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Abstract. Hydrology and remote-sensing communities have made use of dense rain-gauge networks for studying rainfall

uncertainty and variability. However, in most regions, these dense networks are only available at small spatial scales (e.g.,

within remote-sensing subpixel areas) and over short periods of time. Just a few studies have applied a similar approach, i.e.,

employing dense gauge networks to catchment-scale areas, which limits the verification of their results in other regions. Using

10-year rainfall measurements from a network of 150 rain gauges, WegenerNet (WEGN), we assess the spatial uncertainty in5

observed heavy rainfall events. The WEGN network is located in southeastern Austria over an area of 20 km × 15 km with

moderate orography. First, the spatial variability of rainfall in the region was characterised using a correlogram at daily and

sub-daily scales. Differences in the spatial structure of rainfall events between warm and cold seasons are apparent and we

selected heavy rainfall events, the upper 10% of wettest days during the warm season, for further analyses because of their

high potential for causing hazards. Secondly, we investigated the uncertainty in estimating mean areal rainfall arising from a10

limited gauge density. The average number of gauges required to obtain areal rainfall with errors less than a certain threshold

(<=20% normalized root-mean-square error is considered here) tends to increase roughly following a power law as the time

scale decreases, while the errors can be significantly reduced by establishing regularly distributed gauges. Lastly, the impact

of spatial aggregation on extreme rainfall was examined, using gridded rainfall data with various horizontal grid spacings.

The spatial scale dependence was clearly observed at high intensity thresholds and high temporal resolutions; e.g., the 5-min15

extreme intensity increases by 44% for the 99.9th and by 25% for the 99th percentile, with increasing horizontal resolution

from 0.1◦ to 0.01◦. Quantitative uncertainty information from this study can guide both data users and producers to estimate

uncertainty in their own observational datasets, consequently leading to the sensible use of the data in relevant applications.

Our findings could be transferred to mid-latitude regions with moderate topography, but only to a limited extent, given that

regional factors that can affect rainfall type and process are not explicitly considered in the study.20
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1 Introduction

Rainfall data are one of the most important inputs for hydrological as well as climatological studies and applications. Further-

more, fit-for-purpose information derived from rainfall data is crucial for a wider range of users, such as civil engineers, water

resource managers and governments. To meet the needs of diverse user groups, rainfall observational datasets from in-situ

measurement and remote sensing have been greatly enhanced in terms of both data quality and resolution (e.g., Berezowski5

et al., 2016; Hou et al., 2014; Keller et al., 2015; Yatagai et al., 2012). Often, rainfall data are required as areal estimates at the

scale of interest, for instance, at grid or catchment scales. Point measurements from in-situ gauge observations are spatially

aggregated or interpolated to estimate the areal distribution of rainfall, and hence the accuracy of areal rainfall data is highly

dependent on spatiotemporal variability of rainfall events and density of observation points (Girons Lopez et al., 2015; Hofstra

et al., 2010; Villarini et al., 2008; Wood et al., 2000). This limits the understanding of fine-scale rainfall processes, particularly10

of extreme events (Sillmann et al., 2017). Gridded rainfall data are also available from remotely sensed observations at high

spatial resolutions (e.g., 1-5 km2 for radar data or 0.1◦ × 0.1◦ for satellite data). While those datasets are good alternatives

to address a number of the issues relating to the scarcity of gauges, rainfall variability at subpixel scales can still not be fully

resolved (Peleg et al., 2013; Tokay et al., 2014). Moreover, systematic errors can be large (Svensson and Jones, 2010), and

the quality of remotely sensed data therefore strongly relies on gauge-based data that are used for their regional validation and15

correction (Kann et al., 2015; O et al., 2018b; Steiner et al., 1999).

Addressing the issue of spatial variability and uncertainty of rainfall has been tackled over many years with various pur-

poses. For instance, evaluation of satellite or radar rainfall products involves investigation of larger-scale rainfall processes to

assess the ability of remote sensing in capturing the inter-pixel rainfall variability (e.g., Chaudhary et al., 2017; Dhib et al.,

2017; Lockhoff et al., 2014). On the other hand, small-scale rainfall processes are of interest to identify the effect of intra-20

pixel variability of rainfall on the performance of remote sensing (e.g., Ciach and Krajewski, 1999, 2006; Gebremichael and

Krajewski, 2004; Habib and Krajewski, 2002; Peleg et al., 2013; Tan et al., 2018; Tokay et al., 2014). To quantify the rainfall

uncertainty, observational data from highly dense rain-gauge networks have been employed as a ground truth. Peleg et al.

