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Abstract. Floods are the product of complex interactions among processes including precipitation, soil moisture, and 

watershed morphology. Conventional flood frequency analysis (FFA) methods such as design storms and discharge-based 10 

statistical methods offer few insights into these process interactions and how they “shape” the probability distributions of 

floods. Understanding and projecting flood frequency in conditions of nonstationary hydroclimate and land use requires deeper 

understanding of these processes, some or all of which may be changing in ways that will be undersampled in observational 

records. This study presents an alternative “process-based” FFA approach that uses stochastic storm transposition to generate 

large numbers of realistic rainstorm “scenarios” based on relatively short rainfall remote sensing records. Long-term 15 

continuous hydrologic model simulations are used to derive seasonally varying distributions of watershed antecedent 

conditions. We couple rainstorm scenarios with seasonally appropriate antecedent conditions to simulate flood frequency. The 

methodology is applied to the 4002 km2 Turkey River watershed in the Midwestern United States, which is undergoing 

significant climatic and hydrologic change. We show that using only 15 years of rainfall records, our methodology can produce 

accurate estimates of “present-day” flood frequency. We found that shifts in the seasonality of soil moisture, snow, and extreme 20 

rainfall in Turkey River exert important controls on flood frequency. We also demonstrate that process-based techniques may 

be prone to errors due to inadequate representation of specific seasonal processes within hydrologic models. If such mistakes 

are avoided, however, process-based approaches can provide a useful pathway toward understanding current and future flood 

frequency in nonstationary conditions and thus be valuable for supplementing existing FFA practices. 

1 Introduction 25 

Riverine floods, among the most common natural disasters worldwide, are the product of complex interactions between heavy 

rainfall, watershed and river channel morphology, and antecedent (i.e. initial) conditions including soil moisture and snowpack. 

Their impacts are projected to increase in the future due to hydrometeorological factors (e.g. Hyndman, 2014) and increased 

human development in flood prone areas (e.g. Ntelekos et al., 2010; Ceola et al., 2014; Prosdocimi et al., 2015). Estimating 

the relationships between flood likelihood and severity is central to flood risk management and infrastructure design; these 30 
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relationships are typically represented by flood frequency distributions (or curves), while the broad family of procedures used 

to derive them is termed flood frequency analysis (FFA). Most existing FFA methods belong to one of three approaches: 

statistical analysis of streamflow observations, design storms, and continuous simulation or other so-called “derived” or 

“process-based” methods. Each has strengths and shortcomings, which are briefly summarized in  Sect. 2 (see Wright et al., 

2014a for a distinct summary).   5 

FFA is challenging even in stationary (i.e. unchanging) watershed and hydroclimatic conditions due to the scarcity of 

observations of large floods and the associated factors that generate them (Stedinger and Griffis, 2011). The role of soil 

moisture in flood frequency, for example, is very important (Berghuijs et al., 2016), but poorly understood due to a lack of 

long-term observations. Furthermore, the individual and joint flood causative factors will evolve as a watershed undergoes 

changes in land use or hydroclimate (Machado et al., 2015). Leading causes of change (i.e. nonstationarity) include human 10 

intervention through land use change or reservoir construction (Konrad and Booth, 2002; Schilling and Libra, 2003; Villarini 

et al., 2009), natural climate variability (Enfield et al., 2001; Jain and Lall, 2000) and anthropogenic climate change driven by 

increasing greenhouse gas concentrations (Milly et al., 2008; Hirsch and Ryberg, 2012). Combinations of these will lead to 

nonstationary flood frequency, a challenge for which the bulk of existing FFA methods are ill-suited (El Adlouni et al., 2007; 

Gilroy and McCuen, 2012).  15 

In this study, we present an alternative FFA methodology that aims to “construct” the flood frequency curve through a 

combination of observations, stochastic methods, and hydrologic modeling that generates and combines the causative factors 

(i.e. processes) such as rainfall and soil moisture that produce floods. This concept is not new, and has traditionally be called 

“derived FFA” (e.g. Eagleson, 1972; Franchini et al., 2005; Haberlandt, 2008), though we prefer the more descriptive term 

“process-based FFA” (after Sivapalan and Samuel, 2009; see Clark et al., 2015a, 2015b and Lamb et al., 2016; who discuss 20 

somewhat similar techniques). Sivapalan and Samuel (2009) argue in favor of process-based approaches in the face of 

nonstationary conditions, though they do not actually lay out a specific FFA procedure. 

We present such a process-based procedure, and apply it to an agricultural watershed in the Midwestern United States that is 

undergoing substantial seasonal hydroclimatic and hydrologic changes that have led to nonstationary flood frequency. We 

show that this procedure is useful for deciphering the underlying physical processes that drive flooding, as well as  their 25 

changes in this watershed. Our methodology underscores the importance of seasonality in the joint contributions of rainfall, 

soil moisture, and snow to flood frequency. To our knowledge, this study is the first to explore the role that seasonal changes 

in hydroclimatic and hydrologic processes play in nonstationary flood frequency, though other studies have explored the 

importance of such processes in flood occurrence more generally (e.g. Berghuijs et al., 2016).  

The structure of the paper is as follows: Section 2 briefly reviews the three aforementioned FFA approaches. Section 3 30 

introduces the study region, watershed, and hydrometeorological data. Section 4 outlines the process-based FFA methodology 

used in this study, including the hydrologic model, the stochastic storm transposition (SST) procedure used to derive the 

synthetic rainfall scenarios, and elements of both continuous and event-based rainfall-runoff simulation. The nonstationary 

hydroclimate of the study watershed and trends in relevant hydrometeorological variables are analyzed in Sect. 5.1. Model 
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validation is presented in Sect. 5.1. Process-based FFA results are presented and compared with “conventional” statistical 

estimates in Sect. 5.3. Simulated flood seasonality is explored in Sect. 5.4. The relationships between rainfall and simulated 

peak discharge quantiles are examined in Sect. 5.5. Section 6 includes a summary and concluding remarks. 

2 Review of FFA Approaches 

2.1 Discharge-based Statistical Approaches 5 

Statistical FFA approaches involve fitting a statistical distribution to extreme discharge observations and extrapolating this 

distribution to estimate quantiles such as the 100-year or 500-year discharge. While these approaches utilize direct observations 

of flooding (e.g. peak discharge or volume), long streamflow records at or near the given river cross section are needed for 

reliable quantile estimates. Such records are lacking in many locations, even in developed countries. Statistical approaches are 

limited by the available observations; thus, the estimation distribution may not represent the “true” (unknown) distribution of 10 

possible outcomes (Linsley, 1986; Klemeš, 1986, 2000a, 2000b). In principle, regionalized  FFA methods are able to improve 

quantile estimates both at gaged and ungauged locations (Dawdy et al., 2012); they make assumptions, however, regarding the 

transferability of regional information to specific locations and in doing so may neglect key geophysical processes that 

dominate the spatiotemporal variability of floods (Ayalew and Krajewski, 2017).  

