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Reply to the Comments by Referee #2 for HESS-2018-517 

 

We greatly appreciate the referee’s insightful comments along with many helpful suggestions, 

which helped us to improve the quality of the manuscript. We have faithfully revised the manuscript 

following the referee’s comments and suggestions. Please find below our item-by-item replies to 

the referee’s comments. 

 

Major Comments: 

A. Event selection: 

A1. The way the events are selected in this study (based on total daily rainfall amounts) has some 

important consequences which are not discussed enough in the paper in my opinion. We know 

from other studies that at mid-latitudes and in continental climates, the rainfall events that produce 

the largest daily accumulations are generally more widespread and persistent than the ones 

responsible for small-scale extremes. As a consequence, there are plenty of heavy localized rainfall 

events with high peak intensity but low to moderate rainfall totals that the authors do not consider 

in this analysis. Conversely, there are events in the sample that do not have very high peak intensity. 

This is not necessarily wrong but has important consequences as it heavily influences the 

conclusions. This needs to be discussed more in detail given that the focus of this paper is on heavy 

localized rainfall. 

=> This study aims to provide spatial uncertainty information of heavy rainfall events in 

a general sense, not only targeting moderated/localized rainfall events (Appendix A, Page 

10), given that, i) it is very common to define heavy or extreme rainfall events using a 

certain threshold value (e.g., Zhang et al., 2001; Zhai et al., 2005; Villarini 2012; Salack 

et al., 2018, etc.) and, ii) in many studies, gauge-based data are used for, e.g., remote 

sensing data validation or runoff modeling, with a lack of consideration about the rain type. 

Nonetheless, we agree with the referee that the way of selecting rainfall events can strongly 

influence quantitative results (Page 8 Lines 20-22, Page 9 Line22). This remains as a 

limitation of our study and open question for further study. To avoid any confusion, we 

have changed the title of manuscript to: “Assessment of spatial uncertainty of heavy 

rainfall at catchment scale using a dense gauge network” 

 

A2. More generally, a table summarizing the properties of the events selected for the analysis 

would be helpful. 

=> Thanks for the suggestion. We added a table in Appendix A (Page 24). 

 

B. Spatial correlation analysis: 
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B1. The WEGN is a rectangle of 20x15 km which means that it favors the sampling of some 

particular spatial directions over others. For small distances this does not really matter as all 

spatial directions are sampled more or less uniformly. But as you start considering gauges 

separated by 15 km or more, the number of different spatial directions you can sample in your 

network decreases. This has important consequences when estimating a spatial autocorrelation 

function, especially in cases when the rainfall has a preferred direction of spatial orientation (i.e., 

anisotropy). The proper way to deal with this is to (a) choose an appropriate cutoff distance that 

limits these effects or (b) fit an anisotropic correlation model. The cutoff distance you used (going 

up to 25 km) is probably too large, which can result in biased model parameters. I recommend 

that you check this more carefully to make sure that your fitted model parameters aren’t 

contaminated by it. Typically, I wouldn’t go much further than 10-15 km in distance.  

=> Thanks for the comment. It is true that we have a smaller number of data samples from 

North-South direction rainfall events at >15 km. We have re-calculated fitting models 

using correlation values up to and including 15 km (Page 4 Lines 24-26) and updated the 

figures 3 and 4 accordingly. The new figure 4 shows clearer difference in Shape factor 

among seasons (compared to the previous version).  

 

B2. The fact that you use a logarithmic transform means that zero rainfall values are excluded 

from the analysis. However, this could be a problem at small aggregation time scales where it is 

possible to observe zero rainfall at one gauge and positive values at the others. Please explain 

how you deal with these cases and more generally, how zeros are handled in your analysis. 

=> We included zero rainfall values by adding +1 to the rainfall data; log(0 +1) = 0. This 

is now explained with more details in Sect.4 (Page 4/Line 30 ~ Page5/Line3), where we 

describe the correlation calculation method. 

 

B3. Please explain how you fit your exponential correlation function to the sample points. Do 

you use any weights? What’s the objective function you are optimizing? 

=> We chose the parameters of fitting functions in order to minimize the sum of the squared 

residuals. This information is added at Page 4, Lines 29/30. 

 

B4. The fact that you get large yearly differences in correlation patterns (especially in winter and 

at 5 min resolution) might also (partially) have to do with the fact that you force an exponential 

model to your data without actually checking if the data comply with this model. In other words, 

you also need to say something about how good your model is at representing the data. Some 

goodness of fit statistics would be helpful for this. There is no physical justification for the 

exponential model you impose and other parametric fits might be equally good or better in some 

situations.  
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=> V.Svoboda et al (2014) well summarized the fitting models that are commonly used to 

represent spatial rainfall correlation functions; most studies adopted 3-parameters 

functions, while some studies used 2-parametes functions. We had compared several 

different forms of 2- and 3-parameters models including the models listed in V.Svoboda et 

al (2014) and found that the selected 3-parameters model works well across all temporal 

scales in terms of RMSEs of original correlations vs fitted correlations (Figure 4 is 

updated).  

The figure below shows an example of comparing the RMSEs of the fitting model used in 

this study (left) and RMSEs of 2-parameter models tested (middle and right). In any cases, 

we observe yearly differences in correlation patterns (especially in winter at 5-min, not 

shown). However, it turned out that Correlation Distance can be significantly affected by 

the selection of the fitting model. This point will be further discussed in the following 

comment B5. 

 

 

B5. Figure 4 shows decorrelation ranges in the order of 200-600 km. Yet the maximum range you 

can observe in your network is 24 km. So my questions is: how much do you trust these large range 

estimates? And what’s the uncertainty affecting them? Please provide some form of uncertainty 

analysis (e.g., confidence intervals) for your parameter estimates. This would also allow you to 

make a more precise statement about the trend in the shape factor on p.5, line 1. 

=> we have to admit that the correlation distance estimated from observation that are only 

available in a distance of a few kilometers (>6-hr, especially for cold season) is highly 

uncertain; i.e., the fitting model plays a dominant role in estimating c2 values. However, 

no matter what fitting model is used for obtaining the parameter values, the general 

behaviors of parameter like their difference among seasons, among time scales remain the 

same. These points are now addressed in Sec.3 (from Page 5 Line 30 & Page 9 Lines 25-

28) 
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C. Nugget: I do not agree with your use of the word “nugget” in this paper. The nugget is NOT 

the value of the zero distance correlation. It’s the drop in the correlation value when you go from 

zero distance to d>0 (i.e., the discontinuity at zero). In other words, it’s not c1 but 1-c1. For 

example, when you say that the nugget is 0.73 to 0.98, actually, it’s 0.02 to 0.27. The advantage 

of defining it this way is that you get a better interpretation in terms of sub-grid variability + 

measurement error. Large nugget = large differences at sub-grid scale. Please change and adapt 

the rest of the text to give the right meaning. 

=> We agree with the referee that “1-c1” provides a better interpretation (as does in 

rainfall semivariogram), however, since most studies refer to “c1” as “Nugget” (e.g., 

Villarini et al., 2008; Peleg et al., 2013; Tokay et al., 2014 and more; all are listed in the 

manuscript), we would prefer to follow convention for this parameter. Please note that we 

replaced “nugget” by “nugget effect” (Page 4 Line 28), “higher zero-distance correlation” 

by “higher c1 (smaller microscale variations)” (Page5 Line10) and “The nugget implies 

measurement errors […]” by “lower c1 values […], meaning larger measurement errors 

[…]” (Page5 Line17).  

  

D. Areal rainfall estimates: 

D1. The method used to sample the 1’000 possible combinations of gauge sub-networks is not 

very clear to me. Moreover, wouldn’t there be a strong dependence on how the gauges are 

selected within the network (area of influence)? I mean, you only show graphs of accuracy as a 

function of the number of gauges. But obviously, having 4 gauges next to each other is not the 

same at all as having 4 equally spaced gauges covering the whole 20x15km area. I’ve read this 

part several times but couldn’t really figure out the approach. Some further details about the 

approach would be helpful. 

=> The possible range of errors in areal rainfall estimates with a fixed number of gauges 

(often without a consideration of gauge configuration) has been studied, e.g., to see the 

reliability of gauge-based ground reference for satellite data evaluation (Tian et al., 2018) 

or to see the influence of rain gauge density on hydrological model performance (Xu et al., 

2013; references are listed in the manuscript). In this context, we provide the average and 

the spread of areal rainfall uncertainty as a function of gauge number, using 1,000 random 

combinations. Please note that we checked that the number of 1,000 is enough to represent 

variation of the overall estimation error; i.e., box plots are not significantly changed no 

matter which 1,000 combinations are selected. 

 

As the referee pointed out, we didn’t discuss the impact of gauge configuration. To address 

this point, using the area of influence (the index defined in Appendix B), we selected the 

best and the worst configurations (100 cases, respectively) out of 1,000 combinations for 

each n-gauge network and calculated the error of the best and worst configurations; the 

results show that gauge configuration strongly determines the accuracy of areal rainfall 

estimates and we have addressed this point adequately in the revised manuscript, which 

appears in Page 6 Lines 23-27 with Fig.05-a. 
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In addition, following the suggestion of the Referee #1, we also demonstrated the minimum 

number of gauges to meet the desired error limit, which would be interesting from the 

perspective of gauge network design; please see Page 6 Lines 27-31 and Fig.05-b. 

 

 

 

Minor comments & typos: 

We thank the referee for the careful reading of our manuscript.  

p.2, ll.6-8 “Although relatively high-resolution data from remotely […] cannot be fully captured 

at the sub-pixel scale”. This sentence is not clear. Please reformulate. 

=> rewritten as “Gridded rainfall data from remotely sensed observations are nowadays 

available at high spatial resolutions. While those data sets are good alternatives to address 

a number of the issues relating to the scarcity of gauges, rainfall variability at sub-pixel 

scales can still not be fully resolved.” (Page 2 Lines 7-11) 

 

p.2, l.13 “[…] intra-pixel variability of rainfall on the performance of remote sensing” A 

reference to the literature is needed here. 

=> references are added (Page 2 Line 17). 