(2013) used multiple rain gauges within a radar subpixel area (4 km2) and examined the contribution of gauge sampling error

to the total radar-rainfall estimation error. Using relatively long-term gauge data (5-years), Tokay et al. (2014) analyzed the25

spatial correlation of rainfall for different seasons and weather systems within the footprint size of microwave satellite sensors.

A similar approach employing dense gauge networks can be adopted to diagnose the spatial variability and uncertainty of

rainfall at catchment scales (e.g., 100 - 500 km2). Such scales are of great interest not only for the evaluation of remotely

sensed data, but also for hydrological applications like runoff modelling or gauge network design. Wood et al. (2000) exam-

ined the accuracy of areal estimates of rainfall over a 135 km2 basin according to the HYdrological Radar EXperiment network30

consisting of 49 rain gauges. The network later provided a six-year rainfall dataset (from 50 gauges) for the study of Villarini

et al. (2008), where a comprehensive analysis of temporal and spatial sampling uncertainties was conducted. However, most

of the local areas do not have adequately dense gauge networks, which limits the comparison and verification of findings from

the aforementioned studies across diverse rainfall regimes. Schroeer et al. (2018) recently employed the WegenerNet Feldbach
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region (WEGN) and the surrounding operational rain gauge stations to sample summertime convective extreme events at sub-

hourly to hourly scales and found a power law decay of the event maximum area rainfall with increasing interstation distance

(1 km to 35 km).

In this paper, in order to contribute to the effort for better and broader assessment of the rainfall spatial variability and

associated uncertainty, we employed 10-year rainfall data from the WEGN, a high-density network in southeastern Austria5

(Kirchengast et al., 2014). The network includes 150 rain gauges deployed over an area of ' 300 km2, approximately cor-

responding to one gauge per 2 km2. First, following previous studies (e.g., Villarini et al., 2008; Peleg et al., 2013; Tokay

et al., 2014), we quantified the spatial variability of rainfall utilizing a corrologam between the gauges to understand the spatial

characteristics of rainfall in the region.

Second, we investigated the uncertainty in estimating areal rainfall caused by a limited number of point observations. Given10

that the properties of individual rainfall events can be different from all-event averages (Ciach and Krajewski, 2006; Eggert

et al., 2015), we focused on events with a potentially high impact, which we defined as the top 10% wettest days during the

warm season (May–September). The accuracy of areal rainfall estimation is a long-standing issue, e.g., in catchment mod-

elling, because error and uncertainty in rainfall data can propagate into large variations in simulated runoff, and thus it has

been dealt with in diverse manners. For instance, the influence of spatial representations of rainfall input to runoff errors has15

been demonstrated through modelling studies (e.g., Bárdossy and Das, 2008; Xu et al., 2013). The error in catchment-scale

areal mean rainfall has also been directly quantified by employing high-resolution gauge data (e.g., Villarini et al., 2008; Wood

et al., 2000; Ly et al., 2011). We followed the latter approach using the WEGN rainfall data.

Finally, we compared extreme rainfall at different spatial and temporal scales using gridded rainfall fields to quantitatively

assess the impact of spatial averaging on the definition of extremes. The identification of rainfall extremes based on inten-20

sity thresholds is common practice, however, the considered spatial scale of rainfall data defines different sets of extreme

events (Eggert et al., 2015), potentially affecting threshold-based early warning systems (Marra et al., 2017). Although gridded

datasets have been used in a range of applications like assessments of climate change impacts or evaluation of climate models,

a common caveat of using the datasets in the study of extreme rainfall is that the quality of gridded rainfall data is highly con-

strained by the location and density of input weather station data (Hofstra et al., 2010; Prein and Gobiet, 2017). By contrast, the25

quasi-regular configuration of WEGN on an approximately 1.4 km x 1.4 km grid permits robust examination of the frequency

and intensity of rainfall extremes at various horizontal resolutions.

Consequently, this study aims to assess spatial uncertainty of rainfall at catchment scale using rain gauge data, with a focus

on heavy and extreme rainfall events. This paper is structured as follows. Section 2 describes WEGN rain gauge data and

regional rainfall climatology. Section 3, Sect. 4, and Sect. 5 present results and discussion of the data analysis. We close with30

summary and conclusions in Sect. 6.

