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Dear Editor and Reviewers, 

We would like to thank the Editor and three anonymous reviewers for providing critical and helpful 

comments. The central goal has been to create a well-organized paper that highlights the 

opportunity and challenge with process-based flood frequency analysis (FFA) approaches. The 

reviewers have contributed greatly to that goal and we have carefully considered each of their 

criticisms.  

The changes that we have made on the basis of these criticisms constitute a major overhaul of 

the original manuscript, including:  

1) revisit our model calibration procedure and include the snowpack routine to obtain 

acceptable performance; 

2) add a section on model validation to the revised manuscript; 

3) highlight the impacts of changing flood seasonality on FFA by adding Fig.8 to the revised 

manuscript; 

4) add the analysis of pros and cons on process-based FFA approaches to the conclusion 

section; 

5) revised/restructured the focus of the introduction and conclusion to clarify the objectives 

of this study. 

Therefore, we would appreciate that the reviewers grant us another through reading.  

 

Sincerely, 

Guo Yu 

  

 

 

 

 



Common Responses to three reviewers 

Responses are provided in blue and proposed revision are in Red. Original reviewer comments 

are in black. Line and page numbers refer to the original manuscript. 

Based upon comments from all three reviewers, we have revisited our model calibration 

procedure and have been able to obtain acceptable performance from the snowpack routine.  This 

involved a “2-step” calibration process in which warm season processes are calibrated first, and 

then “warm season parameters “ are held constant during subsequent calibration of snowpack-

related parameters.  This recalibration of HBV is done using both CPC and Stage IV rainfall. We 

have also added a section on model validation to the revised manuscript, again based on 

comments from all three reviewers requesting additional validation results. Since all three 

reviewers provided critiques on these topics, we discuss these two changes before addressing 

specific comments from individual reviewers.  

We have revised model calibration part in the original manuscript, P9, line 15-24, to:  

We calibrated the HBV models using both CPC and Stage IV rainfall, and most parameters are the same 

for CPC- and Stage IV-based models, except for three snow routine parameters (TT, CFMAX, SFCF) and 

three recession coefficients (K0, K1, K2), allowing for the variability of model parameters for different 

climate conditions.  For each model setup, we first calibrated the model with snowpack routine “turned off” 

(by setting TT parameter to a very low value) to obtain parameters that can simulate summer floods 

adequately. Then, keeping these optimized non-snow routine parameters unchanged, we calibrated the snow 

routine parameters.  

To determine the optimized model parameter sets in each procedures, we followed the Genetic Algorithm 

and Powell (GAP) optimization method as presented by Seibert (2000),  which is briefly summarized here. 

First, 5000 parameter sets are randomly generated from a uniform distribution of the values of each 

parameter (Table 1), which were then applied to the HBV model in order to maximize Kling Gupta 

Efficiency (Gupta et al., 2009) of simulated daily discharge. After the GAP has finished, the optimized 

parameter set were fine-tuned using Powell’s quadratic convergent method (Press, 1996) with 1000 

additional runs. Lastly, the optimized parameter set was manually adjusted to improve the fits between 

observed and simulated annual peak flow (see Lamb, 1999). More elaborate calibration and uncertainty 

estimation procedures such as Generalized Likelihood Uncertainty Estimation (GLUE; Beven and Binley, 

1992; Beven, 1993; Beven and Binley, 2014) could be used, but are outside the scope of our study.  

After calibration, HBV (two different parameter sets) was used to perform CS with historical CPC and 

Stage IV rainfall and temperature data to derive long-term simulated soil moisture and snowpack values, 

which are usually difficult to obtain via measurement. We “pair” samples of these initial conditions with 

synthetic rainfall events, as described in Sect. 4.2 and Sect. 4.3.  

 

 



Table 1. Overview of HBV model parameters and prior parameter boundaries. 

Parameter Description Units Min value Max value 

Snow Routine 

TT Threshold temperature for liquid and solid precipitation °C -3 3 

CFMAX Degree-day factor mm d−ଵ°C−ଵ 0.5 4 

SFCF Snowfall correction factor - 0.5 1.2 

CFR Refreezing coefficient - 0.01 0.1 

CWH Water holding capacity of the snow storage - 0.1 0.3 

Soil Moisture Routine 

FC Maximum soil moisture storage (field capacity) mm 100 550 

LP Relative soil water storage below which AET is reduced linearly - 0.3 1 

BETA Exponential factor for runoff generation - 1 5 

Response Routine 

PERC Maximum percolation from upper to lower groundwater box mm d−ଵ 0 10 

UZL Threshold of upper groundwater box mm 0 50 

K0 Recession coefficient 0 d−ଵ 0.5 0.9 

K1 Recession coefficient 1 d−ଵ 0.15 0.5 

K2 Recession coefficient 2 d−ଵ 0.01 0.15 

Routing Routine 

MAXBAS Length of triangular weighting function d 1 2.5 

 

We have also added “Section 5.2 Model Validation” by modifying the original paper, P13-14, to:  

5.2 Model Validation 

We validated the performance of HBV continuous simulation with respect to flood seasonality, frequency 

of annual daily discharge maxima, and normalized peak flow (i.e. the simulated or observed daily discharge 

divided by the 2-year flood), using both Stage IV and CPC as precipitation inputs (Fig. 4). We also validated 

two structures: one with and the other without the HBV snowpack module. The purpose for this latter 

validation effort is to highlight the importance of proper process representation (and subsequent validation) 

in process-based FFA. 

Simulated flood seasonality varies substantially during the CPC period of record (1948-2016) depending 

on the inclusion of the snowpack routine. Differences are less for the Stage IV period of record (2002-2016), 

due to the decreasing role of snowpack in deriving the floods in recent years (Fig. 4a). In both cases, the 

seasonality of flooding simulated using HBV is improved with the inclusion of the snowpack module, with 

a higher (lower) frequency of springtime (summertime) floods which more closely resembles observations. 

Empirical (i.e. plotting position-based) distributions for the simulated annual daily discharge maxima are 

mostly within the 90% confidence interval (obtained by nonparametric bootstrap) of the observations (Fig. 



4b). The CPC-based simulations differ considerably depending on the inclusion of the snowpack module 

for more common events, but differences in simulated maxima vanish as flood magnitude increases (e.g. 

AEP<0.1). This is because the most extreme flood events occur later in the season and are thus independent 

of snowpack or snowmelt processes. Differences are generally negligible between Stage IV-based 

simulations with and without snowpack, since floods in this shorter, more recent period are generally driven 

by summertime thunderstorms. These findings are consistent with the general understanding of the regional 

seasonality of flooding in the region, as discussed in Sect. 5.1. 

We compared all simulated and observed flood peaks that can be associated with a USGS observed daily 

streamflow value that is at least three times the mean annual daily discharge (Fig. 4c). When associating 

simulated and observed flood peaks, we look within a 2-day window to allow for modest errors in simulated 

flood peak timing. All peaks in Fig. 4c are normalized by the median annual (i.e. 2-year) flood, which, as 

a rule of thumb, can be considered as the “within bank” threshold. Again, HBV with the snowpack routine 

outperforms the model without it, especially for the small to modest flood events in CPC-based simulations. 

The model without snowpack routine underestimate the small to modest flood events in two cases due to 

the neglect of water flux from potential snowmelt. While modest scatter exists in the Stage IV-based 

simulated peaks, there is no obvious systematic bias with event magnitude when the snowmelt routine is 

included. 



 

Figure 4. HBV model validation for flood seasonality (a), frequency of annual max. daily discharge (b) and normalized peak flow 

(c). For each panel, the corresponding model validation is performed against CPC- (1948-2016) and StageIV-based (2002-2016) 

simulation and the results derived from HBV model with (without) snowpack routine are shown in blue (red).  The 90% confidence 

interval for observed max. daily discharge (empirical distribution) is derived using the bootstrapping approach. Peak discharge is 

defined as a data point with USGS observed value that is at least three times the average observations, and peak discharge are 

normalized by the median of annual daily discharge maxima (i.e. the 2-year flood). Straight black lines indicate 1:1 correspondence, 

while dashed lines indicate the envelope within which the modeled values are within 50% of observed. 

We also validate HBV’s snowpack routine using observed GHCN daily snow depth for two simulation 

periods (Fig. 5a, 5b) and using USGS daily streamflow observations for Stage IV-based period (Fig. 5c). 

Because of their differing spatial resolutions and physical representations, point-scale GHCN daily snow 



depths cannot be directly or quantitatively compared to the watershed-scale snow water equivalent 

simulated by HBV. Therefore, we validate the snowpack simulation in terms of the snowpack occurrence, 

defined as the number of occurrences where snow is present on a particular date divided by the total number 

of years in the historical record. For example, there are 50 days where snowpack is present on January 1st 

in the 69-year period from 1948-2016, based on GHCN observations and thus the corresponding occurrence 

rate is 0.72 (50 divided by 69). The HBV model with the snowpack routine captures the central tendency 

of observed snowpack dynamics, showing that snowpack frequently exists from early November to mid-

February, with frequency of snow decreasing from late February until disappearing in early April.     

 

Figure 5. The comparison of percent of days with snowpack present between observations and simulations (a, b) and hydrograph 

validation for StageIV-based simulation (c). For each day within a year, the percent of snowpack existing days is calculated as the 

ratio of the number of years when snowpack is present to the total years (69 years for CPC and 15 years for StageIV). Observed 

and simulated hydrograph are normalized by the median annual flood, which is indicated by the dashed blue line.  

Model hydrograph validation is provided in Fig. 5c for the Stage IV period (2002-2016), when major 

flooding occurred throughout Iowa. Model performance shows no obvious evidence of systematic bias in 

the streamflow simulations. Although flood seasonality derived by Stage IV-based simulation differs 

slightly from observations (Fig. 4b), these mismatches are associated with flood events smaller than the 

median annual flood (blue dash line in Fig. 5c). Stage IV-based simulations do not show bias flood 

magnitude in late summer. In other words, remaining biases in terms of flood seasonality generally 



correspond with frequent, small-magnitude events that are typically of less interest in FFA. We therefore 

conclude that the HBV model with snowpack is generally suitable for subsequent process-based FFA.       

  



Replies to the comments of Anonymous Referee #1 

Responses are provided in blue and proposed revision are in Red. Original reviewer comments 

are in black. Line and page numbers refer to the original manuscript. 

 

The authors explore the utility of hydrological simulations driven by stochastically transposed 

rainfall fields in deriving flood frequency over a watershed that experiences 

nonstationarities. Their results highlight the importance of considering changing flood 

seasonality in flood frequency analysis. While process-based approaches have a fair amount of 

advantages, their shortcomings are also quite obvious, for instance, mode uncertainty in both 

parameters and model structure, representation of synthetic rainfall scenarios, etc. As a 

hydrologist, I would still favor statistical approaches if the gauging record is good (as is the case 

in this paper). This being said, I would suggest the authors focus on explaining the importance of 

changing flood seasonality in flood frequency, but rather demonstrating the superiority of process-

based approaches to other FFA methods (which is not, as far as I can see).  

We thank the reviewer for these useful critiques, that have been very helpful in improving the 

paper. We fully agree that, particularly in situations of plentiful stream gage observations, 

statistical approaches are generally preferable. It was never our intention to suggest that our 

approach is superior to such methods. We note in the original manuscript (P4, line 23-26), 

however, that there have been prior studies that have demonstrated situations in which rainfall-

runoff modeling approaches of various kinds can outperform statistical methods. This, combined 

with the relative immaturity of rainfall-runoff model-based FFA approaches compared with 

statistical methods, suggests that additional research, of the kind we present here, can and should 

be done. As the reviewer stresses, one of the things that such research can point to is the 

importance of processes and their changes (e.g. seasonal to interannual). In our revised 

manuscript, we have attempted to emphasize our viewpoint on these issues more clearly. 

Example revisions to this effect include: 

 Include the snowpack routine in the HBV model for both CPC- and StageIV-based 

simulations. 

 Modify the model calibration part (Chapter 4.1) in the original manuscript. 

 Add a new section for model validation.  

 Address the importance of changing flood seasonality in flood frequency. 

We have analyzed two sets of CPC-based results, one for 1948-2016 and the other for 2002-

2016 to demonstrate how the changes in flood agents affect the FFA results. We have added the 

following part to Sect.5.3, P17, line 21 of the original manuscript.  

To demonstrate that the discrepancies between the process-based FFA results generated using CPC and 

using StageIV  are driven by changes in flood agents, rather than by differences in model structure (i.e. 

parameter values), we compared FFA results generated using CPC-based for 1948-2016 and 2002-2016, in 

terms of event rainfall, initial soil moisture, flood type and peak magnitude (Fig. 8). From 2002-2016 (Fig. 

8b), there are fewer flood events driven by snowmelt or rain-on-snow but more driven by rainfall, 

particularly large magnitude flood events (over 1000 m3/s). In addition, some of the rainfall driven floods 



(upper left of Fig. 8b) from 2002-2016 indicates high initial soil moisture, which are in accordance with the 

significant increasing trend of annual precipitation (Table 2). In general, changes in individual flood agents 

and their interactions can affect flood frequency. Process-based approaches can help illuminate these 

changes.      

 

Figure 8. The simulated flood magnitude using CPC rainfall during 1948-2016 (a) and 2002-2016 (b) period, and corresponding 

antecedent conditions sampled from the continuous simulation. The blue triangles represent the snow related flood events (e.g. 

snowmelt or rain on snow) and grey dots represents the non-snow related flood events (e.g. rainfall driven). The size of the triangles 

or dots indicate the antecedent soil moisture with higher value in larger shape. The black dash line indicates the 1000m3/s flood 

magnitudes.   

 

Specific comments 1-1: An important part is missing from the present paper is model validation. 

Evidence needs to be explicitly presented to show the capability of long-term model simulations 

in capturing, for instance, flood seasonality, as well as other features (distribution of annual 

maximum discharge). This can be done by adding simulation results into Figure 3b and Figure 

5a. 