 

p.3, ll.3-7 “The accuracy of areal rainfall estimation is a long-standing issue […] high-

resolution gauge data (e.g., Wood et al., 2000; Villarini et al., 2008;Ly et al., 2011)” This entire 

paragraph is out of context. It would be better to put it a few lines earlier in the introduction, 

before you mention the structure of this paper. 

=> the paragraph explains the motivation of Sect.4. We would therefore prefer to leave 

the paragraph as it is. A sentence of “We followed the latter approach using the WEGN 

rainfall data.” has been added to Page 3 Line 16. 

 

p.3, ll.31-33: I’m not sure whether “wet” and “dry” seasons is really a good choice of 

terminology here. Wet and dry seasons are usually seen in the context of tropical climates and 

using them for Austria feels weird. What you have here is a continental climate, with most of the 

precipitation falling in the warmer months of the year. Warm and cold season would be much 

better choices. 

=> Thank you for this comment. We have decided to follow the referee’s suggestion; now 

“wet” and “dry” are changed to “warm” and “cold” throughout the manuscript.  
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p.4 ll.16-18: in this paragraph you start by saying that “we do not make a direct comparison 

with other studies”. However, a few lines later you say that “the functions show a broad 

agreement with those from previous studies”. I get what you wanted to say, but it’s probably a 

good idea to reformulate the sentence to avoid the apparent contradiction here. 

=> this sentence is modified as “[…] We therefore do not make a direct comparison of 

correlation values with those from other studies, yet we still observe that the behaviors of 

the correlation decay found in this study are in broad agreement with rainfall spatial 

correlation structure reported in the aforementioned studies (Page 5 /Lines 6-8). 

 

p. 6, ll.27-28: “+7% to +63% of increases in extreme rainfall intensities are observed depending 

on the considered spatial scale”. Not clear what you mean by that. Please reformulate. 

=> the sentence is rewritten as “[…] The 10-year rainfall maximum appears to be 68.4 

mm/day at HR10, but 104.4mm/day at HR01; the maximum record over the entire WEGN 

area is 64.1 mm/day, so the ratio of the site-to-areal extreme rainfall ranges from 1.07 to 

1.63 depending on the considered spatial scale.” (Page 8 Lines 7-10) 

 

p.7, l.12 Replace “Seeing that only two operational [...]” by “Given that only two operational 

[...]” 

 => replaced (Page 8 Line 29) 

 

p.7 l.11 “shows there to be a high dependence” English. 

 => “shows a clear dependence” (Page 8 Line 27) 

 

p.7 l.13 “[…] under normal circumstances could be inadequate for particular purposes”. Too 

vague, please reformulate. 

=> modified as “[…] the insufficient gauge density may hamper the use of the station 

data to construct spatial rainfall fields in the region, especially at sub-daily scales.” 

(Page 8 Lines 31-32) 

 

p.7, l.30 “statistical robust results.” I don’t think that you can claim this. You only have 10 years 

of data (which is not much for extremes) and you did not do any sensitivity analysis nor do you 

have any confidence intervals to prove this. Please reformulate. 
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=> corrected (Page 9 Line 20): “long-term records, which permits to exclusively focus 

on heavy rain events” 

 

p.8, l.8 “afterword” replace by “afterward” 

 => corrected (Page 10 Line11). Thanks.  
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Abstract. Hydrology and remote-sensing communities have made use of dense rain-gauge networks for studying rainfall

uncertainty and variability. However, in most regions, these dense networks are only available at sub-pixel scales and over short

periods of time. Just a few studies have applied a similar approach,
:::
i.e.,

:
employing dense gauge networks , to local-scale

::
to

:::::::::::::
catchment-scale areas, which limits the verification of their results in other regions. Using 10-year rainfall measurements from

a network of 150 rain gauges, WegenerNet (WEGN), we assess
::
the

:
spatial uncertainty in observed heavy rainfall events. The5

WEGN network is located in southeastern Austria over an area of 20 km × 15 km with moderate orography. First, the spatial

variability of rainfall in the region was characterised using a correlogram at daily and sub-daily scales. Differences in the spatial

structure of rainfall events between wet and dry
:::::
warm

:::
and

::::
cold

:
seasons are apparent and we selected heavy rainfall events, the

upper 10% of wettest days during the wet
:::::
warm season, for further analyses because of their high potential for causing hazards.

Secondly, we investigated the uncertainty in estimating mean areal rainfall arising from a limited gauge density. The
::::::
average10

number of gauges required to obtain areal rainfall with errors less than 20% tends to increase roughly following a power law as

::
the

:
time scale decreases

:
,
:::::
while

:::
the

:::::
errors

:::
can

:::
be

::::::::::
significantly

:::::::
reduced

::
by

:::::::::::
establishing

:::::::
regularly

:::::::::
distributed

::::::
gauges. Lastly, the

impact of spatial aggregation on extreme rainfall was examined, using gridded rainfall data with horizontal grid spacings from

0.1◦ to 0.01◦. The spatial scale dependence was clearly observed at high intensity thresholds and high temporal resolutions.

Quantitative uncertainty information from this study can guide both data users and producers to estimate uncertainty in their15

own observational datasets, consequently leading to the sensible use of the data in relevant applications. Our findings are

generalisable to moderately hilly region in
::::::
regions

::
at
:
mid-latitudes, however the degree of uncertainty could be affected by

regional variations, like rainfall type or topography.

1 Introduction

Rainfall data are one of the most important inputs for hydrological as well as climatological studies and applications. Further-20

more, fit-for-purpose information derived from rainfall data is crucial for a wider range of users, such as civil engineers, water

resource managers and governments. To meet the needs of diverse user groups, rainfall observational datasets from in-situ
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measurement and remote sensing have been greatly enhanced in terms of both data quality and resolution (e.g., Berezowski

et al., 2016; Hou et al., 2014; Keller et al., 2015; Yatagai et al., 2012). Often, rainfall data are required as areal estimates at the

scale of interest, for instance, at grid or catchment scales. Point measurements from in-situ gauge observations are spatially

aggregated or interpolated to estimate the areal distribution of rainfall, and hence the accuracy of areal rainfall data is highly

dependent on spatiotemporal variability of rainfall events and density of observation points (Girons Lopez et al., 2015; Hofstra5

et al., 2010; Villarini et al., 2008; Wood et al., 2000). This limits
:::
the understanding of fine-scale rainfall processes, partic-

ularly of extreme events (Sillmann et al., 2017). Although relatively higher-resolution
:::::::
Gridded

::::::
rainfall

:
data from remotely

sensed observations
::
are

:::::::::
nowadays

::::::::
available

::
at

::::
high

::::::
spatial

:::::::::
resolutions

:
(e.g., radar provides rainfall estimates at scales of 1

km/5-min)
::
1-5

:
km2

::
for

:::::
radar

::::
data

:::
or

::::
0.1◦

::
×

::::
0.1◦

:::
for

:::::::
satellite

:::::
data).

:::::
While

:::::
those

::::
data

::::
sets

:::
are

:::::
good

:::::::::
alternatives

:::
to address a

number of the issues relating to the scarcity of gauges, still rainfall variability cannot be fully captured at the
::::::
rainfall

:::::::::
variability10

:
at
:
sub-pixel scale

:::::
scales

:::
can

:::
still

:::
not

:::
be

::::
fully

:::::::
resolved (Peleg et al., 2013; Tokay et al., 2014). In addition, the quality of remotely

sensed data strongly relies on gauge-based data that are used for their regional validation and correction (Steiner et al., 1999)

::::::::::::::::::::::::::::::::::::::::::::
(Kann et al., 2015; O et al., 2018b; Steiner et al., 1999).

Addressing the issue of spatial variability and uncertainty of rainfall has been tackled over many years with various purposes.

For instance, evaluation of satellite or radar rainfall products involves investigation of small-scale
:::::::::
larger-scale

:
rainfall processes15

to identify the effect of intra-pixel variability of rainfall on the performance of remote sensing
:::::
assess

:::
the

::::::
ability

::
of
:::::::

remote

::::::
sensing

::
in

:::::::::
capturing

:::
the

:::::::::
inter-pixel

::::::
rainfall

:::::::::
variability

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Chaudhary et al., 2017; Dhib et al., 2017; Lockhoff et al., 2014)

. On the other hand, larger-scale
:::::::::
small-scale

:
rainfall processes are of interest to assess the ability of remote sensing in

capturing the inter-pixel rainfall variability
::::::
identify

:::
the

:::::
effect

:::
of

::::::::
intra-pixel

:::::::::
variability

::
of

::::::
rainfall

:::
on

:::
the

::::::::::
performance

:::
of

::::::
remote

::::::
sensing(e.g., Ciach and Krajewski, 1999, 2006; Gebremichael and Krajewski, 2004; Habib and Krajewski, 2002; Peleg et al.,20

2013; Tan et al., 2018; Tokay et al., 2014). To quantify the rainfall uncertainty, observational data from high-resolution
:::::
highly

:::::
dense rain-gauge networks have been employed as a ground truth. Peleg et al. (2013) used multiple rain gauges within a radar

subpixel area (4 km2) and examined the contribution of gauge sampling error to the total radar-rainfall estimation error. Using

relatively long-term gauge data (5-years), Tokay et al. (2014) analyzed the spatial correlation of rainfall for different seasons

and weather systems within the footprint size of microwave satellite sensor
::::::
sensors.25

A similar approach employing dense gauge networks can be adopted to diagnose the spatial variability and uncertainty of

rainfall at local-scale areas
::::::::
catchment

::::::
scales (e.g., 100 - 500 km2). Such a scale is

::::
scales

:::
are

:
of great interest not only for the

evaluation of remotely sensed data, but also for hydrological applications like runoff modelling or gauge network design. Wood

et al. (2000) examined the accuracy of areal estimates of rainfall over a 135 km2 basin according to the HYdrological Radar

EXperiment network consisting of 49 rain gauges. The network later provided a six-year rainfall dataset (from 50 gauges)30

for the study of Villarini et al. (2008), where a comprehensive analysis of temporal and spatial sampling uncertainties was

conducted. However, most of the local areas do not have adequately dense gauge networks, which limits the comparison and

verification of findings from the aforementioned studies across diverse rainfall regimes.

