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Supplementary Information 30 

 31 

S1. Climatological context: El Niño and other drivers of climate over EASE/SA, the 2015-16 32 

El Niño event and climate anomalies over SA 33 

 34 

The climatological mean austral summer wet season of October-April rainfall (figure S1(a)) 35 

shows a maximum extending Northwest-Southeast from Democratic Republic of Congo 36 

(DRC)/Angola in the west, across Zambia, Malawi to northern Mozambique in the East. The 37 

leading mode of interannual variability in rainfall and SPEI-7, is a north/south dipole pattern 38 

of opposing anomalies across EASE and SA, with a divide at ~11oS, the approximate mean 39 

latitude of rainfall maximum and is strongly related to ENSO. This structure clearly evidenced 40 

by the leading Empirical Orthogonal Function (EOF) of SPEI-7 (figure S1(b)) which explains 41 

21.5% of total variance. The time coefficients correlate strongly with tropical SSTs (figure 42 

S1(d)) highly characteristic of the ENSO SST anomalies in both the Pacific and Indian Oceans, 43 

notably the SW/NE positive/negative correlation dipole across the southwest/equatorial Indian 44 

Ocean (e.g. Lindesay, 1988; Reason et al., 2000, Lazenby et al., 2016). As such, for Africa 45 

South of the equator the leading mode of climate variability is strongly related to ENSO, with 46 

wet (dry) anomalies during El Niño (la Niña) events across EASE (SA). The EOF pattern is 47 

largely insensitive to the length of choice of months in the wet season. This north-south dipole 48 

response across EASE/SA to ENSO has been well documented previously (Ropelewski and 49 

Halpert, 1987; Janowiak, 1988; Goddard and Graham, 1999; Manatsa et al., 2011), although 50 

the physical mechanisms of teleconnection remain elusive (see Blamey et al. 2018 for a 51 

summary).  52 

 53 

The climate anomaly pattern during 2015-16 was highly characteristic of this mode (compare 54 

figures 1(a) and S1b). Very strong SST anomalies over the Pacific and elsewhere in the tropics 55 

during 2015-16 (figure S1(d)) were associated with a strong north/south dipole in rainfall with 56 

drought in SA (figure 1(a)). The socio-economic impacts were pronounced, with much of SA 57 

affected by drought, leading to a regional drought disaster declaration by the Southern Africa 58 

Development Community (SADC). By September 2016, six SADC countries had declared 59 

‘national drought emergencies’ (Botswana, Namibia Lesotho, Malawi, Swaziland and 60 

Zimbabwe) with drought emergency declared for seven of the South Africa’s nine provinces, 61 
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and a temporary red alert also declared for central and Southern provinces of Mozambique 62 

(SADC 2016a). The drought resulted in an extensive loss of crops and livestock, an increase in 63 

food prices, driving an estimated 39 million people into deeper food insecurity (SADC 2016a; 64 

2016b; Archer et al., 2017). Surface water shortages further affected electricity generation and 65 

domestic supply, affecting economic activity and human health (SADC, 2016a; Siderius et al. 66 

2018). 67 

 68 

The 2015-16 El Niño was without doubt one of the strongest on record, and by some 69 

indicators was actually the strongest. There are many measures of ENSO strength (see 70 

e.g. https://www.esrl.noaa.gov/psd/enso/dashboard.html), which provide a mixed picture on 71 

the relative strength of the major events. 2015-16 appears strongest based on the Niño 3.4, 72 

Niño 4 and Bivariate El Niño – Southern Oscillation index, whilst 1997-98 is the strongest 73 

based on the (East pacific Niño 3 and 1+2 SST indices, east Pacific heat content and the 74 

Multivariate El Niño index. However, 2015-16 was certainly more persistent that 1997-98 75 

with many indices turning positive at some time in 2014 related to the El Nino event that was 76 

predicted in 2014 but did not develop fully until 2015-16 (Levine and McPhaden, 2016). 77 