We thank the reviewer for this suggestion, which was also voiced by the other reviewers. We 

have include the model validation, as shown at the beginning of this response, to further 

demonstrate the capability of long-term simulation in capturing the flood seasonality, high flow 

magnitude and distribution of annual maximum discharge. We hope the reviewers find it to be 

more convincing that the limited validation that we included in the original manuscript. 

 

Specific comments 1-2: The authors show a larger frequency of floods during post-summer 

season in their simulations, could this be possibly related to the positive model biases in 

representing rainfall-runoff processes during this season? The reliability of process-based 

approaches in FFA builds on decent model simulations. The authors should spend additional 

efforts in demonstrating this in the paper. This can be done by providing a quantitative assessment 

of the model performance. 



The hydrograph validation plot (Figure. 5b), along with the flood seasonality validation plot (Figure. 

4a) shows that the HBV model with snowpack routine can capture the observed flood seasonality 

and daily streamflow in the long-term simulation. Although model simulates more flood events in 

late summer (August-September), it is not biased in terms of late summer flood magnitude. 

Therefore, we believe these simulated extreme late summer flood events (over 1500 m3/s) are 

associated with the regional late-summer storm events in Iowa, rather than model bias.  

 

Specific comments 1-3: Another question about the simulation, how is channel flow 

represented/considered in the analyses. Antecedent streamflow in the channels can be an 

important element in representing antecedent watershed wetness, in addition to soil moisture, 

that plays a role in streamflow simulation. 

The reviewer is correct in general that this should be considered within our framework. The HBV 

model, however, does not need to sample channel flow (streamflow) for the antecedent conditions. 

The following equations show how the HBV model calculates the streamflow. ܳ[ݐ] = ܳ଴[ݐ] + ܳଵ[ݐ] + ܳଶ[ݐ] ܳ଴[ݐ] = ଴ܭ ∗ ݐ]𝐴𝑋ሺܵ𝑈ܼܯ − ͳ] + [ݐ]𝑔݁ݎℎܽܿ݁ݎ + ݁𝑥ܿ݁[ݐ]ݏݏ − 𝑈ܼܮ, Ͳሻ ܳଵ[ݐ] = ଵܭ ∗ ሺܵ𝑈ܼ[ݐ − ͳ] + [ݐ]𝑔݁ݎℎܽܿ݁ݎ + ݁𝑥ܿ݁[ݐ]ݏݏ − 𝑈ܼܮ − ܲ𝐸ܴ𝐶ሻ ܳଶ[ݐ] = ଶܭ ∗ ሺܵݐ]ܼܮ − ͳ] + ܲ𝐸ܴ𝐶ሻ 

Where conceptually, ܳ[ݐ] is the current time streamflow ܳ଴[ݐ], ܳଵ[ݐ], ܳଶ[ݐ] are the current time overland flow, intermediate flow and baseflow ܿ݁ݎℎܽݎ𝑔݁[ݐ], ݁𝑥ܿ݁[ݐ]ݏݏ are the current time flux to groundwater and excess runoff, all of which 

depend on the soil moisture at previous time step ܵ𝑈ܼ[ݐ − ͳ], ݐ]ܼܮܵ − ͳ] are the water level in upper and lower groundwater box at the previous 

time step ܭ଴,ܭଵ, ,ଶܭ 𝑈ܼܮ, ܲ𝐸ܴ𝐶 ܽݏݎ݁ݐ݁݉ܽݎܽ݌ ݈݁݀݋݉ ݁ݎ 

In general, the current time overland flow (ܳ଴[ݐ]) and intermediate flow (ܳଵ[ݐ]) only depend on soil 

moisture and water level in the upper groundwater box at the previous time step while the current 

time baseflow ܳଶ[ݐ]  depends on the water level in the lower groundwater box at the previous time 

step. The more details on HBV model structure can be found in the HBV references in original 

manuscript, P3, line 4-7.  

Specific comments 2-1: The representation of synthetic rainfall fields is another key in process-

based FFA approaches. The authors mentioned that they chose ‘most intense rainfall events’ 
within a prescribed domain. How exactly do they define “most intense rainfall events”? Please 

explain. 

The RainyDay software selects the most intense rainfall events within the transposition domain, 

in terms of rainfall accumulation of duration t and with the same size, shape, and orientation of 



the watershed. For example, the principal axis of the Turkey River watershed in this study is 

oriented roughly northwest-southeast and has an area of 4002 km2. In this case, the 450 selected 

storms from the historical rainfall data are those associated with the 450 highest 96-hour rainfall 

accumulations over an area of 4002 km2 with the same shape and orientation as the Turkey River 

watershed. 

We have modified P10, line 13-14 to: 

These intense storms are in terms of 96-hour rainfall accumulation and have the same size, shape, and 

orientation of the Turkey River watershed, which is oriented roughly northwest-southeast and with an area 

of 4002 km2. In order to avoid overlapping storms, these selected events must be separated by at least 24 

hours.  

 

Specific comments 2-2: The authors use the word “realistic” throughout the paper which is 
inappropriate or miss-leading. They are using synthetic rainfall fields, even though based on real 

storm events. Please modify. 

We believe that our word choice is reasonable when referring the SST-based rainfall fields. They 

require no parameterization or assumption regarding their spatial or temporal structure (only their 

starting location is changed), and thus are objectively more realistic than more conventional 

stochastic rainfall generators. The “realistic” claim would be admittedly more suspect in an 
environment with complex terrain features (e.g. mountains, coastlines) where both radar 

estimates and transposition of rainfall fields would be more suspect. Most references on SST in 

original manuscript, P9, line 30-31, also used word “realistic rainfall”.    

 

Specific comments 3: The authors show flood frequency estimates in modern times using Stage 

IV rainfall fields, and the results match well with gauging records. How about the performance of 

CPC rainfall in estimating flood frequency? 

The RainyDay based FFA using CPC-Unified rainfall data from 2002 to 2016 closely resembles 

the Stage IV-based FFA, as we mentioned in original manuscript, P16, line 12-15. Regardless, 

we have added a supplementary plot showing the CPC, Stage IV and Bull.17B based FFA for the 

modern time (2002-2016).  

Supplementary Fig. 1 shows two features that result using CPC data. First, the extreme tail is 

underestimated, relative to the Stage IV-based simulations and the statistical approach. CPC is 

known to contain errors in the extreme tail, due to gage undercatch, insufficient gage density to 

properly sample convective rain cells, and spatial averaging of such cells over large areas, which 

effectively reduces peak rainfall depths. Second, CPC overestimates the magnitude of more 

frequent events. This is likely the result of its coarse spatial resolution, which will “smear” rainfall 
over larger areas (i.e. entire ~600 km2) grid cells when it should be more localized. This would 

serve to increase the likelihood of rainfall over the watershed, albeit at relatively lower 

depths/intensities. Thus, if one is to restrict the time period of the rainfall data to recent years (for 

example, the 2002-2016 time period for which Stage IV is available), then Stage IV would likely 

be better. As an aside, this belief that Stage IV is preferable to other precipitation datasets in the 

United States is widely shared in the satellite precipitation community, where Stage IV is often 

used as a validation dataset. 



 

Supplementary Figure 1. Three peak discharge analyses for Turkey River at Garber, IA: RainyDay with Stage IV (2002-2016) 

and CPC-(2002-2016) rainfall and USGS frequency analyses (1990-2016) using Bulletin 17B methods. Shaded areas denote the 

ensemble spread (RainyDay-based results) and the 90% confidence intervals (Bulletin 17B-based analysis), respectively. All 

observed annual daily streamflow maxima from 1990 to 2016 are shown in black dots. 

 

Specific comments 4: An interesting finding in the paper is described in P17 Line 15-20, but needs 

to be rephrased. We can see summer floods dominate the upper tail of flood frequency in this 

region, even though they do not occur as frequent as spring floods. The distribution derived from 

gauging records is still the ‘truth’ anyway. Under-representation of summer floods is a pretty 

common feature of flood peak distributions in the US. I would suggest the authors to provide a 

brief diagnostic summary of the most extreme flood events in this region. 

This is a good suggestion and the newly-added model validation section includes seasonal 

validations (5.2 Model Validation), as shown at the beginning of this response. Model validations, 

with respect to flood seasonality, normalized peak flow and hydrograph, show that HBV does not 

show bias flood magnitude in late summer.  

A summary of the most extreme flood events in Iowa are provided in the section 5.1 of the original 

manuscript, and is provided here: “Flood peak distributions in Iowa “mixtures” of two basic types. 
Spring floods are associated with springtime rains, high soil moisture, and potentially snowmelt. 

Summer floods are associated with convective systems. The latter have been shown to 

significantly affect the upper tail of the flood peak distribution (Villarini et al, 2011) who showed 

that about 40% of the largest flood peaks are during the May-July period in Iowa. It is important 

that any process-based FFA approach capture the influence of this mixture on the flood frequency 

curve.” This does not imply that individual gage records are “the truth”, only the best 
representative of it that we have. Thus, discrepancies between model-based approaches and 

such as ours and observational records warrant further attention. 

 



Specific comments 5: The authors compared simulation results using model with and without 

snow module, and suggest in the paper that “the modeler must either have sufficient data to 

diagnose such issues or have sufficient prior knowledge.” (P18 Line 14). I would believe a snow 
module should be needed in simulation hydrological regimes in this region (dominant spring floods 

in flood frequency). We cannot simply opt out the snow module by simply checking the simulation. 

What prior knowledge do the authors have? I would suggest the authors to examine the observed 

snow climatology over this region, and more ideally, carry out detailed diagnostic analyses of flood 

agents in this region. 

This is a very useful critique. We took this advice into account and developed a new calibration 

approach that avoids some of the pitfalls that we encountered using more standard calibration 

techniques. As shown above, we validate this new calibration with respect to flood seasonality, 

hydrograph, normalized peak flow and snowpack. We finally conclude that the snowpack routine 

of HBV is indeed important in this study region for this application. We appreciate the insistence 

of all reviewers in this regard, since it has led to a stronger and more defensible methodology.  

 

Specific comments 6-1: P22 Line5-7, it is not true that conventional statistical FFA methods 

underestimate flood frequency. At this stage, I would still believe statistical estimates are the 

ground truth, which enables the evaluation of the process-based approach. The authors do not 

show updated Bulletin 17B curves using the 1990-2016 flood records in Figure 5, which I would 

suggest to update. 

Figure 5 in the original manuscript shows that conventional FFA methods (defined here as usage 

of stationary statistical distributions fitted to the period of record using a standard fitting software) 

underestimate flood frequency beyond the 2-5 year recurrence interval. The statistical fits shown 

in Figure 5 are included to emphasize that we neglect nonstationarity (as is typically done in FFA 

practice) at our peril, and usage of “old” data in the face of pronounced hydrologic change can 
produce incorrect results. We therefore must contend that statistical estimates in such situations 

should not be considered “ground truth.” Bulletin 17B-based results using 1990-2016 flood peaks 

are shown in the figure above (see responses to specific comment 3). This fits the observed flood 

peaks well, as one would expect, though obviously subject to substantial uncertainty for low AEP 

events due to the short fitting period. Other methods, such as nonstationary FFA, could be used, 

but our goal is not to prove the superiority of one method or another, but rather to highlight some 

important issues regarding flood physical processes, their changes, and the resulting implications 

for flood frequency, issues which are generally ignored in conventional analysis. 

 

As I have mentioned earlier in general comments, it is not wise for the authors to demonstrate the 

dominating superiority of process-based FFA approaches in this paper, at least for this region. 

Process-based approach, as presented in this paper (hydrological model + SST), can be highly 

recommended in poorly gauged watersheds. For poorly-gauged watersheds, however, another 

issue arises as how to obtain a large ensemble of antecedent watershed wetness conditions used 

in event-based model simulations. The authors need to provide a discussion about both pros and 

cons of the proposed approach. 

Again, our intention was not to argue for the superiority of process-based methods, and we regret 

that we gave the reviewer that impression. We have modified the manuscript to make more clear 



the point that we are attempting to highlight the importance of flood processes and their changes 

in “shaping” flood frequency, and show an approach that can begin to account for such processes 
and their changes—though more work is needed, and is ongoing within our research group and 

elsewhere. Additionally, we agree with the reviewer that a brief discussion about both pros and 

cons of our framework is necessary. 

We have revised the last paragraph of the conclusion to: 

A number of issues remain that make broader usage of our process-based framework challenging. Perhaps 

the biggest limitation of process-based approaches is the necessity of discharge observations, which are 

central to both identifying hydrologic changes and to calibrate and validate the hydrologic model. Thus, 

usage of the approach in ungaged basins may not produce satisfactory results. This issue is fundamental to 

other FFA techniques as well. Statistically-based discharge analyses, for example, similarly rely on 

streamflow observations, while design storm approaches also require hydrologic model calibration.  

Our framework highlights the opportunity and challenge with process-based FFA approaches; namely, that 

progress on understanding and estimating flood frequency and how it is evolving in an era of unprecedented 

changes in land use and climate requires better understanding of how the underlying physical processes, 

and the interactions between them, are changing. Poor model representation of key hydrological processes, 

however, can lead to incorrect conclusions about present or future flood frequency. Despite the challenge, 

we share the view of Sivapalan and Samuel (2009) that process-based approaches hold great potential for 

advances in FFA research and practice, particularly in projecting the future FFA when coupled with high 

resolution climate model. We do not propose that process-based approaches should necessarily supplant 

more conventional discharge-based analyses, and discharge observations were central to our present study. 

Rather, we anticipate a gradual “merging” of statistical and process-based stochastic simulation techniques 

as well as of the associated observations and synthetic data. 

 

I have a couple of additional comments on word expressions, paragraph organizations, 

etc., but they can wait till the second round of review. The paper can be a worthwhile 

contribution to the literature subject to major revisions. 