::::
More

::::::::
recently,

::::::::::::::::::
Schroeer et al. (2018)

::::::::
employed

:::
the

::::::::::
WegenerNet

::::::::
Feldbach

::::::
region

::::::::
(WEGN)

:::
and

:::
the

::::::::::
surrounding

::::::::::
operational

:::
rain

::::::
gauge

::::::
stations

::
to
:::::::

sample
::::::::::
summertime

::::::::::
convective

:::::::
extreme

:::::
events

::
at
::::::::::

sub-hourly
::
to

::::::
hourly

:::::
scales

::::
and

:::::
found

::
a

:::::
power

::::
law35

2



:::::
decay

::
of

:::
the

::::
event

:::::::::
maximum

::::
area

::::::
rainfall

::::
with

:::::::::
increasing

:::::::::
interstation

::::::::
distance. In

:::
this

::::::
paper,

::
in order to contribute to the effort

for better
:::
and

:::::
more

:::::::
broadly assessing the uncertainty of rainfall at fine scales associated with the spatial variability of local

rainfall, we employed 10-year rainfall data from WegenerNet Feldbach region (WEGN)
:::
the

::::::
WEGN, a high-density network in

southeastern Austria (Kirchengast et al., 2014). The network includes 150 rain gauges deployed over an area of ' 300 km2,

approximately corresponding to one gauge per 2 km2. First, following previous studies (e.g., Villarini et al., 2008; Peleg et al.,5

2013; Tokay et al., 2014), we quantified the spatial variability of rainfall utilizing a corrologam between the gauges to under-

stand the spatial characteristics of rainfall in the region.

Second, we investigated
:::
the uncertainty in estimating areal rainfall based on

::::::
caused

::
by

:
a limited number of point obser-

vations. Given that the properties of individual rainfall events can be different from all-event averages (Ciach and Krajewski,

2006; Eggert et al., 2015), we focused on potentially high-impact events
:::::
events

::::
with

::
a

:::::::::
potentially

::::
high

::::::
impact, which we de-10

fined as the top 10% wettest days during the wet
::::
warm

:
season. The accuracy of areal rainfall estimation is a long-standing

issue, e.g., in catchment modelling because error and uncertainty in rainfall data can propagate into large variations in simu-

lated runoff, and thus it has been dealt with in diverse manners. For instance, the influence of spatial representations of rainfall

input to runoff errors has been demonstrated through modelling studies (e.g., Bárdossy and Das, 2008; Xu et al., 2013) or the

error in catchment-scale areal mean rainfall has been directly quantified by employing high-resolution gauge data (e.g., Wood15

et al., 2000; Villarini et al., 2008; Ly et al., 2011).
:::
We

:::::::
followed

:::
the

:::::
latter

::::::::
approach

:::::
using

:::
the

::::::
WEGN

::::::
rainfall

:::::
data.

Finally, we assessed the impact of spatial averaging on extreme rainfall
:::::::
compare

:::::::
extreme

:::::::
rainfall

::
at

:::::::
different

::::::
spatial

::::
and

:::::::
temporal

:::::
scales

:
using gridded rainfall fields

:
to

::::::::::::
quantitatively

:::::
assess

:::
the

:::::
impact

:::
of

:::::
spatial

::::::::
averaging

:::
on

:::
the

::::::::
definition

::
of

:::::::
extremes.

The identification of rainfall extremes based on intensity thresholds is common practice, however, the considered spatial scale

of rainfall data defines different sets of extreme events (Eggert et al., 2015), potentially affecting threshold-based early warning20

systems (Marra et al., 2017). Although gridded datasets have been used in a range of applications like assessments of climate

change impacts or evaluation of climate models, a common caveat of using the datasets in the study of extreme rainfall is that

the quality of gridded rainfall data is highly constrained by the location and density of input weather station data (Hofstra et al.,

2010; Prein and Gobiet, 2017). By contrast, the quasi-regular configuration of WEGN on an approximately 1.4 km x 1.4 km

grid permits robust examination of the frequency and intensity of rainfall extremes at various horizontal resolutions.25

Consequently, this study aims to assess spatial uncertainty of local-scale rainfall
::::::
rainfall

::
at

:::::::::
catchment

::::
scale

:
using rain gauge

data, with a focus on heavy and extreme rainfall events. This paper is structured as follows. Section 2 describes WEGN rain

gauge data and regional rainfall climatology. Section 3to Sect.
:
,
::::
Sect.

::
4,

:::
and

:::::
Sect. 5 present the results of the data analysis. We

close with discussion and conclusions in Sect. 6.

2 WEGN rainfall data and regional rainfall climatology30

The 10-year rainfall data (2007-2016) are obtained from the WEGN Feldbach region network in southeastern Austria (Kirchen-

gast et al., 2014). Of 154 weather stations, 150 stations that are equipped with tipping-bucket rain gauges are used in this study

(Fig. 1). The gauges record rainfall
::::
Raw

::::
rain

:::::
gauge

::::
data

:::
are

::::::::::
aggregated every five minutes. Errors in the rainfall data were
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comprehensibly analysed and corrected by O et al. (2018a). The gauges are
:::::
almost

:
uniformly spaced over an area of 20 km

× 15 km with moderate topography
:::::
(about

:::
260

::
to

::::
520

::
m

:::
asl). The inter-gauge distances range from approximately 0.7 km to

23.4 km. The gridded fields of rainfall are constructed by an inverse distance weighting (IDW) on a 200 m × 200 m Universal

Transverse Mercator grid. WEGN station and gridded data products are available at www.wegenernet.org.

Southeastern Austria including the Feldbach region is influenced by both continental and Mediterranean climates. The re-5

gion receives high amounts of rainfall during summer months. The occurrence of thunderstorms and hail is higher than in other

parts of Austria (Matulla et al., 2003). Figure 2 shows average diurnal variations of rainfall and temperature over the entire

network during the study period. The WEGN area is characterized by hot
::::
warm

:
and wet months from May through September

(hereafter “wet
::::
warm

:
season”) and relatively cold months without much rainfall during the remaining seven months (hereafter

“dry
:::
cold

:
season”). The average monthly rainfall is 102.8 mm in the wet

::::
warm

:
season, while 48.9 mm in the dry

:::
cold

:
season.10

The diurnal signal is more clearly seen in the wet
:::::
warm season for both rainfall and temperature. Rainfall maxima occur in

the early afternoon through midnight, shortly after maximum temperature, implying that a major contribution to the wet
:::::
warm

season rainfall is from short-duration convective events. Because diurnal heating plays an important role in triggering thermal

convection, most inland regions show afternoon rainfall maxima (Dai et al., 2007).

3 Spatial variability of rainfall15

The spatial structure of rainfall events is studied using the Pearson’s correlation coefficient
:::::::
between

:::
all

::::
pairs

::
of

::::
rain

:::::::
gauges.

::::::::
Pearson’s

:
r
::
is

:::
the

::::
most

:::::::::
commonly

::::
used

::::::
rainfall

:::::::::
correlation

::::::::
estimator

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Ciach and Krajewski, 2006; Jaffrain and Berne, 2012; Peleg et al., 2013; Tokay et al., 2014; Villarini et al., 2008)

:
. At sub-daily and daily timescales from 5-min to 24-h (06-06 UTC), the correlation of rainfall among rain gauges is calcu-

lated for each year. One year period includes a set of wet
:::::
warm season (May to September) and dry

::::
cold

:
season (October

to next April). The incomplete years (i.e., first and last years) are excluded from the calculation of all-months (May to next20

April), whereas the wet and dry
::::
warm

::::
and

::::
cold

:
seasons have 10 annual curves each. Figure 3 shows the spatial correlation

of all-months, wet, and dry seasons for four selected accumulation times. Following Villarini et al. (2008), we
::::
The

:::::::::
correlation

:::::
values

::
in

::::
each

::::::
period

::::
were

::::
then

::::::
sorted

::::::::
according

::
to

:::
the

:::::::::
separation

:::::::
distance

::
of

::::::
gauge

::::
pairs

:::
and

::::::::
averaged

::::
into

:::
the

::::::
nearest

::
1-km

:::::::
distance

::::
bins.

:::
We

:
fitted a three-parameter exponential function to the observed

::::::
average correlations. The spatial

:::::::
distance

::::
bins

::
for

:::
the

::::::
fitting

:::::
model

:::::
were

::::
taken

:::
up

::
to

:::
and

:::::::::
including

::
15

:
km

::::
given

:::
the

:::::::
network

::::::::::
dimension,

:::::
which

::::::
means

:::
that

::::::
rainfall

::::
data

:::::
pairs25

::::
were

:::::::
sampled

:::::::::
uniformly

::
for

::::
any

:::::
spatial

:::::::::
direction.

:::
The

::::::
spatial correlation (r) at separation distance h is:

r(h) = c1 exp

[
−
(

h

c2

)c3
]

(1)

where c1 is the nugget
::::::::
represents

:::
the

::::::
nugget

:::::
effect, c2 is the correlation distance, and c3 is the shape factor. To reduce bias

in the Pearson’s estimates due to non-normality of rainfall, a logarithmic transformation
:::
The

:::::::::
parameters

:::
are

::::::::::
determined

:::
by

::::::::::
least-squares

::::::
curve

::::::
fitting.

::::::
Figure

:
3
::::::

shows
:::
the

::::::
spatial

::::::::::
correlation

::
of

::::::::::
all-months,

::::::
warm,

:::
and

::::
cold

:::::::
seasons

:::
for

:::::
four

:::::::
selected30

:::::::::::
accumulation

:::::
times.

::
A

:::::::::
logarithmic

:::::::::::::
transformation

:::::::::
(log(x+1)

::
to

::::
keep

::::
zero

:::::::
rainfall) is applied to the data(Habib et al., 2001; Jaffrain and Berne, 2012)

. The function parameters tend to be sensitive to factors like rainfalltype or sample size and thus we .
:::

As
:::
the

:::::::::::::
transformation

4
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::::
make

:::::::
rainfall

:::
data

::::::::
conform

::::
more

:::::::
closely

::
to

:::
the

::::::
normal

::::::::::
distribution,

:::
the

::::::
effects

::
of

:::::::
extreme

:::::
values

:::
on

:::::::::
correlation

::::::::::
coefficients

::
is

::::::::
mitigated

:::::::::::::::::::::::::::::::::::::
(Habib et al., 2001; Jaffrain and Berne, 2012).