3



2 WEGN rainfall data and regional rainfall climatology

The 10-year rainfall data (2007-2016) are obtained from the WEGN Feldbach region network in southeastern Austria (Kirchen-

gast et al., 2014). Of 154 weather stations, 150 stations that are equipped with tipping-bucket rain gauges are used in this study

(Fig. 1). Raw rain gauge data are aggregated every five minutes. The rainfall data are quality-controlled by the WEGN data

processing system, and furthermore, systematic errors (undercatch) of the rainfall data that are used in this study were com-5

prehensibly analysed and corrected by O et al. (2018a). The gauges are almost uniformly spaced over an area of 20 km ×
15 km with moderate topography (about 260 to 520 m altitude). The inter-gauge distances range from approximately 0.7 km

to 23.4 km. The gridded fields of rainfall are constructed by an inverse distance weighting (IDW), using the power parameter

p=2, on a 200 m × 200 m Universal Transverse Mercator grid. The gridded data are constructed at 5-min resolution. The sub-

daily to daily data used in this study are obtained by accumulating the 5-min data. WEGN station and gridded data products10

are available at www.wegenernet.org.

Southeastern Austria including the Feldbach region is influenced by both continental and Mediterranean climates. The re-

gion receives high amounts of rainfall during summer months. The occurrence of thunderstorms and hail is higher than in other

parts of Austria (Matulla et al., 2003). Figure 2 shows average diurnal variations of rainfall and temperature over the entire

network during the study period. The WEGN area is characterized by warm and wet months from May through September15

(hereafter “warm season”) and relatively cold months without much rainfall during the remaining seven months (hereafter

“cold season”). The average monthly rainfall is 102.8 mm in the warm season, while 48.9 mm in the cold season. The diurnal

signal is more clearly seen in the warm season for both rainfall and temperature. Rainfall maxima occur often in the early after-

noon through midnight, shortly after maximum temperature, implying that a major contribution to the warm season rainfall is

from short-duration convective events. Because diurnal heating plays an important role in triggering thermal convection, most20

inland regions show afternoon rainfall maxima (Dai et al., 2007). Extreme daily precipitation, however, can also be caused by

Genoa Lows (Hofstätter and Blöschl, 2019), which transport humidity from the Mediterranean Sea, yielding intense rainfall

with long-duration.

3 Spatial variability of rainfall

The spatial structure of rainfall events is studied using the Pearson’s correlation coefficient between all pairs of rain gauges.25

Pearson’s r is the most commonly used rainfall correlation estimator (e.g., Ciach and Krajewski, 2006; Jaffrain and Berne,

2012; Peleg et al., 2013; Tokay et al., 2014; Villarini et al., 2008). At sub-daily and daily timescales from 5-min to 24-h (06-06

UTC), the correlation of rainfall among rain gauges is calculated for each year. One year period includes a set of warm season

(May to September) and cold season (October to next April). The incomplete years (i.e., first and last years) are excluded from

the calculation of all-months (May to next April), whereas the warm and cold seasons have 10 annual curves each. The data30

pairs when both record zero rainfall are discarded. The correlation values in each period were then sorted according to the

separation distance of gauge pairs and averaged into the nearest 1-km distance bins. We fitted a three-parameter exponential

function to the average correlations. The distance bins for fitting the model were taken up to and including 15 km given
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the network dimension, which means that rainfall data pairs were sampled uniformly for any spatial direction. The spatial

correlation (r) at separation distance h is:

r(h) = c1 exp

[
−
(

h

c2

)c3
]

(1)

where c1 represents the nugget effect, c2 is the correlation distance, and c3 is the shape factor. The parameters are determined

by least-squares curve fitting. Figure 3 shows the spatial correlation of all-months, warm, and cold seasons for four selected5

accumulation times. A logarithmic transformation is applied to the data; log(x+1) to keep zero rainfall, where x is in rainfall

in mm. As the transformation make rainfall data conform more closely to the normal distribution, the effects of extreme values

on correlation coefficients is mitigated (Habib et al., 2001; Jaffrain and Berne, 2012). This results in slightly lower correlations