 78 

However, there is substantial diversity in the character of El Niño events, in terms of both (i) 79 

the structure and magnitude of anomalies in the Pacific sector. For example, 2015-16 and 1997-80 

98 differed in that the former was stronger in the Central Pacific sector (Niño3.4 and Niño SST 81 

region) and the latter in the East Pacific (Niño 1+2 and Niño 3 SST regions) (ii) the state and 82 

evolution of other regional drivers of climate variability which interact with ENSO 83 

teleconnection processes, such that the remote impacts over Africa can be quite variable (e.g. 84 

Ratnam et al., 2014; Preethi et al., 2015,;Hoell et al., 2017; Blamey et al., 2018). Across 85 

Southern Africa (SA) multiple regional structures of ocean and atmospheric variability 86 

modulate the impacts of ENSO including the South Indian Ocean dipole (Reason, 2001) as 87 

well as the Angola low and Botswana High atmospheric features (Blamey et al., 2018). 88 

Furthermore, intraseasonal variability associated with the Madden Julian Oscillation, with 30-89 

60 day timescales can also modulate interannual drivers of variability, particularly over East 90 

Africa (Berhane and Zaitchik, 2014).  91 

 92 

https://www.google.com/url?q=https://www.esrl.noaa.gov/psd/enso/dashboard.html&sa=D&ust=1527813221435000&usg=AFQjCNFN6_CZNj-yBJOvHddSNB26u96axA
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Over East Africa rainfall is more strongly related to the state of the Indian Ocean than to ENSO. 93 

The Indian Ocean Zonal mode (IOZM), an east-west pattern of atmosphere-ocean variability 94 

across the Equatorial Indian ocean, strongly modulates the regional Walker circulation and 95 

hence rainfall over East Africa. During positive IOZM events warmer ocean temperatures in 96 

the equatorial west Indian Ocean and cooler temperatures in the east lead to enhanced rainfall 97 

over EASE, with negative IOZM leading to a reduction in rainfall (see Nicholson 2017 for a 98 

review and references therein). The impact of ENSO on EASE is therefore intimately 99 

connected to the state of the IOZM (Black et al., 2003, Manatsa et al., 2011). During 2015-16 100 

the IOZM was only weakly positive (see SST anomalies in figure S1(d)) and the seasonal de-101 

trended IOZM index (Saji et al., 1999) in 2015-16 was ranked 16th out of 150 years. As a result, 102 

the mean equatorial zonal Indian Ocean Walker cell with ascent (descent) in the east at ~100oE 103 

(west at ~50oE) of the basin is only weakly perturbed. The zonal cross section over the East 104 

Africa-Indian Ocean sector indicates that enhanced large-scale uplift is limited to a quite 105 

restricted region of EASE from ~33o-40oE. In this way, the weak reorganisation of the Indian 106 

ocean Walker circulation led to rather moderate rainfall anomalies over EASA (Section 3.1). 107 

 108 

S2. The Standardised Precipitation-Evapotranspiration Index (SPEI) and other data used 109 

 110 

We derive the 7-month SPEI October-April (Vincente-Serrano et  al., 2010) over the period 111 

1901 to present, using precipitation data from the Global Precipitation Climatology Centre 112 

(GPCC) monthly product v7 (Schneider et al., 2011a; Schneider et al., 2013) at 1.0° resolution, 113 

extended beyond 2013 by combining with the GPCC V4 monitoring product (Schneider et al 114 

2011b). To account for uncertainty in estimation of PET we use three parameterisations of 115 

varying complexity: The Penman-Montieth equation, based on net radiation, temperature, 116 

wind-speed and vapour pressure); The Hargreaves equation, based on mean, minimum and 117 

maximum temperature and extra-terrestrial solar radiation; The Thornthwaite equation, which 118 

is based solely on surface air temperature. The variables required for the various PET estimates 119 

are obtained from the CRUTS3.24.01 dataset (Harris et  al., 2014).   120 

 121 

There is evidence to indicate recharge is preferentially driven by intense rainfall (see references 122 

in Sections 1 and 3.1.1). To examine the impact of El Niño on rainfall intensities within the 123 