::::
This

::::::
results

::
in

:::::::
slightly

:::::
lower

::::::::::
correlations

::::
(not

:::::::
shown),

::::::::
however,

:::
the

:::::
overall

:::::::
pattern

::
of

:::::::::
correlation

:::::
decay

::::::
curves

:::::::
remains

:::::::::
unaffected.

:::::
Many

::::::
factors

:::
are

::::::
known

::
to

:::::
affect

:::
the

:::::
spatial

::::::::::
correlation

:::::::
structure

::
in

:::::::
rainfall.

:::
For

::::::::
instance,

::::::::::::::::
Habib et al. (2001)

::::::::
examined

:::
the

::::::::
sensitivity

::
of

:::::::::
correlation

:::::::::
estimation

::
in

::::::
rainfall

::
to

::::::
sample

::::
size

::
or

::::::
extreme

::::::
rainfall

::::::
events

:::
and

:::::::::::::::::::
Huff and Shipp (1969)

:::::::::::
demonstrated5

:::
how

:::
the

::::
rate

::
of

:::::::::
correlation

:::::
decay

::::::
varied

::::
with

:::::::
different

::::::
rainfall

::::::
types.

:::
We

:::::::
therefore

:
do not make a direct comparison with other

studies in terms of absolute values. Nevertheless, the functions
::
of

:::::::::
correlation

::::::
values

::::
with

:::::
those

:::::
from

:::::
other

:::::::
studies,

:::
yet

:::
we

:::
still

:::::::
observe

::::
that

:::
the

::::::::
behaviors

::
of

:::
the

::::::::::
correlation

:::::
decay

:
found in this study show a

:::
are

::
in

:
broad agreement with those from

previous
::::::
spatial

::::::
rainfall

:::::::::
correlation

:::::::::
structures

:::::::
reported

::
in

:::
the

:::::::::::::
aforementioned

:
studies. First, longer accumulation times show

higher zero-distance correlation (nugget
::
c1

::::
(i.e.,

::::::
smaller

::::::::::
microscale

::::::::
variations) and longer correlation distance values. Second,10

short-range correlation decreases rapidly with increasing separation distance, particularly at sub-hourly scales.

The wet
::::
warm

:
season shows higher spatial variability of rainfall compared to the dry

:::
cold

:
season, due to a higher proportion

of convective events. The correlation curves of all-months show a more similar pattern with the wet
::::
warm

:
season, as expected,

given that most of the rainfall events are concentrated during the wet
:::::
warm season (see Sect. 2). Tokay et al. (2014) found

substantial year-to-year variations especially during autumn and spring. Similarly, WEGN rainfall shows marked interannual15

variability, but also during the wet
:::::
warm season. It should be noted that the correlation functions of the dry

::::
cold season start

with lower nugget
:
c1

:
values than of the wet season. The nugget implies

:::::
warm

::::::
season,

::::::::
meaning

:::::
larger

:
measurement errors

and microscale variability of rainfall. Because WEGN does not accurately capture solid precipitation (O et al., 2018a), since

only few gauges are heated, systematic errors between neighboring gauges can be greater during the dry
:::
cold

:
season, possibly

yielding the low nugget
::
c1

:
values.20

Figure 4
::
a-c

:
summarizes the time dependence of the three parameters.

::::::::::
Synthesized

:::::::::
parameters

:::::
here

:::
are

:::::::
obtained

:::::
from

:::
the

:::::
fitting

:::::::
function

:::
that

::
is
::::::::::
constructed

::
by

:::::::::
averaging

:::::
yearly

:::::::::
correlation

::::::
values

::
in

::::
each

:::::::
distance

::::
bin.

::::::
Nugget

:::::
effect values range from

0.73
:::
0.71

:
to 0.98 for the dry

:::
cold

:
season, while from 0.89 to 1.00 for the wet

::::
0.85

::
to

::::
0.99

:::
for

:::
the

:::::
warm season. The correlation

distance of the dry season is stretched up to around 200 at the 6-
::::
cold

:::::
season

::
at

:::
the

::
3-h scale, while the same distance is observed

:
is
::::::
nearly

::::::::::::
corresponding

::
to

::
the

::::::::::
correlation

:::::::
distance at the 24-h scale in the wet

:::::
warm season. The parameter values of all-months25

are located between those of wet season and dry
:::::
warm

:::::
season

::::
and

::::
cold season. We found that the general behaviour of nugget

::::::::::
dependency

::
of

:::::
nugget

:::::
effect

:
and correlation distance

::
on

:::::
times

::::
scale

:
is similar to

:::
the

:::::
results

:::
by Villarini et al. (2008). The

::::::
nugget

:::::
effect

::::::::
parameter

:::::::
changes

:::::::
sharply

::
at

::::::
smaller

::::::::::
timescales,

:::::
while

:::
the

:::::::::
correlation

:::::::
distance

:::::::
appears

::
to

::
be

:::::
more

::::::::
sensitive

:::
for

:::::
larger

:::::::::
timescales.

:::
The

:
shape factor of this study, however, does not show a uniform

::::
clear increasing or decreasing trend. This is con-

sistent with findings from Peleg et al. (2013) and Tokay et al. (2014).
:::
We

:::::::
selected

:::
the

:::::::::::::
three-parameter

::::::
model

:::
for

:::
the

:::::::
function30

:::::
fitting,

:::::::
because

:::
the

:::::
model

::::::
shows

:::
the

::::::::
minimum

:::::::::::::::
root-mean-square

::::
error

:::::::
(RMSE)

:::::::
between

::::::::
observed

:::
and

:::::
fitted

:::::::::
correlation

::::::
values

:::::
across

:::
all

::::
time

:::::
scales

:::::::
among

:::
the

::::::
several

:::::
tested

:::::::
models

::::::
(Figure

::::
4d).

::::::::
However,

::::
we

:::
also

::::::
found

:::
that

::
a
::::::::::::
two-parameter

::::::::
function

::::
(i.e.,

:::
we

::
set

:::::
shape

::::::
factor

:::
=1)

::
is

:::::
fitted

::::::::::
comparably

::::
well

:::
and

:::::::::::
furthermore,

:::::::::
correlation

:::::::
distance

::::
over

:::::
large

::::
time

:::::
scales

:::::::::
decreases

::::::::::
significantly

:::::
when

:::
the

::::::::::::
two-parameter

::::::
model

::
is

:::::
used.

::::::::
However,

::::
this

::::::
model

:::::::::
uncertainty

:::::
does

:::
not

:::::
affect

:::
the

::::::::::::
characteristics

:::
of

::
the

::::::::::
parameters

::::::::
including

::::
their

::::::::::
dependence

::
on

:::::
time

::::
scale

:::
and

:::::
their

:::::::
seasonal

::::::::::
differences.

:::::::::::
Nonetheless,

::::
when

:::
the

::::::
spatial

:::::
scale

::
of35

5



:::::::
observed

::::::::::
correlations

::
is

::::::
limited

::
to

:
a
:::::::
distance

:::
of

:
a
:::
few

:::::::::
kilometers

:::::
(e.g.,

:::::::::::
accumulation

:::::
times

::
of

:::
>6-h

::
for

:::::
warm

:::::::
season),

:::
the

:::::
fitted

:::::::::
correlation

:::::::
distances

::::::
should

:::
be

:::::::::
interpreted

::::
with

:::::::
caution.

::::::::
Interested

::::::
readers

::::
may

::::::
obtain

:
a
:::::
more

:::::::
detailed

::::::::
discussion

:::
of

::
the

::::::
fitting

:::::
model

:::
in

::::::::::::::::::
Svoboda et al. (2015).

:

4 Accuracy of areal rainfall estimation during heavy rainfall events

In this section we investigate data uncertainty associated with areal rainfall estimation. In particular, the study focuses on5

high-impact rainfall events. While heavy rainfall is one of the major hydrological hazards, its accurate spatial representation

over an area remains a subject worthy of inquiry. Based on daily rainfall (≥ 0.2 mm d−1), those days falling in the upper 10th

percentile during the wet
:::::::::
90th–100th

:::::::::
percentiles

::::::
during

:::
the

:::::
warm

:
season are defined as heavy rainfall events. As a result, a

total of 71 events are selected. The mean
::::::
median of gauge-averaged accumulations is 31.5

:::
28.1

:
mm d−1, with a range of 19.8

mm d−1 to 64.1 mm d−1.
::::::
General

::::::::::
information

:::
on

::
the

:::::::
selected

::::::
events

:::
can

:::
be

:::::
found

::
in

:::::
Table

:::
A1.10

We assume that the mean areal rainfall of a full density network represents the “truth"(see also Villarini et al., 2008). The

areal rainfall of n-gauge networks (n = number of gauges) is calculated with 1,000 possible combinations and then
:::
and

:
com-

pared with the true rainfall .
::
to

:::::::
quantify

:::
the

:::::::
accuracy

::
of

::::
areal

::::::
rainfall

:::::::::
estimation

::::
with

::::::::::
low-density

::::::::
networks

:::::::::::::::::::::::::
(see also Villarini et al., 2008)

:
.
::::
Each

::::::::
n-gauge

:::::::
network

:::::::
consists

::
of

:::::::::
randomly

:::::::
selected

:::::
1,000

::::::::
possible

:::::
gauge

::::::::::::
combinations.