We look forward to further feedback from the reviewer. We have also made minor modification to 

the structure and word choice in the revised version. 

  



Replies to the comments of Anonymous Referee #2 

Responses are provided in blue and proposed revision are in Red. Original reviewer comments 

are in black. Line and page numbers refer to the original manuscript. 

 

The work presents an investigation of flood frequency in the Turkey River basin in the Midwestern 

United States. The proposed framework, referred to as “process-based” FFA, uses stochastic 

storm transposition to generate synthetic storms and a lumped hydrologic model to simulate 

discharge at the outlet of the basin. The authors carry out a series of simulations and 

corresponding analyses of flood frequency to investigate the impact of seasonality in FFA and 

potential changes between past and present conditions. Overall, the work has several nice 

features and the questions posed by the authors are interesting. However, I have some major 

concerns about certain elements of the proposed framework that need to be addressed before 

the work can be considered for publication. I provide below major and minor comments that will 

hopefully help.  

We thank the reviewer for these useful critiques, which have been very helpful in improving the 

manuscript.  

 

Major comments 1: My first and most important concern about the proposed work is related to the 

choice of the hydrologic model used. The authors mention in different sections themselves that 

using a lumped model has several limitations. It is good that they acknowledge this limitation 

themselves but this does not solve the problem. In fact, based on statements as in Line 13, Page 

15 “We did not use the snowpack routine…it was shown to produce unrealistic streamflow results” 
and given that snow processes are important in the selected basins, one immediately recognizes 

that the choice of the model is not appropriate. If we combine this with the author’s statement in 

conclusions “L22-23, page 22: Poor model representation of key hydrological processes, however, 

can lead to incorrect conclusions about present and future flood frequency”…I am very skeptical 

about the conclusions derived based on this model’s results. If the model cannot represent well 
snow processes (particularly flooding due to rain on snow, which should be important in the area) 

then I fear that the “process-based” FFA is flawed. In this case, the work should be presented at 

most as a sensitivity analysis and statements such as L1, P22 “helps shed light on the physical 
processes that shape flood frequency” should be rephrased accordingly.  

This is a valid criticism and we thank the reviewer. We hope that the added model calibration and 

validation, as shown in the beginning of this response, addresses most of the reviewer’s present 
concern. As shown, we have devised a new calibration approach that provided acceptable 

performance while included the snowpack routine in the HBV model, since we agree with the 

reviewer that snow processes are potentially important elements of flooding in the region and 

should not be omitted. 

 

Major comments 2: The calibration and validation of the model lacks clarity. Which forcing was 

used to calibrate the model? And how the model was validated? These points are not clear in 

section 4.1. Then in section 5.2 L13,P15 “Different HBV parameters are used…” suggests that 

separate parameterization was used for the different precipitation forcing but no evidence is 



provided on a) the validation of the model for the two dataset and b) the variability in model 

parameters. For the later, if the parameters are significantly different, it will highlight further 

problems with the approach since this will mean that CPC HBV and CPC-Stage IV simulations 

treat hydrological processes differently (i.e. may give more weight to different processes in each 

case). This needs to be investigated and clearly explained in order to understand whether the 

results can be considered “realistic” or are results of a numerical exercise that mixes two different 
things. 

We hope the updated model calibration can help reviewers find our process-based FFA to be less 

speculative and more convincing. While ideally model parameters could remain constant 

regardless of the rainfall dataset used, this is generally not good modeling practice, since rainfall 

error structures can differ substantially between datasets. For example, due to its much coarser 

spatial resolution, CPC, even when used in a lumped model, will produce more frequent light rain 

and lower extremes than Stage IV. Therefore, we believe that calibration for individual input 

datasets is a necessary evil. Our future research will use distributed physics-based models in 

place of HBV, and hopefully this is less of an issue in such models. 

 

Major comments 3: For the results in Fig. 5 right panel: Do you use soil moisture years prior to 

1990 for the StageIV process-based approach? Also, you should apply the Bull. 17B for the two 

periods (1933-1989 and 1990-2016) and add them on the graph for comparison. 

We did not use the soil moisture prior to 1990 for the Stage IV-based simulation. The antecedent 

conditions for Stage IV-based simulation are only sampled from continuous simulation of Stage 

IV period, which is 2002-2016. We have not applied the Bull.17B method to annual daily 

streamflow maxima for 1933-1989 period because we have not investigated any RainyDay-based 

simulation for the corresponding time. However, we have added a supplementary plot showing 

the CPC, Stage IV and Bull.17B based FFA for the modern time (2002-2016), similar to what this 

reviewer and reviewer 1 suggest.  

Supplementary Fig. 1 shows that process-based FFA using CPC precipitation from 2002-2016 

closely resembles the Stage IV-based FFA, suggesting that rainfall differences, rather than model 

structures, are the primary drivers of the differences in this figure. It also shows two features that 

result using CPC data. First, the extreme tail is underestimated, relative to the Stage IV-based 

simulations and the statistical approach. CPC is known to contain errors in the extreme tail, due 

to gage undercatch, insufficient gage density to properly sample convective rain cells, and spatial 

averaging of such cells over large areas, which effectively reduces peak rainfall depths. Second, 

CPC overestimates the magnitude of more frequent events. This is likely the result of its coarse 

spatial resolution, which will “smear” rainfall over larger areas (i.e. entire ~600 km2 grid cells) 

when it should in reality be more localized. This would serve to increase the likelihood of rainfall 

over the watershed, albeit at relatively lower depths/intensities. Thus, if one is to restrict the time 

period of the rainfall data to recent years (for example, the 2002-2016 time period for which Stage 

IV is available), then Stage IV would likely be a better choice. 



 

Supplementary Figure 1. Three peak discharge analyses for Turkey River at Garber, IA: RainyDay with Stage IV (2002-2016) 

and CPC-(2002-2016) rainfall and USGS frequency analyses (1990-2016) using Bulletin 17B methods. Shaded areas denote the 

ensemble spread (RainyDay-based results) and the 90% confidence intervals (Bulletin 17B-based analysis), respectively. All 

observed annual daily streamflow maxima from 1990 to 2016 are shown in black dots. 

 

Minor comments 1: P1, L18: “a watershed that is undergoing significant climatic… change”. Is the 
climatic change at the scale of the watershed only? Consider revising. 

We have revised this sentence to: 

The methodology is applied to the Turkey River watershed in the Midwestern United States, which is 

undergoing significant climatic and hydrologic change. 

 

Minor comments 2: P16, L2: “but higher estimates” should be “but gives higher estimates”? 

Correct. We have modified that sentence to “but yields higher estimates for rarer events”. 

 

Minor comments 3: Fig.6: Improve caption. What is the upper and what the lower panel? 

This figure has been updated. 

 

Minor comments 4: P18L13: “processes in her” should be “processes in his/her” 

We have updated the text.  

 

 



Replies to the comments of Anonymous Referee #3 

Responses are provided in blue and proposed revision are in Red. Original reviewer comments 

are in black. Line and page numbers refer to the original manuscript. 

 

This combination of continuous and event based modelling is a quite novel idea and provides a 

flexible framework for DFFA. The application of the methods seems sound, the research is done 

systematically and the paper reads quite well. However, I do have some concerns regarding the 

selection of the hydrological model, the selection of two precipitation data sets and some of the 

conclusions. I will detail these below in the major comments, followed by some minor comments. 

The paper is worth to be published after major revision.  

We thank the reviewer for these useful critiques, which have been very helpful in improving the 

paper. We address these issues more deeply in specific responses, but generally speaking: 1.) 

in the revised manuscript, we have reintroduced the snowpack routine in the HBV and calibrate 

and validate the model more carefully. We discussed the model validation with respect to the 

flood seasonality, peak flow, snowpack, and hydrographs. 2.) we discuss the limitations of CPC 

precipitation data and the reason why we include the Stage IV precipitation data in this process-

based FFA framework. 3.) we provide a short summary of the pros and cons of the proposed FFA 

framework.     

 

Major comments 1: The selection of the lumped HBV model is not plausible to me, especially 

given that a) the snow routine is not working and b) the high resolution StageIV rainfall data cannot 

be utilized by this lumped model. 

Since we have updated the HBV model by including the snowpack routine and validated the model 

as shown in the beginning of this response, we hope the reviewer finds the selection of the lumped 

HBV model to be more convincing. It also should be noted that, the process-based FFA 

methodology employed in this study could be coupled with other (sophisticated) hydrologic 

models, as we mentioned in the original manuscript, P9, line 10, and, in fact, that is our next 

research direction. Nonetheless, after decades of research, lumped models have still proven to 

be very useful in a variety of hydrologic fields including flood applications and research. One 

challenge that we faced in this study was how to quickly implement and evaluate modifications 

and additions to the methodology, which can be much slower and more challenging using a more 

sophisticated distributed model. 

We respectfully disagree that the Stage IV rainfall data cannot be utilized by a lumped model. 

Regardless of model choice, Stage IV precipitation data is generally better than CPC data in the 

study region, in terms of accuracy-this is evident, for example, in the fact that the satellite 

precipitation community routinely uses Stage IV and related gage-corrected radar products, rather 

than CPC, to validate satellite rainfall estimates. CPC is known to contain errors in the extreme 

tail, due to gage undercatch, insufficient gage density to properly sample convective rain cells, 

and spatial averaging of such cells over large areas, which effectively reduces peak rainfall depths. 

Second, CPC overestimates the magnitude of more frequent events. This is likely the result of its 

coarse spatial resolution, which will “smear” rainfall over larger areas (i.e. entire ~600 km2) grid 
cells when it should be more localized. This would serve to increase the likelihood of rainfall over 



the watershed, albeit at relatively lower depths/intensities. Thus, if one is to restrict the time period 

of the rainfall data to recent years (for example, the 2002-2016 time period for which Stage IV is 

available), then Stage IV would likely be better. It is true that the lumped model cannot “leverage” 
the rainfall spatial structure embedded in Stage IV, but it still benefit from its improved accuracy.       

 

Major comments 2: The application of two rainfall data sets is not plausible and also quite 

confusing for the reader since a) the Stage IV rainfall data observation period (2002-2016) is 

covered also by the CPC rainfall data observation period (1948-2016), b) a lumped hydrological 

model cannot really benefit from high resolution rainfall data (see 1) and c) the hydrological 

simulation results for both rainfall data sets seem to be very similar (as the authors state on page 

16, lines 12-13). I would recommend to do all the simulations with the CPC rainfall if the 

hydrological model is not changed. If a more suitable hydrological model is selected the two data 

sets might be kept in the study but the differences in hydrological response using the two data 

sets for the same time period (2002-2016) need also to be demonstrated and discussed. 

We feel that including the Stage IV-based simulation in this case study is important in two respects: 

1.) As mentioned in the response to comment 1, we believe the Stage IV precipitation data has 

high accuracy than CPC. As an aside, this belief that Stage IV is preferable to other datasets 

when long records are not required is widely shared in the satellite precipitation validation 

community, where Stage IV is often used as a validation dataset. 2.) We also want to highlight 

that using only 15 years of rainfall records, our process-based approach can produce accurate 

estimates of “present-day” flood frequency.  

In addition, we have analyzed two CPC-based results from 1948-2016 and 2002-2016 to 

demonstrate how the changes in flood agents affect the FFAs. We have added the following part 

to Sect.5.3, P17, line 21 of the original manuscript.  

To demonstrate that the discrepancies between the process-based FFA results generated using CPC and 

using StageIV  are driven by changes in flood agents, rather than by differences in model structure (i.e. 

parameter values), we compared FFA results generated using CPC-based for 1948-2016 and 2002-2016, in 

terms of event rainfall, initial soil moisture, flood type and peak magnitude (Fig. 8). From 2002-2016 (Fig. 

8b), there are fewer flood events driven by snowmelt or rain-on-snow but more driven by rainfall, 

particularly large magnitude flood events (over 1000 m3/s). In addition, some of the rainfall driven floods 

(upper left of Fig. 8b) from 2002-2016 indicates high initial soil moisture, which are in accordance with the 

significant increasing trend of annual precipitation (Table 2). In general, changes in individual flood agents 

and their interactions can affect flood frequency. Process-based approaches can help illuminate these 

changes.      



 

Figure 8. The simulated flood magnitude using CPC rainfall during 1948-2016 (a) and 2002-2016 (b) period, and corresponding 

antecedent conditions sampled from the continuous simulation. The blue triangles represent the snow related flood events (e.g. 

snowmelt or rain on snow) and grey dots represents the non-snow related flood events (e.g. rainfall driven). The size of the triangles 

or dots indicate the antecedent soil moisture with higher value in larger shape. The black dash line indicates the 1000m3/s flood 

magnitudes.   

 

Major comments 3: The application of a model without snow routine for a catchment with 

significant snow processes doesn’t make sense to me. This way the advantage of process based 
flood frequency analysis (FFA) is partly lost; obtaining the correct hydrological response for the 

wrong reason is not satisfying. I am not convinced that the non-stationarity in seasonality is only 

due to changed soil moisture conditions from rainfall. Temporarily shifted snow dynamics might 

play a role as well 

After taking the reviewers’ comments into account very seriously, we recalibrate our model with 
snowpack routine “turned on” and validate it with respect to flood seasonality, hydrograph, 
normalized peak flow and snowpack. We finally conclude that the snowpack routine of HBV is 

indeed important in this study region.  

 

Major comments 4: I would be careful with the conclusion, that only with this DFFA method 

nonstationarity in seasonality can be handled well. Also, non-stationary seasonal FFA approaches 

are available employing mixed distributions for getting final design values. This needs to be briefly 

discussed. 

We appreciate the comment. Certainly seasonality could be considered using other approaches, 

though mixture distribution approaches may still not elucidate the fundamental drivers that “shape” 
flood frequency, even if they can provide good end results. We are not aware of such approaches 

being used in widespread practice, at least in the United States. Nonetheless, we had added a 

brief comment in this regard to the conclusions in acknowledgement of this criticism. 

