
Replies to the comments of Anonymous Referee #3 

Responses are provided in blue and proposed revision are in Red. Original reviewer comments 

are in black. Line and page numbers refer to the original manuscript. 

Based upon comments from all three reviewers, we have revisited our model calibration 

procedure and have been able to obtain acceptable performance from the snowpack routine.  This 

involved a “2-step” calibration process in which warm season processes are calibrated first, and 

then “warm season parameters “ are held constant during subsequent calibration of snowpack-

related parameters.  This recalibration of HBV is done using both CPC and Stage IV rainfall. We 

have also added a section on model validation to the revised manuscript, again based on 

comments from all three reviewers requesting additional validation results. Since all three 

reviewers provided critiques on these topics, we discuss these two changes before addressing 

specific comments from individual reviewers.  

We have revised model calibration part in the original manuscript, P9, line 15-24, to:  

We calibrated the HBV models using both CPC and Stage IV rainfall, and most parameters are the same 

for CPC- and Stage IV-based models, except for three snow routine parameters (TT, CFMAX, SFCF) and 

three recession coefficients (K0, K1, K2), allowing for the variability of model parameters for different 

climate conditions.  For each model setup, we first calibrated the model with snowpack routine “turned off” 

(by setting TT parameter to a very low value) to obtain parameters that can simulate summer floods 

adequately. Then, keeping these optimized non-snow routine parameters unchanged, we calibrated the snow 

routine parameters.  

To determine the optimized model parameter sets in each procedures, we followed the Genetic Algorithm 

and Powell (GAP) optimization method as presented by Seibert (2000),  which is briefly summarized here. 

First, 5000 parameter sets are randomly generated from a uniform distribution of the values of each 

parameter (Table 1), which were then applied to the HBV model in order to maximize Kling Gupta 

Efficiency (Gupta et al., 2009) of simulated daily discharge. After the GAP has finished, the optimized 

parameter set were fine-tuned using Powell’s quadratic convergent method (Press, 1996) with 1000 

additional runs. Lastly, the optimized parameter set was manually adjusted to improve the fits between 

observed and simulated annual peak flow (see Lamb, 1999). More elaborate calibration and uncertainty 

estimation procedures such as Generalized Likelihood Uncertainty Estimation (GLUE; Beven and Binley, 

1992; Beven, 1993; Beven and Binley, 2014) could be used, but are outside the scope of our study.  

After calibration, HBV (two different parameter sets) was used to perform CS with historical CPC and 

Stage IV rainfall and temperature data to derive long-term simulated soil moisture and snowpack values, 

which are usually difficult to obtain via measurement. We “pair” samples of these initial conditions with 

synthetic rainfall events, as described in Sect. 4.2 and Sect. 4.3.  

 

 



Table 1. Overview of HBV model parameters and prior parameter boundaries. 

Parameter Description Units Min value Max value 

Snow Routine 

TT Threshold temperature for liquid and solid precipitation °C -3 3 

CFMAX Degree-day factor mm d−1°C−1 0.5 4 

SFCF Snowfall correction factor - 0.5 1.2 

CFR Refreezing coefficient - 0.01 0.1 

CWH Water holding capacity of the snow storage - 0.1 0.3 

Soil Moisture Routine 

FC Maximum soil moisture storage (field capacity) mm 100 550 

LP Relative soil water storage below which AET is reduced linearly - 0.3 1 

BETA Exponential factor for runoff generation - 1 5 

Response Routine 

PERC Maximum percolation from upper to lower groundwater box mm d−1 0 10 

UZL Threshold of upper groundwater box mm 0 50 

K0 Recession coefficient 0 d−1 0.5 0.9 

K1 Recession coefficient 1 d−1 0.15 0.5 

K2 Recession coefficient 2 d−1 0.01 0.15 

Routing Routine 

MAXBAS Length of triangular weighting function d 1 2.5 

 

We have also added “Section 5.2 Model Validation” by modifying the original paper, P13-14, to:  

5.2 Model Validation 

We validated the performance of HBV continuous simulation with respect to flood seasonality, frequency 

of annual daily discharge maxima, and normalized peak flow (i.e. the simulated or observed daily discharge 

divided by the 2-year flood), using both Stage IV and CPC as precipitation inputs (Fig. 4). We also validated 

two structures: one with and the other without the HBV snowpack module. The purpose for this latter 

validation effort is to highlight the importance of proper process representation (and subsequent validation) 

in process-based FFA. 