:
The 1-gauge network has 150

cases. As shown in Fig. 5a, the average and spread of normalized root-mean-square errors (NRMSEs)
::::::
RMSEs of areal rainfall15

estimated from low-density networks
:::::::::
estimation tend to decrease with rising gauge number. The number of gauges required to

obtain areal rainfall with NRMSEs lower than 20% is given as a function of time resolution in Fig. 5b. The curve
::
(in

::::::
black)

roughly exhibits power-law behavior; 74.19 ×t−0.44, where t is the time resolution
:::::::
(minute). At the daily scale, more than one

gauge per 300 km2 would be sufficient to reach the >
:
a

:
<20% accuracy level

::::::::
estimation

::::
error. Correspondingly, at the temporal

scales of 1-h, 30-min, and 5-min,
::
on

:::::::
average more than 12, 18, and 33 gauges, respectively, are needed to achieve the same20

level of accuracy. Villarini et al. (2008) found that four gauges are necessary at the daily scale for the same accuracy level for

an area of 135 km2. Heavy events are not explicitly considered in their study.

:::
One

::::::
should

::::
note

:::
that

:::
the

:::
use

::
of

:::::::::
randomly

::::::
selected

::::::
gauge

:::::::::::
combinations

::::
only

:::::
offers

:
a
::::
rule

::
of

:::::
thumb

:::::
about

:::
the

:::::::
required

:::::::
number

::
of

::::::
gauges

::
to

::::::::
minimize

::::::::::
uncertainty

::
in

::::
areal

:::::::
rainfall

::::::::
estimates.

:::::::::::
Additionally,

:::
we

::::::
wanted

::
to
::::

see
:::
the

:::
role

:::
of

:::::
gauge

::::::::::
distribution

::
in

::::::::::
determining

:::
the

:::::::::
estimation

:::::
error.

:::
So

:::
we

:::::::
selected

::::::
‘good’

::::
and

:::::
‘bad’

:::::::::::
distributions,

::::
100

::::::
cases,

::::::::::
respectively,

::::
out

::
of

:::
the

::::::
1,00025

:::::::::::
combinations

:::
for

::::
each

::::::::
n-gauge

::::::::
networks

:::
that

:::::::
ranked

::
in

:::
the

:::
top

:::::
10%

:::
and

:::::::
bottom

::::
10%

:::::
based

:::
on

:::
the

:::::::::::::::
area-of-influence

::::
(see

::::::::
Appendix

:::
B).

:::
As

::::
seen

::
in

::::
Fig

::
5a

::::
(red

:::::::
crosses),

::::
the

:::::::
smallest

:::::::::
estimation

::::
error

::
is

::::::::
obtained

::::
with

::::::::
regularly

:::::::::
distributed

::::::
gauges.

:::
In

::::
other

::::::
words,

::
a
::::::::::::
well-designed

:::::
gauge

:::::::
network

::::::
allows

:::
to

::::
meet

:::
the

:::::::
desired

::::
error

:::::
limit

::::
with

::
a
::::::
smaller

:::::::
number

:::
of

::::::
gauges

:::::
(grey

::::
curve

:::
in

:::
Fig

::::
5b).

:::
For

::::::::
example,

::
at

:
a
::
1-h

:::::
scale,

:::
the

::::
20%

:::::::::
estimation

::::
error

::::
can

::
be

:::::::
reached

:::::
using

::::::::
uniformly

::::::::::
distributed

:
8
:::::::
gauges,

:::::::
however,

:::
the

:::::
same

::::
level

::
of

::::::::
accuracy

:::::
cannot

:::
be

:::::::::
guaranteed

::::
even

::::
with

:::
23

:::
rain

::::::
gauges

::
if

::::
their

::::::
spatial

:::::::::::
configuration

:
is
:::
not

::::::::
properly30

::::::::
structured.

:

::::::::::
Additionally,

:::
the

:
effect of gauge density on event-based rainfall statistics is assessed in Fig. 6. Daily rainfall accumulation

and peak hourly rainfall of the 71 heavy daily events are recalculated using predefined sub-networks with gauges ranging

6



from 1 to 16. The
::::::
gauges

:::
are

::::::::
uniformly

:::::::
spread;

:::
the definition of the sub-networks can be found in Appendix A

::
B. While the

sub-network with only one gauge exhibits large overestimation errors for both total and peak rainfall, employing an additional

gauge already significantly reduces the degree of errors and yields underestimation error more frequently than overestimation.

Note that Austrian weather service (ZAMG) has two operational stations over the actual WEGN area. Given that convective

storms occur on scales of a few kilometers, low-density gauges over the region are likely to miss the core of storms
::::
storm. On5

the contrary, low-density gauges often
:::
can

::::
also overestimate rainfall intensities by capturing only the core of storms

::::
storm, but

the magnitude and frequency of the
::::
these

:
errors appear slightly less than those of the underestimation error

:::::
errors. There is no

significant difference in either average error or spread of errors from more than 10 gauges, as expected from Fig. 5.

5 Impact of spatial scaling
::::::::::
aggregation

:
on extreme rainfall

We next focus on the uncertainty of area- or grid-averaged rainfall relating to data spatial resolution
:::::
spatial

::::
data

:::::::::
resolution

:::
for10

::
the

::::::
heavy

::::::
rainfall

:::::
events. Figure 7 compares rainfall percentiles among the gauges. Grey lines mean a 10-90th percentile range

of rainfall intensities at a given percentile bin. For example, at the 30-min scale, the 99.9th percentile (the top 0.1%) rainfall

intensity corresponds to roughly 45 mmh−1 at most gauges, while it exceeds 52 mmh−1 at certain gauges. It is also seen that

10% of WEGN gauges (i.e., 15 gauges) records are found to be lower than 40
::
38

:
mmh−1. The upper tail of rainfall distribution

shows strong spatial variation. Such point-scale extreme rainfall features will be completely missed unless there exist dense15

rainfall observations, or they are inherently smoothed out in gridded data.

In fact, many studies have pointed out that the use of gridded rainfall data can lead to erroneous analyses of small-scale ex-

tremes because of the limited number of point observations (Hofstra et al., 2010; Tozer et al., 2012; Contractor et al., 2015; Prein and Gobiet, 2017)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Contractor et al., 2015; Hofstra et al., 2010; Prein and Gobiet, 2017; Tozer et al., 2012). In addition to the high-resolution, the

regular distribution of WEGN gauges enables generating gridded rainfall fields that are homogeneous in space, and, conse-20

quently, robustly assessing uncertainty in rare and extreme rainfall represented in the data.

We generated gridded data at
::::
using

:::
all

:::
150

:::::::
WEGN

::::::
gauges

::::
and

:::::::
rescaled

:::
the

::::
data

::::
into horizontal resolutions from 0.01 to

0.1 degree (hereafter HR01 to HR10). Spatial aggregation begins from the top-left corner towards the bottom right and the

remaining southern and/or eastern part of
::
the

:
grid is discarded (see Fig 9). HR01 corresponds to about 1.1 km and 0.8 km in

latitudinal and longitudinal directions, respectively. Figure 8 shows the 99.9th and 99th percentiles of heavy rainfall intensities25

as a function of space-time scales. HR01 clearly portrays the benefit of using dense networks to capture fine-scale extreme

values, however spatial aggregation brings about the smoothing of rainfall intensities, notably
:::::::
Although

::::::::
temporal

::::::::::
aggregation

::::
more

:::::::::::
significantly

:::::
alters

:::
the

::::::::
definition

::
of

:::::::::
extremes,

:::
the

::::::
impact

::
of

::::::
spatial

::::::::::
aggregation

::
is

::::
also

:::::::
notable,

::::::::::
particularly at the sub-

hourly scales. The decrease in 5-min rainfall intensity
:::::::
extreme

:::::::
intensity

:::::::
deceases

:
from HR01 to HR10 is

::
by

:
30% for the 99.9th

percentile while it is
:::::::
decreases

:::
by 20% for the 99th percentile.30

Meanwhile, the spatial scaling
:::::::
although

:::
the

::::::
spatial

::::::::::
aggregation impact is much less pronounced at a daily scale, where the

selected spatial scale still affects statistics of extreme areal rainfall, such as daily extreme frequency. This is shown in Fig. 9,

which illustrates the occurrence of days above a selected threshold; top 5% of heavy rainfall events at HR01. The concept

7



of the exceedance probability above thresholds is widely used in analyses of rainfall-triggered risk. Several HR01 sites have

experienced
:::::
Some

::::::::::
HR01-scale

::::
sites

::::::
appear

::
to

:::::::::
experience extreme rainfall more frequently than others

::::
other

:::
part

:::
of

:::
the

:::::
region.

In other words, high-resolution data well-represent spatial variation and frequency of rainfall extremes, neither of which is seen

in lower-resolution data. Many existing gridded datasets are not likely to fully sample such site-level extreme events owing to

their spatial scales being limited by sparse observation used to produce the dataset
:::::
limited

::::::
spatial

:::::::::
resolution. The exceedance5

probability of extreme rainfall across spatial resolutions is given in Fig. 10. The impact of different
:::
data

:
resolutions on extreme

rainfall occurrence is pronounced in the
::::
both lower and upper tails. The 10-year rainfall maximum appears to be 68.4 mm/day

at HR10, but 104.4 mm/day at HR01. Over the
:
;
:::
the

::::::::
maximum

::::::
record

::::
over

:::
the

:
entire WEGN area , the maximum record is

64.1 mm/day; +7% to +63% of increases in extreme rainfall intensities are observed
:
,
::
so

:::
the

::::
ratio

:::
of

:::
the

::::::::::
site-to-areal

:::::::
extreme

::::::
rainfall

:::::
ranges

:::::
from

::::
1.07

::
to

::::
1.63 depending on the considered spatial scale.10

6 Discussion and conclusions

The understanding of spatial uncertainty in local heavy rainfall at fine scales has been hampered by the limited availability

of suitable and reliable observational datasets. Although high-resolution radar data are often used to study small-scale rainfall

variability, the use of the radar data is dubious, as indicated by Svensson and Jones (2010), owing to their indirect measure-

ments of rain and relatively short records. In this study, we used the 10-year rainfall measurement data from the 150 rain15

gauges, uniformly spaced over the WEGN network in southeastern Austria. First, to quantify rainfall variability, spatial corre-

lation between the gauge records is
::::
was examined. We found that the degree of rainfall spatial

:::::
spatial

::::::
rainfall

:
variability can be

substantially different not only within years (wet versus dry
:::::
warm

:::::
versus

::::
cold

:
seasons) but also between years. This implies

that long-term data should be considered in this light to obtain comprehensive perspectives on regional rainfall variability. In

fact, individual weather systems can exhibit varied spatial characteristics (Habib and Krajewski, 2002; Ciach and Krajewski,20

2006; Tokay et al., 2014). In southeastern Austria, including the WEGN area, Schroeer et al. (2018) found much steeper decay

in a correlogram function when only extreme summertime convective events are accounted for. Additionally, we found that

during the dry
::::
cold season, the density of gauges is less of a concern (i.e., longer correlation distance) compared to the wet

:::::
warm season. However, low values of zero-distance correlation

::
the

::::::
nugget

::::::
effect

::::::::
parameter

:
imply that snow measurement

:::::::::::
measurements

:
during winter time remains

::::::
remain a challenge, especially at short time scales.25

Secondly, we confirm that the 150 gauges of WEGN offer very highly accurate areal precipitation estimates. The
::::::
overall

uncertainty in mean areal rainfall shows there to be a high
:
a
:::::
clear dependence on the number of gauges and the temporal

resolution considered for the estimation. Seeing
::
To

:::::
reach

:::
the

:::::
same

::::
level

:::
of

::::::::
accuracy,

:::
the

:::::::
average

::::::
number

::
of
::::::

gauge
:::
has

::
to

:::
be

::::::::
increased

::::::
roughly

::::::::
following

::
a
:::::
power

::::
law

::
as

::::
time

::::
scale

:::::::::
decreases.