We have revised the first paragraph of Section 6 on P21, line 13-15, to : 



It must be noticed that the statistical approaches coupling with flood seasonality indices can also investigate 

the impacts of seasonality on FFA and improve the flood frequency estimation in a regional scale (Ouarda 

et al., 2006). Our aim is to estimate flood quantiles by reconstructing meteorological and hydrological 

processes and their interactions, providing an alternative approach which is also well-suited to 

nonstationary environments (see also Sivapalan and Samuel, 2009). 

 

Major comments 5: This combination of continuous and event based modelling is a good idea. 

However, there is an important limitation which should at least be mentioned. The framework 

provides only one possible realization of initial conditions. Nature is more variable. Stochastic 

rainfall models producing continuous rainfall don’t pose this limitation on hydrology. 

Each event-based simulation is randomly paired with initial conditions drawn from a continuous 

simulation (15 years in the case of Stage IV, 69 years for CPC). Thus, we would argue that a 

large number of possible realizations of initial conditions are used. We would direct the reviewer 

to Section 4.3. If the reviewer finds this description incomplete, we would appreciate suggestions 

for how we can make this point more clear. Though we have not tested rigorously, we would 

guess that relatively short records (say, 15 years) of continuous simulations are sufficient to obtain 

enough variability in initial conditions. Compared with rainfall, soil moisture (which is bounded 

between 0 and saturation) and springtime snowpack have thinner tails and thus easier to 

represent in our framework by sampling from relatively short continuous simulation.  

We agree that continuous stochastic rainfall models also have the ability to produce a wide range 

of pre-event conditions, though it is likely nontrivial to properly calibrate their seasonality with 

respect to the extreme tail of precipitation-demanding long training datasets. 

 

Minor comments 1: Page 2, line 4: This sentence is confusing. I am assuming you mean ‘... 
statistical analysis of observed streamflow, design storms !and! continuous simulation !or! other 

so called “derived” or “process based” methods’. 

Correct. We have modified this sentence to: 

Most existing FFA methods belong to one of three approaches: statistical analysis of streamflow 

observations, design storms, and continuous simulation or other so-called “derived” or “process-based” 

methods. 

 

Minor comments 2: Page 4, lines 15-17: This sentence seems not to be complete. 

We apologize for this. We have revised this sentence to: 

Wright et al. (2014a) discusses additional design storm shortcomings including time of concentration 

concepts, in greater detail, while also pointing out that design storm approaches (like other hydrological 

model-based FFA) can incorporate future projections in land use and rainfall more explicitly than can 

statistical discharge-based methods. 



 

Minor comments 3: Page 10, steps 3 and 4: I would stress that the 30 storms per year are 

randomly transposed over the domain, only sometimes hitting the catchment and sometimes not. 

They are not all transposed on the catchment, which would lead to an overestimation of the flood 

frequency. The reader not familiar with your method might misunderstand that. 

The reviewer is correct. We have added this sentence to P10, line 22. 

It must be noted that some of the k transposed storms may not “hit” Turkey River watershed, and thus their 
calculated watershed rainfall are zero.  

 

Minor comments 4: Page 11, lines 8-9: The selection of the largest event per year for FFA might 

also be misunderstood. Here, it also needs to be considered that many of the 30 events do not 

produce any flood if they do not hit the catchment (see comment 3). 

We hope the response to previous comments also addresses this one.  

 

Minor comments 5: Page 14: line 2: Should it not be “… but overestimates for pe<0.3 …” 

We assume the reviewer mean Page 16, line 2. We have revised this sentence to: 

The Stage IV-based flood frequency curve agrees reasonably well with the discharge-based FFA for pe >Ͳ.3 (left panel of Fig. 6), but yields higher estimates for rarer events. 

 

Minor comments 6: Fig. 5: Why did you select the period 1990 – 2016 and not 1980 or 1970 as 

starting year? This needs to be justified. 

We have not performed any statistical test (e.g. Pettitt test) to determine this change point. 

However, an “eyeball test” of annual daily discharge maxima (Fig. 1a) from the original manuscript 

indicates the apparent elevated flood activity during 1990-2016 period. Our arguments do not 

hinge on a precise determination of when floods in Turkey River began to change, which in any 

event has likely been a gradual change. 

  

Minor comments 7: Fig. 5: I would also add a statistical analysis (Bull 17.b) for the contemporary 

period (1990-2016) for comparison. 

We have added a supplementary plot showing the CPC, Stage IV and Bull.17B based FFA for 

the modern time (2002-2016), as other reviewers have suggested.  

Supplementary Fig. 1 shows that process-based FFA using CPC precipitation from 2002-2016 

closely resembles the Stage IV-based FFA, suggesting that rainfall differences, rather than model 

structures, are the primary drivers of the differences in this figure. It also shows two features that 

result using CPC data. First, the extreme tail is underestimated, relative to the Stage IV-based 

simulations and the statistical approach. CPC is known to contain errors in the extreme tail, due 

to gage undercatch, insufficient gage density to properly sample convective rain cells, and spatial 



averaging of such cells over large areas, which effectively reduces peak rainfall depths. Second, 

CPC overestimates the magnitude of more frequent events. This is likely the result of its coarse 

spatial resolution, which will “smear” rainfall over larger areas (i.e. entire ~600 km2 grid cells) 

when it should be more localized. This would serve to increase the likelihood of rainfall over the 

watershed, albeit at relatively lower depths/intensities. Thus, if one is to restrict the time period of 

the rainfall data to recent years (for example, the 2002-2016 time period for which Stage IV is 

available), then Stage IV would likely be better. 

 

Supplementary Figure 1. Three peak discharge analyses for Turkey River at Garber, IA: RainyDay with Stage IV (2002-2016) 

and CPC-(2002-2016) rainfall and USGS frequency analyses (1990-2016) using Bulletin 17B methods. Shaded areas denote the 

ensemble spread (RainyDay-based results) and the 90% confidence intervals (Bulletin 17B-based analysis), respectively. All 

observed annual daily streamflow maxima from 1990 to 2016 are shown in black dots. 

 

Minor comments 8: Fig. 6: There is no description neither in legend nor in figure caption about 

the source of the two figures. I assume they stem from different precipitation data sets. 

We have updated this figure.  
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Abstract. Floods are the product of complex interactions ofamong processes including rainfallprecipitation, soil moisture, and 10 

watershed morphology. Conventional flood frequency analysis (FFA) methods such as design storms and discharge-based 

statistical methods offer few insights into these process interactions and how they “shape” the probability distributions of 

floods. Understanding and projecting flood frequency in conditions of nonstationary hydroclimate and land use requires deeper 

understanding of these processes, some or all of which may be changing in ways that will be undersampled in observational 

records. This study presents an alternative “process-based” FFA approach that uses stochastic storm transposition to generate 15 

large numbers of realistic rainstorm “scenarios” based on relatively short rainfall remote sensing records. Long-term 

continuous hydrologic model simulations are used to derive seasonally varying distributions of watershed antecedent 

conditions. We couple rainstorm scenarios with seasonally appropriate antecedent conditions to simulate flood frequency. The 

methodology is applied in to the 4002 km2 Turkey River watershed in the Midwestern United States, a watershed thatwhich is 

undergoing significant climatic and hydrologic change. We show that using only 15 years of rainfall records, our methodology 20 

can produce more accurate estimates of “present-day” flood frequency than is possible using longer discharge or rainfall 

records. We found that shifts in the seasonality of soil moisture conditions , snow, and extreme rainfall in Turkey River exert 

important controls on flood frequency. We also demonstrate that process-based techniques may be prone to errors due to 

inadequate representation of specific seasonal processes within hydrologic models. If sSuch mistakes are avoidableavoided, 

however, and our  process-based approaches can may provide a clearer useful pathway toward understanding current and future 25 

flood frequency in nonstationary conditions compared with more conventional methodsand thus be valuable for supplementing 

existing FFA practices. 

1 Introduction 

Riverine floods, among the most common natural disasters worldwide, are the product of complex interactions between heavy 

rainfall, watershed and river channel morphology, and antecedent (i.e. initial) conditions including soil moisture and snowpack. 30 
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Their impacts are projected to increase in the future due to hydrometeorological factors (e.g. Hyndman, 2014) and increased 

human development in flood prone areas (e.g. Ntelekos et al., 2010; Ceola et al., 2014; Prosdocimi et al., 2015). Estimating 

the relationships between flood likelihood and severity is central to flood risk management and infrastructure design; these 

relationships are typically represented by flood frequency distributions (or curves), while the broad family of procedures used 

to derive them is termed flood frequency analysis (FFA). Most existing FFA methods belong to one of three approaches: 5 

statistical analysis of observed streamflow observations, design storms, or and continuous simulation and or other so-called 

“derived” or “process-based” methods. Each has strengths and shortcomings, which are briefly summarized in  Sect. 2 (see 

Wright et al., 2014a for a distinct summary).   

FFA is challenging even in stationary (i.e. unchanging) watershed and hydroclimatic conditions due to the scarcity of 

observations of large floods and the associated factors that generate them (Stedinger and Griffis, 2011). The role of soil 10 

moisture in flood frequency, for example, is very important (Berghuijs et al., 2016), but poorly understood due to a lack of 

long-term observations. Furthermore, the individual and joint flood causative factors will evolve as a watershed undergoes 

changes in land use or hydroclimate (Machado et al., 2015). Leading causes of change (i.e. nonstationarity) include human 

intervention through land use change or reservoir construction (Konrad and Booth, 2002; Schilling and Libra, 2003; Villarini 

et al., 2009), natural climate variability (Enfield et al., 2001; Jain and Lall, 2000) and anthropogenic climate change driven by 15 

increased increasing greenhouse gases gas concentrations (Milly et al., 2008; Hirsch and Ryberg, 2012). Combinations of these 

will lead to nonstationary flood frequency, a challenge for which the bulk of existing FFA methods are ill-suited (El Adlouni 

et al., 2007; Gilroy and McCuen, 2012).  

In this study, we present an alternative FFA methodology that aims to “construct” the flood frequency curve through a 

combination of observations, stochastic methods, and hydrological modeling that generates and combines the causative factors 20 

(i.e. processes) such as rainfall and soil moisture that produce floods. This concept is not new, and has traditionally be called 

“derived FFA” (e.g. Eagleson, 1972; Franchini et al., 2005; Haberlandt, 2008), though we prefer the more descriptive term 

“process-based FFA” (after Sivapalan and Samuel, 2009; see Clark et al., 2015a, 2015b and Lamb et al., 2016; who discuss 

somewhat similar techniques). Sivapalan and Samuel (2009) argue in favor of process-based approaches in the face of 

nonstationary conditions, though they do not actually lay out a specific FFA procedure. 25 

We apply ourpresent such a process-based procedure, and apply it methodology to an agricultural watershed in the Midwestern 

United States that is undergoing substantial seasonal hydroclimatic and hydrologic changes that have led to nonstationary flood 

frequency. We will show that process-based FFA this procedure may hold better prospects than other methods in this watershed 

and more broadly, and is useful for deciphering the underlying physical processes that drive flooding, as well as drivers of 

flood frequency their changes in this watershed. (The reader is directed to Sivapalan and Samuel (2009) for a strong argument 30 

in favor of process-based approaches in the face of nonstationary conditions, though they do not actually lay out a specific 

FFA procedure.) Our methodology underscores the importance of seasonality in the joint contributions of rainfall and , soil 

moisture, and snow to flood frequency. To our knowledge, this study is the first to explore the role that seasonal changes in 

hydroclimatic and hydrologic processes play in nonstationary flood frequency, though other studies have explored the 
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importance of such processes in flood occurrence more generally (e.g. Berghuijs et al., 2016). We also argue that any process-

based FFA approach will require careful consideration of seasonality. 

The structure of the paper is as follows: Section 2 briefly reviews the three broad types ofaforementioned FFA approaches. 

Section 3 introduces the study region, watershed, and hydrometeorological data. Section 4 outlines the process-based FFA 

methodology used in this study, including the hydrological model, the stochastic storm transposition (SST) procedure used to 5 

derive the synthetic rainfall scenarios, and elements of both continuous and event-based rainfall-runoff simulation. The 

nonstationary hydroclimate of the study watershed and trends in relevant hydrometeorological variables are analyzed in Sect. 

5.1. Model validation is presented in Sect. 5.1. Process-based FFA results are presented and compared with “conventional” 

statistical estimates in Sect. 5.23. Simulated flood seasonality is explored in Sect. 5.34. The relationships between rainfall and 

simulated peak discharge quantiles areis examined in Sect. 5.45. Section 6 includes a summary and concluding remarks. 10 

2 Review of FFA Approaches 

2.1 Discharge-based Statistical Approaches 

Statistical FFA approaches involve fitting a statistical distribution to extreme discharge observations and extrapolating this 

distribution to estimate quantiles such as the 100-year or 500-year discharge. While these approaches utilize direct observations 

of flooding (e.g. peak discharge or volume), long streamflow records at or near the given river cross section are needed for 15 

reliable quantile estimates. Such records are lacking in many locations, even in developed countries. Statistical approaches are 

limited by the available observations; thus, the estimation distribution may not represent the “true” (unknown) distribution of 

possible outcomes (Linsley, 1986; Klemeš, 1986, 2000a, 2000b). In principle, regionalized Regional FFA methods are able to 

improve quantile estimates both at gaged and ungauged locations (Dawdy et al., 2012); however, they make assumptions, 

however, regarding the transferability of regional information to specific locations and can, in doing so, may neglect key 20 

geophysical processes that dominate the spatiotemporal variability of floods (Ayalew and Krajewski, 2017).  