Simulated flood seasonality varies substantially during the CPC period of record (1948-2016) depending 

on the inclusion of the snowpack routine. Differences are less for the Stage IV period of record (2002-2016), 

due to the decreasing role of snowpack in deriving the floods in recent years (Fig. 4a). In both cases, the 

seasonality of flooding simulated using HBV is improved with the inclusion of the snowpack module, with 

a higher (lower) frequency of springtime (summertime) floods which more closely resembles observations. 

Empirical (i.e. plotting position-based) distributions for the simulated annual daily discharge maxima are 

mostly within the 90% confidence interval (obtained by nonparametric bootstrap) of the observations (Fig. 



4b). The CPC-based simulations differ considerably depending on the inclusion of the snowpack module 

for more common events, but differences in simulated maxima vanish as flood magnitude increases (e.g. 

AEP<0.1). This is because the most extreme flood events occur later in the season and are thus independent 

of snowpack or snowmelt processes. Differences are generally negligible between Stage IV-based 

simulations with and without snowpack, since floods in this shorter, more recent period are generally driven 

by summertime thunderstorms. These findings are consistent with the general understanding of the regional 

seasonality of flooding in the region, as discussed in Sect. 5.1. 

We compared all simulated and observed flood peaks that can be associated with a USGS observed daily 

streamflow value that is at least three times the mean annual daily discharge (Fig. 4c). When associating 

simulated and observed flood peaks, we look within a 2-day window to allow for modest errors in simulated 

flood peak timing. All peaks in Fig. 4c are normalized by the median annual (i.e. 2-year) flood, which, as 

a rule of thumb, can be considered as the “within bank” threshold. Again, HBV with the snowpack routine 

outperforms the model without it, especially for the small to modest flood events in CPC-based simulations. 

The model without snowpack routine underestimate the small to modest flood events in two cases due to 

the neglect of water flux from potential snowmelt. While modest scatter exists in the Stage IV-based 

simulated peaks, there is no obvious systematic bias with event magnitude when the snowmelt routine is 

included. 



 

Figure 1. HBV model validation for flood seasonality (a), frequency of annual max. daily discharge (b) and normalized peak flow 

(c). For each panel, the corresponding model validation is performed against CPC- (1948-2016) and StageIV-based (2002-2016) 

simulation and the results derived from HBV model with (without) snowpack routine are shown in blue (red).  The 90% confidence 

interval for observed max. daily discharge (empirical distribution) is derived using the bootstrapping approach. Peak discharge is 

defined as a data point with USGS observed value that is at least three times the average observations, and peak discharge are 

normalized by the median of annual daily discharge maxima (i.e. the 2-year flood). Straight black lines indicate 1:1 correspondence, 

while dashed lines indicate the envelope within which the modeled values are within 50% of observed. 

We also validate HBV’s snowpack routine using observed GHCN daily snow depth for two simulation 

periods (Fig. 5a, 5b) and using USGS daily streamflow observations for Stage IV-based period (Fig. 5c). 

Because of their differing spatial resolutions and physical representations, point-scale GHCN daily snow 



depths cannot be directly or quantitatively compared to the watershed-scale snow water equivalent 

simulated by HBV. Therefore, we validate the snowpack simulation in terms of the snowpack occurrence, 

defined as the number of occurrences where snow is present on a particular date divided by the total number 

of years in the historical record. For example, there are 50 days where snowpack is present on January 1st 

in the 69-year period from 1948-2016, based on GHCN observations and thus the corresponding occurrence 

rate is 0.72 (50 divided by 69). The HBV model with the snowpack routine captures the central tendency 

of observed snowpack dynamics, showing that snowpack frequently exists from early November to mid-

February, with frequency of snow decreasing from late February until disappearing in early April.     

 

Figure 2. The comparison of percent of days with snowpack present between observations and simulations (a, b) and hydrograph 

validation for StageIV-based simulation (c). For each day within a year, the percent of snowpack existing days is calculated as the 

ratio of the number of years when snowpack is present to the total years (69 years for CPC and 15 years for StageIV). Observed 

and simulated hydrograph are normalized by the median annual flood, which is indicated by the dashed blue line.  

Model hydrograph validation is provided in Fig. 5c for the Stage IV period (2002-2016), when major 

flooding occurred throughout Iowa. Model performance shows no obvious evidence of systematic bias in 

the streamflow simulations. Although flood seasonality derived by Stage IV-based simulation differs 

slightly from observations (Fig. 4b), these mismatches are associated with flood events smaller than the 

median annual flood (blue dash line in Fig. 5c). Stage IV-based simulations do not show bias flood 

magnitude in late summer. In other words, remaining biases in terms of flood seasonality generally 



correspond with frequent, small-magnitude events that are typically of less interest in FFA. We therefore 

conclude that the HBV model with snowpack is generally suitable for subsequent process-based FFA.        