Oct-April 2015-16 season we use derive percentiles of the daily rainfall probability distribution 124 
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from the TRMM3B42 product. In the absence of robust knowledge of actual rainfall thresholds 125 

associated with groundwater recharge, and the likelihood that such thresholds are highly 126 

variable in space and time, we use the 80th percentile of daily rainfall within the season as a 127 

coarse proxy for rainfall events likely to be associated with recharge. Our results (Section 3.1.1 128 

are largely insensitive to the choice of percentile value (not shown). Information on the large-129 

scale atmospheric circulation is diagnosed from the horizontal and vertical winds, and specific 130 

humidity from ERA-Interim reanalysis data (Dee et al., 2011). SST data are obtained from the 131 

extended reconstructed sea surface temperature (ERSST) version 4 from the National 132 

Oceanographic and Atmospheric Administration (NOAA) (Smith et al 2008) on a 2° grid.  133 

 134 

S3. SPEI-7 Intensity-Area-Frequency (IAF) curves and associated return period estimates, and 135 

attribution of anthropogenic influence 136 

 137 

Droughts are spatially extensive but variable features. We represent the spatial extent using 138 

IAF curves which show the intensity of SPEI-7 water balance anomalies across all spatial scales 139 

within a study domain. IAF curves are independent of the precise spatial patterns of SPEI-7 140 

anomalies, and as such allow us to compare droughts between individual years, and to calculate 141 

the return periods for drought events across scales. This direct comparability of SPEI-7 IAF 142 

curves is valuable since no two drought events have exactly the same spatial pattern. The IAF 143 

curves are derived using the method of Mishra and Cherkauer (2010) separately over the two 144 

study domains of EASE and SA, by calculating the mean SPEI-7 value of grid cells lying within 145 

various areal extent intervals: The areas covered by the lowest (for SA) or highest (for EASE) 146 

5th, 10th, 20th…100th areal percentiles of SPEI grid cell values within the domain area i.e. 147 

when all grid cells are ranked. This allows, for each season, the mean SPEI-7 IAF curve to be 148 

plotted (see figure 3).  149 

 150 

We then estimate the return period of the 2015-16 El Niño event by comparing the observed 151 

SPEI-7 IAF curve of 2015-16 with IAF curves representing various ‘benchmark’ return 152 

periods (figure 3) and finding the closest match, by least squared error. Estimating these 153 

benchmark return periods of drought events is challenging given the relatively short 154 

observational record for what are relatively long duration events, and indeed because of non-155 

stationarity in climate records under a changing climate. We address both these challenges in 156 
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our approach. To counter the problem of insufficient sampling of the extreme tail of the 157 

distribution, we increase our sample of climate events beyond the observed record using large 158 

ensembles of climate model simulations from the HAPPI experiment (Mitchell et al., 2017). 159 

HAPPI is designed specifically to quantify climate extremes, through the use of relatively 160 

high model resolution and large initial-condition ensembles. We use precipitation data from 161 

four atmospheric models, namely HadGEM3, CAM5, MIROC5 and NorESM, (degraded to 162 

common resolution of 1o) each with 10 ensemble members, run over the period ~1950s-163 