Though streamflow observations are the result of a range of complex factors including rainfall, soil moisture, and channel 

routing, without concurrent observations of these “upstream” variables, neither streamflow observations nor distributions fitted 

to them provide much insight into flood causes. Long-term records of such variables, particularly soil moisture, are virtually 

nonexistent. There have been numerous examples within the FFA literature pointing to situations in which discharge-based 25 

analyses are can be inferior to others those based on hydrologic modeling, including cases of basin storage “discontinuities” 

(Rogger et al., 2012), reservoirs (Ayalew et al., 2013), and land use change (Cunha et al., 2011).  

Finally, most statistical FFA methods assume that the magnitude of extreme flood events and quantiles are stationary. This 

assumption conflicts with numerous examples in which hydrological records exhibit various types of nonstationarity (e.g. 

Potter, 1976; Villarini et al., 2009; Douglas et al., 2000; Franks and Kuczera, 2002)(e.g. Salas and Obeysekera, 2014; Potter, 30 

1976; Villarini et al., 2009; Douglas et al., 2000; Franks and Kuczera, 2002). Though nonstationary statistical FFA techniques 

do exist (e.g. Cheng et al., 2014; Gilleland and Katz, 2016; Serago and Vogel, 2018), they face severe limitations extrapolating 
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to future conditions (Luke et al., 2017; Sivapalan and Samuel, 2009; Stedinger and Griffis, 2011) since they rarely consider 

the fundamental physical causes of change. 

2.2 Design Storm Approaches 

Design storm (DS) approaches use idealized rainfall scenarios of a given return period as inputs to a calibrated hydrological 

model to simulate flood peaks. DS is widely used in practice due to its simplicity (Cudworth, 1989; Kjeldsen, 2007; Ball et 5 

al., 2016). To some extent, the flood-producing physical processes are captured via the hydrological model, which also 

provides a complete simulated flood hydrograph, as opposed to only the peak discharge or volume provided by statistical 

approaches. However, DS approaches rely on at least three major assumptions: (1) point-based rainfall intensity-duration-

frequency (IDF) estimates (which are subject to some of the same aforementioned statistical and data availability issues as 

flood discharges) can be converted into hyetographs using dimensionless temporal rainfall distributions and into basin-10 

averaged estimates using area reduction factors (e.g. Svensson and Jones, 2010); (2) IDF estimates, based on annual rainfall 

maxima, produce flood peaks which are quantiles of the distributions of flood annual maxima distribution; and (3) there is a 

1:1 equivalence between rainfall and simulated discharge quantiles (i.e. return periods or recurrence intervals), for example, a 

100-year idealized rainfall event will produce a reasonable estimate of the 100-year peak discharge. The last of these 

assumptions discounts the possibility that watershed initial conditions such as soil moisture and snowpack can modulate the 15 

transformation of rainfall quantiles into discharge quantiles.  

These assumptions are not without their shortcomings. Wright et al. (2014b), for example, showed significant disparities 

between observed point and basin-averaged rainfall extremes that cannot be captured using conventional ARF concepts. Using  

design storm in conjunction with a derived distribution approach, Viglione and Blöschl (2009) and Vigligone et al. (2009) , 

meanwhile, demonstrated that the ratio of rainfall return period to flood peak return period is controlled by storm duration, a 20 

runoff coefficient (which is related to antecedent conditions), and a runoff threshold effect using design storm approach in 

conjunction with derived distribution approach. These initialAntecedent conditions can vary substantially by season, meaning 

that high soil moisture may only very infrequently coincide with extreme rainfall. Wright et al. (2014a) discusses additional 

design storm shortcomings in greater detail, including time of concentration concepts, while also pointing out that design storm 

approaches (like other hydrologic model-based FFA) can incorporate future projections in land use and rainfall more explicitly 25 

than can statistical discharge-based methods. 

2.3 Continuous Simulation and Process-Based FFA Approaches 

Continuous simulation (CS) and process-based approaches to FFA leverage the potential benefits of hydrological models while 

minimizing the simplifying assumptions of DS methods. These CS approaches typically use long series of historical or 

stochastically generated rainfall, temperature, and occasionally other meteorological variables as hydrological model inputs, 30 

to simulate long discharge time series. Peak flows can be extracted from these series and the flood frequency distribution can 

be obtained. Thus, event rainfall return period and duration and antecedent conditions do not need to be specified and the 
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equality between the rainfall and discharge return period is not assumed (Calver et al., 1999, 2009). In addition, projections of 

future flood frequency can be developed by incorporating general circulation model (GCM) rainfall and temperature 

projections into the input meteorological series (Gilroy and McCuen, 2012; Rashid et al., 2017). On the other hand, CS 

approaches are limited by the general lack of reliable long-term time series of extreme rainfall and other meteorological data 

(Blazkova and Beven, 1997, 2002, 2009) and, in the case of sophisticated distributed approaches, by potentially high 5 

computational demands (Li et al., 2014; Peleg et al., 2017). Stochastic rainfall generation techniques typically struggle to 

produce with producing the extremes that are critical for flooding (e.g. Cameron et al., 2000; Furrer and Katz, 2008), and 

training such models for locations with rainfall nonstationarities and strong seasonal variations is nontrivial. Camici et al., 

(2011) and Li et al. (2014) present FFA process-based FFA approaches that couple long CS simulation results with event-

based simulations.  10 

One argument in favor of CS and process-based approaches is that the complex joint relationships between flood drivers such 

as rainfall and soil moisture are resolved within the modeling framework and thus do not rely on users’ assumptions. We 

demonstrate that caution is needed in the representation of seasonality; to briefly summarize, it is critical that both seasonality 

in input variables as well as seasonally varying processes within the model be “correct.” Without verifying this, process-based 

approaches may produce incorrect results, or, as shown in Sect. 5,  seemingly correct results as a result of incorrect methods. 15 

3 Study Region and Data 

The study watershed of Turkey River (Fig. 1) is situated in northeastern Iowa (Fig. 1a, 1b). and theThe portion upstream of 

the US Geological Survey (USGS) stream gage at Garber (ID codegage number 05412500) has a drainage area of 4002 km2,.  

with Eelevations ranginges from approximately 426 m above sea level (masl) in the west to 197 masl at the stream gage (Fig. 

1c) site. The sStreams at in the upper part of the catchment have relatively low mild slopes, while the channels and hillslopes 20 

in the lower part are steeper. Soils in Turkey River are mainly loams and silts (IFC, 2014). According to USGS 2012 National 

Land Cover Dataset (NLCD), the Turkey River watershed is predominantly agricultural, with less than 2% urban land cover 

(Fig. 1d). Comparisons of NLCD from 1992, 2001, 2006, and 2012 indicates that land uses have not evolved significantly over 

time (results not shown), though the hydrologic impacts of subsurface tile drainage, which has become ubiquitous throughout 

the region, are poorly understood and could exert meaningful influence on flooding (see, e.g. Schilling et al., 2014).  25 
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Figure 1. Study region. (a) Contiguous Conterminous United States; with the state of Iowa is highlighted in grey. (b) The Zzoomed- in map 

shows showing Iowa (black outline) and the Turkey River watershed (red) and the extent of the stochastic storm transposition region (blue 

dash line). (c, d) Turkey River watershed showing land surface elevation (based on the USGS National Elevation Dataset) and land use 

(based on the USGS 2012 NLCD), respectively. 5 

We use daily discharge observations for 84 years (1933-2016) from the USGS streamgage at Garber, Iowa (USGS gage 

identifier 05412500) to understand the hydroclimatology of flooding and to validate our FFA results. Daily discharge 

observations for 69 years (1948-2016), in conjunction with Global Historical Climate Network (GHCN) daily temperature and 

snow data are used to configure, calibrate, and validate the hydrological model, as described in Sect. 4.1. The CPC US Unified 

(CPC-Unified; Chen et al., 2008) and Stage IV (Lin and Mitchell, 2005) precipitation data, available through the National 10 

Oceanic and Atmospheric Administration, are used for rainfall analyses. CPC-Unified provides daily, 0.25º rainfall estimates 

interpolated from rain gage observations, while Stage IV provides hourly, approximately 4 km  estimates by merging data 

from rain gages and the National Weather Service Next-Generation Radar network (NEXRAD; Crum and Alberty, 1993). In 

this study, Aanalyses based on Stage IV use data from 2002-2016, while long-term analyses based on CPC-Unified use data 

from 1948-2016. 15 
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4 Methodology 

The FFA approach presented in this study combines continuous simulation (CS), stochastic storm transposition (SST) using 

the RainyDay software, and event-based simulation. CS provides large samples of seasonally varying antecedent conditions, 

namely including soil moisture and snowpack. SST produces large numbers of synthetic rainfall scenarios. including realistic 

estimates of rainfall space-time structure. Together, these drive event-based simulations to generate the synthetic flood peaks 5 

that are used to derive flood frequency distributions. The approach is illustrated schematically in Fig. 2 and summarized in the 

following subsections. 
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Figure 2. Flow chart showing the process-based FFA approach. Dotted outlines delineate components associated with subsections 4.1, 4.2 

and 4.3. 

4.1 Hydrological Model, Calibration, and Continuous Simulation 

We used the lumped Hydrologiska Byråns Vattenavdelning (HBV) model (Bergström, 1992, 1995; Lindström et al., 1997). 

HBV has been widely used to study hydrological response in United States (Vis et al., 2015; Niemeyer et al., 2017) and other 5 

regions of the world (Harlin and Kung, 1992; Osuch et al., 2015; Seibert, 2003; Chen et al., 2012). The “HBV-Light” version 

( henceforth referred to as HBV; Seibert and Vis, 2012) version is used in this study, and consists of four main routines: 

snowpack, soil moisture, catchment response, and runoff routingroutine. The modelHBV simulates daily discharges based on 

time series of precipitation and air temperature, as well as estimates of long-term daily potential evapotranspiration. A list of 

model parameters is shown in Table 1. 10 

The process-based FFA methodology employed in this study could be used coupled with any other hydrological models. 

Utilizing Aa distributed hydrological model would allow for more realistic representation of important characteristics like 

changing land use, rainfall spatiotemporal structure, and flood wave attenuation in river channels,. Other models and could 

operate at higher (i.e. subdaily) temporal resolution in terms of inputs, model time steps, and outputs. We selected HBV at the 

daily time step due to its simplicity, computational speed, and its ability to represent conceptually multiple watershed 15 

hydrological processes. 

We calibrated separate HBV models using both CPC and Stage IV rainfall. Most parameter values were the same for CPC- 

and Stage IV-based models except for three snow routine parameters (TT, CFMAX, SFCF) and three recession coefficients 

(K0, K1, K2), allowing for the variability of model parameters for different climate conditions.  For each model setup, we first 

calibrated the model with snowpack routine “turned off” (by setting TT parameter to a very low value) to obtain parameters 20 

that can simulate summer floods adequately. Then, keeping these optimized non-snow routine parameters unchanged, we 

calibrated the snow routine parameters.  

To determine the optimized model parameter sets in each procedures, we followed the Genetic Algorithm and Powell (GAP) 

optimization method as presented by Seibert (2000),  which is briefly summarized here. First, 5000 parameter sets are randomly 

generated from a uniform distribution of the values of each parameter (Table 1), which were then applied to the HBV model 25 

in order to maximize Kling Gupta Efficiency (Gupta et al., 2009) of simulated daily discharge. After the GAP has finished, 

the optimized parameter set were fine-tuned using Powell’s quadratic convergent method (Press, 1996) with 1000 additional 

runs. Lastly, the optimized parameter set was manually adjusted to improve the fits between observed and simulated annual 

peak flow (see Lamb, 1999). More elaborate calibration and uncertainty estimation procedures such as Generalized Likelihood 

Uncertainty Estimation (GLUE; Beven and Binley, 1992; Beven, 1993; Beven and Binley, 2014) could be used, but are outside 30 

the scope of our study.  

The two different HBV models were then used to perform CS with historical CPC and Stage IV rainfall and temperature data 

to derive long-term simulated soil moisture and snowpack values, which are usually difficult to obtain via measurement. We 
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“pair” samples of these initial conditions with synthetic rainfall events to simulate hypothetical floods, as described in Sect. 

4.2 and Sect. 4.3.  

We calibrated the model automatically via 5000 continuous simulations from 1948-2016 by maximizing Kling and Gupta 

Efficiency (Gupta et al., 2009) using the Genetic Algorithm and Powell optimization method (Seibert, 2000). After the genetic 

algorithm has finished, 1000 additional runs are performed for fine-tuning using Powell’s quadratic convergent method (Press, 5 

1996). Lastly, the optimized parameter set is manually adjusted to improve the fits between observed and simulated annual 

peak flow (see Lamb, 1999). More elaborate calibration and uncertainty estimation procedures such as Generalized Likelihood 

Uncertainty Estimation (GLUE; Beven and Binley, 1992; Beven, 1993; Beven and Binley, 2014) could be used, but are outside 

the scope of our study. After calibration, HBV was used to perform CS with historical CPC and Stage IV rainfall and 

temperature data to derive long-term simulated soil moisture and snowpack values, which are usually difficult to obtain via 10 

measurement. We “pair” samples of these initial conditions with synthetic rainfall events, as described in Sect. 4.2 and Sect. 

4.3.  

Table 1. Overview of HBV model parameters and upper and lower parameter limits used for calibration. 

