$ th | $\Delta Q_h_{75th}$ | $\Delta Q_h$ | $\Delta Q_h_{25}$ th | $\Delta Q_h_{75th}$ | $\Delta Q_h$ | $\Delta Q_h_{25}$ th | $\Delta Q_h_{75th}$ |
| CN     | -0.37        | -0.58                | 0.05                | -0.65        | -1.39                | 0.89                | -1.62        | -1.94                | -0.78               |
| SHJ    | -1.78        | -2.02                | -0.34               | -1.46        | -2.01                | -0.97               | -2.15        | -2.57                | -1.47               |
| LR     | -3.43        | -4.38                | -0.23               | -2.30        | -3.18                | 1.92                | -5.21        | -8.29                | -3.67               |
| NW     | -6.09        | -8.15                | -4.18               | -8.99        | -13.12               | -4.58               | -13.53       | -25.40               | -9.97               |
| HA     | -2.81        | -7.40                | -0.98               | -4.49        | -6.58                | 2.09                | -7.07        | -10.65               | 1.89                |
| YR     | -7.49        | -13.76               | -3.83               | -4.10        | -6.46                | -1.83               | -8.95        | -10.95               | -3.71               |
| HU     | -1.97        | -3.74                | -0.03               | -5.53        | -7.41                | -2.20               | -7.01        | -10.35               | -0.54               |
| YZ     | 0.05         | -0.19                | 0.64                | -0.38        | -0.93                | 1.39                | -0.73        | -1.18                | 0.37                |
| SE     | -0.32        | -0.42                | -0.16               | -0.37        | -0.58                | -0.18               | -0.85        | -1.01                | -0.46               |
| SW     | -0.03        | -0.06                | -0.01               | -0.07        | -0.19                | -0.04               | -0.08        | -0.30                | -0.06               |
| PR     | -0.31        | -0.54                | -0.14               | -0.75        | -1.32                | -0.22               | -0.42        | -0.78                | -0.19               |

Table S6. Ensemble medians, 25<sup>th</sup> and 75<sup>th</sup> percentiles of MAF changes (%) induced by DHI change ( $\Delta Q_h$ ) from 1971-1980 to 1981-1990, 1991-2000, and 2001-2010, respectively. All  $\Delta Q_h$  values are percentages of the MAF from VARSOC simulations over the 1971-1980 period.

Table S7. Relative contributions of DHI from previous studies.  $\Delta Q_a$  denotes the relative contribution of DHI and is computed as  $100 \times \Delta Q_h/\Delta Q_a$  in the studies. Period 1 denotes the period without (or with little) human impact, Period 2 denotes the period with human impact. Period 2 is blank when no sub-periods were used in the study.

| Major River  | River         | $\Delta Q_{a}$ (%) | Period 1                | Period 2  | Station     | Latitude | Longitude | Catchment<br>area (km²) | Reference         |
|--------------|---------------|--------------------|-------------------------|-----------|-------------|----------|-----------|-------------------------|-------------------|
| Hai River    | Qinlong River | -41.5              | 1957-1979               | 1980-2000 | Taolinkou   | 40.13    | 119.05    | 5060                    |                   |
|              | Bai River     | -59.9              | 1954-1979               | 1980-2004 | Zhangjiafen | 40.62    | 116.78    | 8506                    | Bao et al., 2012  |
|              | Zhang River   | -73.9              | 1951-1972               | 1973-2004 | Guantai     | 36.33    | 114.08    | 17800                   |                   |
|              | Chao River    | -68.6              | 1961-1966,<br>1973-1979 | 1980-2001 |             | 41.00    | 117.00    | 6716                    | Wang at al. 2000  |
|              | Bai River     | -70.4              | 1961-1966,<br>1973-1979 | 1980-2001 |             | 40.55    | 116.50    | 9072                    | wang et al., 2009 |
| Yellow River | Upper reaches | -37                | 1956-1989               | 1990-2000 | Tangnaihai  | 35.50    | 100.15    | 121972                  | Zhao at al. 2000  |
|              | Upper reaches | -46                | 1968-1986               | 1987-2000 | Lanzhou     | 36.07    | 103.82    | 222551                  | Zhao et al., 2009 |
|              | Upper reaches | -44                | 1960-1970               | 1991-2000 | Baimasi     | 34.72    | 112.58    | 13915                   | Wang et al., 2010 |
|              | Wuding River  | -84.3              | 1961-1971               | 1972-1997 | Baijiachuan | 37.24    | 110.42    | 30261                   | Li et al., 2007   |
|              | Wuding River  | -23                | 1961-2005               |           | Baijiachuan | 37.24    | 110.42    | 30261                   | Yuan et al. 2018  |
| Huai River   | Upper reaches | -45                | 1960-2010               |           | Bengbu      | 32.95    | 117.27    | 270000                  | Ma et al., 2014   |