(not shown), however, the overall pattern of correlation decay curves remains unaffected. The data after the log-transformation

are used in the figure.10

Many factors are known to affect the spatial correlation structure in rainfall. For instance, Habib et al. (2001) examined the

sensitivity of correlation estimation in rainfall to sample size or extreme rainfall events and Huff and Shipp (1969) demon-

strated how the rate of correlation decay varied with different rainfall types. In fact, individual weather systems can exhibit

varied spatial characteristics (Habib and Krajewski, 2002; Ciach and Krajewski, 2006; Tokay et al., 2014). In southeastern

Austria, including the WEGN area, Schroeer et al. (2018) found much steeper decay in a correlogram function when only15

extreme summertime convective events are accounted for. We therefore do not make a direct comparison of correlation values

with those from other studies, yet we still observe that the behaviors of the correlation decay found in this study are in broad

agreement with spatial rainfall correlation structures reported in the aforementioned studies. First, longer accumulation times

show higher c1 (i.e., smaller microscale variations) and longer correlation distance values. Second, short-range correlation

decreases rapidly with increasing separation distance, particularly at sub-hourly scales.20

The warm season shows higher spatial variability of rainfall compared to the cold season, due to a higher proportion of

convective events. The correlation curves of all-months show a more similar pattern with the warm season, as expected, given

that most of the rainfall events are concentrated during the warm season (see Sect. 2). Tokay et al. (2014) found substantial

year-to-year variations especially during autumn and spring. Similarly, WEGN rainfall shows marked interannual variability,

but also during the warm season. It should be noted that the correlation functions of the cold season start with lower c1 val-25

ues than of the warm season, meaning larger measurement errors and microscale variability of rainfall. This could be related

to winter precipitation types in the region. For instance, uncertainty affecting the gauge measurements (e.g., wind-induced

bias) may play a bigger role in determining the spatial heterogeneity of neighboring stations during low-intensity precipitation

events, than during warm season convective events. Another possible reason is that WEGN does not accurately capture solid

precipitation (O et al., 2018a), since only few gauges are heated, and thus systematic errors between neighboring gauges can30

be greater during the cold season, possibly yielding the low c1 values.

Figure 4a-c summarizes the time dependence of the three parameters. Synthesized parameters here are obtained from the

fitting function that is constructed by averaging yearly correlation values in each distance bin. Nugget effect values range from

0.71 to 0.98 for the cold season, while from 0.85 to 0.99 for the warm season. The correlation distance of the cold season
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at the 3-h is nearly corresponding to the correlation distance at the 24-h scale in the warm season. The parameter values of

all-months are located between those of warm season and cold season. We found that the dependency of nugget effect and cor-

relation distance on times scale is similar to the results by Villarini et al. (2008). The nugget effect parameter changes sharply

at smaller timescales, while the correlation distance appears to be more sensitive for larger timescales. The shape factor of this

study, however, does not show a clear increasing or decreasing trend. This is consistent with findings from Peleg et al. (2013)5

and Tokay et al. (2014). We selected the three-parameter model for the function fitting, because the model shows the mini-

mum root-mean-square error (RMSE) between observed and fitted correlation values across all time scales (Fig. 4d) among

the several tested models. Note that we fitted the correlation models to bin-averaged values and thus obtained relatively small

fitting errors compared to other studies (e.g., Ciach and Krajewski (2006) or Tokay et al. (2014)). During multiple tests with

different fitting models, we found that the fitted correlation distances over 100 km (e.g., values at accumulation times of >6-h10

in Fig. 4b) are often highly impacted by the selected fitting models. However, this model uncertainty does not affect the general

behaviors of the parameters including their dependence on time scale and their seasonal differences. Nonetheless, when the

spatial scale of observed correlations is limited to a distance of a few kilometers (e.g., 15 km in our study), the correlation

distances estimated from the fitting model should be interpreted with caution. Interested readers may obtain a more detailed

discussion of the fitting model in Svoboda et al. (2015).15

So far we assume that the correlation structure is isotropic. To check the directionality (anisotropy) of the spatial corre-

lations, we remapped them onto the two-dimensional space (Velasco-Forero et al., 2009; Mandapaka and Qin, 2013). Fig. 5

shows the 10-year averaged correlations plotted over 1 km × 1 km grid cells but only till the e-folding distance (when the

correlation drops to around 0.37). While the correlation drops rapidly in all directions over short distances, a strong correla-

tion is observed in an approximate southwest–northeast direction as separation distance increases. The directionality is more20

pronounced during the cold season, which can be interpreted as a consequence of movement of large-scale weather systems

(contrary to summertime convective) along the favoured wind direction during the season, rather than as an effect of orographic

barriers. Such directional characteristics of the correlations are averaged out in Fig. 3.

