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Abstract. Medium term hydrologic forecast uncertainty is strongly dependent on the forecast quality of meteorological vari-

ables. Of these variables, the influence of precipitation has been studied most widely, while temperature, radiative forcing

and their derived product potential evapotranspiration (PET) have received little attention from the perspective of hydrologi-

cal forecasting. This study aims to fill this gap by assessing the usability of potential evaporation forecasts for 10-day-ahead

streamflow forecasting in the Rhine basin, Europe. In addition, the forecasts of the meteorological variables are compared with5

observations.

Streamflow reforecasts were performed with the daily wflow_hbv model used in previous studies of the Rhine using the

ECMWF 20-year meteorological reforecast dataset. Meteorological forecasts were compared with observed rainfall, tempera-

ture, global radiation and potential evaporation for 148 subbasins. Secondly, the effect of using PET climatology versus using

observation-based estimates of PET was assessed for hydrological state and for streamflow forecast skill.10

We find that: (1) there is considerable skill in the ECMWF reforecasts to predict PET for all seasons, (2) using dynamical PET

forcing based on observed temperature and satellite global radiation estimates results in lower evaporation and wetter initial

states, but (3) the effect on forecasted 10-day streamflow is limited. Implications of this finding are that it is reasonable to use

meteorological forecasts to forecast potential evaporation and use this is in medium-range streamflow forecasts. However, it

can be concluded that an approach using PET climatology is also sufficient, most probably not only for the application shown15

here, but for most models similar to the HBV concept and for moderate climate zones.

As a by-product, this research resulted in gridded datasets for temperature, radiation and potential evaporation based on the

Makkink equation for the Rhine basin. The datasets have a spatial resolution of 1.2x1.2 km and an hourly timestep for the

period from July 1996 through 2015. This dataset complements an earlier precipitation dataset for the same area, period and

resolution.20

1 Introduction

Hydrologic forecasting has the aim to predict the future state of important hydrologic fluxes, most notably streamflow. Through-

out the process of forecasting, from model set-up via initial state estimation to forecast run, meteorological forcing is a key

component. Precipitation is known to be the main driver of hydrological processes and most of the forecast uncertainty is
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attributed to inaccurate precipitation forcing (Cuo et al., 2011; Pappenberger et al., 2005). As a consequence, most attention

has been given to the accuracy of precipitation forecasts. See for example the review of Cloke and Pappenberger (2009).

Evaporation is a result of the interaction between meteorological forcing and, physical and physiological, processes at the

land surface. Meteorological forcing provides the potential energy (potential evaporation or PET) for evaporative processes

to take place. There are many formulas to estimate the potential energy available for evaporation, which can be divided in5

three types of formulas based on their data requirements (Xystrakis and Matzarakis, 2011; Xu and Singh, 2002): Temperature-

based (e.g. Hargreave equation, Hammon’s equation), radiation-based, and combined methods (e.g. Hansen’s equation, Turc’s

equation, Makkink’s equation). From an operational viewpoint the different types of formulas result in different demands on

data availability.

Constraints on data availability have led to additional approximations for potential evaporation. A common approximation10

is the calculation of a monthly potential evaporation climatology or PET demand curves [Anderson, 2002]. This climatology

is then used as driver for both historic potential evaporation and future potential evaporation.

Hydrological models have proven to be insensitive to the difference between variable potential evaporation forcing and

:::::::::::
climatological

:
monthly potential evaporation forcing with respect to the model’s potential to estimate streamflow after calibra-

tion (Andréassian et al., 2004; Oudin et al., 2005a, b). However, in forecasting, different choices in the handling of forcing data15

can be made between the historic update step and the forecast step, while the hydrological model, as a rule, remains the same.

It therefore remains relevant to understand how a single model reacts to potential evaporation forcing. Insensitivity to the type

of potential evaporation during the process of calibration does not mean that a model is insensitive to the form of potential

evaporation input.

As mentioned above, there has been little attention of the forecast skill of the secondary forcing variables temperature and20

radiation in the hydrological context of potential evaporation. Furthermore, there is an easy and often used practice of avoiding

potential evaporation forecasts by using a potential evaporation climatology. Therefore, the objective of this study is to assess

to what extent potential evaporation forecasts can contribute to streamflow forecast skill.

This question is evaluated for the Rhine basin in Europe (fig
:::
Fig.

:
1). The Rhine is one of the basins currently employed as

case study for the IMproving PRedictions of EXtremes (IMPREX) project, which aims to improve predictions and management25

of hydrological extremes through climate services (van den Hurk et al., 2016).

Several studies already directly addressed some aspects of operational ensemble flow forecasts in the Rhine. Renner et al.

(2009) showed that at the time meaningful hydrological ensemble forecasts could be produced up to a 9 day leadtime for the

Rhine river based on ECMWF ensemble meteorological forecasts. Reggiani et al. (2009) used a Bayesian ensemble uncertainty

processor to improve the assessment of uncertainty in the ensemble forecast. Terink et al. (2010) applied downscaling tech-30

niques to ERA15 ECMWF reanalysis data to develop a downscaling strategy for regional climate models (RCMs). Verkade

et al. (2013) developed post-processing techniques to improve the precipitation and temperature ECMWF forecasts for the

hydrological model. Photiadou et al. (2011) compared two historical precipitation datasets and assessed the influence of pre-

cipitation datasets on model results. Recently, van Osnabrugge et al. (2017) developed a high resolution hourly precipitation

dataset for use with gridded hydrologic models.35
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To answer the research question model experiments are performed, but first the data and hydrological model are presented

(Section 2). Second, the model experiments are described, which also partitions the main question into three subquestions

(Section 3) which are subsequently answered (Section 4). The paper concludes with a discussion on the results in the wider

context of evaporation modelling in hydrologic forecasting and the conclusions (Section 5).