 

This combination of continuous and event based modelling is a quite novel idea and provides a 

flexible framework for DFFA. The application of the methods seems sound, the research is done 

systematically and the paper reads quite well. However, I do have some concerns regarding the 

selection of the hydrological model, the selection of two precipitation data sets and some of the 

conclusions. I will detail these below in the major comments, followed by some minor comments. 

The paper is worth to be published after major revision.  

We thank the reviewer for these useful critiques, which have been very helpful in improving the 

paper. We address these issues more deeply in specific responses, but generally speaking: 1.) 

in the revised manuscript, we have reintroduced the snowpack routine in the HBV and calibrate 

and validate the model more carefully. We discussed the model validation with respect to the 

flood seasonality, peak flow, snowpack, and hydrographs. 2.) we discuss the limitations of CPC 

precipitation data and the reason why we include the Stage IV precipitation data in this process-

based FFA framework. 3.) we provide a short summary of the pros and cons of the proposed FFA 

framework.     

 

Major comments 1: The selection of the lumped HBV model is not plausible to me, especially 

given that a) the snow routine is not working and b) the high resolution StageIV rainfall data cannot 

be utilized by this lumped model. 

Since we have updated the HBV model by including the snowpack routine and validated the model 

as shown in the beginning of this response, we hope the reviewer finds the selection of the lumped 

HBV model to be more convincing. It also should be noted that, the process-based FFA 

methodology employed in this study could be coupled with other (sophisticated) hydrologic 

models, as we mentioned in the original manuscript, P9, line 10, and, in fact, that is our next 

research direction. Nonetheless, after decades of research, lumped models have still proven to 

be very useful in a variety of hydrologic fields including flood applications and research. One 

challenge that we faced in this study was how to quickly implement and evaluate modifications 

and additions to the methodology, which can be much slower and more challenging using a more 

sophisticated distributed model. 

We respectfully disagree that the Stage IV rainfall data cannot be utilized by a lumped model. 

Regardless of model choice, Stage IV precipitation data is generally better than CPC data in the 

study region, in terms of accuracy-this is evident, for example, in the fact that the satellite 

precipitation community routinely uses Stage IV and related gage-corrected radar products, rather 

than CPC, to validate satellite rainfall estimates. CPC is known to contain errors in the extreme 

tail, due to gage undercatch, insufficient gage density to properly sample convective rain cells, 

and spatial averaging of such cells over large areas, which effectively reduces peak rainfall depths. 

Second, CPC overestimates the magnitude of more frequent events. This is likely the result of its 

coarse spatial resolution, which will “smear” rainfall over larger areas (i.e. entire ~600 km2) grid 

cells when it should be more localized. This would serve to increase the likelihood of rainfall over 

the watershed, albeit at relatively lower depths/intensities. Thus, if one is to restrict the time period 

of the rainfall data to recent years (for example, the 2002-2016 time period for which Stage IV is 



available), then Stage IV would likely be better. It is true that the lumped model cannot “leverage” 

the rainfall spatial structure embedded in Stage IV, but it still benefit from its improved accuracy.       

 

Major comments 2: The application of two rainfall data sets is not plausible and also quite 

confusing for the reader since a) the Stage IV rainfall data observation period (2002-2016) is 

covered also by the CPC rainfall data observation period (1948-2016), b) a lumped hydrological 

model cannot really benefit from high resolution rainfall data (see 1) and c) the hydrological 

simulation results for both rainfall data sets seem to be very similar (as the authors state on page 

16, lines 12-13). I would recommend to do all the simulations with the CPC rainfall if the 

hydrological model is not changed. If a more suitable hydrological model is selected the two data 

sets might be kept in the study but the differences in hydrological response using the two data 

sets for the same time period (2002-2016) need also to be demonstrated and discussed. 

We feel that including the Stage IV-based simulation in this case study is important in two respects: 

1.) As mentioned in the response to comment 1, we believe the Stage IV precipitation data has 

high accuracy than CPC. As an aside, this belief that Stage IV is preferable to other datasets 

when long records are not required is widely shared in the satellite precipitation validation 

community, where Stage IV is often used as a validation dataset. 2.) We also want to highlight 

that using only 15 years of rainfall records, our process-based approach can produce accurate 

estimates of “present-day” flood frequency.  