4 Accuracy of areal rainfall estimation during heavy rainfall events25

In this section we investigate data uncertainty associated with areal rainfall estimation. In particular, the study focuses on high-

impact rainfall events. While heavy rainfall is one of the major hydrological hazards, its accurate spatial representation over

an area remains a subject worthy of inquiry. Heavy rainfall events are defined as days with total rainfall exceeding the 90th

percentile of the daily rainfall, without a consideration of rainfall type. Only the warm season is taken into account. As a result,

a total of 71 days are selected. According to our visual-inspection on rainfall time series, the selected days likely include mixed30

rainfall types (short- and long-duration rainfall) rather than a specific type. The median of gauge-averaged accumulations is

28.1 mm d−1, with a range of 19.8 mm d−1 to 64.1 mm d−1 (more information in Supplement).

We assume that the mean areal rainfall of a full density network represents the “truth". The areal rainfall of n-gauge networks
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(n = number of gauges) is calculated and compared with the true rainfall to quantify the accuracy of areal rainfall estimation

with low-density networks (see also Villarini et al., 2008). Each n-gauge network consists of randomly selected 1,000 possible

gauge combinations. The 1-gauge network has 150 cases. As shown in Fig. 6a, the average and spread of normalized RMSEs

(NRMSEs) of areal rainfall estimation tend to decrease with rising gauge number. The mean number of gauges required to

obtain areal rainfall with NRMSEs lower than 20% is given as a function of time resolution in Fig. 6b. The curve (in black)5

roughly exhibits power-law behavior; 74.2 ×t−0.4, where t is the time resolution (minute). At the daily scale, more than one

gauge per 300 km2 would be sufficient to reach a <20% estimation error. Correspondingly, at the temporal scales of 1-h, 30-

min, and 5-min, on average more than 12, 18, and 33 gauges, respectively, are needed to achieve the same level of accuracy.

Villarini et al. (2008) found that four gauges are necessary at the daily scale for the same accuracy level for an area of 135

km2. Heavy events are not explicitly considered in their study.10

One should note that the use of randomly selected gauge combinations only offers a rule of thumb about the required number

of gauges to minimize uncertainty in areal rainfall estimates. To demonstrate the role of gauge distribution in determining the

estimation error, we selected ‘good’ and ‘bad’ distributions, 100 cases, respectively, out of the 1,000 combinations for each

n-gauge networks that ranked in the top 10% and bottom 10% based on the area-of-influence (see Supplement). As seen in

Fig 6a (red crosses), the smallest estimation error is obtained with regularly distributed gauges. In other words, a well-designed15

gauge network allows to meet the desired error limit with a smaller number of gauges (black curve in Fig 6c). For example, at

a 1-h scale, the 20% estimation error can be reached using uniformly distributed 8 gauges, however, the same level of accuracy

cannot be guaranteed even with 23 rain gauges if their spatial configuration is not properly structured.

We repeated the calculation of the required gauge number to reach the certain accuracy, using sub-areas of 150, 100, and 50

km2, i.e., 1/2, 1/3, and 1/6 of WEGN area size, respectively (gray lines in Fig 6b and c). For each sub-area, the mean rainfall20

of all gauges within the area is assumed to be truth and the 1,000 possible gauge combinations are randomly selected, as we

did above. For the 50 km2 area where only 25 gauges are available, all combinations are included when the total possible

combinations of n-gauges are less than 1,000 cases. For any case, the dependence of the accuracy of areal rainfall estimates

on the gauge number shows the power-law behavior across time scales. However, the required gauge numbers do not linearly

decrease as the considered network area decreases. For smaller areas, we need more number of gauges per km2 (i.e., higher25

gauge density) to reach the same level of accuracy at the same time scale (see inset plots in Fig 6b and c). Because rainfall

variability varies faster within the first few kilometer, more dynamic rainfall variations in the smaller areas cannot be properly

captured when the inter-distances of gauges remain the same (i.e., constant gauge density between the sub-areas), particularly

for short time scales.