:::::
Given

:
that only two operational meteorological stations exist

over the WEGN area, the accuracy of areal rainfall data obtained under normal circumstances could be inadequate for particular30

purposes
:::::::::
insufficient

:::::
gauge

:::::::
density

::::
may

::::::
hamper

:::
the

::::
use

::
of

:::
the

::::::
station

::::
data

::
to

::::::::
construct

:::::
spatial

:::::::
rainfall

:::::
fields

::
in

:::
the

:::::
region, es-

pecially at sub-daily scales. We also investigated the effect of gauge density on total amount and peak hourly intensity of the

daily heavy rainfall events. In the WEGN area (300 )
:::
The

::::::::
accuracy

::
of

::::
areal

:::::::
rainfall

:::::::::
estimation

::
is

:::
also

:::::::::::
significantly

:::::::::
dependent

8



::
on

:::
the

::::::
spatial

:::::::::::
configuration

::
of

:::
the

:::::::
network.

:::::::::
Assuming

:::
that

:::
we

::::
have

:
a
::::::::::::::
well-distributed

:::::
gauge

:::::::
network, it is observed that at least

2-5 gauges are required for
::
in

:::
the

::::::
WEGN

::::
area

::::
(300

:
km2

:
)
:::
for

:::::::
accurate

:
areal rainfall estimates such that we can obtain reliable

rainfall event statistics
::::
(e.g.,

::::
total

:::::::
amount

:::
and

:::::
peak

:::::
hourly

::::::::
intensity

::
of

:::::
daily

:::::
heavy

:::::::
rainfall

::::::
events)

:
with no significant error.

More than 5 gauges guarantee a high accuracy of the areal rainfall estimates
::
10

::::::
gauges

::::::::
guarantee

::::
that

:::
we

:::
can

:::::
obtain

::::::::
constant

::::::
results,

::::::::
regardless

:::
of

::::::
number

:::
of

:::
the

:::::
gauge. Our findings have implications concerning the use of sparse gauge observational5

:::::::::::
observational

:::::
gauge

:
data, for instance, in hydrologic modeling or rainfall estimates evaluation (e.g., Syed et al., 2003; Tian

et al., 2018).

Lastly, using gridded WEGN data, rainfall extremes are reproduced at multiple spatial scales; approximately from the grid

resolution of regional to convective-permitting models (about 11.1 km to 1.1 km in latitudinal direction). The results
:::
We

::::
show

::::
how

::::::::
different

::::::
rainfall

::::::
events

:::
can

::
be

::::::::::
considered

:::::::
extreme

:::::::::
depending

::
on

:::
the

::::::
spatial

::::
and

:::::::
temporal

::::::::::
resolutions.

::::
The

::::::
results10

:::
also

:
demonstrate that high-resolution gridded data provide more reliable information not only in terms of the magnitude and

frequency of extremes, but also in terms of the exact location of the extremes. As a result, the limited spatial scale
::::::
limited

::::::::
resolution

:
of rainfall data can alter interpretations of rainfall statistics; extreme rainfall events at a location of interest (a

0.01◦× 0.01◦ site in our example) could occur more frequently and more intensely versus the local average. Localized in-

formation from high-resolution observation is the key to
::
for

:
developing prevention and protection plans to mitigate potential15

damages of extreme rainfall in an efficient and adequate way. Our results highlight the need to evaluate uncertainty in extreme

statistics derived from the existing datasets for supporting data selection among available rainfall data products.

In conclusion, the WEGN network provides a unique opportunity to empirically assess spatial variability and uncertainty of

surface rainfall directly based on gauge data. The network provides long-term records, of more than a decade, which enable

obtaining statistically robust results
:::::
permit

::
to

::::::::::
exclusively

:::::
focus

::
on

:::::
heavy

::::
rain

::::::
events. Nonetheless, as stated in Villarini et al.20

(2008), there are only a few dense gauge networks on the local
::::::::
catchment

:
scale, so the verification of findings from studies

in other regions is challenging. Regional variations, such as topography
:
or

::::
rain

::::
type, can lead to differences in the degree

of rainfall variability and uncertainty (e.g., Buytaert et al., 2006; Prein and Gobiet, 2017). Therefore,
:::::
some

::
of

:
the general

conclusions of this study should only be generalized
::::
may

::::
only

::
be

::::::::::::
representative for mid-latitude regions with moderate topog-

raphy.
::
In

::::::::
addition,

::::
more

::::::
robust

:::::::::::
interpretation

:::
of

:::
the

::::::
rainfall

::::::
spatial

:::::::
structure

:::::::
beyond

:::
the

:::::::
network

:::::::::
dimension

::
(>

:::
15 km

:
)
:::::
needs25

::
to

::
be

:::::::::::::
complemented

::
by

:::::::::
additional

::::::::::
larger-scale

:::::
gauge

:::::
data.

:::
For

::::::::
instance,

::::::::::::::::::
Schroeer et al. (2018)

::::
used

::::
three

::::::::
different

:::::
scales

:::
of

::::::::
networks,

::::::::
including

:::
the

:::::::
WEGN,

::
to

:::::::
estimate

:::
the

:::::::::::::
underestimation

::
of

:::::::::
maximum

:::
area

:::::::::::
precipitation

::
of

:::::::
extreme

:::::::::
convective

::::
over

:::
the

::::
range

:::
of

:
1
:
km

:
to
:::
30 km

:
. It should be noted that WEGN has a high flexibility in terms of providing rainfall data within various

spatial scales thanks to both high-resolution and quasi-grid configuration of the gauges. In this context, WEGN will continue

providing observational evidence to explore small-to-local
:::::::::::::::
local-to-catchment

:
scale rainfall processes over the next years.30

Data availability. WegenerNet data products are available at www.wegenernet.org.
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Appendix A: Definition of rain-gauge sub-networks
::::::
Heavy

::::::
rainfall

::::::
events

Figure ??
::::
Table

:::
A1

::::::
shows

::::::
general

::::::::::
information

:::::
about

:::
the

::::::
selected

::::::
heavy

::::::
rainfall

:::::
events

::::::
studied

::
in
:::::
Sect.

:
4
:::
and

:::::
Sect.

::
5.

:::
The

::::::
events

::
are

::::::::::::
corresponding

:::
to

:::::
≥90th

:::::::::
percentile

::
of

::::
daily

:::::::
rainfall

::::::
(06-06

:::::
UTC)

::::::
during

:::
the

:::::
warm

::::::
season.

:::::
Peak

::::
ratio

::
is

:::::
given

::
as

:
a
:::::
ratio

::
of

::::
peak

::::::
hourly

::::::
rainfall

::
to

::::
daily

:::::
total.

:::::::
Rainfall

::
in

:::
the

::::::
region

:::::
during

:::
the

:::::::
summer

:::::::
months

::
is

:::::::
triggered

:::
by

:::
the

::::::::
advection

::
of

::::::
humid

:::
air

::::::
masses

::::
from

:::
the

:::::::
Adriatic

:::
Sea.

::::::
Heavy

::::::
rainfall

::::::
events

::
are

::::::
closely

::::::
linked

::::
with

::::
local

::::::::::::
thunderstorms

::::::::::::::::::::::::::::::
(Matulla et al., 2003, see also Sect. 2)5

:
.
:::
The

::::
rain

::::
type

:
is
::::
not

::::::::
explicitly

:::::::::
considered

:::
for

:::
the

::::
event

::::::::
selection.

:

Appendix B:
::::::::
Definition

::
of

::::::::::
rain-gauge

::::::::::::
sub-networks

:::::
Figure

:::
A1

:
shows the selection order of WEGN gauges for defining the low-density sub-networks that were used in Fig. 6 of

Sect. 4. Priority consideration was given to the actual location of operational weather stations within the WEGN network; the

selected gauges 1 and 2 are located nearest to the member stations of the Austrian weather service (ZAMG) and the gauges 3, 4,10

and 5 are nearest to the rain gauges operated by the Austrian hydrographic services (AHYD). The gauges afterword
::::::::
afterward

were arbitrarily selected, ensuring a spatially uniform distribution. Normalized standard deviation of area-of-influence was

used as an index for the uniformity of gauge configuration, which fluctuated between 0.37 and 0.23 with a decreasing trend

as the number of the selected gauges increases. The area-of-influence is defined as follows: small grid boxes (approx. 0.01◦ ×
0.01◦, a total of 406 boxes) were defined over the WEGN network and each box is assigned to the nearest gauges of a given sub-15

network. Then, with an assumption that the most regular gauge configuration would share the same number of boxes, standard

deviation of the area-of-influence of n-gauges is calculated. For instance, for the five-gauges sub-network, each gauge is

expected to share around 80 boxes under an ideal situation. However, in this study, the five gauges share 71 to 113 boxes each,

resulting in the uniformity index of 0.35. Note that this simple method does not consider the degree of centralization.