In addition, we have analyzed two CPC-based results from 1948-2016 and 2002-2016 to 

demonstrate how the changes in flood agents affect the FFAs. We have added the following part 

to Sect.5.3, P17, line 21 of the original manuscript.  

To demonstrate that the discrepancies between the process-based FFA results generated using CPC and 

using StageIV  are driven by changes in flood agents, rather than by differences in model structure (i.e. 

parameter values), we compared FFA results generated using CPC-based for 1948-2016 and 2002-2016, in 

terms of event rainfall, initial soil moisture, flood type and peak magnitude (Fig. 8). From 2002-2016 (Fig. 

8b), there are fewer flood events driven by snowmelt or rain-on-snow but more driven by rainfall, 

particularly large magnitude flood events (over 1000 m3/s). In addition, some of the rainfall driven floods 

(upper left of Fig. 8b) from 2002-2016 indicates high initial soil moisture, which are in accordance with the 

significant increasing trend of annual precipitation (Table 2). In general, changes in individual flood agents 

and their interactions can affect flood frequency. Process-based approaches can help illuminate these 

changes.      



 

Figure 8. The simulated flood magnitude using CPC rainfall during 1948-2016 (a) and 2002-2016 (b) period, and corresponding 

antecedent conditions sampled from the continuous simulation. The blue triangles represent the snow related flood events (e.g. 

snowmelt or rain on snow) and grey dots represents the non-snow related flood events (e.g. rainfall driven). The size of the triangles 

or dots indicate the antecedent soil moisture with higher value in larger shape. The black dash line indicates the 1000m3/s flood 

magnitudes.   

 

Major comments 3: The application of a model without snow routine for a catchment with 

significant snow processes doesn’t make sense to me. This way the advantage of process based 

flood frequency analysis (FFA) is partly lost; obtaining the correct hydrological response for the 

wrong reason is not satisfying. I am not convinced that the non-stationarity in seasonality is only 

due to changed soil moisture conditions from rainfall. Temporarily shifted snow dynamics might 

play a role as well 

After taking the reviewers’ comments into account very seriously, we recalibrate our model with 

snowpack routine “turned on” and validate it with respect to flood seasonality, hydrograph, 

normalized peak flow and snowpack. We finally conclude that the snowpack routine of HBV is 

indeed important in this study region.  

 

Major comments 4: I would be careful with the conclusion, that only with this DFFA method 

nonstationarity in seasonality can be handled well. Also, non-stationary seasonal FFA approaches 

are available employing mixed distributions for getting final design values. This needs to be briefly 

discussed. 

We appreciate the comment. Certainly seasonality could be considered using other approaches, 

though mixture distribution approaches may still not elucidate the fundamental drivers that “shape” 

flood frequency, even if they can provide good end results. We are not aware of such approaches 

being used in widespread practice, at least in the United States. Nonetheless, we had added a 

brief comment in this regard to the conclusions in acknowledgement of this criticism. 

We have revised the first paragraph of Section 6 on P21, line 13-15, to : 



It must be noticed that the statistical approaches coupling with flood seasonality indices can also investigate 

the impacts of seasonality on FFA and improve the flood frequency estimation in a regional scale (Ouarda 

et al., 2006). Our aim is to estimate flood quantiles by reconstructing meteorological and hydrological 

processes and their interactions, providing an alternative approach which is also well-suited to 

nonstationary environments (see also Sivapalan and Samuel, 2009). 

 

Major comments 5: This combination of continuous and event based modelling is a good idea. 

However, there is an important limitation which should at least be mentioned. The framework 

provides only one possible realization of initial conditions. Nature is more variable. Stochastic 

rainfall models producing continuous rainfall don’t pose this limitation on hydrology. 

Each event-based simulation is randomly paired with initial conditions drawn from a continuous 

simulation (15 years in the case of Stage IV, 69 years for CPC). Thus, we would argue that a 

large number of possible realizations of initial conditions are used. We would direct the reviewer 

to Section 4.3. If the reviewer finds this description incomplete, we would appreciate suggestions 

for how we can make this point more clear. Though we have not tested rigorously, we would 

guess that relatively short records (say, 15 years) of continuous simulations are sufficient to obtain 

enough variability in initial conditions. Compared with rainfall, soil moisture (which is bounded 

between 0 and saturation) and springtime snowpack have thinner tails and thus easier to 

represent in our framework by sampling from relatively short continuous simulation.  

We agree that continuous stochastic rainfall models also have the ability to produce a wide range 

of pre-event conditions, though it is likely nontrivial to properly calibrate their seasonality with 

respect to the extreme tail of precipitation-demanding long training datasets. 