Additionally, the effect of gauge density on event-based rainfall statistics is assessed in Fig. 7. Daily rainfall accumulation30

and peak hourly rainfall of the 71 heavy daily events are recalculated using predefined sub-networks with gauges ranging

from 1 to 16. The gauges are uniformly spread; the definition of the sub-networks can be found in Supplement. While the

sub-network with only one gauge exhibits large overestimation errors for both total and peak rainfall, employing an additional

gauge already significantly reduces the degree of errors and yields underestimation error more frequently than overestimation.

Given that convective storms occur on scales of a few kilometers, low-density gauges over the region are likely to miss the core35
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of storm. On the contrary, low-density gauges can also overestimate rainfall intensities by capturing only the core of storm,

but the magnitude and frequency of these errors appear slightly less than those of the underestimation errors. When more than

10 gauges are available in the area, the impact of gauge number on the spread and mean of errors in area rainfall estimation

becomes marginal, as expected from Fig. 6. Note that only two operational meteorological stations exist over the actual WEGN

area; the insufficient gauge density may hamper the use of the station data to construct spatial rainfall information in the region.5

5 Impact of spatial aggregation on extreme rainfall

We next focus on the uncertainty of area- or grid-averaged rainfall relating to spatial data resolution for the heavy rainfall

events. Figure 8 compares rainfall percentiles among the gauges. Grey lines mean a 10-90th percentile range of rainfall in-

tensities at a given percentile bin. For example, at the 30-min scale, the 99.9th percentile (the top 0.1%) rainfall intensity

corresponds to roughly 45 mmh−1 at most gauges, while it exceeds 52 mmh−1 at certain gauges. It is also seen that 10% of10

WEGN gauges (i.e., 15 gauges) records are found to be lower than 38 mmh−1. The upper tail of the rainfall distribution shows

strong spatial variation. Such point-scale extreme rainfall features will be completely missed unless there exist dense rainfall

observations, or they are inherently smoothed out in gridded data.

In fact, many studies have pointed out that the use of gridded rainfall data can lead to erroneous analyses of small-scale

extremes because of the limited number of point observations (Contractor et al., 2015; Hofstra et al., 2010; Peleg et al., 2018;15

Prein and Gobiet, 2017; Tozer et al., 2012). In addition to the high-resolution, the regular distribution of WEGN gauges enables

generating gridded rainfall fields that are homogeneous in space, and consequently, robustly assessing uncertainty in rare and

extreme rainfall represented in the data.

We generated gridded data using all 150 WEGN gauges and rescaled the data into horizontal resolutions from 0.01 to 0.1

degree (hereafter HR01 to HR10). Spatial aggregation begins from the top-left corner towards the bottom right and the re-20

maining southern and/or eastern part of the grid is discarded (see Fig 9). HR01 corresponds to about 1.1 km and 0.8 km in

latitudinal and longitudinal directions, respectively. The selected spatial scale affects statistics of extreme areal rainfall, such

as daily extreme frequency. This is shown in Fig. 9, which illustrates the occurrence of days above a selected threshold; top

5% of heavy rainfall events at HR01. The concept of the exceedance probability above thresholds is widely used in analyses

of rainfall-triggered risk (e.g., Ban et al., 2015; Moberg et al., 2006; Schär et al., 2016). Some HR01-scale sites appear to25

experience extreme rainfall more frequently than other part of the region. In other words, high-resolution data well-represent

spatial variation and frequency of rainfall extremes, neither of which is seen in lower-resolution data. Many existing gridded

datasets are not likely to fully sample such site-level extreme events owing to limited spatial resolution.

The exceedance probability of extreme rainfall across spatial resolutions is given in Fig. 10. The impact of different data res-

olutions on extreme rainfall occurrence is pronounced in both lower and upper tails. The highest daily rainfall during 10-years30

appears to be 68.4 mmday−1 at HR10, but 104.4 mmday−1 at HR01; the maximum record over the entire WEGN area is 64.1

mmday−1, so the ratio of the site-to-areal extreme rainfall ranges from 1.07 to 1.63 depending on the considered spatial scale.