Though streamflow observations are the result of a range of complex factors including rainfall, soil moisture, and channel 15 

routing, without concurrent observations of these “upstream” variables, neither streamflow observations nor distributions fitted 

to them provide much insight into flood causes. Long-term records of such variables, particularly soil moisture, are virtually 

nonexistent. There have been numerous examples within the FFA literature pointing to situations in which discharge-based 

analyses can be inferior to those based on hydrologic modeling, including cases of basin storage “discontinuities” (Rogger et 

al., 2012), reservoirs (Ayalew et al., 2013), and land use change (Cunha et al., 2011).  20 

Finally, most statistical FFA methods assume that the magnitude of extreme flood events and quantiles are stationary. This 

assumption conflicts with numerous examples in which hydrological records exhibit various types of nonstationarity (e.g. 

Potter, 1976; Villarini et al., 2009; Douglas et al., 2000; Franks and Kuczera, 2002). Though nonstationary statistical FFA 

techniques do exist (e.g. Cheng et al., 2014; Gilleland and Katz, 2016; Serago and Vogel, 2018), they face severe limitations 

extrapolating to future conditions (Luke et al., 2017; Sivapalan and Samuel, 2009; Stedinger and Griffis, 2011) since they 25 

rarely consider the fundamental physical causes of change. 

2.2 Design Storm Approaches 

Design storm (DS) approaches use idealized rainfall scenarios of a given return period as inputs to a hydrologic model to 

simulate flood peaks. DS is widely used in practice due to its simplicity (Cudworth, 1989; Kjeldsen, 2007; Ball et al., 2016). 

To some extent, the flood-producing physical processes are captured via the hydrologic model, which also provides a complete 30 

simulated flood hydrograph, as opposed to only the peak discharge or volume provided by statistical approaches. However, 
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DS approaches rely on at least three major assumptions: (1) point-based rainfall intensity-duration-frequency (IDF) estimates 

(which are subject to some of the same aforementioned statistical and data availability issues as flood discharges) can be 

converted into hyetographs using dimensionless temporal rainfall distributions and into basin-averaged estimates using area 

reduction factors (e.g. Svensson and Jones, 2010); (2) IDF estimates, based on annual rainfall maxima, produce flood peaks 

which are quantiles of the distributions of flood annual maxima; and (3) there is a 1:1 equivalence between rainfall and 5 

simulated discharge quantiles (i.e. return periods or recurrence intervals), for example, a 100-year idealized rainfall event will 

produce a reasonable estimate of the 100-year peak discharge. The last of these assumptions discounts the possibility that 

watershed initial conditions such as soil moisture and snowpack can modulate the transformation of rainfall quantiles into 

discharge quantiles.  

These assumptions are not without their shortcomings. Wright et al. (2014b), for example, showed significant disparities 10 

between observed point and basin-averaged rainfall extremes that cannot be captured using conventional ARF concepts. Using  

design storm in conjunction with a derived distribution approach, Viglione and Blöschl (2009) and Vigligone et al. (2009) 

demonstrated that the ratio of rainfall return period to flood peak return period is controlled by storm duration, a runoff 

coefficient (which is related to antecedent conditions), and a runoff threshold effect. Antecedent conditions can vary 

substantially by season, meaning that high soil moisture may only infrequently coincide with extreme rainfall. Wright et al. 15 

(2014a) discusses additional design storm shortcomings in greater detail, including time of concentration concepts, while also 

pointing out that design storm approaches (like other hydrologic model-based FFA) can incorporate future projections in land 

use and rainfall more explicitly than can statistical discharge-based methods. 

2.3 Continuous Simulation and Process-Based FFA Approaches 

Continuous simulation (CS) and process-based approaches to FFA leverage the potential benefits of hydrologic models while 20 

minimizing the simplifying assumptions of DS methods. CS approaches typically use long series of historical or stochastically 

generated rainfall, temperature, and occasionally other meteorological variables as model inputs, to simulate long discharge 

time series. Peak flows can be extracted from these series and the flood frequency distribution can be obtained. Thus, event 

rainfall return period and duration and antecedent conditions do not need to be specified and the equality between rainfall and 

discharge return period is not assumed (Calver et al., 1999, 2009). In addition, projections of future flood frequency can be 25 

developed by incorporating general circulation model (GCM) rainfall and temperature projections into the input meteorological 

series (Gilroy and McCuen, 2012; Rashid et al., 2017). On the other hand, CS approaches are limited by the general lack of 

reliable long-term time series of extreme rainfall and other meteorological data (Blazkova and Beven, 1997, 2002, 2009) and, 

in the case of sophisticated distributed approaches, by potentially high computational demands (Li et al., 2014; Peleg et al., 

2017). Stochastic rainfall generation techniques typically struggle to produce the extremes that are critical for flooding (e.g. 30 

Cameron et al., 2000; Furrer and Katz, 2008), and training such models for locations with rainfall nonstationarities and strong 

seasonal variations is nontrivial. Camici et al., (2011) and Li et al. (2014) present process-based FFA approaches that couple 

long CS simulation results with event-based simulations.  
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One argument in favor of CS and process-based approaches is that the complex joint relationships between flood drivers such 

as rainfall and soil moisture are resolved within the modeling framework and thus do not rely on users’ assumptions. We 

demonstrate that caution is needed in the representation of seasonality; to briefly summarize, it is critical that both seasonality 

in input variables as well as seasonally varying processes within the model be “correct.” Without verifying this, process-based 

approaches may produce  seemingly correct results as a result of incorrect methods. 5 

3 Study Region and Data 

The study watershed of Turkey River is situated in northeastern Iowa (Fig. 1a, 1b). The portion upstream of the US Geological 

Survey (USGS) stream gage at Garber (gage number 05412500) has a drainage area of 4002 km2,  with elevations ranging 

from approximately 426 m above sea level (masl) in the west to 197 masl at the stream gage (Fig. 1c). Streams in the upper 

part of the catchment have relatively mild slopes, while the channels and hillslopes in the lower part are steeper. Soils are 10 

mainly loams and silts (IFC, 2014). According to USGS 2012 National Land Cover Dataset (NLCD), the Turkey River 

watershed is predominantly agricultural, with less than 2% urban land cover (Fig. 1d). Comparisons of NLCD from 1992, 

