Replies to the comments of Anonymous Referee #2

Responses are provided in blue and proposed revision are in Red. Original reviewer comments
are in black. Line and page numbers refer to the original manuscript.

Based upon comments from all three reviewers, we have revisited our model calibration
procedure and have been able to obtain acceptable performance from the snowpack routine. This
involved a “2-step” calibration process in which warm season processes are calibrated first, and
then “warm season parameters “ are held constant during subsequent calibration of snowpack-
related parameters. This recalibration of HBV is done using both CPC and Stage IV rainfall. We
have also added a section on model validation to the revised manuscript, again based on
comments from all three reviewers requesting additional validation results. Since all three
reviewers provided critiques on these topics, we discuss these two changes before addressing
specific comments from individual reviewers.

We have revised model calibration part in the original manuscript, P9, line 15-24, to:

We calibrated the HBV models using both CPC and Stage IV rainfall, and most parameters are the same
for CPC- and Stage 1V-based models, except for three snow routine parameters (TT, CFMAX, SFCF) and
three recession coefficients (KO, K1, K2), allowing for the variability of model parameters for different
climate conditions. For each model setup, we first calibrated the model with snowpack routine “turned off”
(by setting TT parameter to a very low value) to obtain parameters that can simulate summer floods
adequately. Then, keeping these optimized non-snow routine parameters unchanged, we calibrated the snow
routine parameters.

To determine the optimized model parameter sets in each procedures, we followed the Genetic Algorithm
and Powell (GAP) optimization method as presented by Seibert (2000), which is briefly summarized here.
First, 5000 parameter sets are randomly generated from a uniform distribution of the values of each
parameter (Table 1), which were then applied to the HBV model in order to maximize Kling Gupta
Efficiency (Gupta et al., 2009) of simulated daily discharge. After the GAP has finished, the optimized
parameter set were fine-tuned using Powell’s quadratic convergent method (Press, 1996) with 1000
additional runs. Lastly, the optimized parameter set was manually adjusted to improve the fits between
observed and simulated annual peak flow (see Lamb, 1999). More elaborate calibration and uncertainty
estimation procedures such as Generalized Likelihood Uncertainty Estimation (GLUE; Beven and Binley,
1992; Beven, 1993; Beven and Binley, 2014) could be used, but are outside the scope of our study.

After calibration, HBV (two different parameter sets) was used to perform CS with historical CPC and
Stage IV rainfall and temperature data to derive long-term simulated soil moisture and snowpack values,
which are usually difficult to obtain via measurement. We “pair” samples of these initial conditions with

synthetic rainfall events, as described in Sect. 4.2 and Sect. 4.3.



Table 1. Overview of HBV model parameters and prior parameter boundaries.

Parameter Description Units Min value  Max value

Snow Routine

TT Threshold temperature for liquid and solid precipitation °C -3 3
CFMAX Degree-day factor mm d~t°c~?! 0.5 4
SFCF Snowfall correction factor - 0.5 1.2
CFR Refreezing coefficient - 0.01 0.1
CWH Water holding capacity of the snow storage - 0.1 0.3

Soil Moisture Routine

FC Maximum soil moisture storage (field capacity) mm 100 550
LP Relative soil water storage below which AET is reduced linearly - 0.3 1
BETA Exponential factor for runoff generation - 1 5

Response Routine

PERC Maximum percolation from upper to lower groundwater box mmd—! 0 10
uzL Threshold of upper groundwater box mm 0 50
KO Recession coefficient 0 d! 0.5 0.9
K1 Recession coefficient 1 d! 0.15 0.5
K2 Recession coefficient 2 d-! 0.01 0.15

Routing Routine

MAXBAS  Length of triangular weighting function d 1 25

We have also added “Section 5.2 Model Validation” by modifying the original paper, P13-14, to:

5.2 Model Validation

We validated the performance of HBV continuous simulation with respect to flood seasonality, frequency
of annual daily discharge maxima, and normalized peak flow (i.e. the simulated or observed daily discharge
divided by the 2-year flood), using both Stage IV and CPC as precipitation inputs (Fig. 4). We also validated
two structures: one with and the other without the HBV snowpack module. The purpose for this latter
validation effort is to highlight the importance of proper process representation (and subsequent validation)
in process-based FFA.

Simulated flood seasonality varies substantially during the CPC period of record (1948-2016) depending
on the inclusion of the snowpack routine. Differences are less for the Stage 1V period of record (2002-2016),
due to the decreasing role of snowpack in deriving the floods in recent years (Fig. 4a). In both cases, the
seasonality of flooding simulated using HBV is improved with the inclusion of the snowpack module, with
a higher (lower) frequency of springtime (summertime) floods which more closely resembles observations.
Empirical (i.e. plotting position-based) distributions for the simulated annual daily discharge maxima are

mostly within the 90% confidence interval (obtained by nonparametric bootstrap) of the observations (Fig.