We also demonstrate 99.9th and 99th percentiles of heavy rainfall intensities as a function of space-time scales. As shown in
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Fig. 11, the impact of spatial aggregation is more obvious at the sub-hourly scales. The 5-min extreme intensity increases from

HR01 to HR10 by 44% for the 99.9th percentile while it increases by 25% for the 99th percentile. The 24-h extreme intensity

increases by 33% and by 12% for the 99.9th percentile and the 99th percentile, respectively. Note that temporal aggregation

also significantly alters the definition of extremes.

5

6 Summary and conclusions

In this study, to quantify spatial variability of heavy rainfall and associated uncertainty, we used 10-year rainfall measurement

data from the 150 rain gauges, uniformly spaced over the WEGN network in southeastern Austria. First, spatial correlation

between the gauge records was examined. We found that the degree of spatial rainfall variability can be substantially different

not only within years (warm versus cold seasons) but also between years. This implies that long-term data should be consid-10

ered to obtain comprehensive perspectives on regional rainfall variability. We found that during the cold season, the density of

gauges is less of a concern (showing longer correlation distance) compared to the warm season. However, low values of the

nugget effect parameter imply that snow/light rain measurements during winter time remain a challenge, especially at short

time scales. Additionally, we found anisotropic patterns in the spatial correlations, indicating that the assumption of isotropic

correlations can be another source of uncertainty (under certain weather conditions) in quantification of spatial variability of15

rainfall.

Secondly, we demonstrate how high density and regular distribution of WEGN gauges contribute to delivering accurate areal-

precipitation estimation. The overall uncertainty in mean areal rainfall shows a clear dependence on the number of gauges and

the temporal resolution considered for the estimation. To reach the same level of accuracy, the average number of gauge has

to be increased roughly following a power law as time scale decreases. Further analysis shows that there is no linear rela-20

tion between the required number of gauges and the ratio of considered area size. The accuracy of areal rainfall estimation is

also significantly dependent on the spatial configuration of the network. Additionally, we illustrate errors in the rainfall event

statistics (e.g., total amount and peak hourly intensity of daily heavy rainfall events) due to an insufficient number of gauges.

Our findings have implications concerning the use of sparse observational gauge data, for instance, in hydrologic modeling or

rainfall estimates evaluation (e.g., Syed et al., 2003; Tian et al., 2018).25

Lastly, using gridded WEGN data, rainfall extremes are reproduced at multiple spatial scales; approximately from the grid

resolution of regional to convective-permitting models (about 11.1 km to 1.1 km in latitudinal direction). We show how differ-

ent rainfall events can be considered extreme depending on the spatial and temporal resolutions. The results also demonstrate

that high-resolution gridded data provide more reliable information not only in terms of the magnitude and frequency of

extremes, but also in terms of the exact location of the extremes. As a result, limited resolution of rainfall data can alter in-30

terpretations of rainfall statistics; extreme rainfall events at a location of interest (a 0.01◦× 0.01◦ site in our example) could

occur more frequently and more intensely versus the local average. Localized information from high-resolution observation

is the key for developing prevention and protection plans to mitigate potential damages of extreme rainfall in an efficient and
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adequate way. Our results highlight the need to evaluate uncertainty in extreme statistics derived from the existing datasets for

supporting data selection among available rainfall data products.

In conclusion, the WEGN network provides a unique opportunity to empirically assess spatial variability and uncertainty of

surface rainfall directly based on gauge data. The network provides long-term records, of more than a decade, which permits

to exclusively focus on heavy rain events. Nonetheless, as stated in Villarini et al. (2008), there are only a few dense gauge5

networks on the catchment scale, so the verification of findings from studies in other regions is challenging. Regional factors,

such as topography or rain type, can lead to differences in the degree of rainfall variability and uncertainty (e.g., Buytaert

et al., 2006; Prein and Gobiet, 2017). Therefore, some of the general conclusions of this study may only be representative for

mid-latitude regions with moderate topography. In addition, more robust interpretation of the rainfall spatial structure beyond

the network dimension (> 15 km) needs to be complemented by additional larger-scale gauge data. For instance, Schroeer10

et al. (2018) used three different scales of networks, including the WEGN, to estimate the underestimation of maximum area

precipitation of extreme convective over the range of 1 km to 30 km. It should be noted that WEGN has a high flexibility

in terms of providing rainfall data within various spatial scales thanks to both high-resolution and quasi-grid configuration of

the gauges. In this context, WEGN will continue providing observational evidence to explore local-to-catchment scale rainfall

processes over the next years.15
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Figure 1. (a) WegenerNet Feldbach region (WEGN) network in southeastern Austria, (b) location of 150 tipping-bucket rain gauges, and (c)

inter-gauge distances, rounded to the nearest 1-km bins.
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Figure 2. Diurnal cycles of (a) rainfall and (b) temperature derived from WEGN observational data.
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Figure 3. Spatial correlation of rainfall among rain gauges for (a) all-months, (b) warm season, and (c) cold season. Four selected accumula-

tion times are shown. Each solid line represents a fitted exponential function for each year, up to 23 km (the longest inter-gauge distance of