2001, 2006, and 2012 indicate that land uses have not evolved significantly over time (results not shown), though the 

hydrologic impacts of subsurface tile drainage, which has become ubiquitous throughout the region, are poorly understood 

and could exert meaningful influence on flooding (see, e.g. Schilling et al., 2014).  15 
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Figure 1. Study region. (a) Conterminous United States with the state of Iowa highlighted in grey. (b) Zoomed-in map showing Iowa (black 
outline) and the Turkey River watershed (red) and the extent of the stochastic storm transposition region (blue dash line). (c, d) Turkey River 
watershed showing land surface elevation (based on the USGS National Elevation Dataset) and land use (based on the USGS 2012 NLCD), 
respectively. 5 

We use daily discharge observations for 84 years (1933-2016) from the USGS streamgage at Garber to understand the 

hydroclimatology of flooding and to validate our FFA results. Daily discharge observations for 69 years (1948-2016), in 

conjunction with Global Historical Climate Network (GHCN) daily temperature and snow data are used to configure, calibrate, 

and validate the hydrologic model, as described in Sect. 4.1. CPC US Unified (CPC-Unified; Chen et al., 2008) and Stage IV 

(Lin and Mitchell, 2005) precipitation data, available through the National Oceanic and Atmospheric Administration, are used 10 

for rainfall analyses. CPC-Unified provides daily, 0.25º rainfall estimates interpolated from rain gage observations, while Stage 

IV provides hourly, approximately 4 km  estimates by merging data from rain gages and the National Weather Service Next-

Generation Radar network (NEXRAD; Crum and Alberty, 1993). Analyses based on Stage IV use data from 2002-2016, while 

long-term analyses based on CPC-Unified use data from 1948-2016. 
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4 Methodology 

The FFA approach presented in this study combines continuous simulation (CS), stochastic storm transposition (SST) using 

the RainyDay software, and event-based simulation. CS provides large samples of seasonally varying antecedent conditions, 

namely soil moisture and snowpack. SST produces large numbers of synthetic rainfall scenarios. Together, these drive event-

based simulations to generate the synthetic flood peaks that are used to derive flood frequency distributions. The approach is 5 

illustrated schematically in Fig. 2 and summarized in the following subsections. 
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Figure 2. Flow chart showing the process-based FFA approach. Dotted outlines delineate components associated with subsections 4.1, 4.2 
and 4.3. 

4.1 Hydrologic Model, Calibration, and Continuous Simulation 

We used the lumped Hydrologiska Byråns Vattenavdelning (HBV) model (Bergström, 1992, 1995; Lindström et al., 1997). 

HBV has been widely used to study hydrologic response in United States (Vis et al., 2015; Niemeyer et al., 2017) and other 5 

regions of the world (Harlin and Kung, 1992; Osuch et al., 2015; Seibert, 2003; Chen et al., 2012). The “HBV-Light” version 

(henceforth referred to as HBV; Seibert and Vis, 2012) used in this study consists of four main routines: snowpack, soil 

moisture, catchment response, and runoff routine. HBV simulates daily discharges based on time series of precipitation and 

air temperature, as well as estimates of long-term daily potential evapotranspiration. A list of model parameters is shown in 

Table 1. 10 

The process-based FFA methodology employed in this study could be coupled with other hydrologic models. A distributed 

model would allow for more realistic representation of important characteristics like changing land use, rainfall spatiotemporal 

structure, and flood wave attenuation in river channels, and could operate at higher (i.e. subdaily) temporal resolution. We 

selected HBV at the daily time step due to its simplicity, computational speed, and its ability to represent multiple watershed 

hydrological processes. 15 

We calibrated separate HBV models using both CPC and Stage IV rainfall. Most parameter values were the same for CPC- 

and Stage IV-based models except for three snow routine parameters (TT, CFMAX, SFCF) and three recession coefficients 

(K0, K1, K2), allowing for the variability of model parameters for different climate conditions.  For each model setup, we first 

calibrated the model with snowpack routine “turned off” (by setting TT parameter to a very low value) to obtain parameters 

that can simulate summer floods adequately. Then, keeping these optimized non-snow routine parameters unchanged, we 20 

calibrated the snow routine parameters.  

To determine the optimized model parameter sets in each procedures, we followed the Genetic Algorithm and Powell (GAP) 

optimization method as presented by Seibert (2000),  which is briefly summarized here. First, 5000 parameter sets are randomly 

generated from a uniform distribution of the values of each parameter (Table 1), which were then applied to the HBV model 

in order to maximize Kling Gupta Efficiency (Gupta et al., 2009) of simulated daily discharge. After the GAP has finished, 25 

the optimized parameter set were fine-tuned using Powell’s quadratic convergent method (Press, 1996) with 1000 additional 

runs. Lastly, the optimized parameter set was manually adjusted to improve the fits between observed and simulated annual 

peak flow (see Lamb, 1999). More elaborate calibration and uncertainty estimation procedures such as Generalized Likelihood 

Uncertainty Estimation (GLUE; Beven and Binley, 1992; Beven, 1993; Beven and Binley, 2014) could be used, but are outside 

the scope of our study.  30 

The two different HBV models were then used to perform CS with historical CPC and Stage IV rainfall and temperature data 

to derive long-term simulated soil moisture and snowpack values, which are usually difficult to obtain via measurement. We 
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“pair” samples of these initial conditions with synthetic rainfall events to simulate hypothetical floods, as described in Sect. 

4.2 and Sect. 4.3.  

Table 1. Overview of HBV model parameters and upper and lower parameter limits used for calibration. 