2 Data and Model5

Observational data has been preprocessed for use with a grid based hydrological model. The data was processed with hourly

time resolution, on a 1.2x1.2 km grid spatial resolution, and for the period mid 1996 through 2015. All source data to derive

the gridded estimates comes from sources that supply their data in near real-time making the datasets suitable for operational

forecasting. For this study all data was aggregated to a daily time step. The hourly datasets are downloadable through the 4TU

data centre (van Osnabrugge, 2017, 2018).10

2.1 Precipitation

For this study the precipitation dataset is used which has been derived by van Osnabrugge (2017)
::::
from

::::::::::::::::::::
van Osnabrugge (2017)

:
is
:::::
used. The precipitation is

:::
data

:::
set

:::
has

:::::
been derived using the genRE interpolation method based on ground measurements

and the HYRAS (Rauthe et al., 2013) climatological precipitation dataset (van Osnabrugge et al., 2017).

2.2 Temperature15

Temperature observations (1996-2016) are interpolated on the same 1.2x1.2 km grid as the precipitation data. Temperature

is derived from interpolation of ground measurements with correction for height
:::::::
elevation

:
using the SRTM digital elevation

model (Farr et al., 2007) and standard lapse rate as follows. :
:

To calculate temperature Tx at a given grid cell x from a number of n surrounding stations, determine a set of weights based

on inverse-distance squared weighting between all stations (typically the n closest stations) and the grid cell. This step can have20

a threshold for maximum distance. di,x is the distance between station i and cell x:

wi,x =
1/d2i,x∑n
i=1

1/d2i,x
(1)

Second, interpolate the measured temperature Tm,i with the weights as with standard inverse-distance squared interpolation:

Tm,x =

n∑
i=1

Tm,iwi,x (2)25
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Figure 1. Map of the Rhine basin, Europe. Black lines delineate 148 subbasins used in the analysis of the meteorological forecast skill.

Square markers show the locations used for forecast skill analysis. 4



Third, calculate the temperature lapse correction term Tγ,x as the weighted difference between the height of the grid cell Hx

and the height of the considered stations Hi multiplied with the lapse rate γ.

Tγ,x = γ

(
n∑
i=1

(Hi−Hx)wi,x

)
(3)

Note that Tγ,x is static for a fixed configuration of the measurement network if γ is taken to be a constant. In this study the

configuration of the measurement network changed based on the number of reporting stations at each time step. A constant5

lapse rate was assumed: γ = 0.0066[◦C/m].

The final temperature estimate for grid cell x is obtained by adding Tγ,x and Tm,x:

Tx = Tγ,x +Tm,x (4)

2.3 Downwards Shortwave Surface Radiation Flux

The availability of solar radiation measurements at the surface has proven to be spatially and temporally inadequate for many10

applications, with remotely sensed solar radiation products having the largest potential to remedy this (Journée and Bertrand,

2010). Remotely sensed solar radiation estimates from the Land Surface Analysis Satellite Application Facility (LSA-SAF)

were found to be in closer agreement with ground observations than reanalysis datasets such as the Système d’Analyze Four-

nissant des Renseignements Atmosphériques à la Neige (SAFRAN) reanalysis (Carrer et al., 2012) and ERA-Interim (Jedrzej

et al., 2014).15

For this study, downward shortwave radiation is resampled and merged from the EUMETSAT Surface Incoming Solar

Radiation (SIS) (Mueller et al., 2009) and Downward Surface Shortwave Flux (DSSF) (Trigo et al., 2011) products from the

Climate Monitoring Satellite Application Facility (CM-SAF) and LSA-SAF, respectively. Gaps in the satellite data are filled

with the ERA5 surface solar radiation downwards (ssrd) parameter from the 4d-var reanalysis (Copernicus Climate Change

Service, 2018). ERA5 was found to have comparable mean bias with satellite-derived products for inland stations (Urraca20

et al., 2018).

In earlier research it has been shown that LSA-SAF (2005-current) and CM-SAF (1983-2005) can consistently be merged

into one time series (Jedrzej et al., 2014). The products of the different SAFs are comparable in terms of bias and standard

deviation (Ineichen et al., 2009).

2.4 Makkink Potential Evaporation25

There are different approaches in making use of remotely sensed data to calculate evapo(transpi)ration. One branch of research

aims to calculate actual evapotranspiration directly from satellite imagery (Su, 2002). Applications range from estimating the

global evaporation flux (Mu et al., 2011), water resources management (Bastiaanssen et al., 2005) and constraining model

parameters for a gridded model (Immerzeel and Droogers, 2008).

For operational use, PET estimates can be derived from satellite data only, or from a combination of satellite imagery and30

ground measurements. Bowman et al. (2017) explored the use of MODIS to provide a daily PET, both as dynamic PET (Spies
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et al., 2015) and PET climatology (Bowman et al., 2016) for a gridded and lumped version of the Sacramento Soil Moisture

Accounting (SAC-SMA) model. The model was recalibrated for each PET input. No configuration with MODIS derived PET

showed consistent improvements across all basins in their case study. Still, it was concluded that the combination of dynamic

PET in combination with a gridded model had the best overall results (Bowman et al., 2017).

A disadvantage of using satellites such as MODIS is their temporal coverage which is restricted to a single overpass at a set5

time each day giving one instantaneous value. This can be resolved by assuming a sinusoidal development of PET over the day

(Kim and Hogue, 2008), but the limitation is clear. This disadvantage is resolved by using geostationary satellites. For example,

Jacobs et al. (2009) used solar radiation from NOAA GOES geostationary satellite in combination with ground observations

to calculate daily PET with the Penmann-Montheith equation.