2010s, forced with observed SSTs and ‘historical’ greenhouse gases and aerosol radiative 164 

forcings. These simulations provide about 2400 years of simulated data, with greater 165 

statistical definition of the extreme tail of the distribution required for the extreme events, 166 

notably the 2015-16 drought over SA which is the strongest on record. As with the 167 

observations we derive the mean SPEI-7 for each areal extent interval (5th, 10th, etc. spatial 168 

percentiles over the domain), for each of the ~2400 model years. Estimation of return periods 169 

is based on the Extreme Value Theory (EVT), widely used for the description of rare climate 170 

events in the extreme tail of the parameter distribution.  The Generalized Extreme Value 171 

distribution (GEV) is fitted to the distribution of only the extreme SPEI-7 values, for each 172 

areal extent separately (using maximum likelihood estimation and a chi-squared goodness-of-173 

fit test, Coles et al., 2001). This distribution of extremes (‘block maxima’) is composed of the 174 

most intense SPEI-7 values (for drought over the SA domain SPEI-7 is multiplied by -1) 175 

within non-overlapping ‘blocks’ of 30 years, a standard climatological period. Then, return 176 

periods are estimated by inverting the resulting GEV cumulative probability distribution for a 177 

range of periods from 30-300 years, for each areal extent separately, providing IAF curves for 178 

benchmark return periods (see figure 3). Whilst our approach is similar to previous drought 179 

analyses (e.g. Robeson, 2015) we recognise a number of caveats. First, the estimated return 180 

periods are sensitive to the arbitrary choice of block size and we estimate the uncertainty 181 

associated with this using periods of 25-60 years. Second, whilst the large ensembles 182 

provided by the HAPPI experiment are designed specifically for analysis of extremes they 183 

necessarily provide only a partial representation of the climate variability ‘space’.   184 

 185 

For estimation of return periods shorten than the duration of one ‘block’ (30 years), we 186 

follow Mishra and Cherkauer (2010) and Philip et al. (2018) in fitting a distribution to the 187 

historical record of SPEI-7 data. For each areal extent interval (5th, 10th, etc. spatial 188 
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percentiles) we fit a GEV distribution to the 116 historical SPEI-7 data points. We then invert 189 

the cumulative distribution to derive return periods for every spatial percentile, giving a set of 190 

IAF benchmark return period curves.  Finally, we conduct all the above IAF curve return 191 

period analysis using SPEI-7 derived with each of the three PET equations and provide the 192 

average return period estimates and the associated range to represent this component of 193 

uncertainty. 194 

 195 

It is likely that anthropogenic climate change is, and will continue to, affect large-scale 196 

hydrology. As such, climate risks are changing and non-stationarity in climate records 197 

complicates the interpretation of return periods. However, the IPCC recent assessment report 198 

concludes that there is only low confidence in detection and attribution of observed changes in 199 

drought extremes globally (Bindoff et al., 2013), largely due to uncertainties in distinguishing 200 

relatively small trends in precipitation from decadal variability, especially given limitations in 201 

precipitation data. Nevertheless, attribution of recent temperature rises is robust even down to 202 

the regional/continental scale (Bindoff et al., 2013). In recent probabilistic event attribution 203 

analyses of tropical drought events the contribution of anthropogenic temperature effects is 204 

discernible, in contrast to that of precipitation (Marthews et al., 2015). As such, the full causal 205 

chain from climate anomaly through water balance to agricultural drought is complex and 206 

typically not well represented in models such that attribution of drought remains extremely 207 

challenging. Therefore, here we estimate the effects purely of anthropogenic temperature trends 208 

on drought risk over SA through a simplified attribution experiment. The SPEI-7 IAF return 209 

period analysis above is repeated, but in deriving the benchmark return period curves the 210 

temperature data, used in calculating PET, has the signal of anthropogenic climate change 211 

removed. Specifically, PET is estimated using the HAPPI multi-ensemble mean temperature 212 

from a counterfactual world without human influence on radiative forcing: the ‘natural’ runs, 213 

in which only the natural forcings (solar variability and volcanic aerosols) are provided to the 214 

models. To ensure space-time consistency in all the climate variables whilst changing the 215 

temperature data, we used the 30-year smoothed temperature from the ‘natural’ model runs to 216 

which is added the anomalies of temperature from the ‘historical’ run with respect to a 30-year 217 

running mean. Not that we derive the SPEI-7 over both datasets merged together so that the 218 

effect of the temperature perturbation between the ‘natural’ and ‘historical’ runs is reflected in 219 

the resulting SPEI-7 values, given that the index is standardised across the timeseries. The 220 