Parameter Description Units Min value Max value 

Snow Routine 

TT Threshold temperature for liquid and solid precipitation °C -3 3 

CFMAX Degree-day factor mm d−1°C−1 0.5 4 

SFCF Snowfall correction factor - 0.5 1.2 

CFR Refreezing coefficient - 0.01 0.1 

CWH Water holding capacity of the snow storage - 0.1 0.3 

Soil Moisture Routine 

FC Maximum soil moisture storage (field capacity) mm 100 550 

LP Relative soil water storage below which AET is reduced linearly - 0.3 1 

BETA Exponential factor for runoff generation - 1 5 

Response Routine 

PERC Maximum percolation from upper to lower groundwater box mm d−1 0 10 

UZL Threshold of upper groundwater box mm 0 50 

K0 Recession coefficient 0 d−1 0.5 0.9 

K1 Recession coefficient 1 d−1 0.15 0.5 

K2 Recession coefficient 2 d−1 0.01 0.15 

Routing Routine 

MAXBAS Length of triangular weighting function d 1 2.5 
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4.2 Stochastic Storm Transposition 

Stochastic storm transposition (SST) is a bootstrap method to generate realistic probabilistic rainfall scenarios through 

temporal resampling and spatial transposing of observed storms from the surrounding region. SST is a bootstrap method that 

aims to effectively “lengthens” the rainfall record by performingvia “space-for-time substitution.” within a rigorous 

probabilistic framework. Unlike rainfall IDF curves, SST can preserve observed rainfall space-time structure, and, unlike 5 

design storm methods, obviates the need to equate rainfall duration to catchment response time (Wright et al., 2013, 2014a, 

2014b). Alexander (1963), Foufoula-Georgiou (1989), and Fontaine and Potter (1989) provide general descriptions of SST. 

Wilson and Foufoula-Georgiou (1990) apply the method for regional rainfall frequency analysis while Gupta (1972), Franchini 

et al. (1996), England et al. (2014) and Nathan et al. (2016) use it for FFA.  

Wright et al. (2013) used SST with a 10-year high-resolution radar rainfall dataset to estimate spatial IDF relationships. Wright 10 

et al. (2014a) used this approach with a physics-based distributed hydrologic model for FFA in a heavily urbanized watershed, 

demonstrating its usefulness in evaluating multi-scale flood response.  

RainyDay is an open-source, Python-based SST software that couples SST methods with rainfall remote sensing data. A more 

detailed description can be found in Wright et al. (2017); not all of its features are used in this study. The following steps 

describe how RainyDay is modified and used in this studyhere: 15 

1. We define a 6-degree (longitude) by 4-degree (latitude) geographic transposition domain (40° to 44° N, 90° to 96° W; 

blue dash line of Fig. 1 inset) which encompasses the Turkey River watershed. This same domain was used in Wright et 

al (2017) and, importantly for the SST approach, extreme rainfall properties are roughly homogeneous within it. 

2. The RainyDay software creates a “storm catalog” from 15 years of Stage IV (69 years of CPC) rainfall precipitation data 

that consists of the 450 (2070) most intense rainfall precipitation event within the transposition domain. These intense 20 

storms are in terms of 96-hour rainfall accumulation and have the same size, shape, and orientation of the Turkey River 

watershed, which is oriented roughly northwest-southeast and with an area of 4002 km2. In order to avoid overlapping 

storms, these selected events must be separated by at least 24 hours. These storms have a maximum duration of 96 hours 

and must be separated by at least 24 hours. Storms that exhibit “radar artifacts” such as major bright band contamination 

or beam blockage are excluded from subsequent steps. 25 

3. The RainyDay software generates a Poisson-distributed integer k that represents a “number of storms per year.” The rate 

parameter λ of this Poisson distribution is calculated by dividing the total number of rainfall events in the storm catalog 

by the number of years in the historical rainfall record (݁. 𝑔.i.e. 𝜆 = ͶͷͲ/ͳͷ = ͵Ͳ.Ͳ storms per year).  

4. RainyDay randomly selects k storms from the storm catalog and transposes the associated rainfall fields within the 

transposition domain by an east-west distance ∆ݔ and a north-south distance ∆ݕ, where ∆ݔ and ∆ݕ are drown drawn from 30 

a 2two-dimentionaldimensional Gaussian kernel density estimate based on the locations of the original storms in the storm 

catalog. For each of the k transposed storms, the time series of rainfall over the Turkey River watershed is computed. It 

must be noted that some of the k transposed storms may not “hit” Turkey River watershed, and thus their calculated 
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watershed rainfall are zero. Steps 3 and 4 can be understood as temporal resampling of observed rainfall events to 

“synthesize” a hypothetical year of rainfall events over the transposition domain and, by extension, over the watershed. 

Although the rainfall events for the “synthetic” year do not form a continuous series, the dates associated with each 

observed storm event are recorded, thus facilitating seasonally-consistent flood simulations.  

5. All k events within a synthetic year are assigned a new, randomly selected year from 1948-2016 (2002-2016) for CPC 5 

(Stage IV) rainfall data, which used to select antecedent conditions. This ensures that the k rainfall events are all 

“embedded” within a single realistic annual representation of watershed conditions. This ensures that “wet” and “dry” 

years in terms of snowpack and soil moisture can potentially produce wet or dry years of flood response. Antecedent 

conditions are randomly selected from +/- 7within seven days of the updated storm date to ensure realistic seasonality of 

storms and watershed conditions. A storm that occurred on 15 July 15, 2016, for example, could be paired with initial 10 

conditions selected from a day date ranging between 8-22 July 8-22 from a randomly selected year, while the remaining 

k-1 events would be paired with seasonally appropriate initial conditions from that the same selected year. 

6. RainyDay repeats Steps 3-5 500 times to create one realization of 500 synthetic years of rainfall events for Turkey River. 

Twenty such realizations of 500 synthetic years each are generated. Unlike in the existing version of RainyDay, all rainfall 

events within a synthetic year are retained for subsequent event-based flood simulations, since the modulating effects of 15 

antecedent conditions mean that the largest rainfall event in a given year does not necessarily produce that year’s largest 

flood peak (this possibility is explored in Sect. 5.4). 

4.3 Event-Based Flood Simulation  

Using the seasonally-consistent “paired” SST-based rainfall events and watershed initial conditions derived from CS (Sect. 

4.12) and SST-based rainfall events (Sect. 4.2), HBV simulates the “event peak” (the maxima daily discharge). The largest 20 

“event peak”peak among the k events within that comprise a synthetic year represents the simulated annual maximum daily 

streamflow. This process is repeated for all 500 synthetic years within each realization, resulting in 500 annual maximum 

streamflow values, which are then ranked in descending magnitude. The annual exceedance probability ݌௘ (i.e. the probability 

in a given year that an event of equal or greater intensity magnitude will occur) of each maximum streamflow are calculated 

by dividing its rank by 500 (the total number of simulated annual maximum daily streamflow). The 20 twenty realizations 25 

provide estimates of variability for each flood quantile. 

5. Results 

5.1 Hydroclimatology and Nonstationarity 

Four distinct time periods (Fig. 3a) are used considered for analyzing the changing hydroclimatology in Turkey River: the 

USGS daily mean streamflow period of record (1933-2016), a more recent period of apparent elevated flood activity (1990-30 
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2016), the period of the Stage IV rainfall record (2002-2016), and the period of the CPC rainfall record (1948-2016). Results 

here and in subsequent subsections “align” with one or more of these time periods.  

The hydroclimate of Turkey River is changing, as shown by using the Mann-Kendall (MK) test for monotonic trends (Mann, 

1945) and the Thiel-Sen estimator (Sen, 1968), a nonparametric methods used to determine trend direction and significance 

magnitude (i.e. slope), respectively(Table 2). Since 1948, annual precipitation and discharge show significant increases 5 

(p<0.05) and their variability has also increased (Table 1), while annual maximum daily discharge has decreased, though not 

significantly. It is important to note, however, that there are two counteracting seasonal trends (see also Fig. 3a): annual daily 

discharge maxima have decreased significantly in March-April, but  has have decreased increased somewhat in significantly 

while May-September has increased somewhat. Thus, the lack of statistically significant change in flood magnitudeannual 

maximum daily discharge in Turkey River at the annual scale masks changes in the seasonality of flooding. 10 

 

 

 

 

 15 

 

Table 2. Mann-Kendall trend (two sided) test (two sided) for hydrological variables. p-values are given in parentheses; bolded values are 

significant at the 5% level. The Analyses of trends in variances refers toexamine changes in the absolute values of residuals associated 

obtained from a linear regression using with the Thiel-Sen estimator (Sen, 1968). 

Data Time Range Trend 

Annual Discharge 1933-2016 ↑ (0.001) 

Annual Max. Daily Discharge 1933-2016 ↓ (0.447) 
Variance of Annual Max. Daily Discharge 1933-2016 ↑ (0.056) 

Annual Max. Daily Discharge in March-April  1933-2016 ↓ (0.002) 

Annual Max. Daily Discharge in May-September 1933-2016 ↑ (0.089) 
Annual Precipitation 1948-2016 ↑ (0.003) 

Annual Max. Daily Precipitation 1948-2016 ↑ (0.362) 
Annual Max. 4-day Precipitation 1948-2016 ↑ (0.419) 

Annual Mean Temperature 1948-2016 ↓ (0.462) 
March-May Mean Temperature 1948-2016 ↑ (0.443) 

We examine this flood seasonality, both in observations and in our continuous HBV simulations (Fig. 3b). The seasonal 20 

distribution of flood occurrence for 1948-2016 shows a March-April maximum, with elevated flood activity continuing through 

May and June. This is distinct from, though overlaps somewhat with the seasonality of both the 4four-day annual maxima of 

rainfall, which occur most frequently in the June-September period, and simulated daily annual maxima soil moisture, which 

only tend to occur in JanuaryMarch-April. These results highlight that flood activity is the product of seasonal variations in 
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both soil moisture and rainfall. 4(Four-day rainfall shown in Fig. 3b since it is used in SST; seasonality in 1one-day rainfall is 

very similar; (results not shown). 

The March-April peak of flood occurrence corresponds with relatively high soil moisture associated with snowmelt, rain on 

or frozen soil, or and frequent spring rains. The secondary peak of flood occurrence in May-June is associated with larger flood 

magnitudes (including the largest flood eventof record, in 2004) due to recent severe organized thunderstorms systems. For 5 

instance, wWidespread flooding in Iowa in June 2008 showed that such thunderstorm systems make critical contributions to 

the upper tail of flood peak distributions in the region (Smith et al., 2013). Although the frequent heavy rainfall events in 

August or-September heavy rainfall events evident in Fig. 3b have not triggered any of the recorded annual flood peaks in 

Turkey River, our process-based FFA demonstrates that they may still relevant to current and future flood frequency, as shown 

in Sect. 5.43.  10 

The largest annual maxima (over 800 m3/ s-1) occur in May-July (Fig. 3c), consistent with the broader climatology of flooding 

in Iowa (Smith et al., 2013; Villarini et al., 2011). Furthermore, both the seasonality and magnitude of flood peaks have shifted 

since approximately 1990 (Fig. 3a, 3c), with March-April (May-September) floods decreasing (increasing) in magnitude, 

leading to a shift in the seasonality of the overall distribution of annual maxima daily streamflow from a high in March prior 

to 1990 to a prolonged high from April- to June post-1990. Although the small sample size of the annual maxima daily 15 

discharge during this elevated 1990-2016 late-spring/ and summertime flood period (1990-2016) may affect the reliability of 

the derived PDF distribution of flood occurrence, Park and Markus (2014) also reported a significant shift toward summertime 

flooding in the nearby Pecatonica River. Statistically based FFA (including nonstationary methods) based on annual maxima 

discharges may fail to capture the impact of this shifting seasonality on flood frequency. 
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Figure 3. (a) Linear trends for two groups of annual maxima daily discharge: March-April floods (blue) and May-September floods (red) 

using the nonparametric Thiel-Sen estimator (Sen, 1968). The October-February maxima daily discharge are in black dots and its trend line 

is not calculated because only nine annual maxima are occur during this period. The trend line for the “overall” annual maxima time series 

(i.e. disregarding seasonality) is in wide grey line. The fFour critical time ranges are shown in black lines. (b) Occurrence densities of the 5 
date during the year for the observed annual daily maxima discharge, observed annual 4-day maxima precipitation, and simulated annual 

daily maxima soil moisture in Turkey River watershed from 1948 to 2016. (c) The magnitude and the date during the year for annual flood 

peaks in Turkey River at Garber is in (black dots).and Sample sample probability density functions (PDFs) for flood events in different 

periods (1933-1989, blue; 1990-2016, red) are shown. In this study, all probability densities for occurrence date are estimated using a 

Gaussian kernel smoothersmoothing. 10 

 

5.2 Model Validation 

We validated the performance of continuous HBV simulations with respect to flood seasonality, frequency of annual daily 

discharge maxima, and normalized peak flow (i.e. the simulated or observed daily discharge divided by the 2-year flood), 

using both Stage IV and CPC as precipitation inputs (Fig. 4). We also validated two model structures: one with and the other 15 
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without the HBV snowpack module. The purpose for this latter validation effort is to highlight the importance of proper process 

representation (and subsequent validation) in process-based FFA. 

Simulated flood seasonality varies substantially during the CPC period of record (1948-2016) depending on the inclusion of 

the snowpack routine (Fig. 4a). Differences are less for the Stage IV period of record (2002-2016), due to the decreasing role 

of snowpack in deriving the floods in recent years (Fig. 4b). In both cases, the seasonality of flooding simulated using HBV is 5 

improved with the inclusion of the snowpack module, with a higher (lower) frequency of springtime (summertime) floods 

which more closely resembles observations. Empirical (i.e. plotting position-based) distributions for the simulated annual daily 

discharge maxima are mostly within the 90% confidence interval (obtained by nonparametric bootstrap) of the observations 

(Fig. 4c, 4d). CPC-based simulation results differ considerably depending on the inclusion of the snowpack module for more 

common events, but differences in simulated maxima vanish as flood magnitude increases (e.g. AEP<0.1). This is because the 10 

most extreme flood events occur later in the season and are thus independent of snowpack or snowmelt processes. Differences 

are generally negligible between Stage IV-based simulations with and without snowpack, since floods in this more recent 

period are generally driven by summertime thunderstorms. These findings are consistent with the general understanding of the 

regional seasonality of flooding in the region, as discussed in Sect. 5.1. 