Here, potential evaporation is calculated from geostationairy satelite
::::::::::
geostationary

:::::::
satellite

:
radiation estimates and ground10

observations of temperature with the method proposed by Makkink
:::::::::::::
(Makkink, 1957), which is applicable with remote sensed

radiation estimates (de Bruin et al., 2016). PET calculated with Makkink’s equation is a reference crop evapotranspiration,

which means that crop factors apply determined by the hydrological model. In the set-up of our hydrological model the crop

factor was determined by land-use. A crop factor of 1.15 is applied to the forested areas and 1.0 to all others.

The reasons for choosing the Makkink equation are that 1) it only needs radiation and temperature, for which gridded15

estimations are available and 2) the Makkink equation is used by the Royal Netherlands Meteorological Institute (KNMI) so

that the work presented here is compatible with ongoing local research (Hiemstra and Sluiter, 2011).

The potential evaporation is calculated based on air temperature T [◦C] and downward shortwave radiation Rg [Wm−2] for

accumulation period t [s] (Hiemstra and Sluiter, 2011):

PET = 1000 · 0.65
∆

∆ +ψ
· tRg
λρw

[mm] (5)20

with, ψ the psychrometric constant, lambda
:
λ
:
the latent heat of water, ∆ the slope of the saturation vapor pressure curve and

ρw the density of water calculated by:

ψ = 0.646 + 0.0006T [hPa◦C−1] (6)

λ= 1000(2501− 2.38T )[Jkg−1] (7)25

∆ =
6.107 · 7.5 · 273.3

(273.3 +T )2
e

7.5T
273.3+T [hPa◦C−1] (8)

ρw = 1000[kgm−3] (9)

The Makkink Potential Evaporation calculated for each time step is called ‘near real-time’ (PETNRT ). The potential evap-30

oration climatology (PETClim) was calculated by averaging over the full time period (20yr) for each day (fig
::
Fig. 2).
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Figure 2. Difference between climatology and near real time potential evaporation. Shown for the year 2004 for grid-cell x:200, y:200.

2.5 ECMWF reforecast

The European Center for Medium-Range Weather Forecasts (ECMWF) issues hindcasts produced with the current model cycle

for certain days for the last 20 years. The reforecast obtained for this study was produced with model cycle 43r1 (Buizza et al.,

2017). The first forecast is on 1996-03-10 and the last forecast on 2015-12-29 with reforecasts alternating every three or four

days.5

Forecasted Makkink potential evaporation (PETFcast) is calculated based on the t2m (T ) and ssrd (Rg) variables using

equations 5-9. Temperature was first downscaled to the model resolution using the standard lapse rate as used in the interpola-

tion of the temperature observations as follows:

Tx = T +
(
h−hx

)
γ (10)

With, T the temperature given by the ECMWF forecast on the ECMWF resolution, h the average height of the DEM10

corresponding to the footprint of the ECMWF grid cell, hx the height of cell x in the model, and γ the lapse rate.
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Figure 3. Flow chart of the model experiment. Blue boxes represent data products. Green boxes depict modeling activities. Arrows represent

the flow of data for historical runs (blue lines) and forecast runs (black). The red boxes indicate the areas for analysis of the results, each box

targeting a research subquestion.

2.6 Hydrological Model

wflow is a modular hydrological modelling framework that allows for easy implementation and prototyping of regular grid

hydrological model concepts in python-pcraster (Schellekens et al., 2017). The hydrological model concept used is the HBV

(Hydrologiska Byråns Vattenbalansavdelning) model concept (Lindström et al., 1997) applied on a grid basis. The generated

runoff is routed through the river network with a kinematic wave approach (Schellekens et al., 2017). In the following this model5

is referred to as wflow_hbv. The set-up of the hydrological model is the same as used in assessing the validity of the genRE

precipitation data set (van Osnabrugge et al., 2017). The model was parameterized through calibration with a Generalised

Likelihood Uncertainty Estimation (GLUE) like procedure (Beven and Binley, 1992), using HYRAS precipitation as forcing

data (Winsemius et al., 2013a, a)
:::::::::::::::::::::::
(Winsemius et al., 2013a, b). The model is taken ‘as is’ and is not recalibrated for each PET

forcing, the effect of which has been studied extensively elsewhere (e.g. Bowman et al., 2017; Oudin et al., 2005a).10

3 Experimental Set-up

The analysis consists of a meteorological part and an hydrological part (fig
::
Fig. 3).

3.1 Analysis of meteorological forecast skill

In this analysis we aim to answer the following question: What is the forecast skill of temperature, radiation and potential

evaporation compared to precipitation?15
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For this purpose the observations and forecasts are spatially averaged over 148 subbasins fig
::
Fig. (1). Time series of obser-

vations and forecasts are then used to calculate the Mean Continuous Ranked Probability Skill Score (CRPSS) for each basin

and each season (MAM,JJA,SON,DJF).

The Mean Continuous Ranked Probability Score (CRPS) is an overall measure of forecast quality and is calculated by:

CRPS =
1

n

n∑
i=1

∞∫
−∞

(Fy(y)−H(y ≥ x)) dy (11)5

In which Fy(y) is the cumulative distribution function of the forecast variable and H(y ≥ x) the Heaviside step function that

assumes probability 1 for values greater than or equal to the observation and 0 otherwise (Brown et al., 2010). Interpretation

of the mean CRPS is similar to interpretation of a Root Mean Square Error. Both scores have no fixed limit
:::::
upper

:::::
bound, their

magnitude is determined by the variable, and lower scores are better
:
, with zero the perfect score.

The limits of the mean CRPS vary depending on the basin and season and it is therefore difficult to compare between basins10

and season. For this reason the CRPS is translated into the Continuous Ranked Probability Skill Score, which measures the

performance of a forecasting system relative to a reference forecast. The reference forecast here is seasonal climatology. As

such the CRPSS equals 1 for a perfect forecast and 0 when the forecast ensemble does not score a better CRPS than the CRPS

calculated for the climatological distribution.