4b). The CPC-based simulations differ considerably depending on the inclusion of the snowpack module
for more common events, but differences in simulated maxima vanish as flood magnitude increases (e.g.
AEP<0.1). This is because the most extreme flood events occur later in the season and are thus independent
of snowpack or snowmelt processes. Differences are generally negligible between Stage IV-based
simulations with and without snowpack, since floods in this shorter, more recent period are generally driven
by summertime thunderstorms. These findings are consistent with the general understanding of the regional
seasonality of flooding in the region, as discussed in Sect. 5.1.

We compared all simulated and observed flood peaks that can be associated with a USGS observed daily
streamflow value that is at least three times the mean annual daily discharge (Fig. 4c). When associating
simulated and observed flood peaks, we look within a 2-day window to allow for modest errors in simulated
flood peak timing. All peaks in Fig. 4c are normalized by the median annual (i.e. 2-year) flood, which, as
a rule of thumb, can be considered as the “within bank” threshold. Again, HBV with the snowpack routine
outperforms the model without it, especially for the small to modest flood events in CPC-based simulations.
The model without snowpack routine underestimate the small to modest flood events in two cases due to
the neglect of water flux from potential snowmelt. While modest scatter exists in the Stage IV-based
simulated peaks, there is no obvious systematic bias with event magnitude when the snowmelt routine is

included.
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Figure 1. HBV model validation for flood seasonality (a), frequency of annual max. daily discharge (b) and normalized peak flow
(c). For each panel, the corresponding model validation is performed against CPC- (1948-2016) and StagelV-based (2002-2016)
simulation and the results derived from HBV model with (without) snowpack routine are shown in blue (red). The 90% confidence
interval for observed max. daily discharge (empirical distribution) is derived using the bootstrapping approach. Peak discharge is
defined as a data point with USGS observed value that is at least three times the average observations, and peak discharge are
normalized by the median of annual daily discharge maxima (i.e. the 2-year flood). Straight black lines indicate 1:1 correspondence,
while dashed lines indicate the envelope within which the modeled values are within 50% of observed.

We also validate HBV’s snowpack routine using observed GHCN daily snow depth for two simulation
periods (Fig. 5a, 5b) and using USGS daily streamflow observations for Stage 1V-based period (Fig. 5c).

Because of their differing spatial resolutions and physical representations, point-scale GHCN daily snow



depths cannot be directly or quantitatively compared to the watershed-scale snow water equivalent
simulated by HBV. Therefore, we validate the snowpack simulation in terms of the snowpack occurrence,
defined as the number of occurrences where snow is present on a particular date divided by the total number
of years in the historical record. For example, there are 50 days where snowpack is present on January 1st
in the 69-year period from 1948-2016, based on GHCN observations and thus the corresponding occurrence
rate is 0.72 (50 divided by 69). The HBV model with the snowpack routine captures the central tendency
of observed snowpack dynamics, showing that snowpack frequently exists from early November to mid-

February, with frequency of snow decreasing from late February until disappearing in early April.
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Figure 2. The comparison of percent of days with snowpack present between observations and simulations (a, b) and hydrograph
validation for StagelV-based simulation (c). For each day within a year, the percent of snowpack existing days is calculated as the
ratio of the number of years when snowpack is present to the total years (69 years for CPC and 15 years for StagelV). Observed
and simulated hydrograph are normalized by the median annual flood, which is indicated by the dashed blue line.

Model hydrograph validation is provided in Fig. 5¢c for the Stage IV period (2002-2016), when major
flooding occurred throughout lowa. Model performance shows no obvious evidence of systematic bias in
the streamflow simulations. Although flood seasonality derived by Stage IV-based simulation differs
slightly from observations (Fig. 4b), these mismatches are associated with flood events smaller than the
median annual flood (blue dash line in Fig. 5c¢). Stage IV-based simulations do not show bias flood

magnitude in late summer. In other words, remaining biases in terms of flood seasonality generally



correspond with frequent, small-magnitude events that are typically of less interest in FFA. We therefore

conclude that the HBV model with snowpack is generally suitable for subsequent process-based FFA.

The work presents an investigation of flood frequency in the Turkey River basin in the Midwestern
United States. The proposed framework, referred to as “process-based” FFA, uses stochastic
storm transposition to generate synthetic storms and a lumped hydrologic model to simulate
discharge at the outlet of the basin. The authors carry out a series of simulations and
corresponding analyses of flood frequency to investigate the impact of seasonality in FFA and
potential changes between past and present conditions. Overall, the work has several nice
features and the questions posed by the authors are interesting. However, | have some major
concerns about certain elements of the proposed framework that need to be addressed before
the work can be considered for publication. | provide below major and minor comments that will
hopefully help.

We thank the reviewer for these useful critiques, which have been very helpful in improving the
manuscript.

Major comments 1: My first and most important concern about the proposed work is related to the
choice of the hydrologic model used. The authors mention in different sections themselves that
using a lumped model has several limitations. It is good that they acknowledge this limitation
themselves but this does not solve the problem. In fact, based on statements as in Line 13, Page
15 “We did not use the snowpack routine...it was shown to produce unrealistic streamflow results”
and given that snow processes are important in the selected basins, one immediately recognizes
that the choice of the model is not appropriate. If we combine this with the author’s statement in
conclusions “L22-23, page 22: Poor model representation of key hydrological processes, however,
can lead to incorrect conclusions about present and future flood frequency”...I am very skeptical
about the conclusions derived based on this model’s results. If the model cannot represent well
snow processes (particularly flooding due to rain on snow, which should be important in the area)
then | fear that the “process-based” FFA is flawed. In this case, the work should be presented at
most as a sensitivity analysis and statements such as L1, P22 “helps shed light on the physical
processes that shape flood frequency” should be rephrased accordingly.