We compared all simulated and observed flood peaks that can be associated with a USGS observed daily streamflow value 15 

that is at least three times the mean annual daily discharge (Fig. 4e, 4f). When associating simulated and observed flood peaks, 

we look within a 2-day window to allow for modest errors in simulated flood peak timing. All peaks in Figs. 4e and 4f are 

normalized by the median annual (i.e. 2-year) flood, which, as a rule of thumb, can be considered as the “within bank” 

threshold. Again, HBV with the snowpack routine outperforms the model without it, especially for the small to modest flood 

events in CPC-based simulations. The model without snowpack underestimates small to modest flood events in two cases due 20 

to the neglect of potential snowmelt contributions. While modest scatter exists in the Stage IV-based simulated peaks, there is 

no obvious systematic bias with event magnitude when the snowmelt routine is included. The good performance of the Stage 

IV simulations suggests that, when focusing on the recent period of elevated flood activity, Stage IV may be a more suitable 

rainfall input than CPC-Unified. In addition, CPC rainfall is known to contain errors in the extreme tail, due to gage 

“undercatch”, insufficient gage density to properly sample convective rain cells, and spatial averaging of such cells over large 25 

areas, which effectively reduces peak rainfall depths. 
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Figure 4. HBV model validation for flood seasonality (a, b), frequency of annual max. daily discharge (c, d) and normalized peak flow (e, 

f) for CPC and Stage IV-based continuous simulations. Model validation is performed for HBV simulations with and without using CPC for 

1948-2016 (panels a, c, e) and Stage IV for 2002-2016 (panels, b, d, f).  The 90% confidence intervals for the empirical distributions of 

observed maximum daily discharges (c, d) are derived using nonparametric bootstrapping. Flood peak discharge in (e) and (f) is defined as 5 
a data point with USGS observed value that is at least three times the average observations. Peak discharges are normalized by the median 

of annual daily discharge maxima (i.e. the 2-year flood). Straight solid black lines indicate 1:1 correspondence, while dashed lines denote 

an envelope within which the modeled values are within 50% of observed. 
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We also validate HBV’s snowpack routine using observed GHCN daily snow depth for two simulation periods (Fig. 5a, 5b) 

and using USGS daily streamflow observations for Stage IV-based period (Fig. 5c). Because of their differing spatial 

resolutions and physical representations, point-scale GHCN daily snow depths cannot be directly compared to the watershed-

scale snow water equivalent simulated by HBV. Instead, we validate snowpack simulations in terms of the snowpack 

occurrence, defined as the number of nonzero snowpack on a particular date divided by the total number of years in the 5 

historical or simulated record. For example, there are 50 days in the GHCN observations when snowpack is present on January 

1st in the 69-year period from 1948-2016, thus the occurrence rate is 0.72 (50 divided by 69). The HBV model with the 

snowpack routine captures the central tendency of observed snowpack dynamics, showing that snowpack frequently exists 

from early November to mid-February, with frequency of snow decreasing from late February until disappearing in early April.     

 10 

Figure 5. Percentage of days with nonzero snowpack present in observations and simulations (a, b) and hydrograph validation for Stage IV-

based simulation (c). For each day within a year, the percent with nonzero snowpack is calculated as the ratio of the number of years in 

which snowpack is present on that day to the total years (69 years for CPC and 15 years for Stage IV). Observed and simulated hydrographs 

are normalized by the median annual flood, which is indicated by the dashed blue line.  

Model hydrograph validation is provided in Fig. 5c for the Stage IV period (2002-2016), when major flooding occurred 15 

throughout Iowa. Model performance shows no obvious evidence of systematic bias in the streamflow simulations (see also 

Fig. 4f). Although flood seasonality derived from Stage IV-based simulation differs slightly from observations (see also Fig. 

4a), these mismatches are associated with flood events smaller than the median annual flood (blue dash line in Fig. 5c). Stage 
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IV-based simulations do not show bias flood magnitude in late summer. In other words, remaining biases in terms of flood 

seasonality generally correspond with frequent, small-magnitude events that are typically of less interest in FFA. We therefore 

conclude that the HBV model with snowpack is generally suitable for subsequent process-based FFA.       

As mentioned in Sect. 2.3, caution is needed when using hydrological models for process-based FFA. The hydrological model 

must be faithful, to a reasonable degree, to observed nonstationarities, while the importance of soil moisture in flooding implies 5 

that processes such as subsurface flow and storage beyond the event scale must also be adequately represented. “Quantile-

Kendall plots” (Hirsch and De Cicco, 2015) for observed and simulated daily streamflows from 1948 to 2016 highlight this 

(Fig. 4). Each point on the plot is a trend slope computed for the 1948-2016 period using the Thiel-Sen estimator for a given 

quantile of the variable in question, while the color of the point indicates the significance of the trend computed using the MK 

test. For instance, the point at the far left (right) is the first (365th) order statistic, which is the annual minimum (maximum). 10 

The plots are useful for displaying long-term trends across the entire distribution.  

Trends in observed streamflow (Fig. 4b) below the 90th percentile are largely positive (around 1.5% per year) and significant 

at the 5% level. Beyond the 90th percentile, the trend is less significant. Quantile-Kendall plots for simulated daily streamflow 

derived and without the HBV snowpack routine (Fig. 4c, 4d) reveal that simulated streamflow trends without the snowpack 

routine more closely resemble the observed trends, since the trend slope generally decreases with increasing quantile and the 15 

significance at high quantiles is generally low. (Note that model calibration is performed separately for both simulations, 

meaning the model parameters differ between them.) The plot of simulated streamflow with the snowpack routine differs 

substantially from observations, including a significant 1.5% per year increase in simulated annual maxima which contrasts 

with an insignificant 0.2% observed decrease. While a different hydrological model structure would produce different 

outcomes, these results highlight that certain process representations in models may produce undesirable results that could 20 

propagate through to FFA. 

We also show Quantile-Kendall plots for observed daily precipitation (Fig. 4a) and simulated daily soil moisture derived 

without (with) the snowpack routine (Fig. 4e, 4f). Both Quantile-Kendall plots for observed precipitation and simulated soil 

moisture exhibit positive trend slopes that decrease moderately with increasing quantile. It can be inferred from these plots 

that the increases in precipitation and soil moisture appear to result in an increase in low and moderate flows across the Turkey 25 

River watershed, though their implications for flood seasonality are less clear. 

Previous studies also have shown increases in annual and seasonal precipitation and streamflow totals as well as changes in 

the frequency of intense rain events and the seasonality of timing of precipitation in the Midwestern United States and have 

suggested potential causes including large-scale climate variability and climate warming (e.g. Gupta et al., 2015; Mallakpour 

and Villarini, 2016, 2015; Park and Markus, 2014; Yang et al., 2013). Specific attribution of the changes in Turkey River is 30 

beyond the scope of this study, but these trends nonetheless highlight the potential challenge and important considerations for 

FFA in a changing hydroclimate.  
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Figure 4. Quantile-Kendall plots for observed precipitation (a), observed daily streamflow (b), simulated daily streamflow with (without) 

snowpack routine (c, d), and simulated daily soil moisture with (without) snowpack routine (e, f) for 1948-2016. The color represents the p-

value for the Mann-Kendall test. Red indicates a trend that is significant at 0.05 level. Black indicates an attained significance between 0.05 

and 0.1.Grey dots indicate trends that are not significant at the 0.1 level.  5 

 

5.32 Flood Frequency Analyses  

RainyDay-based FFA flood frequency distributions for Turkey River at Garber using both Stage IV and CPC rainfall 

datasetsprecipitation are compared with the distribution based on statistical analyses of discharge observations-based FFA 

using 1933-2016 USGS annual maxima daily streamflows (Fig. 56). The latter is derived estimated using the HEC-SSP 10 

software (Bartles et al., 2016), which implements methods from USGS Bulletin 17B (Interagency Advisory Committee on 

Water Data, 1982) using “station skew” to fit the log-Pearson Type III distribution. Observed annual maxima daily streamflow 

maxima from 1933 to 2016 are also shown, where plotting position (݌௘) is estimated using the Cunnane plotting position 

(Cunnane, 1978). As mentioned above, Ddifferent HBV parameters are used for the Stage IV and CPC-based simulations, ; 
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this is necessary due to different the differing time range periods and error properties in of these two precipitation datasets. We 

did not use the snowpack routine in HBV to generate the results in Fig. 5; this routine was shown to produce unrealistic 

streamflow results (Fig. 4c, 4d). 

The Stage IV-based flood frequency curve agrees reasonably well with the Bulletin 17B results discharge-based FFA for ݌௘ >Ͳ.͵ (left panel of Fig. 56), but yields higher estimates for rarer events ݌௘ < Ͳ.͵. The CPC-based curve, on the other hand, 5 

matches closely with the discharge-based curveBulletin 17B. The Stage IV analyses use shorter but more recent (2002-2016) 

meteorological and hydrological records than the other frequency curves. When the streamflow observations are divided into 

two groups (1933-1989 and 1990-2016), it becomes clear that the recent peak flood observations align well with the Stage IV-

based SST results (right panel of Fig. 56). This, along with the increasing trend of annual mean precipitation and discharge 

shown in the previous subsection, suggests that, despite the relatively short (15-year) rainfall record used, the Stage IV-based 10 

driven process-based FFA adequately reflects flood frequency in the wetter recent climate (a similar result is shown in Wright 

et al., 2017), while the longer CPC-based-based and Bulletin 17B methods, both based on much longer data records discharge-

based methods fail to do so.  

Considering Fig. 3 and Fig. 4, the The results shown in Fig. 5 6 suggest that the recent shift from spring to summer flood 

activity is accompanied by a substantial shift in the flood frequency distribution. The close agreement between CPC-based and 15 

dischargeprocess-based results using CPC and the statistically-based analysis using Bulletin 17B FFA suggests that even in 

stationary situations with long records, the statistical methods do not necessarily produce superior results to process-based 

approaches. We also derived the RainyDay basedProcess-based FFA using CPC-Unified rainfall data precipitation from 2002 

to- 2016 and it closely resembles the Stage IV-based FFA (results not shown), pointing tosuggesting that rainfall temporal 

process nonstationarity, rather than differences between different rainfall input datasets, as are the primary drivers of the 20 

differences in the CPC-based and Stage IV-based results in the left panel of Fig. 56. The following subsections explore the 

hydrologic processes that are embedded within these process-based flood frequency curves. 
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Figure 56. Three peakPeak discharge analyses for Turkey River at Garber, IA.: (a) RainyDay with Stage IV (2002-2016) and CPC-(1948-

2016) rainfall and USGS frequency analyses using Bulletin 17B methods. All observed USGS annual maxima daily streamflow from 1933 

to 2016 are also shown. Shaded areas denote the ensemble spread (RainyDay-based results) and the 90% confidence intervals (Bulletin 17B-5 
based analysis), respectively. All observed annual maxima daily streamflow from 1933 to 2016 are shown in one group in the left panel, (b) 

Same as (a), but are with the USGS observations divided separated into two pre-1990 and post-1990 groups, in the right panel. Stage IV and 

Bulletin 17B curves are identical in the two panelsreplotted to highlight recent changes in flood frequency. 
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5.43 Simulated Flood Seasonality 

As shown in Sect. 5.1, the recent climatology of flooding in Turkey River watershed shows a peak in flood activity occurrence 

during March-April, with elevated activity (including high-magnitude events) continuing through July, reflective of the 

regional flood “mixture distribution” (e.g. Smith et al., 2011). March-April flooding is associated with springtime rains, high 

soil moisture, and potentially snowmelt processes, while May-July flooding results from warm-season organized thunderstorm 5 

systems. It is important that any process-based FFA approach capture the influence of this mixture on the flood frequency 

curve. 

The seasonal distribution of simulated flood occurrence and magnitude using Stage IV- and CPC-based results show that most 

simulated floods in our process-based approach occur between March and June (Fig. 67), in accordance with observed annual 

maxima daily discharge (Fig. 3c; see also Fig. 7b). The peak of occurrence using Stage IV is shifted several weeks later than 10 

the CPC-based results, which agrees with the recent shift in seasonality of flood observations shown in the Fig. 3c. Although 

most many simulated events still occur around in April, our results show that the largest peaks occur later, in May-September. 

This is consistent with Villarini et al. (2011), who showed that summertime warm season organized convective systems are 

responsible for some of the largest peaks in Iowa.  

Figure. 6 Our process-based results shows that rainfall events around August-September storms have the potential to cause 15 

severe flooding (Fig. 7), despite the lack of observed Augustlarge floods during this time of year peaks in Turkey Riverthe 

stream gage record. The Stage IV- and CPC-based storm catalogs generated by RainyDay, which includes major storms from 

the surrounding region, includes including several large late-summer storm events, capable of producing substantial flood 

response, and which produce indeed to induce large floods within the our process-based analysis. This suggests that the general 

lack of major late-summer floods in the watershed’s observational records for Turkey River may not be a feature of the “true” 20 

(unknown) distribution of flooding in the watershed, but rather due to limited size of the observational recordof undersampling 

of this distribution in the observed flood record. This result is supported by regional analysis or of regional floods observations 

(Villarini et al. 2011), and points to the potential for SST to improve representations of seasonal variations in extreme rainfall 

relative to local observations understanding of flood frequency seasonality relative to discharge-based approaches alone. 
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Figure 67. Time of occurrence during the year for simulated peak discharge in Turkey River at Garber using (a) CPC and (b) Stage IV.  