CRPSS =
CRPSREF −CRPS

CRPSREF
(12)15

Additionally the Relative Mean Error (RME) is calculated for the mean of the forecasts Yi to detect relative biases in the

mean:

RME =

∑n
i=1(Yi−xi)∑n

i=1xi
(13)

In which Yi is the mean of the ensemble for forecast i and xi the corresponding observation.

The above scores are calculated with the Ensemble Verification System (EVS), a software package to calculate ensemble20

verification metrics (Brown et al., 2010).

3.2 Analysis of the effect of PET forecasts on streamflow predictions

In this second part of the analysis we aim to answer the following questions:

1. To what extent are initial states affected by the use of climatological versus near real time potential evaporation?

2. To what extent can potential evaporation forecasts contribute to streamflow forecast skill?25
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To answer the first question, the wflow_hbv model is consecutively forced with PETClim and PETNRT . Four states and two

fluxes are exported for analysis: 1) upper soil reservoir, 2) lower soil reservoir, 3) interception storage, 4) soil moisture store;

and fluxes 5) discharge and 6) actual evaporation. For the different states and fluxes the Mean Difference (MD) is calculated

for each grid cell. This is done for each season to investigate seasonality of differences. The MD is calculated as:

MD =

∑n
i=1(STATENRT,i−STATECLIM,i)

n
(14)5

To answer the second question two hindcast runs are performed with PETFcast and PETClim as PET forcing, respectively.

To avoid effects caused by the initial state all forecasts start from the initial states derived from the PETNRT simulation.

Forecast skill scores are calculated as for the meteorological variables for 20 discharge gauges and for each season. Different

from the meteorological verification exercise, the metrics are calculated for the forecasts with reference to the model output

and not compared with observations. The reason for this was that differences between observation and forecast stem from10

many different sources, including errors in the initial state. Subsequently, a forecast that is ‘too wet’ might compensate in the

10 day forecast for initial states that were ‘too dry’. For this reason the effect of the meteorological forecast was isolated by

calculating the verification metrics against modeled streamflow. This also avoids issues of perceptive bias due to the model

being calibrated on another PET forcing; One of the PET types might simply perform better because it is more like the original

PET used in calibration.15

Streamflow gauges for analysis were selected such that:

1. Only gauges were chosen for which the model was deemed behavioral as expressed by a KGE score threshold of 0.5.

2. Only one gauge was selected for each stream in the basin, except for the Rhine river itself, for which 2 additional gauges

were chosen. If multiple gauges in the same stream were present the gauge most downstream was chosen. The gauge

‘most downstream’ was selected by sorting on mean yearly discharge and picking the highest.20

3. From the then remaining list, the largest 20 streams were selected for analysis.

The streamflow locations are shown in figure 1 as black squares including the name of the river.

4 Results

4.1 Analysis of meteorological forecast skill

The forecast skill is assessed for all catchments and for each season. Seasons are northern hemisphere seasons spring (MAM),25

summer (JJA), autumn (SON), and winter (DJF). Figure
::::
Fig. 4 shows the Mean Continuous Ranked Probability Skill Score

(CRPSS) calculated for subsamples of all forecast-observation pairs for different levels of over exceedance,P (x≥X)
:::::::::
exceedance,

:::::::::
P (X ≥ x),

:
for each variable. Simply put, the CRPSS value at P (x≥X) = 0.9

:::::::::::::
P (X ≥ x) = 0.1

:
is calculated for the top 10%
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Figure 4. Continuous Ranked Probability Skill Score (CRPSS) for the four forcing variables benchmarked against sample climatology for

the 148 HBV subbasins. CRPSS scores are aggregated into mean (solid), 10th and 90th percentile (dashed).
:::
Note

:::
that

:::
the

::::::
CRPSS

:::::
score

:
at
:::::::::::::
P (X ≥ x) = 0.1

:::::
resp.

:::
0.7

:::
are

::::::::
calculated

::::
over

:::::::::
respectively

:::
the

::::
10%

:::
and

::::
70%

::::::
highest

:::::::::::::::
observation-forecast

:::::
pairs,

:::::::::
conditioned

:::
on

:::
the

::::::::::
observations.

of observations and the CRPSS value at P (x≥X) = 0.1
::::::::::::::
P (X ≥ x) = 0.7 is calculated for the highest 90

::
70% of the observa-

tions. P (x≥X)
::::::::
P (X ≥ x)

:
is calculated over all observations from all seasons. This means that for some seasons, for example

temperature in winter, there is an upper limit in P (x≥X)
:::::
lower

::::
limit

::
in

:::::::::
P (X ≥ x), because the highest temperatures do not

occur during winter. On the other hand, the response of the CRPSS curve is flat for low P (x≥X)
:::
high

::::::::::
P (X ≥ x) for tem-

perature during summer
:
,
:
as all summer temperatures fall in the highest 60% of temperatures of the whole year. The same is5

shown for the Continuous Ranked Probability Score (CRPS), fig
::
Fig. 5, and the Relative Mean Error (RME), fig

:::
Fig. 6.
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Figure 5. Continuous Ranked Probability Score (CRPS) for the four forcing variables benchmarked against sample climatology for the

148 HBV subbasins for the whole year. CRPS is aggregated into mean (solid), 10th and 90th percentile (dashed).
:::
Note

::::
that

:::
the

:::::
CRPS

::::
score

::
at

:::::::::::::
P (X ≥ x) = 0.1

:::
resp.