This is a valid criticism and we thank the reviewer. We hope that the added model calibration and
validation, as shown in the beginning of this response, addresses most of the reviewer’s present
concern. As shown, we have devised a new calibration approach that provided acceptable
performance while included the snowpack routine in the HBV model, since we agree with the
reviewer that snow processes are potentially important elements of flooding in the region and
should not be omitted.

Major comments 2: The calibration and validation of the model lacks clarity. Which forcing was
used to calibrate the model? And how the model was validated? These points are not clear in
section 4.1. Then in section 5.2 L13,P15 “Different HBV parameters are used...” suggests that
separate parameterization was used for the different precipitation forcing but no evidence is
provided on a) the validation of the model for the two dataset and b) the variability in model



parameters. For the later, if the parameters are significantly different, it will highlight further
problems with the approach since this will mean that CPC HBV and CPC-Stage IV simulations
treat hydrological processes differently (i.e. may give more weight to different processes in each
case). This needs to be investigated and clearly explained in order to understand whether the
results can be considered “realistic” or are results of a numerical exercise that mixes two different
things.

We hope the updated model calibration can help reviewers find our process-based FFA to be less
speculative and more convincing. While ideally model parameters could remain constant
regardless of the rainfall dataset used, this is generally not good modeling practice, since rainfall
error structures can differ substantially between datasets. For example, due to its much coarser
spatial resolution, CPC, even when used in a lumped model, will produce more frequent light rain
and lower extremes than Stage IV. Therefore, we believe that calibration for individual input
datasets is a necessary evil. Our future research will use distributed physics-based models in
place of HBV, and hopefully this is less of an issue in such models.

Major comments 3: For the results in Fig. 5 right panel: Do you use soil moisture years prior to
1990 for the StagelV process-based approach? Also, you should apply the Bull. 17B for the two
periods (1933-1989 and 1990-2016) and add them on the graph for comparison.

We did not use the soil moisture prior to 1990 for the Stage 1V-based simulation. The antecedent
conditions for Stage 1V-based simulation are only sampled from continuous simulation of Stage
IV period, which is 2002-2016. We have not applied the Bull.17B method to annual daily
streamflow maxima for 1933-1989 period because we have not investigated any RainyDay-based
simulation for the corresponding time. However, we have added a supplementary plot showing
the CPC, Stage IV and Bull.17B based FFA for the modern time (2002-2016), similar to what this
reviewer and reviewer 1 suggest.

Supplementary Fig. 1 shows that process-based FFA using CPC precipitation from 2002-2016
closely resembles the Stage IV-based FFA, suggesting that rainfall differences, rather than model
structures, are the primary drivers of the differences in this figure. It also shows two features that
result using CPC data. First, the extreme tail is underestimated, relative to the Stage IV-based
simulations and the statistical approach. CPC is known to contain errors in the extreme tail, due
to gage undercatch, insufficient gage density to properly sample convective rain cells, and spatial
averaging of such cells over large areas, which effectively reduces peak rainfall depths. Second,
CPC overestimates the magnitude of more frequent events. This is likely the result of its coarse
spatial resolution, which will “smear” rainfall over larger areas (i.e. entire ~600 km2 grid cells)
when it should in reality be more localized. This would serve to increase the likelihood of rainfall
over the watershed, albeit at relatively lower depths/intensities. Thus, if one is to restrict the time
period of the rainfall data to recent years (for example, the 2002-2016 time period for which Stage
IV is available), then Stage 1V would likely be a better choice.
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Supplementary Figure 1. Three peak discharge analyses for Turkey River at Garber, IA: RainyDay with Stage 1V (2002-2016)
and CPC-(2002-2016) rainfall and USGS frequency analyses (1990-2016) using Bulletin 17B methods. Shaded areas denote the

ensemble spread (RainyDay-based results) and the 90% confidence intervals (Bulletin 17B-based analysis), respectively. All
observed annual daily streamflow maxima from 1990 to 2016 are shown in black dots.

Minor comments 1: P1, L18: “a watershed that is undergoing significant climatic... change”. Is the
climatic change at the scale of the watershed only? Consider revising.

We have revised this sentence to:

The methodology is applied to the Turkey River watershed in the Midwestern United States, which is
undergoing significant climatic and hydrologic change.

Minor comments 2: P16, L2: “but higher estimates” should be “but gives higher estimates”?

Correct. We have modified that sentence to “but yields higher estimates for rarer events”.

Minor comments 3: Fig.6: Improve caption. What is the upper and what the lower panel?

This figure has been updated.

Minor comments 4: P18L13: “processes in her” should be “processes in his/her”

We have updated the text.