 

Minor comments 1: Page 2, line 4: This sentence is confusing. I am assuming you mean ‘... 

statistical analysis of observed streamflow, design storms !and! continuous simulation !or! other 

so called “derived” or “process based” methods’. 

Correct. We have modified this sentence to: 

Most existing FFA methods belong to one of three approaches: statistical analysis of streamflow 

observations, design storms, and continuous simulation or other so-called “derived” or “process-based” 

methods. 

 

Minor comments 2: Page 4, lines 15-17: This sentence seems not to be complete. 

We apologize for this. We have revised this sentence to: 

Wright et al. (2014a) discusses additional design storm shortcomings including time of concentration 

concepts, in greater detail, while also pointing out that design storm approaches (like other hydrological 

model-based FFA) can incorporate future projections in land use and rainfall more explicitly than can 

statistical discharge-based methods. 



 

Minor comments 3: Page 10, steps 3 and 4: I would stress that the 30 storms per year are 

randomly transposed over the domain, only sometimes hitting the catchment and sometimes not. 

They are not all transposed on the catchment, which would lead to an overestimation of the flood 

frequency. The reader not familiar with your method might misunderstand that. 

The reviewer is correct. We have added this sentence to P10, line 22. 

It must be noted that some of the k transposed storms may not “hit” Turkey River watershed, and thus their 

calculated watershed rainfall are zero.  

 

Minor comments 4: Page 11, lines 8-9: The selection of the largest event per year for FFA might 

also be misunderstood. Here, it also needs to be considered that many of the 30 events do not 

produce any flood if they do not hit the catchment (see comment 3). 

We hope the response to previous comments also addresses this one.  

 

Minor comments 5: Page 14: line 2: Should it not be “… but overestimates for pe<0.3 …” 

We assume the reviewer mean Page 16, line 2. We have revised this sentence to: 

The Stage IV-based flood frequency curve agrees reasonably well with the discharge-based FFA for pe >

0.3 (left panel of Fig. 6), but yields higher estimates for rarer events. 

 

Minor comments 6: Fig. 5: Why did you select the period 1990 – 2016 and not 1980 or 1970 as 

starting year? This needs to be justified. 

We have not performed any statistical test (e.g. Pettitt test) to determine this change point. 

However, an “eyeball test” of annual daily discharge maxima (Fig. 1a) from the original manuscript 

indicates the apparent elevated flood activity during 1990-2016 period. Our arguments do not 

hinge on a precise determination of when floods in Turkey River began to change, which in any 

event has likely been a gradual change. 

  

Minor comments 7: Fig. 5: I would also add a statistical analysis (Bull 17.b) for the contemporary 

period (1990-2016) for comparison. 

We have added a supplementary plot showing the CPC, Stage IV and Bull.17B based FFA for 

the modern time (2002-2016), as other reviewers have suggested.  

Supplementary Fig. 1 shows that process-based FFA using CPC precipitation from 2002-2016 

closely resembles the Stage IV-based FFA, suggesting that rainfall differences, rather than model 

structures, are the primary drivers of the differences in this figure. It also shows two features that 

result using CPC data. First, the extreme tail is underestimated, relative to the Stage IV-based 

simulations and the statistical approach. CPC is known to contain errors in the extreme tail, due 

to gage undercatch, insufficient gage density to properly sample convective rain cells, and spatial 



averaging of such cells over large areas, which effectively reduces peak rainfall depths. Second, 

CPC overestimates the magnitude of more frequent events. This is likely the result of its coarse 

spatial resolution, which will “smear” rainfall over larger areas (i.e. entire ~600 km2 grid cells) 

when it should be more localized. This would serve to increase the likelihood of rainfall over the 

watershed, albeit at relatively lower depths/intensities. Thus, if one is to restrict the time period of 

the rainfall data to recent years (for example, the 2002-2016 time period for which Stage IV is 

available), then Stage IV would likely be better. 

 

Supplementary Figure 1. Three peak discharge analyses for Turkey River at Garber, IA: RainyDay with Stage IV (2002-2016) 

and CPC-(2002-2016) rainfall and USGS frequency analyses (1990-2016) using Bulletin 17B methods. Shaded areas denote the 

ensemble spread (RainyDay-based results) and the 90% confidence intervals (Bulletin 17B-based analysis), respectively. All 

observed annual daily streamflow maxima from 1990 to 2016 are shown in black dots. 

 

Minor comments 8: Fig. 6: There is no description neither in legend nor in figure caption about 

the source of the two figures. I assume they stem from different precipitation data sets. 

We have updated this figure.  

 

 