:::
0.7

:::
are

::::::::
calculated

:::
over

:::::::::
respectively

:::
the

::::
10%

:::
and

::::
70%

:::::
highest

:::::::::::::::
observation-forecast

:::::
pairs,

:::::::::
conditioned

::
on

:::
the

::::::::::
observations.
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Figure 6. Relative Mean Error (RME) for the four forcing variables benchmarked against sample climatology for the 148 HBV subbasins

for the whole year. RME is aggregated into mean (solid), 10th and 90th percentile (dashed).
:::
Note

:::
that

:::
the

::::::
CRPSS

::::
score

::
at

:::::::::::::
P (X ≥ x) = 0.1

:::
resp.

:::
0.7

:::
are

::::::::
calculated

:::
over

:::::::::
respectively

:::
the

::::
10%

:::
and

::::
70%

:::::
highest

:::::::::::::::
observation-forecast

:::::
pairs,

:::::::::
conditioned

::
on

:::
the

:::::::::
observations.

:

There is no skill in the ECMWF forecast beyond 10 days for daily precipitation. This is consistent with the 9-day leadtime

in streamflow forecasts found by Renner et al. (2009). The skill is best in winter and worst in summer, which is expected based

on the dominating meteorological processes (frontal systems in winter and convective events in summer). The total amount of

precipitation is underestimated after one-day lead time (fig
:::
Fig. 6).

There is more skill in the forecast for the variables temperature and incoming shortwave radiation. Likewise, there is consid-5

erable skill remaining in the potential evaporation forecast. For temperature the one-day forecast is close to perfect for autumn

and spring. The skill in temperature forecast is similar for spring, summer and autumn, but worse during winter. The spread, the

difference in skill between basins, is also largest during winter and spring. The RME shows that there is a small negative bias

in the temperature forecasts. The RME for winter is largests, however it should be noted that the RME is the mean difference

weighed by the mean of the observations (eq. 13). As the mean temperature in winter is closer to zero, this results in larger10

RME. Still, also when expressed in absolute values, the error for temperature during winter is larger than for other seasons

(fig
::
Fig. 5).
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For radiation there is already quite a considerable loss in skill after one day, but then the CRPSS remains quite stable for

longer forecasts, notably during spring and autumn. There is a larger decline in skill for summer and for extreme low radiation

values in winter. In absolute terms, the CRPS is related to the magnitude of the average radiation for each season, with the

smallest absolute errors for winter and the largest during summer (fig
::
Fig. 5). In terms of bias,

::
we

::::
see

:::
that

:::
the

:::::::
relative

:::::
mean

::::
error

::::::::
increases

::::
with

::::::
lower

:::::::::
P (X ≥ x)

::::
(fig.

::
6,

::::
row

:::
3).

::::
This

::::::::
indicates

::::
that

:
low values are slightly overestimated while high5

values are slightly underestimated, making the radiation forecasts slightly less extreme than the observations(fig. 6)
:
.
::::
This

::
is

:::::
further

::::::::::::
demonstrated

::
in

::::
Fig.

::
S1

::
in

:::
the

::::::::::::
supplemental

::::::::::
information,

:::::
which

:::::
plots

:::
the

:::::
RME

:::
for

:::::::
different

:::::
levels

::
of

::::::::::::::
non-exceedance

::::::::::
(P (X ≤ x)),

:::
as

:::::::
opposed

::
to

:::::::::
exceedance

::
in
::::
Fig.

::
6.

The skill of the potential evaporation forecast is closely tied to the skill in radiation forecast, both because Makkink potential

evaporation is directly proportional to radiation and because the larger uncertainty in the radiation forecast. The forecast skill10

has the same properties as those found for the radiation forecast. A small difference is that some of the longer lead time found

for
:::
part

::
of

:::
the

:::::::
forecast

:::::
skill

::
in temperature is found back in slighly

:
a
:::::::

slightly
:
improved forecast skill after 10 days for PET

compared to radiation
::
in

:::::::
summer.

Overall, there is relatively little spread in skill between basins, with the 10th and 90th percentile close to the mean and

following the same trajectory. The difference in skill between the different seasons is larger than the spread between basins,15

especially for the variables temperature, radiation and potential evaporation. This difference in skill between seasons is partly

misleading. For example, the forecast skill for radiation in winter (fig
:::
Fig. 4, purple line) appears to be an outlier. However, the

whole range of occurrences of extreme high and low radiative forcing is compressed in a limited part of P (x≥X)
::::::::
P (X ≥ x).

Although the forecast over the whole range of winter radiative forcing is lower than that for the other seasons, the top 10% of

winter radiative forcings are actually among the best predicted.20

Likewise, high temperatures receive higher skill scores than low season temperatures. This is even more distinct in the

radiation forecasts. This does, however, not mean that the forecasts of such rare events are more accurate: both RME (fig
::
Fig.

6) and CRPS (fig
:::
Fig. 5) are larger for high extremes, meaning larger errors for those forecasts. Still, taking into account the

rarity of the event by calculating the CRPSS, which is the skill of the forecast relative to the skill of a random draw from the

climatology, temperature, radiation and potential evaporation forecasts are found to add most information for extreme high25

values, even though the error of those forecasts is larger than for more ‘average’ values (values with higher probability of

occurrence).

4.2 Influence of dynamic PET on initial states

Dynamic potential evaporation leads to lower actual evaporation (AET). The difference is largest for summer and spring (fig
::
Fig.

7). Part of this lower evaporation is from a reduction in interception as the interception storage is more filled on average under30

dynamical forcing. This can be explained by the correlation between precipitation events and low potential evaporation. On

rainy days the dynamic potential evaporation is generally lower, which decreases the amount of interception evaporation. Under

climatological forcing the energy available is not reduced and thus more water evaporates from the interception store. The latter

is sometimes taken into account in hydrological models by adding a potential evaporation reduction function dependent on the

14



Figure 7. Seasonal Mean Difference
::::
mean

::::::::
difference in calculated actual evaporation (AET) for each season. Actual evaporation includes

evaporation from interception.

intensity of precipitation to correct the PET climatology. For example, the HBV model has this option (Schellekens et al.,

2017).