Parameter Description Units Min value Max value 

Snow Routine 

TT Threshold temperature for liquid and solid precipitation °C -3 3 

CFMAX Degree-day factor mm d��°C�� 0.5 4 

SFCF Snowfall correction factor - 0.5 1.2 

CFR Refreezing coefficient - 0.01 0.1 

CWH Water holding capacity of the snow storage - 0.1 0.3 

Soil Moisture Routine 

FC Maximum soil moisture storage (field capacity) mm 100 550 

LP Relative soil water storage below which AET is reduced linearly - 0.3 1 

BETA Exponential factor for runoff generation - 1 5 

Response Routine 

PERC Maximum percolation from upper to lower groundwater box mm d�� 0 10 

UZL Threshold of upper groundwater box mm 0 50 

K0 Recession coefficient 0 d�� 0.5 0.9 

K1 Recession coefficient 1 d�� 0.15 0.5 

K2 Recession coefficient 2 d�� 0.01 0.15 

Routing Routine 

MAXBAS Length of triangular weighting function d 1 2.5 

4.2 Stochastic Storm Transposition 

Stochastic storm transposition (SST) is a bootstrap method to generate realistic probabilistic rainfall scenarios through 5 

temporal resampling and spatial transposing of observed storms from the surrounding region. SST effectively “lengthens” the 

rainfall record via “space-for-time substitution.” Unlike rainfall IDF curves, SST can preserve observed rainfall space-time 

structure, and, unlike design storm methods, obviates the need to equate rainfall duration to catchment response time (Wright 

et al., 2013, 2014a, 2014b). Alexander (1963), Foufoula-Georgiou (1989), and Fontaine and Potter (1989) provide general 

descriptions of SST. Wilson and Foufoula-Georgiou (1990) apply the method for regional rainfall frequency analysis while 10 

Gupta (1972), Franchini et al. (1996), England et al. (2014) and Nathan et al. (2016) use it for FFA.  

Wright et al. (2013) used SST with a 10-year high-resolution radar rainfall dataset to estimate spatial IDF relationships. Wright 

et al. (2014a) used this approach with a physics-based distributed hydrologic model for FFA in a heavily urbanized watershed, 

demonstrating its usefulness in evaluating multi-scale flood response.  



11 
 

RainyDay is an open-source, Python-based SST software that couples SST methods with rainfall remote sensing data. A more 

detailed description can be found in Wright et al. (2017); not all of its features are used in this study. The following steps 

describe how RainyDay is used here: 

1. We define a 6-degree (longitude) by 4-degree (latitude) geographic transposition domain (40° to 44° N, 90° to 96° W; 

blue dash line of Fig. 1 inset) which encompasses the Turkey River watershed. This same domain was used in Wright et 5 

al (2017) and, importantly for the SST approach, extreme rainfall properties are roughly homogeneous within it. 

2. The RainyDay software creates a “storm catalog” from 15 years of Stage IV (69 years of CPC) precipitation data that 

consists of the 450 (2070) most intense precipitation event within the transposition domain. These intense storms are in 

terms of 96-hour rainfall accumulation and have the same size, shape, and orientation of the Turkey River watershed, 

which is oriented roughly northwest-southeast and with an area of 4002 km2. In order to avoid overlapping storms, these 10 

selected events must be separated by at least 24 hours. Storms that exhibit “radar artifacts” such as major bright band 

contamination or beam blockage are excluded from subsequent steps. 

3. The RainyDay software generates a Poisson-distributed integer k that represents a “number of storms per year.” The rate 

parameter λ of this Poisson distribution is calculated by dividing the total number of rainfall events in the storm catalog 

by the number of years in the historical rainfall record (�. 
. � = 450/15 = 30.0 storms per year).  15 

4. RainyDay randomly selects k storms from the storm catalog and transposes the associated rainfall fields within the 

transposition domain by an east-west distance ∆� and a north-south distance ∆�, where ∆� and ∆� are drawn from a two-

dimensional Gaussian kernel density estimate based on the locations of the original storms in the storm catalog. For each 

of the k transposed storms, the time series of rainfall over the Turkey River watershed is computed. It must be noted that 

some of the k transposed storms may not “hit” Turkey River watershed, and thus their calculated watershed rainfall are 20 

zero. Steps 3 and 4 can be understood as temporal resampling of observed rainfall events to “synthesize” a hypothetical 

year of rainfall events over the transposition domain and, by extension, over the watershed. Although the rainfall events 

for the “synthetic” year do not form a continuous series, the dates associated with each observed storm event are recorded, 

thus facilitating seasonally-consistent flood simulations.  

5. All k events within a synthetic year are assigned a new, randomly selected year from 1948-2016 (2002-2016) for CPC 25 

(Stage IV) rainfall data which used to select antecedent conditions. This ensures that the k rainfall events are all 

“embedded” within a single realistic annual representation of watershed conditions. This ensures that “wet” and “dry” 

years in terms of snowpack and soil moisture can potentially produce wet or dry years of flood response. Antecedent 

conditions are randomly selected from within seven days of the updated storm date to ensure realistic seasonality of storms 

and watershed conditions. A storm that occurred on 15 July, 2016, for example, could be paired with initial conditions 30 

selected from a date ranging between 8-22 July from a randomly selected year, while the remaining k-1 events would be 

paired with seasonally appropriate initial conditions from the same selected year. 

6. RainyDay repeats Steps 3-5 500 times to create one realization of 500 synthetic years of rainfall events for Turkey River. 

Twenty such realizations of 500 synthetic years each are generated. Unlike in the existing version of RainyDay, all rainfall 
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events within a synthetic year are retained for subsequent event-based flood simulations, since the modulating effects of 

antecedent conditions mean that the largest rainfall event in a given year does not necessarily produce that year’s largest 

flood peak (this is explored in Sect. 5.4). 

4.3 Event-Based Flood Simulation  

Using the seasonally-consistent “paired” watershed initial conditions derived from CS (Sect. 4.1) and SST-based rainfall events 5 

(Sect. 4.2), HBV simulates the “event peak” (the maxima daily discharge). The largest peak among the k events that comprise 

a synthetic year represents the simulated annual maximum daily streamflow. This process is repeated for all 500 synthetic 

years within each realization, resulting in 500 annual maximum streamflow values, which are then ranked in descending 

magnitude. The annual exceedance probability ��  (i.e. the probability in a given year that an event of equal or greater 

magnitude will occur) of each maximum streamflow are calculated by dividing its rank by 500 (the total number of simulated 10 

annual maximum daily streamflow). The twenty realizations provide estimates of variability for each flood quantile. 

5. Results 

5.1 Hydroclimatology and Nonstationarity 

Four distinct time periods (Fig. 3a) are considered for analyzing the changing hydroclimatology in Turkey River: the USGS 

daily mean streamflow period of record (1933-2016), a more recent period of apparent elevated flood activity (1990-2016), 15 

the period of the Stage IV rainfall record (2002-2016), and the period of the CPC rainfall record (1948-2016). Results here 

and in subsequent subsections “align” with one or more of these time periods.  