## Reference

Bao, Z., Zhang, J., Wang, G., Fu, G., He, R., Yan, X., Jin, J., Liu, Y., and Zhang, A.: Attribution for decreasing streamflow of the Haihe River basin, northern China: Climate variability or human activities?, J. Hydrol., 460-461, 117-129, 10.1016/j.jhydrol.2012.06.054, 2012.

Li, L., Zhang, L., Wang, H., Wang, J., Yang, J., Jiang, D., Li, J., and Qin, D.: Assessing the impact of climate variability and human activities on streamflow from the Wuding River basin in China, Hydrol. Processes, 21, 3485-3491, doi:10.1002/hyp.6485, 2007.

Ma, F., Ye, A., Gong, W., Mao, Y., Miao, C., and Di, Z.: An estimate of human and natural contributions to flood changes of the Huai River, Global Planet. Change, 119, 39-50, 10.1016/j.gloplacha.2014.05.003, 2014.

Wang, G., Xia, J., and Chen, J.: Quantification of effects of climate variations and human activities on runoff by a monthly water balance model: A case study of the Chaobai River basin in northern China, Water Resour. Res., 45, doi:10.1029/2007WR006768, 2009.

Wang, J., Hong, Y., Gourley, J., Adhikari, P., Li, L., and Su, F.: Quantitative assessment of climate change and human impacts on long-term hydrologic response: a case study in a sub-basin of the Yellow River, China, Int. J. Climatol., 30, 2130-2137, doi:10.1002/joc.2023, 2010.

Yuan, X., Jiao, Y., Yang, D., and Lei, H.: Reconciling the Attribution of Changes in Streamflow Extremes From a Hydroclimate Perspective, Water Resour. Res., doi:10.1029/2018WR022714, 2018.

Zhao, F., Xu, Z., Zhang, L., and Zuo, D.: Streamflow response to climate variability and human activities in the upper catchment of the Yellow River Basin, Sci. China Ser. E: Technol. Sci., 52, 3249, 10.1007/s11431-009-0354-3, 2009.



Figure S1. Irrigated areas and reservoirs in China used in the ISIMIP2a VARSOC experiment. (a): mean irrigation area per grid cell (%) over the 1971-2010 period and locations of reservoir; (b): difference in mean irrigation area between the periods of 1971-1990 and 1991 and 2010; (c): annual irrigation area for China, northern basins, and southern basins; (d): annual storage capacity of reservoirs in China. The areas without irrigation are not shown on the map.



Figure S2. The seasonal cycle of streamflow from observations and GHMs. The seasonal observations are based on monthly streamflow and averaged for the hydrological stations in each basin (Figure 1). The simulations are averaged values over the grid cells identified by the location of stations. H08: H08 model; DBH: DBH model; LPJ: LPJmL model; PCR: PCR-GLOBWB model; WAT: WaterGAP model; MAT: MATSIRO model; MMS: multimodel medians; OBS: observations. Northern basins: Songhua River (SH), Liao River (LR), Northwest Rivers (NW), Hai River (HA), Yellow River (YR), Huai River (HU); Southern basins: Yangtze River (YZ), Southeast Rivers (SE), Southwest Rivers (SW), Pearl River (PR).



Figure S3. MAF changes (m<sup>3</sup> s<sup>-1</sup>) over China between the sub-periods 1971-1990 and 1991-2010. (a) Total MAF changes ( $\Delta Q_a$ ), (b) MAF changes induced by climate change ( $\Delta Q_c$ ) and (c) MAF changes induced by DHI change ( $\Delta Q_h$ ).



Figure S4. Total MAF change ( $\Delta Q_a$ ), MAF change induced by climate change ( $\Delta Q_c$ ), and MAF change induced by DHI change ( $\Delta Q_h$ ) from the period 1971-1980 to (a) 1981-1990, (b) 1991-2000 and (c) 2001-2010, respectively. The bars show the medians and the error bars show the range of 25th and 75th of MAF changes.