8 
 

benchmark return period IAF curves are then derived from the SPEI-7 values for each dataset 221 

separately. Thus, comparing the estimated SPEI-7 IAF return periods from the climate with 222 

‘historical’ temperature with those from a counterfactual climate with the ‘natural’ only 223 

temperature, provides an indication of the influence of the anthropogenic temperature trend 224 

effects on drought risk over SA. We note that the SPEI is quite temperature dependent through 225 

PET calculation such that other drought indices may yield different sensitivity to warming. 226 

 227 

We must emphasise that this analysis deliberately considers only the effects of the slowly 228 

evolving anthropogenic influence on temperature. We do not consider anthropogenic 229 

influences on rainfall and the other determinants of PET i.e. wind speed, humidity, radiation 230 

budget, no any changes to variability in temperature. As such, in utilising a large model 231 

ensemble to define the statistics of extreme events, we retain some features of the probabilistic 232 

event attribution method (e.g. Allen et al., 2003, Stott et al., 2014) but focus solely on that 233 

aspect of climate change (near surface temperatures) for which we have greatest confidence in 234 

the ability of models to represent with credibility.  235 

 236 

S4 Groundwater storage estimates from GRACE and LSMs 237 

 238 

To address uncertainty associated with different GRACE processing strategies to resolve 239 

ΔTWS (Eq. 1) we apply an ensemble mean of three GRACE TWS. Namely, the CSR land 240 

(version RL05.DSTvSCS1409, Swenson and Wahr, 2006; Landerer and Swenson ,2012) and 241 

JPL Global Mascon (version RL05M_1.MSCNv01, Watkins et al., 2015; Wiese et al., 2015) 242 

solutions, from NASA’s GRCTellus data dissemination site (http://grace.jpl.nasa.gov/data), 243 

and a third GRGS GRACE solution (CNES/GRGS release RL03-v1) (Biancale et al., 2006) 244 

from the French Government space agency, Centre National D'études Spatiales (CNES).  245 

 246 

GRCTellus CSR land solution (version RL05.DSTvSCS1409) is post-processed from spherical 247 

harmonics released by the Centre for Space Research (CSR) at the University of Texas at 248 

Austin. GRCTellus gridded datasets are available at a monthly time step and a spatial resolution 249 

of 1° × 1° (~111 km at equator) though the actual spatial resolution of GRACE footprint is 250 

~450 km or ~200,000 km2 (Scanlon et al., 2012). To amplify TWS signals we apply the 251 

dimensionless scaling factors provided as 1° × 1° bins that are derived from minimising 252 
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differences between TWS estimated from GRACE and the hydrological fields from the 253 

Community Land Model (CLM4.0) (Landerer and Swenson, 2012).  JPL-Mascons (version 254 

RL05M_1.MSCNv01) data processing involves the same glacial isostatic adjustment 255 

correction but applies no spatial filtering as JPL-RL05M directly relates inter-satellite range-256 

rate data to mass concentration blocks (mascons) to estimate monthly gravity fields in terms of 257 

equal area 3° × 3° mass concentration functions in order to minimise measurement errors. 258 

Gridded mascon fields are provided at a spatial sampling of 0.5° in both latitude and longitude 259 

(~56 km at the equator). Similar to GRCTellus CSR product, dimensionless scaling factors are 260 

provided as 0.5° × 0.5° bins (Shamsudduha et al., 2017) that also derive from the Community 261 