The hydroclimate of Turkey River is changing, as shown using the Mann-Kendall (MK) test for monotonic trends (Mann, 

1945), a nonparametric method used to determine trend direction and significance (Table 2). Since 1948, annual precipitation 

and discharge show significant increases (p<0.05) and their variability has also increased, while annual maximum daily 20 

discharge has decreased, though not significantly. It is important to note, however, that there are two counteracting seasonal 

trends (see also Fig. 3a): annual daily discharge maxima have decreased significantly in March-April, but  have increased 

somewhat in May-September. Thus, the lack of statistically significant change in annual maximum daily discharge in Turkey 

River masks changes in the seasonality of flooding. 

 25 
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Table 2. Mann-Kendall trend test (two sided) for hydrological variables. p-values are given in parentheses; bolded values are significant at 
the 5% level. Analyses of trends in variances examine changes in the absolute values of residuals obtained from a linear regression using the 
Thiel-Sen estimator (Sen, 1968). 

Data Time Range Trend 

Annual Discharge 1933-2016 ↑ (0.001) 

Annual Max. Daily Discharge 1933-2016 ↓ (0.447) 

Variance of Annual Max. Daily Discharge 1933-2016 ↑ (0.056) 

Annual Max. Daily Discharge in March-April  1933-2016 ↓ (0.002) 

Annual Max. Daily Discharge in May-September 1933-2016 ↑ (0.089) 

Annual Precipitation 1948-2016 ↑ (0.003) 

Annual Max. Daily Precipitation 1948-2016 ↑ (0.362) 

Annual Max. 4-day Precipitation 1948-2016 ↑ (0.419) 

Annual Mean Temperature 1948-2016 ↓ (0.462) 

March-May Mean Temperature 1948-2016 ↑ (0.443) 

We examine this flood seasonality, both in observations and in our continuous HBV simulations (Fig. 3b). The seasonal 

distribution of flood occurrence for 1948-2016 shows a March-April maximum, with elevated flood activity continuing through 5 

May and June. This is distinct from, though overlaps somewhat with the seasonality of both the four-day annual maxima of 

rainfall, which occur most frequently in the June-September period, and simulated daily annual maxima soil moisture, which 

only tend to occur in March-April. These results highlight that flood activity is the product of seasonal variations in both soil 

moisture and rainfall. (Four-day rainfall shown in Fig. 3b since it is used in SST; seasonality in one-day rainfall is similar; 

results not shown). 10 

The March-April peak of flood occurrence corresponds with relatively high soil moisture associated with snowmelt, rain on 

or frozen soil, and frequent spring rains. The secondary peak of flood occurrence in May-June is associated with larger flood 

magnitudes (including the flood of record, in 2004) due to organized thunderstorm systems. Widespread flooding in Iowa in 

June 2008 showed that such thunderstorm systems make critical contributions to the upper tail of flood peak distributions in 

the region (Smith et al., 2013). Although the frequent August-September heavy rainfall events evident in Fig. 3b have not 15 

triggered any recorded annual flood peaks in Turkey River, our process-based FFA demonstrates that they may still relevant 

to current and future flood frequency, as shown in Sect. 5.4.  

The largest annual maxima (over 800 m3 s-1) occur in May-July (Fig. 3c), consistent with the broader climatology of flooding 

in Iowa (Smith et al., 2013; Villarini et al., 2011). Furthermore, both the seasonality and magnitude of flood peaks have shifted 

since approximately 1990 (Fig. 3a, 3c), with March-April (May-September) floods decreasing (increasing) in magnitude, 20 

leading to a shift in the seasonality of the overall distribution of annual maxima daily streamflow from a high in March prior 

to 1990 to a prolonged high from April to June post-1990. Although the small sample size of the annual maxima daily discharge 

during this elevated 1990-2016 late-spring and summertime flood period may affect the reliability of the derived distribution 

of flood occurrence, Park and Markus (2014) also reported a significant shift toward summertime flooding in the nearby 
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Pecatonica River. Statistically based FFA (including nonstationary methods) based on annual maxima discharges may fail to 

capture the impact of this shifting seasonality on flood frequency. 

 

Figure 3. (a) Linear trends for two groups of annual maxima daily discharge: March-April floods (blue) and May-September floods (red) 
using the nonparametric Thiel-Sen estimator (Sen, 1968). The October-February maxima daily discharge are in black dots and its trend line 5 
is not calculated because only nine annual maxima occur during this period. The four critical time ranges are shown in black lines. (b) 
Occurrence densities of the date during the year for the observed annual daily maxima discharge, observed annual 4-day maxima 
precipitation, and simulated annual daily maxima soil moisture in Turkey River watershed from 1948 to 2016. (c) The magnitude and date 
during the year for annual flood peaks (black dots)and sample probability density functions (PDFs) for flood in different periods (1933-
1989, 1990-2016). In this study, all probability densities for occurrence date are estimated using Gaussian kernel smoothing. 10 

 

5.2 Model Validation 

We validated the performance of continuous HBV simulations with respect to flood seasonality, frequency of annual daily 

discharge maxima, and normalized peak flow (i.e. the simulated or observed daily discharge divided by the 2-year flood), 

using both Stage IV and CPC as precipitation inputs (Fig. 4). We also validated two model structures: one with and the other 15 
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without the HBV snowpack module. The purpose for this latter validation effort is to highlight the importance of proper process 

representation (and subsequent validation) in process-based FFA. 

Simulated flood seasonality varies substantially during the CPC period of record (1948-2016) depending on the inclusion of 

the snowpack routine (Fig. 4a). Differences are less for the Stage IV period of record (2002-2016), due to the decreasing role 

of snowpack in deriving the floods in recent years (Fig. 4b). In both cases, the seasonality of flooding simulated using HBV is 5 

improved with the inclusion of the snowpack module, with a higher (lower) frequency of springtime (summertime) floods 

which more closely resembles observations. Empirical (i.e. plotting position-based) distributions for the simulated annual daily 

discharge maxima are mostly within the 90% confidence interval (obtained by nonparametric bootstrap) of the observations 

(Fig. 4c, 4d). CPC-based simulation results differ considerably depending on the inclusion of the snowpack module for more 

common events, but differences in simulated maxima vanish as flood magnitude increases (e.g. AEP<0.1). This is because the 10 

most extreme flood events occur later in the season and are thus independent of snowpack or snowmelt processes. Differences 

are generally negligible between Stage IV-based simulations with and without snowpack, since floods in this more recent 

period are generally driven by summertime thunderstorms. These findings are consistent with the general understanding of the 

regional seasonality of flooding in the region, as discussed in Sect. 5.1. 