The lower evaporation with dynamic PET forcing cascades through the different model storages, accumulating in a mostly

wetter lower zone (LZ) storage under dynamic forcing. Finally, the lower evaporation results in higher discharge throughout the

Rhine basin (see fig. S1-S6
:::
Fig.

::::::
S2-S7 in the supplemental information). Exceptions are the high Rhine during spring and to a5

lesser extent during autumn, and several areas during winter when there is very little effect overall. The wetter conditions also

result in higher peak discharges. As these higher discharges are a result of the temporal dynamics of the potential evaporation

15



input, it is expected
::
we

::::::
expect to find a similar effect on forecasted discharges. As will be shown later (fig

:::
Fig. 9), this is indeed

the case
:
,
:::::
albeit

::::
very

::::::
limited.

4.3 Influence of PET forecast on streamflow forecast

The CRPSS for streamflow forecast is hardly influenced by potential evaporation forcing type. At first sight, the skill scores

obtained with dynamic or climatological PET are identical. Small differences only become visible when taking a close up of5

the differences by substracting
::::::::
subtracting

:
one from the other (fig

::
Fig. 8). However, the small difference in skill grows with

lead-time. The influence of PET forcing type becomes more intuitive when looking at the relative mean error (RME). Visible

is an increasing drift with lead-time between PET forcing types (fig
::
Fig. 9). Interestingly, this drift in RME is almost uniform

over the whole distribution
::
all

:::::::
sub-sets

:
of predicted discharge. The drift is positive, which means that forecasted PET leads to

slightly higher forecasted discharges, as expected based on the results of the influence of variable PET on the initial states.10

Analyzed for each season separately, there is a little more to discover about the role of potential evaporation forecasts and

the sensitivity of forecast skill to the meteorological forecast in general. The contribution of the meteorological forecast to

streamflow forecast uncertainty is largest for summer, as shown by the largest decrease in CRPSS for the 10-day forecast in

summer compared to the other seasons. The CRPSS especially ‘dips’ for the most extreme discharges, which is not as strong

for spring and autumn, and especially compared to the flat response of the CRPSS for the highest 30% of discharges in winter.15

In terms of the effect of potential evaporation climatology versus forecasted potential evaporation, the influence is largest

(but still quite small) for summer and spring. This is tied to the potential evaporation being of larger magnitude; there is hardly

a response for winter where there is lowest potential evaporation.

:::
The

::::::::
influence

:::
of

::::
PET

::::::::
forecasts

::
on

::::
low

::::
flow

:::::::::
prediction

::
is

::::::
further

:::::::::
examined

::
by

::::::::::
calculating

:::
the

::::::
scores

:::
for

:::::::
different

::::::
levels

::
of

:::::::::::::
non-exceedance

::::::::::
P (X ≤ x),

::::::
instead

:::
of

::::::::::
exceedance,

::
so

::::
that

:::
the

:::::
score

:::::
value

::
at

::::::::::::::
P (X ≤ x) = 0.1

::
is
:::::::::

calculated
:::
for

:::
the

:::::
10%20

:::::::
smallest

::::::::::
observations

::::
and

:::
the

:::::
score

:::::
value

::
at

::::::::::::::
P (X ≤ x) = 0.7

::
is

::::::::
calculated

:::
for

:::
the

::::::
lowest

::::
70%

:::
of

:::
the

:::::::::::
observations.

::::
Not

::::
only

:::
has

:::
the

:::::
choice

::
of

::::
PET

:::::::
forcing

::
for

:::
the

:::::::
forecast

::::::
hardly

:::
any

:::::
effect

::
on

:::
the

:::::::::
forecasted

:::::::::
streamflow

::::
(Fig.

:::
10,

:::::::
bottom

::::
row),

:::
but

::::
also

:::
the

::::::
forecast

::::
skill

::
of

::::
low

::::::::
discharge

:
is
:::::::
affected

::::
only

:::::::
slightly

::
by

:::
the

::::
skill

::
of

:::
the

::::::::::::
meteorological

:::::::
forecast

::
in

:::::::
general.

:::
The

:::::::::::::
meteorological

::::::
forecast

::::
skill

:::::::
declines

::::
with

::::
lead

::::
time

::::
(e.g.

::::
Fig.

::
4),

:::
but

:::
the

:::::::
forecast

::::
skill

::
of

:::
low

::::::::
percentile

:::::::::
discharge

::::::
remains

::::::
almost

::::::
perfect

:::::
(very

::::
close

::
to

::::
one)

:::::::::
compared

::
to

:::
the

:::::
model

:::::
under

::::::
perfect

:::::::
forcing.25

5 Conclusions

This paper presented a simple and straightforward investigation with an operational forecasting practice perspective. First,

observation data was preprocessed for used in the gridded wflow_hbv model. Second, the wflow_hbv model was subjected to

dynamical and climatological PET forcing. Three aspects were analyzed: 1) the skill in meteorological forecast, 2) the effect

of PET forcing on initial states and 3) the effect of PET forcing on forecast skill.30

Nine to ten days is the upper limit on forecast lead time for daily precipitation for the ECMWF forecast in the Rhine basin,

with only very little skill remaining compared to climatology. There is considerable skill in daily temperature, radiation and
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Figure 8. Continuous Ranked Probability Skill Score (CRPSS) for forecast runs (forecasted PET, climatological PET) and their difference

benchmarked against model output for the 20 largest streams
:::::::::::
sub-catchments

:
in the Rhine basin. CRPSS scores are aggregated into mean

(solid), 10th and 90th percentile (dashed).
:::
Note

:::
that

:::
the

::::::
CRPSS

::::
score

::
at

:::::::::::::
P (X ≥ x) = 0.1

:::
resp.