Land Model (CLM4.0) (Wiese et al., 2016). The scaling factors are multiplicative coefficients 262 

that minimize the difference between the smoothed and unfiltered monthly ΔTWS variations 263 

from the CLM4.0 hydrology model (Wiese et al., 2016).  GRGS monthly GRACE products 264 

(version RL03-v1) are processed and made publicly available (http://grgs.obs-mip.fr/grace) by 265 

CNES (Shamsudduha et al., 2017). Further details on the Earth’s mean gravity-field models 266 

can be found on the CNES official website of GRGS/LAGEOS (http://grgs.obs-mip.fr/grace/). 267 

 268 

GRACE ΔTWS time-series data have some missing records as the satellites are switched off 269 

for conserving battery life (Shamsudduha et al., 2017); these missing records are linearly 270 

interpolated (Shamsudduha et al., 2012). Monthly ΔTWS time-series data as equivalent water 271 

depth (cm) are extracted from GRACE TWS datasets by creating a 200 km radial buffer (i.e. 272 

area equivalent of ~120 000 km2) around at two groundwater-level monitoring sites 273 

(Makutapora and Limpopo) and by the point of interest and taking the mean values aggregating 274 

the selected grid points.  275 

 276 

To derive ΔGWS from GRACE ΔTWS (eq. 1), we use simulated soil moisture to represent 277 

ΔSMS and surface runoff, as a proxy for ΔSWS (Mishra et al., 2016), from LSMs within 278 

NASA’s Global Land Data Assimilation System (GLDAS). GLDAS is an uncoupled land 279 

surface modelling system that includes multiple global LSMs driven by surface meteorology 280 

from the NCEP data assimilation system, CMAP disaggregated precipitation and the Air Force 281 

Weather Agency satellite-derived radiation fields (Rodell et al., 2004). We apply monthly 282 

ΔSMS and surface runoff data at a spatial resolution of 1° × 1° from 4 GLDAS LSMs: The 283 

Community Land Model (CLM, version 2) (Dai et al., 2003), NOAH (version 2.7.1) (Ek et al., 284 

http://grgs.obs-mip.fr/grace/
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2003), the Variable Infiltration Capacity (VIC) model (version 1.0) (Liang et al., 2003), and 285 

MOSAIC Mosaic (version 1.0) (Koster and Suarez, 1992). The respective total depths of 286 

modelled soil profiles are 3.4 m, 2.0 m, and 1.9 m and 3.5 m in CLM (10 vertical layers), 287 

NOAH (4 vertical layers), and VIC (3 vertical layers), and Mosaic (3 vertical layers) (Rodell 288 

et al., 2004). In the absence of in situ ΔSMS and ΔSWS data in the study areas, we apply an 289 

ensemble mean of the 4 LSMs-derived ΔSMS and ΔSWS data in order to disaggregate GRACE 290 

ΔTWS signals across our study regions, for the period August 2002 to July 2016, similar to the 291 

approach applied for other locations by Shamsudduha  et  al. (2012; 2017). To help 292 

interpretation of these mean ΔGWS signals we also present the total uncertainty in estimates 293 

of ΔGWS which result from the uncertainty in estimates of ΔTWS, ΔSMS and ΔSWS (blue 294 

shading in figure 5(c)). The uncertainty in these individual water balance components is shown 295 

in figure S2 i.e. the range in estimated GRACE ΔTWS across the three retrieval estimates, and 296 

the ranges in estimates ΔSMS and ΔSWS across the four LSMs. Overall, the total uncertainty 297 

in ΔGWS can be substantial and receives roughly equal contribution from uncertainty in ΔTWS 298 

and ΔSMS with uncertainty in ΔSWS important only occasionally. There is some indication 299 

that during the periods of greatest ΔGWS uncertainty, the ΔTWS uncertainty is most important 300 

e.g. 2009-10 and 2015-16 at Limpopo.  For further understanding of the uncertainty in the 301 

estimates water storage from LSMs with respect to GRACE readers are referred to Scanlon et 302 

al. (2018).  303 

 304 

S5. Groundwater storage estimates from piezometric observations 305 

 306 

Groundwater-level time series records were compiled in two areas situated at the heart of the 307 

two EASE/SA ENSO rainfall dipole centres of action (figure 1(a)). (i) The Makutapora 308 

wellfield (35.75°E, 5.90°S) site in central Tanzania, East Africa. Groundwater records were 309 

collated from the Ministry of Water and Irrigation and the Dodoma Urban Water Supply, 310 