We compared all simulated and observed flood peaks that can be associated with a USGS observed daily streamflow value 15 

that is at least three times the mean annual daily discharge (Fig. 4e, 4f). When associating simulated and observed flood peaks, 

we look within a 2-day window to allow for modest errors in simulated flood peak timing. All peaks in Figs. 4e and 4f are 

normalized by the median annual (i.e. 2-year) flood, which, as a rule of thumb, can be considered as the “within bank” 

threshold. Again, HBV with the snowpack routine outperforms the model without it, especially for the small to modest flood 

events in CPC-based simulations. The model without snowpack underestimates small to modest flood events in two cases due 20 

to the neglect of potential snowmelt contributions. While modest scatter exists in the Stage IV-based simulated peaks, there is 

no obvious systematic bias with event magnitude when the snowmelt routine is included. The good performance of the Stage 

IV simulations suggests that, when focusing on the recent period of elevated flood activity, Stage IV may be a more suitable 

rainfall input than CPC-Unified. In addition, CPC rainfall is known to contain errors in the extreme tail, due to gage 

“undercatch”, insufficient gage density to properly sample convective rain cells, and spatial averaging of such cells over large 25 

areas, which effectively reduces peak rainfall depths. 
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Figure 4. HBV model validation for flood seasonality (a, b), frequency of annual max. daily discharge (c, d) and normalized peak flow (e, 

f) for CPC and Stage IV-based continuous simulations. Model validation is performed for HBV simulations with and without using CPC for 
1948-2016 (panels a, c, e) and Stage IV for 2002-2016 (panels, b, d, f).  The 90% confidence intervals for the empirical distributions of 
observed maximum daily discharges (c, d) are derived using nonparametric bootstrapping. Flood peak discharge in (e) and (f) is defined as 5 
a data point with USGS observed value that is at least three times the average observations. Peak discharges are normalized by the median 
of annual daily discharge maxima (i.e. the 2-year flood). Straight solid black lines indicate 1:1 correspondence, while dashed lines denote 
an envelope within which the modeled values are within 50% of observed. 
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We also validate HBV’s snowpack routine using observed GHCN daily snow depth for two simulation periods (Fig. 5a, 5b) 

and using USGS daily streamflow observations for Stage IV-based period (Fig. 5c). Because of their differing spatial 

resolutions and physical representations, point-scale GHCN daily snow depths cannot be directly compared to the watershed-

scale snow water equivalent simulated by HBV. Instead, we validate snowpack simulations in terms of the snowpack 

occurrence, defined as the number of nonzero snowpack on a particular date divided by the total number of years in the 5 

historical or simulated record. For example, there are 50 days in the GHCN observations when snowpack is present on January 

1st in the 69-year period from 1948-2016, thus the occurrence rate is 0.72 (50 divided by 69). The HBV model with the 

snowpack routine captures the central tendency of observed snowpack dynamics, showing that snowpack frequently exists 

from early November to mid-February, with frequency of snow decreasing from late February until disappearing in early April.     

 10 

Figure 5. Percentage of days with nonzero snowpack present in observations and simulations (a, b) and hydrograph validation for Stage IV-
based simulation (c). For each day within a year, the percent with nonzero snowpack is calculated as the ratio of the number of years in 
which snowpack is present on that day to the total years (69 years for CPC and 15 years for Stage IV). Observed and simulated hydrographs 
are normalized by the median annual flood, which is indicated by the dashed blue line.  

Model hydrograph validation is provided in Fig. 5c for the Stage IV period (2002-2016), when major flooding occurred 15 

throughout Iowa. Model performance shows no obvious evidence of systematic bias in the streamflow simulations (see also 

Fig. 4f). Although flood seasonality derived from Stage IV-based simulation differs slightly from observations (see also Fig. 

4a), these mismatches are associated with flood events smaller than the median annual flood (blue dash line in Fig. 5c). Stage 
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IV-based simulations do not show bias flood magnitude in late summer. In other words, remaining biases in terms of flood 

seasonality generally correspond with frequent, small-magnitude events that are typically of less interest in FFA. We therefore 

conclude that the HBV model with snowpack is generally suitable for subsequent process-based FFA.       

 

 5 

5.3 Flood Frequency Analyses  

RainyDay-based flood frequency distributions for Turkey River at Garber using both Stage IV and CPC precipitation are 

compared with the distribution based on statistical analyses of discharge observations using 1933-2016 USGS annual maxima 

daily streamflows (Fig. 6). The latter is estimated using the HEC-SSP software (Bartles et al., 2016), which implements 

methods from Bulletin 17B (Interagency Advisory Committee on Water Data, 1982) using “station skew” to fit the log-Pearson 10 

Type III distribution. Observed annual daily streamflow maxima from 1933 to 2016 are also shown, where plotting position 

(��) is estimated using the Cunnane plotting position (Cunnane, 1978). As mentioned above, different HBV parameters are 

used for the Stage IV and CPC-based simulations; this is necessary due to the differing time periods and error properties of 

these two precipitation datasets.  

The Stage IV-based flood frequency curve agrees reasonably well with the Bulletin 17B results for �� > 0.3 (left panel of Fig. 15 

6), but yields higher estimates for rarer events. The CPC-based curve, on the other hand, matches closely with Bulletin 17B. 

The Stage IV analyses use shorter but more recent (2002-2016) meteorological and hydrological records than the other 

frequency curves. When streamflow observations are divided into two groups (1933-1989 and 1990-2016), it becomes clear 

that the recent peak flood observations align well with the Stage IV-based SST results (right panel of Fig. 6). This, along with 

the increasing trend of annual mean precipitation and discharge shown in the previous subsection, suggests that, despite the 20 

relatively short (15-year) rainfall record used, Stage IV- driven process-based FFA adequately reflects flood frequency in the 

wetter recent climate (a similar result is shown in Wright et al., 2017), while the CPC-based and Bulletin 17B methods, both 

based on much longer data records fail to do so.  