:::
0.7

:::
are

::::::::
calculated

:::
over

:::::::::
respectively

:::
the

::::
10%

:::
and

:::
70%

::::::
highest

:::::::::::::::
observation-forecast

::::
pairs,

:::::::::
conditioned

:::
on

::
the

::::::::::
observations.

potential evaporation forecasts, also after ten days. Variable PET forcing resulted in lower evaporation and to wetter initial

states and higher modeled discharges.

The main result of this study is that potential evaporation forecasts improved streamflow forecasts only slightly. This con-

firms earlier results that the influence of random errors on estimated streamflow was generally not measurable when comparing

model runs directly, needing a 20% systematic bias in PET to influence model outcomes significantly (Parmele, 1972). Like-5

wise, Fowler (2002) concluded that climatological PET estimates produced a soil water regime very similar to that derived

with actual daily PET values, including extreme periods, for a site in Auckland, New Zealand.

There is a wider discussion on evaporation modeling in hydrological models (Andréassian et al., 2004; Oudin et al., 2005a,

b) to which the results here might add a new perspective: that of evaporation as a process relevant for medium term forecasts.

This is directly also a limitation of this research; Only the influence on forecasts up to 10 days was investigated. The influ-10

ence on seasonal forecasting might be more substantial, considering that the modeling of evaporation strongly influences the

partitioning between runoff and evaporation in the longer term water balance (Bai et al., 2016).

Further limitations are that only one model was tested (wflow_hbv) and for one climate zone (moderate temperate). The

model was calibrated originally on a different PET climatology than studied here and was not recalibrated. The latter is not

seen as a limitation. Deliberately not recalibrating the model enabled to focus on the changes in modeled processes instead of15

17



Figure 9. Relative Mean Error (RME) for forecast runs (forecasted PET, climatological PET) and their difference benchmarked against

model output for the 20 largest streams in the Rhine basin. RME scores are aggregated into mean (solid), 10th and 90th percentile (dashed).

:::
Note

::::
that

:::
the

::::::
CRPSS

::::
score

::
at

:::::::::::::
P (X ≥ x) = 0.1

::::
resp.

:::
0.7

:::
are

::::::::
calculated

::::
over

:::::::::
respectively

:::
the

::::
10%

:::
and

::::
70%

:::::
highest

::::::::::::::::
observation-forecast

::::
pairs,

:::::::::
conditioned

::
on

:::
the

::::::::::
observations.

comparably vague assessments based on model performance expressed in efficiencies, with the effects brought forward by the

PET forcing somewhere hidden in the parameter space.

::
In

::
the

::::::::
analysis,

:::::::::
forecasting

::::::
metrics

:::::
were

::::::::
calculated

::::
over

::::::
subsets

::
of

:::::::::::::::::
observation-forecast

::::
pairs

::::::::::
conditioned

::
on

:::
the

:::::::::::
observations.

:::::::::::
Alternatively,

:::
the

:::::::
subsets

:::::
could

:::::
have

::::
been

:::::::::::
conditioned

:::
on

:::
the

:::::
mean

:::
of

:::
the

::::::::
forecasts.

:::::
This

::::::
would

::::::
present

:::::
more

::::::::
intuitive

:::::::::
information

:::
for

::
a

::::::::
forecaster

::
at

:::
the

::::
time

::
of

::
a

::::::
forecast

:::::
when

:::
the

::::::::::
observation

::
is

::
by

::::::::
definition

:::
not

:::
yet

::::::
known

::::::::::::::::
(Lerch et al., 2015)

:
.5

The idea to look at potential evaporation forecast was instigated as part of a program to improve forecasts of low flows.

Indeed, it is a recurring hypothesis that potential evaporation forecasts should aid especially in making low flow predictions.

The uniform response of several skill scores for every percentile
:::::::
different

:::::::
sub-sets of observed discharge does not support this

idea; there is no special gain for low flows. Instead

::::::
Instead,

:
from our model results it follows that the correct prediction of a drought is firstly dependent on a correct forecast10

of no-rain. Low flow recession is subsequently determined, in the absence of further feedback mechanisms, solely by the

storage-discharge relationship of, in this case, the lower zone representing the saturated zone
::
as

::::
well

::
as

:::
the

::::::
routing

::
of

:::::::
surface

::::
water.

The follow-up question then is: Is this true in reality, or is this a model deficiency? Should we rethink hydrological modeling

to incorporate more feedbacks on evaporation? Certainly there are models with more complex representation of evaporative15
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Figure 10.
:::::::::
Continuous

:::::
Ranked

:::::::::
Probability

::::
Skill

::::
Score

:::::::
(CRPSS)

:::
for

::::::
forecast

::::
runs

::::::::
(forecasted

::::
PET,

:::::::::::
climatological

::::
PET)

:::
and

::::
their

::::::::
difference

::::::::::
benchmarked

:::::
against

:::::
model

:::::
output

:::
for

:::
the

::
20

:::::
largest

::::::
streams

::
in
:::
the

:::::
Rhine

:::::
basin.

:::::
CRPSS

:::::
scores

:::
are

:::::::::
aggregated

:::
into

::::
mean

::::::
(solid),

::::
10th

:::
and

:::
90th

::::::::
percentile

:::::::
(dashed).

::::
Note

:::
that

:::
the

::::::
CRPSS

::::
score

::
at

::::::::::::
P (X ≤ x) = 0.1

::::
resp.

:::
0.7

:::
are

::::::::
calculated

:::
over

:::::::::
respectively

:::
the

::::
10%

:::
and

::::
70%

:::::
lowest

:::::::::::::::
observation-forecast

::::
pairs,

:::::::::
conditioned

::
on

:::
the

::::::::::
observations.

processes. These are valid and important questions especially in the light of hydrologic response to change of climate drivers.