:::
The

:::::::::
uniformity

:::::
index

::::::
defined

::::
here

::
is
::::
also

::::
used

:::
for

::::
Fig.

:
5
::
to

:::::
select

:::::
well-

:::
and

::::::::::::::
badly-distributed

:::::::
n-gauge

:::::::::
networks.20
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Berezowski, T., Szcześniak, M., Kardel, I., Michałowski, R., Okruszko, T., Mezghani, A., and Piniewski, M.: CPLFD-GDPT5: High-

resolution gridded daily precipitation and temperature data set for two largest Polish river basins, Earth Syst. Sci. Data, 8, 127–139,5

https://doi.org/10.5194/essd-8-127-2016, 2016.

Buytaert, W., Celleri, R., Willems, P., Biévre, B. D., and Wyseure, G.: Spatial and temporal rainfall variability in mountainous areas: A case

study from the south Ecuadorian Andes, J. Hydrol., 329, 413–421, https://doi.org/10.1016/j.jhydrol.2006.02.031, 2006.

Chaudhary, S., Dhanya, C., and Vinnarasi, R.: Dry and wet spell variability during monsoon in gauge-based gridded daily precipitation

datasets over India, J. Hydrol, 546, 204–218, https://doi.org/10.1016/j.jhydrol.2017.01.023, 2017.10

Ciach, G. J. and Krajewski, W. F.: On the estimation of radar rainfall error variance, Adv. Water Resour., 22, 585–595,

https://doi.org/10.1016/S0309-1708(98)00043-8, 1999.

Ciach, G. J. and Krajewski, W. F.: Analysis and modeling of spatial correlation structure in small-scale rainfall in Central Oklahoma, Adv.

Water Resour., 29, 1450–1463, https://doi.org/10.1016/j.advwatres.2005.11.003, 2006.

Contractor, S., Alexander, L. V., Donat, M. G., and Herold, N.: How well do gridded datasets of observed daily precipitation compare over15

Australia?, Adv. Meteorol., 2015, 1–15, https://doi.org/10.1155/2015/325718, 2015.

Dai, A., Lin, X., and Hsu, K.-L.: The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low-

and mid-latitudes, Clim. Dyn., 29, 727–744, https://doi.org/10.1007/s00382-007-0260-y, 2007.

Dhib, S., Mannaerts, C. M., Bargaoui, Z., Retsios, V., and Maathuis, B. H.: Evaluating the MSG satellite Multi-Sensor Precipitation Estimate

for extreme rainfall monitoring over northern Tunisia, Weather Clim Extrem, 16, 14–22, https://doi.org/10.1016/j.wace.2017.03.002, 2017.20

Eggert, B., Berg, P., Haerter, J. O., Jacob, D., and Moseley, C.: Temporal and spatial scaling impacts on extreme precipitation, Atmos. Chem.

Phys., 15, 5957–5971, https://doi.org/10.5194/acp-15-5957-2015, 2015.

Gebremichael, M. and Krajewski, W. F.: Assessment of the statistical characterization of small-scale rainfall variability from radar: analysis

of TRMM ground validation datasets, J. Appl. Meteorol. Clim., 43, 1180–1199, 2004.

Girons Lopez, M., Wennerström, H., Nordén, L.-Å., and Seibert, J.: Location and density of rain gauges for the estimation of spatial varying25

precipitation, Geogr. Ann.: Ser. A, Phys. Geogr., 97, 167–179, https://doi.org/10.1111/geoa.12094, 2015.

Habib, E. and Krajewski, W. F.: Uncertainty analysis of the TRMM ground-validation radar-rainfall products: Application to the TEFLUN-B

field campaign, J. Appl. Meteorol. Clim., 41, 558–572, https://doi.org/10.1175/1520-0450(2002)041<0558:UAOTTG>2.0.CO;2, 2002.

Habib, E., Krajewski, W. F., and Ciach, G. J.: Estimation of rainfall interstation correlation, J. Hydrometeorol., 2, 621–629,

https://doi.org/10.1175/1525-7541(2001)002<0621:EORIC>2.0.CO;2, 2001.30

Hofstra, N., New, M., and McSweeney, C.: The influence of interpolation and station network density on the distributions and trends of

climate variables in gridded daily data, Clim. Dyn., 35, 841–858, https://doi.org/10.1007/s00382-009-0698-1, 2010.

Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., and Iguchi, T.: The Global

Precipitation Measurement mission, Bull Am Meteorol Soc., 95, 701–722, https://doi.org/10.1175/BAMS-D-13-00164.1, 2014.

Huff, F. A. and Shipp, W. L.: Spatial correlations of storm, monthly and seasonal precipitation, J. Appl. Meteorol. Climatol, 8, 542–550,35

https://doi.org/10.1175/1520-0450(1969)008<0542:SCOSMA>2.0.CO;2, 1969.

11

https://doi.org/10.1155/2015/325718
https://doi.org/10.5194/hess-12-77-2008
https://doi.org/10.1111/geoa.12094
https://doi.org/10.1016/S0309-1708(98)00043-8
https://doi.org/10.1016/j.advwatres.2005.11.003
https://doi.org/10.1175/1525-7541(2001)002%3C0621:EORIC%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(2002)041%3C0558:UAOTTG%3E2.0.CO;2
https://doi.org/10.5194/essd-8-127-2016
https://doi.org/10.1175/BAMS-D-13-00164.1
https://doi.org/10.1007/s00382-009-0698-1
https://doi.org/10.1175/1520-0450(1969)008%3C0542:SCOSMA%3E2.0.CO;2
https://doi.org/10.1016/j.jhydrol.2006.02.031
https://doi.org/10.1016/j.jhydrol.2017.01.023
https://doi.org/10.5194/acp-15-5957-2015
https://doi.org/10.1016/j.wace.2017.03.002
https://doi.org/10.1007/s00382-007-0260-y


Jaffrain, J. and Berne, A.: Quantification of the small-scale spatial structure of the raindrop size distribution from a network of disdrometers,

J. Appl. Meteorol. Clim., 51, 941–953, https://doi.org/10.1175/JAMC-D-11-0136.1, 2012.

Kann, A., Meirold-Mautner, I., Schmid, F., Kirchengast, G., Fuchsberger, J., Meyer, V., T’́uchler, L., and Bica, B.: Evaluation of high-

resolution precipitation analyses using a dense station network, 19, 1547–1559, https://doi.org/10.5194/hess-19-1547-2015, 2015.

Keller, V. D. J., Tanguy, M., Prosdocimi, I., Terry, J. A., Hitt, O., Cole, S. J., Fry, M., Morris, D. G., and Dixon, H.: CEH-GEAR: 1 km5

resolution daily and monthly areal rainfall estimates for the UK for hydrological and other applications, Earth Syst. Sci. Data, 7, 143–155,

https://doi.org/10.5194/essd-7-143-2015, 2015.

Kirchengast, G., Kabas, T., Leuprecht, A., Bichler, C., and Truhetz, H.: WegenerNet: A pioneering high-resolution network for monitoring

weather and climate, Bull. Amer. Meteor. Soc., 95, 227–242, https://doi.org/10.1175/BAMS-D-11-00161.1, 2014.

Lockhoff, M., Zolina, O., Simmer, C., and Schulz, J.: Evaluation of satellite-retrieved extreme precipitation over Europe using gauge obser-10

vations, J. Clim, 27, 607–623, https://doi.org/10.1175/JCLI-D-13-00194.1, 2014.

Ly, S., Charles, C., and Degré, A.: Geostatistical interpolation of daily rainfall at catchment scale: The use of several variogram models in the

Ourthe and Ambleve catchments, Belgium, Hydrol. Earth Syst. Sci., 15, 2259–2274, https://doi.org/10.5194/hess-15-2259-2011, 2011.

Marra, F., Destro, E., Nikolopoulos, E. I., Zoccatelli, D., Creutin, J. D., Guzzetti, F., and Borga, M.: Impact of rainfall spatial aggregation

on the identification of debris flow occurrence thresholds, Hydrol. Earth Syst. Sci., 21, 4525–4532, https://doi.org/10.5194/hess-21-4525-15

2017, 2017.

Matulla, C., Penlap, E. K., Haas, P., and Formayer, H.: Comparative analysis of spatial and seasonal variability: Austrian precipitation during

the 20th century, Int. J. Climatol., 23, 1577–1588, https://doi.org/10.1002/joc.960, 2003.

O, S., Foelsche, U., Kirchengast, G., and Fuchsberger, J.: Validation and correction of rainfall data from the WegenerNet high density network

in southeast Austria, J. Hydrol., 556, 1110–1122, https://doi.org/10.1016/j.jhydrol.2016.11.049, 2018a.20

O, S., Foelsche, U., Kirchengast, G., Fuchsberger, J., Tan, J., and Petersen, W. A.: Evaluation of GPM IMERG Early, Late, and Final rainfall

estimates using WegenerNet gauge data in southeastern Austria, Hydrol. Earth Syst. Sci., 21, 6559–6572, https://doi.org/10.5194/hess-21-

6559-2017, 2018b.

Peleg, N., Ben-Asher, M., and Morin, E.: Radar subpixel-scale rainfall variability and uncertainty: Lessons learned from observations of a

dense rain-gauge network, Hydrol. Earth Syst. Sci., 17, 2195–2208, https://doi.org/10.5194/hess-17-2195-2013, 2013.25

Prein, A. F. and Gobiet, A.: Impacts of uncertainties in European gridded precipitation observations on regional climate analysis: Uncertainty

in European Precipitation, Int. J. Climatol., 37, 305–327, https://doi.org/10.1002/joc.4706, 2017.

Schroeer, K., Kirchengast, G., and O, S.: Strong dependence of extreme convective precipitation intensities on gauge network density,

Geophys. Res. Lett., https://doi.org/10.1029/2018GL077994, accepted, 2018.

Sillmann, J., Thorarinsdottir, T., Keenlyside, N., Schaller, N., Alexander, L. V., Hegerl, G., Seneviratne, S. I., Vautard, R., Zhang, X., and30

Zwiers, F. W.: Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities, Weather. Clim. Soc.,

18, 65–74, https://doi.org/10.1016/j.wace.2017.10.003, 2017.