The results shown in Fig. 6 suggest that the recent shift from spring to summer flood activity is accompanied by a substantial 

shift in the flood frequency distribution. The close agreement between process-based results using CPC and the statistically-25 

based analysis using Bulletin 17B suggests that even in stationary situations with long records, statistical methods do not 

necessarily produce superior results to process-based approaches. Process-based FFA using CPC precipitation from 2002- 

2016 closely resembles the Stage IV-based FFA (results not shown), suggesting that rainfall process nonstationarity, rather 

than differences between different input datasets, are the primary drivers of the differences in the CPC-based and Stage IV-

based results in the left panel of Fig. 6.  30 
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Figure 6. Peak discharge analyses for Turkey River at Garber, IA. (a) RainyDay with Stage IV (2002-2016) and CPC-(1948-2016) rainfall 
and USGS frequency analyses using Bulletin 17B methods. All observed USGS annual maxima daily streamflow from 1933 to 2016 are 
also shown. Shaded areas denote the ensemble spread (RainyDay-based results) and the 90% confidence intervals (Bulletin 17B-based 
analysis), respectively. (b) Same as (a), but with the USGS observations divided into pre-1990 and post-1990 groups, and replotted to 5 
highlight recent changes in flood frequency. 

5.4 Simulated Flood Seasonality 

As shown in Sect. 5.1, the recent climatology of flooding in Turkey River watershed shows a peak in flood occurrence during 

March-April, with elevated activity (including high-magnitude events) continuing through July, reflective of the regional flood 

“mixture distribution” (e.g. Smith et al., 2011). March-April flooding is associated with springtime rains, high soil moisture, 10 

and potentially snowmelt processes, while May-July flooding results from warm-season organized thunderstorm systems. It is 

important that any process-based FFA approach capture the influence of this mixture on the flood frequency curve. 

The seasonal distribution of simulated flood occurrence and magnitude using Stage IV- and CPC-based results show that most 

simulated floods in our process-based approach occur between March and June (Fig. 7), in accordance with observed annual 

maxima daily discharge (Fig. 3c). The peak of occurrence using Stage IV is shifted several weeks later than the CPC-based 15 

results, which agrees with the recent shift in seasonality of flood observations shown in the Fig. 3c. Although many simulated 

events still occur in April, our results show the largest peaks occur later, in May-September. This is consistent with Villarini 

et al. (2011), who showed that warm season organized convective systems are responsible for some of the largest peaks in 

Iowa.  

Our process-based results show that August-September storms have the potential to cause severe flooding (Fig. 7), despite the 20 

lack of large floods during this time of year in the stream gage record. Stage IV- and CPC-based storm catalogs generated by 

RainyDay include major storms from the surrounding region, including several large late-summer events capable of producing 



20 
 

substantial flood response, and which indeed to induce large floods within our process-based analysis. This suggests that the 

general lack of major late-summer floods in the watershed’s observational record may not be a feature of the “true” (unknown) 

distribution of flooding in the watershed, but rather due to limited size of the observational record. This result is supported by 

regional analysis of floods (Villarini et al. 2011) and points to the potential for SST to improve  understanding of flood 

frequency seasonality relative to discharge-based approaches alone. 5 

 

Figure 7. Time of occurrence during the year for simulated peak discharge in Turkey River at Garber using (a) CPC and (b) Stage IV.  

To demonstrate that the discrepancies between the process-based FFA results generated using CPC and using Stage IV-  are 

driven by changes in physical processes, rather than by differences in model structure (i.e. parameter values), we compared 

FFA results generated using CPC-based for 1948-2016 and 2002-2016, in terms of event rainfall, initial soil moisture, flood 10 

type and peak magnitude (Fig. 8). Compared with the 1948-2016 period (Figure. 8a), there are fewer flood events driven by 

snowmelt or rain-on-snow during 2002-2016 (Fig. 8b) but more driven by rainfall. This is particular true for flood events 

(larger than 1000 m3 s-1). In addition, some of the rainfall-driven floods from 2002-2016 were caused by relatively low rainfall 

but high initial soil moisture, in accordance with the significant increasing trend of annual precipitation and discharge (Table 

2). 15 
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Figure 8. The simulated flood magnitude using CPC rainfall during 1948-2016 (a) and 2002-2016 (b) periods, and corresponding antecedent 
conditions. The blue triangles denote the snow related flood events (e.g. snowmelt was nonzero in the simulation) and grey dots represent 
the non-snow related flood events (e.g. rainfall driven). The size of the triangles or dots indicate the antecedent soil moisture with higher 
value in larger shape. The black dash line indicates the 1000 m3 s-1 flood magnitudes.   5 

5.5 Comparison of rainfall and peak discharge quantiles 

We examined the relationships between the return periods of 96-hour basin-averaged rainfall accumulations and simulated 

peak discharge for Turkey River at Garber using Stage IV-based results (Fig. 9; CPC-based results show similar patterns and 

thus are not shown here). Antecedent soil moisture for each simulated event is also shown. Similar to Wright et al. (2014a), 

Fig. 9 shows that simulated peak discharge quantiles can differ substantially from the rainfall quantiles of the rainfall that 10 

produce them. For instance, 500-year (�� = 0.002� rainfall events can cause simulated peak discharges ranging from 11-year 

(�� = 0.091� to 500-year (�� = 0.002�, corresponding to a range in peak discharge of 1072 to 2743 m3 s-1. Peak discharge 

quantiles are always larger (in terms of return period) than the quantiles of rainfall that produced them in wet antecedent soil 

moisture conditions, while the reverse is true in for dry conditions. These results also demonstrate that the DS assumption of 

1:1 equivalency between rainfall and peak discharge quantiles does not hold in Turkey River. Rainfall spatial variability and 15 

drainage network structure, which are ignored in this study due to the lumped (i.e. non-distributed) nature of HBV, further 

complicate the relationship between rainfall and discharge quantiles. 
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Figure 9. Relationships between rainfall and simulated peak discharge return periods estimated via our process-based method using Stage 

IV rainfall data. Spearman rank correlation �� is given. Color indicates the normalized modeled antecedent soil moisture value calculated as 
���  !���"#$��!�%.���  !���#"$�

&�� ' ()*)(�#+�!�%.���  !���#"$�
∗ 100%. 

We further examine the relationship between annual rainfall and annual flood peak maxima. In Sect. 2.2, we pointed out that 5 

DS methods utilize IDF curves, which are usually estimated using annual maxima from rain gage records and which depict 

quantiles from the distribution of annual rainfall maxima. DS methods use quantiles from this distribution to generate flood 

estimates, implicitly assuming that annual rainfall maxima produce annual discharge maxima. In our process-based FFA 

approach, we do not assume that annual discharge maxima are the result of the largest rainfall event of the year. Rather, lower-

magnitude rainfall events, combined with high soil moisture, could produce the highest discharge. Table 3 shows the 10 

percentage of annual peak flow driven by annual maximum gains with increasing return period for both CPC-based and Stage 

IV-based results. For simulated peak flow with �� > 0.01, a large portion of simulated annual peak flow is not caused by the 

annual maximum rainfall. For rarer peak flows (�� ≤ 0.01), over 90% of these flood events are driven by the annual maximum 

rainfall, pointing to the fact that the tail of flood peaks is driven by extreme rainfall, with antecedent conditions playing a 

modulating role. 15 
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Table 3. Percentages of simulated annual maxima daily flows driven by 96-hour rainfall annual maximum. 