Tanzania. Here, groundwater is abstracted from an aquifer comprising deeply weathered 311 

granite overlain by alluvium (Taylor et al., 2013). Data from three sites in the wellfield met the 312 

data quality criteria and are averaged together; mean groundwater-level time series records 313 

were converted to monthly anomalies in GWS using an in-situ derived Sy value of 0.06 (Taylor 314 

et al., 2013). We estimate that these data are representative of groundwater levels across an 315 

area of ~60 km2 (Taylor et al., 2013).  (ii) Limpopo Basin in Southern Africa (~28 to 32°E, 316 
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22.5 to 25°S). Groundwater-level records from 40 stations within weathered hard-rock 317 

(“basement”) aquifers in sub-basins A6 (Mogalakwena), A7 (Sand), A8 (Nzhelele) and A9 318 

(Luvuvhu) of the Limpopo Basin were collated from the Department of Water and Sanitation, 319 

Directorate Surface and Groundwater Information, South Africa. The data were first 320 

standardised then averaged together and represent an area estimated to be ~ 47 000 km2. For 321 

both sites daily to monthly groundwater-level records within our common study period of 322 

August 2002 to July 2016, were checked for consistency (missing data less than 10%) and 323 

selected for groundwater storage analysis. Mean groundwater-level time series records were 324 

converted to monthly anomalies in GWS using a Sy value that produced the lowest root-mean 325 

square error between in situ and GRACE GWS; the applied value (0.025) is consistent with 326 

that estimated for basement aquifers in Africa by MacDonald et al. (2012).  327 

 328 

We acknowledge that our estimates of GWS from piezometry may be influenced by 329 

abstractions and we provide data on pumping rates from Makutapora (figure 5(c)). A 330 

numerical method to remove the effects of pumping is currently the subject of ongoing 331 

research by the authors, so in this case we infer the effect of pumping on GWS only in only 332 

relative qualitative terms. Equivalent direct data on direct pumping rates is not available at 333 

Limpopo. However, we note that Cai et al. (2017) mapped the spatial extent of irrigation 334 

across the Limpopo basin in South African using satellite data and estimated that irrigation 335 

from groundwater provides about 50% of the irrigated areas over 2% of the land area, which 336 

likely influences groundwater storage locally.  337 

 338 
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 339 

Figure S1. (a) Climatological precipitation for the October-April season for the period of 1901-340 

2016 (mm month-1). Boxes in figure S1(a) show the EASE (small box) and SA (big box) 341 

domains used in the IAF analysis (see Section 2.1). The blue and red filled circles denote the 342 

piezometer observation locations at Makutapora, Tanzania and Limpopo, South Africa, 343 

respectively. (b) Leading mode of interannual October-April variability calculated using the 344 

empirical orthogonal function (EOF) analysis of de-trended rainfall of GPCC. (c) Correlation 345 

between coefficients of EOF1 (figure S1(b)) and global SST (October-April mean) 1901-2016. 346 

(d) SST anomalies (K) October-April 2015-16 347 

 348 
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 350 

Figure S2: Time series of monthly estimates of anomalies in the individual components of 351 

water balance (lines) and the associated uncertainty range (shaded). From top to bottom TWS 352 

from GRACE; SMS and SWS both from LSMs; the residual GWS; observed GPCP rainfall, 353 

(all in cm) at (a) Limpopo (b) Makutapora.  354 

  355 
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