However, from the results presented here, it should not be expected that a better understanding of evaporative processes and

feedbacks will result directly in a significant increase in 10-day predictive skill for streamflow.
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Thank you for the review. The three main issues mentioned by this reviewer are: 1) figures generating P(X>x) rather than

P(X<x), 2) Forecast verifications conditioned on forecasts can be a more robust approach, 3) copy editing. In the following we

will address each point. At the end we address also the minor issues raised by the reviewer.

1 P(X>x) for claims on low flows

Although the comment about P(X<x) versus P(X>x) for evaluation of high and low flows, respectively, is correct in the sense5

that low P(X<x) evaluates for all data and not directly on low flows, there is still information about low flow forecasts to be

found, namely in the shape of the curve.

We extracted information about low flows from the evaluation with P(X<x) by looking at the change in predictive skill

over P(X<x). Concerning p.14 l.13-15: “In terms of bias, low values are slightly overestimated while high values are slightly

underestimated, making the radiation forecasts slightly less extreme than the observations (Fig.6)” we see in Fig. 6 (row 3,10

Rg) that the relative mean error increases with lower P(X<x). So the more low flow occurrences are added to the evaluated set,

the more the relative mean error increases. This is only possible if low values are overestimated, which is what we claim. We

understand that the explanation we give here was lacking so we will add this explanation.

Additionally, we performed the proposed analysis and plotted graphs for P(X>x) which showed that indeed low values are

overestimated for Rg (see attached Figure 1). However, we think that adding the full explanation as written above is the best15

solution, while adding the ‘inverse’ graph to the supplemental information including some explanatory text, as not to disturb

the flow of the article.

Concerning p.19 l.1-3 "The uniform response of several skill scores for every percentile of observed discharge does not

support this idea; there is no special gain for low flows" we would like to refer back to Fig. 9 and apply a reasoning similar to

the one above. First we note that the scale of the last row, where the differences are plotted, is very, very small. Even if ‘diluted’20

by the other observations in the set, a significant change for low flow values should show in this figure. Instead, the more low

flow values are added to the evaluation set, the smaller the RME difference becomes.

Also here we did the proposed analysis to confirm our statement, see attached Figure 2. Here we see our initial conclusions

confirmed as the differences are negligible between PET forcings. Additionally, the analysis gives some new insight in the

1



sensitivity of low flows to PET forcing. Looking at the 5d and 10d skill score, there is hardly any loss of skill due to the

combined forcing. In other words, the skill of an actual forecast is purely determined by the quality of the model and initial

state. This can be readily explained by the fact that the lowest flows are caused by long periods without rain. We will describe

this in the results section.

Concerning the expectations that "Given that there are differences in the soil stores using the different forecasts PET forcing,5

then I would have expected there to be differences identified in streamflow forecasts for low flow conditions", we would like

to respond that this indeed was our initial expectation and is indeed an expectation that is shared with many. It is one of the

findings of this paper that this belief is untrue, at least for the conceptualization of the HBV model. This is because under dry

conditions the HBV discharge is determined by the LowerZone storage and routing, without strong feedback mechanisms that

would drain the LowerZone through evaporation. We are happy to have carried out the suggested analysis, because this has10

become now much more clear in the results. Note that we did look at 10-day forecasts and that all forecasts are run from the

same initial state created, so the difference in state is deliberately not taken into account to isolate the effect of the forecasted

forcing.

Last, we did review our use of ‘exceedance’ and ‘non-exceedance,’ and the use of P(X>x) and P(X<x), to describe the

sampling. It is now more clear and more consistent throughout the text and the sampling is repeated in the figure caption for15

clarity and to prevent confusion. Additionally, we added better descriptive titles.

2 Verification conditioned on forecasts

If we understand correctly, you mean that we should take samples based on the forcasted values, P(F<f), instead of observa-

tions, P(X<x), so that scores are calculated for the 10% (etc) highest (lowest) forecasts and not for the highest (lowest) 10%

observations. This then will inform the forecaster about the forecast quality based on the extremity of the forecast, not the20

unknown observation.

We studied the referenced paper with great interest. We see that such an analysis has merit, but do not think that it will add

to the topic of this paper which is focused on the effect of evaporation forecasting on streamflow forecasting. In particular we

do not think that our conclusions are susceptible to the danger of evaluating models on only a subset of the data because we

did calculate our metrics over the whole range of P(X<x), and after your first suggestion for P(X>x), and are not tuning our25

model. We have however added a recommendation for this analysis of forecast skills for future studies to further the awareness

of this issue, including a reference to the mentioned article(s).

3 Copy editing

We will thoroughly check the manuscript for copy editing errors to our best efforts. We thank the reviewer for already pointing

out several cases that need our attention.30
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Figure 1. Relative Mean Error (RME) for the four forcing variables benchmarked against sample climatology for the 148 HBV subbasins

for the whole year. RME is aggregated into mean (solid), 10th and 90th percentile (dashed). Note that radiation (Rg third row) is indeed

overestimated for low extremes as presented in the main text. Additionally, the asymptotic behaviour of the RME of precipitation (P, first

row) is caused by the large number of zero or close to zero events so that the relative error grows without bounds. In the inverse figure

(for P(X<x), Fig. 6) those zero values were automatically excluded. For temperature (T, second row) the RME is unstable for values around

zero, but since actual exactly zero temperatures are rare, this remains within bounds albeit with a jump from positive to negative due to sign

differences between observed and forecasted values.
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Figure 2. Continuous Ranked Probability Skill Score (CRPSS) for forecast runs (forecasted PET, climatological PET) and their difference

benchmarked against model output for the 20 largest streams in the Rhine basin. CRPSS scores are aggregated into mean (solid), 10th and

90th percentile (dashed). Note that this is the inverse graph of Figure 8 (for P(X<x)) in the main text.
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