Return Period 

Driven  by Annual Maximum Rainfall 

CPC-based results 
Stage IV-based 

results 

1-2 24% 37% 

2-5 32% 45% 

5-10 39% 67% 

10-20 48% 77% 

20-50 60% 80% 

50-100 72% 84% 

100-200 77% 85% 

200-500 93% 95% 

6 Summary and Conclusions 

Interactions between rainfall, land cover, river channel morphology, and watershed antecedent conditions are important drivers 

of flood response. Standard approaches to estimate extreme flood quantiles (termed flood frequency analysis; FFA), however, 

often take a superficial view of these interactions, as argued in Sect. 2. This study presents an alternative FFA framework that 5 

combines elements of observational analysis, stochastic rainfall generation, and continuous and event-scale hydrologic 

simulation. We apply the framework to Turkey River, an agricultural watershed in the Midwestern United States that is 

undergoing significant hydroclimatologic and hydrologic change which is increasing the magnitude of the largest flood events 

and shifting their occurrence from the spring to summer.  

We use Stochastic Storm Transposition (SST) to create and resample from “storm catalogs” developed from both 15 years of 10 

high-resolution bias-corrected radar rainfall and from 69 years of gridded rain gage observations to produce large numbers of 

rainfall scenarios for Turkey River. These scenarios, when coupled with seasonally realistic watershed conditions, can help to 

reconstruct the seasonal and secular variations in meteorological and hydrological processes and their interactions, providing 

an alternative FFA approach which is well-suited to nonstationary environments (see also Sivapalan and Samuel, 2009). While 

statistical approaches can in principle be applied to investigate the impacts of seasonality on FFA (e.g. Ouarda et al., 2006), 15 

such methods still do not directly provide process-level understanding of the factors that “shape” flood frequency. Unlike 

design storm approaches to FFA, the synthetic rainfall scenarios derived by the SST-based procedure do not require any 

assumptions regarding the spatial and temporal structure of rainfall, since they are driven by the structure and variability of 

historical observed storms.  

Our analyses show that using the most recent 15 years of rainfall can produce realistic “present-day” flood quantile estimates 20 

that reflect the nonstationarities in rainfall and watershed conditions. The use of longer records, both within our procedure and 

conventional statistical FFA methods, leads to underestimates of current flood frequency due to their inability to represent 

recent shifts in flood activity in Turkey River. Our results challenge some common FFA assumptions, including the design 
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storm presumption that rainfall annual maxima produce discharge annual maxima and the assumption of 1:1 equivalence in 

rainfall and flood quantiles. We paint a more complex picture in Turkey River, in which the shifting seasonality in rainfall and 

watershed conditions combine to shape the flood frequency. Spatial variability in rainfall structure, soil moisture, land use and 

watershed morphology, which are ignored in this study due to the use of a lumped hydrologic model, add further complexity 

to the flood-generating processes. The proposed framework can be employed with more sophisticated distributed hydrologic 5 

models, thus facilitating the examination of rainfall spatial variability and its interactions with other factors (e.g. heterogeneous 

watershed characteristics and river network processes; Zhu et al., 2018; Viglione et al., 2010b, 2010a). This coupling may 

prove particularly useful for FFA in large watersheds in which there is a practically infinite number of different combinations 

of such spatially and temporally varying processes that could produce floods—a population that is almost certain to be 

undersampled in stream gage records and poorly served by design storm assumptions.  10 

A number of issues remain that make broader usage of our process-based framework challenging. Perhaps the biggest 

limitation of process-based approaches is the necessity of discharge observations, which are central to both identifying 

hydrologic changes and to calibrate and validate the hydrologic model. Thus, usage of the approach in ungaged basins may 

not produce satisfactory results. This issue is fundamental to other FFA techniques as well. Statistically-based discharge 

analyses, for example, similarly rely on streamflow observations, while design storm approaches also require hydrologic model 15 

calibration.  

We also note that caution is needed when attempting to employ process-based FFA. We were able to produce very similar 

flood frequency distributions using our approach, regardless of whether or not the HBV hydrologic model’s snowpack routine 

was “turned on” or off (results omitted for brevity), despite very different simulated seasonality of flooding. This highlights 

that process-based frequency analyses can be influenced by poor model process representation that can lead to seemingly 20 

“correct” results for the wrong reasons. This implies that the modeler must have sufficient data and experience to recognize 

such issues. It also illustrates a key issue in FFA using both statistical approaches and process-based methods: flood quantiles, 

though the product of interactions between physical processes, reveal relatively little about those underlying processes that 

produce them. This is particularly problematic in changing hydroclimatic or watershed conditions, because nonstationary 

behavior is likely the result of seasonal shifts in one or more processes that may affect flooding in ways that are not well-25 

reflected in observational records. Our results showing that major floods could occur in Turkey River in the late summer under 

current hydroclimatic conditions, despite their absence in the instrumental record, is one example of this. Failure to recognize 

and model such shifts could lead to results for past or present flood conditions that appear to be correct, but that may lead to 

incorrect inferences about future conditions.   

In summary, our framework and results highlight the opportunity and challenge with process-based FFA approaches; namely, 30 

that progress on understanding and estimating flood frequency and how it is evolving in an era of unprecedented changes in 

land use and climate requires better understanding of how the underlying physical processes, and the interactions between 

them, are changing. Poor model representation of key hydrological processes, however, can lead to incorrect conclusions about 

present or future flood frequency. Despite the challenge, we share the view of Sivapalan and Samuel (2009) that process-based 
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approaches hold great potential for advances in FFA research and practice, particularly in projecting future flood hazards in 

conjunction with data and modeling advances in the climate science community. We do not propose that process-based 

approaches should necessarily supplant more conventional discharge-based analyses, and acknowledge that discharge 

observations are essential in such studies. Rather, we anticipate a gradual “merging” of statistical and process-based stochastic 

simulation techniques as well as of the associated observations and synthetic data. 5 

Software and model code 

The RainyDay software is available at Github (https://github.com/danielbwright/RainyDay2). A web-based version of 

RainyDay is available at D. Wright’s research group website (http://her.cee.wisc.edu/projects/rainyday).   
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