Steiner, M., Smith, J. A., Burges, S. J., Alonso, C. V., and Darden, R. W.: Effect of bias adjustment and rain gauge data quality control on

radar rainfall estimation, Water Resour. Res., 35, 2487–2503, https://doi.org/10.1029/1999WR900142, 1999.

Svensson, C. and Jones, D.: Review of methods for deriving areal reduction factors: Review of ARF methods, J. Flood Risk Manag., 3,35

232–245, https://doi.org/10.1111/j.1753-318X.2010.01075.x, 2010.

Svoboda, V., Máca, P., Hanel, M., and Pech, P.: Spatial correlation structure of monthly rainfall at a mesoscale region of north-eastern

Bohemia, Theor. Appl. Climatol, 121, 359–375, https://doi.org/10.1007/s00704-014-1241-9, 2015.

12

https://doi.org/10.5194/hess-21-6559-2017
https://doi.org/10.1111/j.1753-318X.2010.01075.x
https://doi.org/10.1175/JAMC-D-11-0136.1
https://doi.org/10.5194/hess-21-6559-2017
https://doi.org/10.1175/BAMS-D-11-00161.1
https://doi.org/10.1016/j.jhydrol.2016.11.049
https://doi.org/10.5194/hess-17-2195-2013
https://doi.org/10.5194/hess-21-6559-2017
https://doi.org/10.1007/s00704-014-1241-9
Sungmin
Highlight

https://doi.org/10.5194/essd-7-143-2015
https://doi.org/10.5194/hess-21-4525-2017
https://doi.org/10.1002/joc.960
https://doi.org/10.1029/1999WR900142
https://doi.org/10.1002/joc.4706
https://doi.org/10.1016/j.wace.2017.10.003
https://doi.org/10.1175/JCLI-D-13-00194.1
https://doi.org/10.5194/hess-21-4525-2017
https://doi.org/10.5194/hess-15-2259-2011
https://doi.org/10.5194/hess-21-4525-2017
https://doi.org/10.1029/2018GL077994
https://doi.org/10.5194/hess-19-1547-2015


Syed, K. H., Goodrich, D. C., Myers, D. E., and Sorooshian, S.: Spatial characteristics of thunderstorm rainfall fields and their relation to

runoff, J. Hydrol., 271, 1–21, https://doi.org/10.1016/S0022-1694(02)00311-6, 2003.

Tan, J., Petersen, W. A., Kirchengast, G., Goodrich, D. C., and Wolff, D. B.: Evaluation of Gobal Precipitation Measurement rainfall estimates

against three dense gauge networks, 19, 517–532, https://doi.org/10.1175/JHM-D-17-0174.1, 2018.

Tian, F., Hou, S., Yang, L., Hu, H., and Hou, A.: How does the evaluation of the GPM IMERG rainfall product depend on gauge density and5

rainfall intensity?, J. Hydrometeorol., 19, 339–349, https://doi.org/10.1175/JHM-D-17-0161.1, 2018.

Tokay, A., Roche, R. J., and Bashor, P. G.: An experimental study of spatial variability of rainfall, J. Hydrometeorol., 15, 801–812,

https://doi.org/10.1175/JHM-D-13-031.1, 2014.

Tozer, C. R., Kiem, A. S., and Verdon-Kidd, D. C.: On the uncertainties associated with using gridded rainfall data as a proxy for observed,

Hydrol. Earth Syst. Sci., 16, 1481–1499, https://doi.org/10.5194/hess-16-1481-2012, 2012.10

Villarini, G., Mandapaka, P. V., Krajewski, W. F., and Moore, R. J.: Rainfall and sampling uncertainties: A rain gauge perspective, J. Geophys.

Res., 113, https://doi.org/10.1029/2007JD009214, 2008.

Wood, S. J., Jones, D. A., and Moore, R. J.: Accuracy of rainfall measurement for scales of hydrological interest, Hydrol. Earth Syst. Sci., 4,

531–543, https://doi.org/10.5194/hess-4-531-2000, 2000.

Xu, H., Xu, C.-Y., Chen, H., Zhang, Z., and Li, L.: Assessing the influence of rain gauge density and distribution on hydrological model15

performance in a humid region of China, J. Hydrol., 505, 1–12, https://doi.org/10.1016/j.jhydrol.2013.09.004, 2013.

Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., and Kitoh, A.: APHRODITE: Constructing a long-term

daily gridded precipitation dataset for Asia based on a dense network of rain gauges, Bull Am Meteorol Soc., 93, 1401–1415,

https://doi.org/10.1175/BAMS-D-11-00122.1, 2012.

13

https://doi.org/10.1175/JHM-D-17-0174.1
https://doi.org/10.1016/j.jhydrol.2013.09.004
https://doi.org/10.1175/JHM-D-13-031.1
https://doi.org/10.5194/hess-16-1481-2012
https://doi.org/10.1175/JHM-D-17-0161.1
https://doi.org/10.1029/2007JD009214
https://doi.org/10.1016/S0022-1694(02)00311-6
https://doi.org/10.5194/hess-4-531-2000
https://doi.org/10.1175/BAMS-D-11-00122.1


47°N

48°N

49°N

10°E 12°E 14°E 16°E

WEGN Feldbach

46.9°N

47.0°N

15.8°E 16.0°E

2 4 6 8 10 12 14 16 18 20 22 24
Inter-gauge distance [km]

2

4

6

8

10

C
o
u
n
t 

[%
]

(a)

(b)

(c)

Figure 1. (a) WegenerNet Feldbach region (WEGN) network in southeastern Austria, (b) location of 150 tipping-bucket rain gauges, and (c)

inter-gauge distances, rounded to the nearest 1-km bins.
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Figure 2. Diurnal cycles of (a) rainfall and (b) temperature derived from WEGN observational data.
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Figure 3. Spatial correlation of rainfall among rain gauges for (a) all-months, (b) wet
::::
warm season, and (c) dry

:::
cold season. Four selected

accumulation times are shown. Each solid line represents a fitted exponential function for each year.
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Figure 4. Dependence of (a) nugget
::::

effect, (b) correlation distance, and (c) shape factor of the fitted exponential functions on timescale.
:
(
::
d)

::::
shows

::::::
RMSE

::
of

::::
fitted

::::::::
correlation

:::::
values

::::::::
compared

::
to

::::::
observed

:::::
values

::
(red: wet

::::
warm season, green: dry

:::
cold season, black: all-months).
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Figure 5. Dependence of the accuracy of areal rainfall estimates on the number of gauges during heavy rainfall.
::::::::
Normalised

:::::::
RMSEs

(
:::::::
NRMSEs)

::
of

:::::
1,000

:::::::
different

:::::
gauge

::::::::::
combinations

:::
are

::::
used

::
to

:::::
assess

:::
the

:::::::
accuracy

::
for

::::
each

:::::::
n-gauge

:::::::
network.

:
(a) Four selected time ac-

cumulation are shown.
:::
Box

::::
plots

:::::
display

:::
the

::::::
median,

::::
25th

:::
and

:::
75th

:::::::::
percentiles

::
of

::::::
NRMSE

:::::::::
distribution,

::::
and

::::::
whiskers

::::::
extend

:
to
:::
the

::::
10th

:::
and

:::
90th

:::::::::
percentiles.

:::
Red

::::::
crosses

:::
and

::
Xs

:::::
show

::
the

::::::
median

:::::::
NRMSE

::
for

::::
good

:::
and

:::
bad

:::::
gauge

::::::::::::
configurations;

:::
100

::::
cases

:::
are

::::::
selected,

::::::::::
respectively,

::
for

::::
each

::
of

:::
the

::::
1,000

:::::::::::
combinations. (b) The

::::::
average

:::
and

:::::::
minimum

:
number of gauges

:::::
(black

:::
and

::::
gray,

:::::::::
respectively)

:
required to obtain areal

rainfall estimates with an normalized RMSE
:::::::
NRMSE < 20%.
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Figure 6. Dependence of the accuracy of (a) daily rainfall and (b) hourly peak intensity on the number of gauges. 71 heavy rain events are

considered. The y axis displays the ratio of
:::::
relative

::::::::
difference

::::::
between

:
resampled rainfall to

::
and

:
true rainfall. Resampled rainfall is calculated

from n-gauge sub-networks, while true rainfall is calculated using the full density WEGN network.
:::
The

::::
thick

:::
lines

:::::
show

::
the

::::::
median

:::
and

:::
the

:::::
shaded

::::
areas

::::
show

:::
the

::::
10th

::
to

:::
90th

::::::::
percentile

:::::
spread.
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Figure 7. Distribution of gauge-level rainfall intensities corresponding to given percentile thresholds during heavy rainfall events. Four time

scales are selected. Black lines show median values, gray lines show a 10th-90th percentile range among the gauges at a given threshold bin.
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Figure 8. 99.9th and 99th percentiles of rainfall intensities derived from gridded rainfall fields with different spatial and temporal scales.
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Figure 9. Occurrence of extreme events (≥ 95th percentile of rainfall intensity during heavy rainfall events at HR01) at different horizontal

grid spacing.
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Figure 10. Probability of occurrence of heavy rainfall for different horizontal resolutions. Darker red represents higher horizontal resolution

(from 0.1◦ to 0.01◦).
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Table A1.
::::::::
Information

::
of
:::::::
selected

::::
heavy

::::::
rainfall

:::::
events

:::
Min

:::::
Median

:::
Max

::::
Total

:::::
rainfall

:
(mmd−1)

:::
19.8

:::
28.1

:::
64.1

:::
Peak

::::::
hourly

:::::
rainfall

:
(mmh−1)

::
2.6

::
8.6

:::
26.2

:::
Peak

::::
ratio

::
7.8

:::
25.4

:::
91.0

::::::
Duration

:
(h
:
)

::
2.0

::
9.5

:::
22.5
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Figure A1. Selected WEGN gauges for Fig. 6. The gauges nearest to operational weather stations of the ZAMG and AHYD are in red and

blue, respectively.
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