WEGN). Note that the function is fitted to correlation for separation distances <= 15 km to sample data uniformly for any spatial direction.
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Figure 4. Dependence of (a) nugget effect, (b) correlation distance, and (c) shape factor of the fitted exponential functions on timescale. (d)

shows RMSE of fitted correlation values compared to observed values (red: warm season, green: cold season, black: all-months). Note that

the correlation distance values over 100 km (shaded in gray) are highly affected by the model selected to estimate the values.
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Figure 5. Same as Fig. 3, but for 10-year averaged spatial correlations in a two-dimensional space which is defined according to the distance

between the gauges in east–west direction (x-axis) and north–south direction (y-axis). (a) all-months, (b) warm season, and (c) cold season

are shown. The values beyond the e-folding distance (≈0.37) are colored grey.
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Figure 6. (a) Dependence of the accuracy of WEGN areal rainfall estimates on the number of gauges during heavy rainfall. Normalised

RMSEs (NRMSEs) of 1,000 random gauge combinations are used to assess the accuracy for each n-gauge network. Four selected time

accumulation are shown. Black horizontal lines correspond to 20% NRMSE. Box plots display the median, 25th and 75th percentiles of

NRMSE distribution, and whiskers extend to the 10th and 90th percentiles. Red crosses and Xs show the median NRMSE for good and bad

gauge configurations; 100 cases are selected, respectively, for each of the 1,000 combinations. (b) The average number of gauges required to

obtain areal rainfall estimates with the NRMSE < 20% within the whole WEGN area (black) and within the WEGN×1/2, ×1/3, and ×1/6

areas (gray). Inset shows the results in term of gauge density. (c) Same as (b), but for the minimum number of gauges require to obtain areal

rainfall estimates with the NRMSE <20%. Note that (a) shows the results with respect to the whole WEGN area.
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Figure 7. Dependence of the accuracy of (a) daily rainfall and (b) hourly peak intensity on the number of gauges. 71 heavy rain events are

considered. The y axis displays the relative difference between resampled and true rainfall. Resampled rainfall is calculated from n-gauge

sub-networks, while true rainfall is calculated using the full density WEGN network. The thick lines show the median and the shaded areas

show the 10th to 90th percentile spread.

21



10 25 40 50 60 70
Rain Intensity [mm/h]

to
p 

0.
1%

to
p 

10
%

3-h 30-min

Percentile

99.99

99.9

99

90

3-h 30-min

Percentile

99.99

99.9

99

90

25 50 75 100 125 150
Rain Intensity [mm/h]

1-h 5-min

Percentile

99.99

99.9

99

90

1-h 5-min

Percentile

99.99

99.9

99

90

Figure 8. Distribution of gauge-level rainfall intensities corresponding to given percentile thresholds during heavy rainfall events. Four time

scales are selected. Black lines show median values, gray lines show a 10th-90th percentile range among the gauges at a given threshold bin.
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Figure 9. Occurrence of extreme events (defined as days with total rainfall ≥ 95th percentile of daily rainfall intensity during heavy rainfall

events at HR01) at different horizontal grid spacing.

23



0 5 10 15 20
95
96
97
98
99

100

0 20 40 60 80 100
Maximum Rainfall [mm/day]

0

20

40

60

80

100

Pr
ob

ab
ilit

y 
of

 E
xe

ed
en

ce

80 85 90 95 100
0.0
0.2
0.4
0.6
0.8
1.0

Figure 10. Probability of occurrence of heavy rainfall for different horizontal resolutions. Darker red represents higher horizontal resolution

(from 0.1◦ to 0.01◦).
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Figure 11. 99.9th and 99th percentiles of rainfall intensities derived from gridded rainfall fields with different spatial and temporal scales.

Note that different color scale for the plots.
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