To demonstrate that the discrepancies between the process-based FFA results generated using CPC and using Stage IV-  are 

driven by changes in physical processes, rather than by differences in model structure (i.e. parameter values), we compared 

FFA results generated using CPC-based for 1948-2016 and 2002-2016, in terms of event rainfall, initial soil moisture, flood 5 

type and peak magnitude (Fig. 8). Compared with the 1948-2016 period (Figure. 8a), there are fewer flood events driven by 

snowmelt or rain-on-snow during 2002-2016 (Fig. 8b) but more driven by rainfall. This is particular true for flood events 

(larger than 1000 m3 s-1). In addition, some of the rainfall-driven floods from 2002-2016 were caused by relatively low rainfall 

but high initial soil moisture, in accordance with the significant increasing trend of annual precipitation and discharge (Table 

2). 10 
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Figure 8. The simulated flood magnitude using CPC rainfall during 1948-2016 (a) and 2002-2016 (b) periods, and corresponding antecedent 

conditions. The blue triangles denote the snow related flood events (e.g. snowmelt was nonzero in the simulation) and grey dots represent 

the non-snow related flood events (e.g. rainfall driven). The size of the triangles or dots indicate the antecedent soil moisture with higher 

value in larger shape. The black dash line indicates the 1000 m3 s-1 flood magnitudes.   5 

We also examined how hydrological model process representation influence FFA results. We showed previously that the HBV 

snowpack routine produces trends in simulated daily streamflow that are less realistic than simulated trends without the routine 

(Fig. 4c, 4d). Interestingly, however, we found very similar flood frequency curves regardless of whether the snowpack routine 

is used (Fig. 7a) despite very different simulated seasonality (Fig. 7b). With snowpack routine, our approach simulates many 

large floods (over 1000 m3/s) between February and April (Fig. 7b). This is due to high March-April soil moisture value (Fig. 10 

7c, 7d) associated with snowmelt, which increases the probability of flood occurrence during this period. The flood 

seasonalities derived from historical observations and from the simulated results without the snowpack module, meanwhile, 

do not exhibit the very frequent April floods that are present in the simulations with the snowpack routine. This example shows 

that process-based frequency analyses can be subject to issues related poor hydrological model process representation which 

can produce “correct” results for the wrong reasons. This implies that the modeler must either have sufficient data to diagnose 15 

such issues (as we have done here) or have sufficient prior knowledge of the seasonally varying flood processes in her study 

area to recognize such pitfalls. 
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Figure 7. Flood frequency curves (a) and simulated floods seasonality (b) derived by RainyDay-based approach with Stage IV precipitation 

with (red) or without (blue) the HBV snowpack routine. Simulated discharge larger than 1000 m3/s (dots) and observed peak streamflow 

(1990-2016) larger than 1000 m3/s (triangles) are shown; discharges below 1000 m3/s are omitted for clarity. The maximum (c) and mean 

(d) of simulated soil moisture for each day of the year are shown. 5 

The results shown in Fig. 7 also illustrate a key issue in FFA using both statistical approaches and process-based methods: 

flood quantiles, though the product of physical processes, reveal little about the underlying processes. This is particularly 

problematic in changing hydroclimatic or watershed conditions, because nonstationary behavior is likely the result of seasonal 

shifts in one or more processes. Failure to recognize shifts could lead to incorrect predictions of future conditions. For example, 

our findings using the HBV snowpack routine predict that most floods are due to high springtime soil moisture due to snowmelt 10 

(Fig. 7c, 7d). If we were to project future flood frequency in a warming climate, we might conclude that these spring floods 

will diminish in importance and thus the tail of the flood distribution will decrease in magnitude. Observations, in contrast, 

show that an important shift toward summertime flooding has occurred, which may imply the opposite behavior in the tail of 

the flood distribution in Turkey River since warm season convective rainfall extremes are predicted to increase (e.g. Prein et 

al., 2016). 15 
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5.54 Comparison between of rainfall and peak discharge quantiles 

We examined the relationships between the return periods of 96-hour basin-averaged rainfall accumulations and simulated 

peak discharge for Turkey River at Garber using Stage IV-based results (Fig. 89; CPC-based results show similar patterns and 

thus are not shown here). Antecedent soil moisture for each simulated event is also shown. Similar to Wright et al. (2014a), 

Fig. 8 9 shows that simulated peak discharge quantiles can differ substantially from the rainfall quantiles of the rainfall that 5 

produce them. For instance, 500-year (݌௘ = Ͳ.ͲͲʹ) rainfall events can cause simulated peak discharges ranging from 2111-

year (݌௘ = Ͳ.ͲͶͺͻͳ) to 500-year (݌௘ = Ͳ.ͲͲʹ), corresponding to a range in peak discharge of 890 1072 to 2990 2743 m3 s-1. 

Results indicate that the Ppeak discharge quantiles are always larger (in terms of return period) than the quantiles of rainfall 

quantiles that produced them in wet antecedent soil moisture conditions, while the reverse is true in for dry conditions. These 

results also demonstrate that the DS assumption of 1:1 equivalency between rainfall and peak discharge quantiles does not 10 

hold in Turkey River. Rainfall spatial variability and drainage network structure, which are ignored in this study due to the 

lumped (i.e. non-distributed) nature of HBV, further complicate the relationship between rainfall and discharge quantiles. 

 

Figure 89. Relationships between rainfall return periods and simulated peak discharge return periods estimated via our RainyDay (process)-

based method using Stage IV rainfall data. Spearman rank correlation 𝜌௦  is given. Shading cColor indicates the normalized modeled 15 
antecedent soil moisture value, which is calculated as 𝑁݉ݎ݋𝑎݈𝑖݋ݏ ݀݁ݖ𝑖݈ ݉݋𝑖݁ݎݑݐݏ =  ௦௢𝑖௟ ௠௢𝑖௦௨௧௥௘−௠𝑖௡.௦௢𝑖௟ ௠௢𝑖௦௨௧௨௥௘௙𝑖௘௟ௗ ௖𝑎௣𝑎௖𝑖௧𝑦−௠𝑖௡.௦௢𝑖௟ ௠௢𝑖௦௨௧௨௥௘ ∗ ͳͲͲ%. 

We further examine the relationship between annual rainfall and annual flood peak maxima. In Sect. 2.2, we pointed out that 

DS methods utilize IDF curves, which are usually estimated using annual maxima from rain gage records and which depict, to 

estimate quantiles from the distribution of annual discharge peaksrainfall maxima. DS methods use quantiles from this 

distribution to generate flood estimates, implicitly assuming that annual rainfall maxima produce annual discharge maxima. 20 

In our process-based FFA approach, however, we do not assume that annual discharge maxima are the result of the largest 
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rainfall event of the year. Rather, lower-magnitude rainfall events, combined with high soil moisture, could produce the highest 

discharge. Table 3Table 3Table 3 shows the percentage of annual peak flow driven by annual maximum gains with increasing 

return period for both CPC-based and Stage IV-based results. For simulated peak flow with ݌௘ > Ͳ.Ͳͳ, a large portion of 

simulated annual peak flow is not caused by the annual maximum rainfall. For rarer peak flows (݌௘ ≤ Ͳ.Ͳͳ), over 90% of these 

flood events are driven by the annual maximum rainfall, pointing to the fact that the tail of flood peaks is driven by extreme 5 

rainfall, with antecedent conditions playing a modulating role. 

 

 

 

 10 

Table 3. Percentages of simulated annual peak maxima daily flows driven by annual maximum 96-hour rainfall annual maximum. 

Return Period 

Driven  by Annual Maximum Rainfall 

CPC-based results 
Stage IV-based 

results 

1-2 2924% 3637% 

2-5 4632% 4845% 

5-10 5939% 6667% 

10-20 7048% 7577% 

20-50 7660% 80% 

50-100 8172% 8884% 

100-200 9077% 9785% 

200-500 9893% 9395% 

6 Summary and Conclusions 

Interactions between rainfall, land cover, river channel morphology, and watershed antecedent conditions are important drivers 

of flood response. Standard approaches to estimate extreme flood quantiles (termed flood frequency analysis; FFA), however, 

often take a superficial view of these interactions, as argued in Sect. 2. This study presents an alternative FFA framework that 15 

combines elements of observational analysis, stochastic rainfall generation, and continuous and event-scale rainfall-

runoffhydrologic simulation. We apply the framework to Turkey River, an agricultural watershed in the Midwestern United 

States that is undergoing significant hydroclimatologic and hydrologic changes which is increasing the magnitude of the largest 

flood events and shifting their occurrence from the spring to summer.  

We use Stochastic Storm Transposition (SST) to create and resample from “storm catalogs” developed from both 15 years of 20 

high-resolution bias-corrected radar rainfall dataset and from 69 years of gridded rain gage observations to produce large 

numbers of rainfall scenarios for Turkey River. These scenarios, when coupled with seasonally realistic watershed conditions, 
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can help to reconstruct the seasonal and secular variations in meteorological and hydrological processes and their interactions, 

providing an alternative FFA approach which is well-suited to nonstationary environments (see also Sivapalan and Samuel, 

2009). While statistical approaches can in principle be applied to investigate the impacts of seasonality on FFA (e.g. Ouarda 

et al., 2006), such methods still do not directly provide process-level understanding of the factors that “shape” flood frequency. 

Unlike design storm approaches to FFA, the synthetic rainfall scenarios derived by the SST-based procedure do not require 5 

any assumptions regarding the spatial and temporal structure of rainfall, since they are driven by the structure and variability 

of historical observed storms. Unlike design storm approaches to FFA, the synthetic rainfall scenarios derived by the SST-

based procedure do not require any assumptions regarding the spatial and temporal structure of rainfall, since they are driven 

by the structure and variability of historical observed storms. Unlike discharge-based statistical analyses, our approach helps 

shed light on the physical processes that shape flood frequency. Resampling and spatial transposing of observed rainstorms 10 

from the surrounding region makes it feasible to generate extreme precipitation scenarios using relatively short rainfall records. 

In nonstationary rainfall conditions, recent rainfall data can produce more realistic rainfall scenarios and flood quantile 

estimates than methods that rely on longer records.  

Our analyses show that using the most recent 15 years of rainfall can produce realistic “present-day” flood quantile estimates 

that reflect the nonstationarities in rainfall and watershed conditions. Use The use of longer records, both within our procedure 15 

and conventional statistical FFA methods, leads to underestimates of current flood frequency due to their inability to represent 

recent shifts in flood activity in Turkey River. Our results challenge some common FFA assumptions, including the design 

storm presumption that rainfall annual maxima produce discharge annual maxima and the assumption of 1:1 equivalence in 

rainfall and flood quantiles. We paint a more complex picture in Turkey River, in which the shifting seasonality in rainfall and 

watershed conditions combine to shape the flood frequency.   20 

Spatial variability in rainfall structure, soil moisture, land use and watershed morphology, which are ignored in this study due 

to the use of a lumped hydrological model, as add further complexity to the flood- generating processes. However, tThe 

proposed framework can be employed with more sophisticated distributed hydrological models, thus facilitating the 

examination of rainfall spatial variability and its interactions with other factors (e.g. heterogeneous watershed characteristics 

and river network processes; Zhu et al., 2018; Viglione et al., 2010b, 2010a). This coupling may prove particularly useful for 25 

FFA in large watersheds in which there is a practically infinite number of different combinations of such spatially and 

temporally varying processes factors that could produce floods—a population that is almost certain to be undersampled in 

stream gage records and poorly served by design storm assumptions.  

A number of issues remain that make broader usage of our process-based framework challenging. Perhaps the biggest 

limitation of process-based approaches is the necessity of discharge observations, which are central to both identifying 30 

hydrologic changes and to calibrate and validate the hydrologic model. Thus, usage of the approach in ungaged basins may 

not produce satisfactory results. This issue is fundamental to other FFA techniques as well. Statistically-based discharge 

analyses, for example, similarly rely on streamflow observations, while design storm approaches also require hydrologic model 

calibration.  
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We also note that caution is needed when attempting to employ process-based FFA. We were able to produce very similar 

flood frequency distributions using our approach, regardless of whether or not the HBV hydrologic model’s snowpack routine 

was “turned on” or off (results omitted for brevity), despite very different simulated seasonality of flooding. This highlights 

that process-based frequency analyses can be influenced by poor model process representation that can lead to seemingly 

“correct” results for the wrong reasons. This implies that the modeler must have sufficient data and experience to recognize 5 

such issues. It also illustrates a key issue in FFA using both statistical approaches and process-based methods: flood quantiles, 

though the product of interactions between physical processes, reveal relatively little about those underlying processes that 

produce them. This is particularly problematic in changing hydroclimatic or watershed conditions, because nonstationary 

behavior is likely the result of seasonal shifts in one or more processes that may affect flooding in ways that are not well-

reflected in observational records. Our results showing that major floods could occur in Turkey River in the late summer under 10 

current hydroclimatic conditions, despite their absence in the instrumental record, is one example of this. Failure to recognize 

and model such shifts could lead to results for past or present flood conditions that appear to be correct, but that may lead to 

incorrect inferences about future conditions.   

In summary, Oour framework and results highlights the opportunity and challenge with process-based FFA approaches; 

namely, that progress on understanding and estimating flood frequency and how it is evolving in an era of unprecedented 15 

changes in land use and climate requires better understanding of how the underlying physical processes, and the interactions 

between them, are changing. Poor model representation of key hydrological processes, however, can lead to incorrect 

conclusions about present or future flood frequency. Despite the challenge, we share the view of Sivapalan and Samuel (2009), 

however, that process-based approaches hold great potential for advances in FFA research and practice, particularly in 

projecting future flood hazards in conjunction with data and modeling advances in the climate science community. We do not 20 

propose that process-based approaches should necessarily supplant more conventional discharge-based analyses, and 

acknowledge that discharge observations are essential in such studies. Rather, we anticipate a gradual “merging” of statistical 

and process-based stochastic simulation techniques as well as of the associated observations and synthetic data. 

Software and model code 

The RainyDay software is available at Github container (https://github.com/danielbwright/RainyDay2). and aA web-based 25 

version of RainyDay is available at Daniel. WD. Wright’s research group website (http://her.cee.wisc.edu/projects/rainyday).   
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