Preprints
https://doi.org/10.5194/hess-2018-522
https://doi.org/10.5194/hess-2018-522
08 Nov 2018
 | 08 Nov 2018
Status: this discussion paper is a preprint. It has been under review for the journal Hydrology and Earth System Sciences (HESS). The manuscript was not accepted for further review after discussion.

Estimating changes of temperatures and precipitation extremes in India using the Generalized Extreme Value (GEV) distribution

Kishore Pangaluru, Isabella Velicogna, Tyler C. Sutterley, Yara Mohajerani, Enrico Ciraci, Jyothi Sompalli, and Vijaya Bhaskara Rao Saranga

Abstract. Changes in extreme temperature and precipitation may give some of the largest significant societal and ecological impacts. For changes in the magnitude of extreme temperature and precipitation over India, we used a statistical model of generalized extreme value (GEV) distribution. The GEV statistical distribution is a time-dependent distribution with different time scales of variability bounded by a precipitation, maximum (Tmax), and minimum (Tmin) temperature extremes and also assessed their possibility changes are evaluated and quantified over India is presented. The GEV-based method is applied on both precipitation and temperature extremes over India during the 20th and 21st centuries using multiple coupled climate models taking an interest in the Coupled Model Intercomparison Project Phase 5 (CMIP5) and observational datasets. The regional means of historical warm extreme temperatures are 34.89, 36.42, and 38.14 °C for three different (10, 20, and 50-year) periods, respectively; whereas the cold extreme mean temperatures are 7.75, 4.19, and −1.57 °C. It indicates that 20th century cold extreme temperatures have relatively larger variations than the warm extremes. As for the future, the CMIP5 models of warm extreme regional mean values increase from 0.33 to 0.75 °C in all return periods (10-, 20-, and 50-year periods), while in the case of cold extreme means values vary between 0.58 and 2.29 °C. In the future, cold extreme values have a larger increasing rate over the northwest, northeast, some parts of north-central, and Inter Peninsula regions. The CRU precipitation extremes are larger than the historical extreme precipitation in all three (10, 20, and 50-year) return-periods.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Kishore Pangaluru, Isabella Velicogna, Tyler C. Sutterley, Yara Mohajerani, Enrico Ciraci, Jyothi Sompalli, and Vijaya Bhaskara Rao Saranga
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Kishore Pangaluru, Isabella Velicogna, Tyler C. Sutterley, Yara Mohajerani, Enrico Ciraci, Jyothi Sompalli, and Vijaya Bhaskara Rao Saranga
Kishore Pangaluru, Isabella Velicogna, Tyler C. Sutterley, Yara Mohajerani, Enrico Ciraci, Jyothi Sompalli, and Vijaya Bhaskara Rao Saranga

Viewed

Total article views: 2,538 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
2,020 455 63 2,538 80 80
  • HTML: 2,020
  • PDF: 455
  • XML: 63
  • Total: 2,538
  • BibTeX: 80
  • EndNote: 80
Views and downloads (calculated since 08 Nov 2018)
Cumulative views and downloads (calculated since 08 Nov 2018)

Viewed (geographical distribution)

Total article views: 2,273 (including HTML, PDF, and XML) Thereof 2,257 with geography defined and 16 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 20 Jan 2025
Download
Short summary
The regional extreme mean temperature values increase moderately compared to the historical values at about 1.82 and 2.92 °C in the 50-year period under RCP6.0 and 8.5 scenarios. Comparing the 10- to 50-year return periods, the warm extremes increase at about ~ 3 °C especially over the eastern and western regions of India. The effect of increasing radiative forcing under higher concentration pathways is larger on cold temperatures compared to warm extreme temperatures.