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Comparison of approaches to interpolating climate observations in steep terrains with low-density 

gauging networks 

Response to comments by Reviewers 

We are very grateful with the two anonymous reviewers who have provided very valuable feedback 
to improve the manuscript. We are glad that both of them highlighted that the topic of the manuscript 5 
is interesting, valuable and within the scope of HESS. We are also happy that reviewer 1 highlighted 
the value of the temperature results, and that he or she suggested to analyse CHIRPS data in a similar 
way as WCA. This new method ended up being a very good alternative to interpolate precipitation. 
 
Overall, the key requirements from reviewers involved: reorganising the content of some sections, 10 

better explaining the results obtained by the referenced authors on the interpolation of climate 

variables in mountain areas, providing more information of the general climate in the case study and 

giving a better explanation of the GLMM. 

We addressed all the comments of the reviewers below. 

Reviewer 1 15 

Specific Comments 

 

1. Section 2.1 - Separate the description of the geographical and climate settings. 

The description of the geography was moved to the beginning of Section 2, while the climate settings 

were kept in Section 2.1. 20 

a. Climate setting would deserve a more extensive description 

The description of the climate settings in Section 2.1 was considerably increased, to provide more 

details of the broader climate phenomena affecting the case study, the sources of inter-annual 

variability (including ENSO and a brief comment on the Pacific Decadal Oscillation), and temperature 

fluctuations.  25 

Further references were included. A comment on glaciers was also added, including two references 

which provide further details. We did not go deeper on the subject of glaciers, as their presence is 

restricted to the highest elevation areas of some of the sub-catchments in the case study. Furthermore, 

one of the references highlights that, although challenging to quantify, their role in catchment flows 

seems to be only relevant during dry years, and only for the very upper sub-catchments (Ohlanders et 30 

al., 2013). This means that the overall relevance of glaciers in the case study is not that high, thus, we 

do not consider pertinent to provide much more detail about them. 

b. Eliminate large map from Figure 1. Enlarge the small one. Clearly define the case 

study. Change colour of catchment delineation. 

The catchment delineation colour has been changed so it is easy to identify it. The whole figure has 35 

been enlarged. None of the figures was eliminated as we think they all are useful to clearly locate the 

catchment. 

c. Include comments on glaciers in the area. 

See 1a. 
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2. Section 2.2 – Clearly state the total number of time-series and the maximum time-span 40 

covered by the considered time-series. 

This information was provided in the Appendix, however, we acknowledge that a better explanation 

was required in the text. Thus, the third paragraph of Section 2.2 was reworded to better link the text 

with the information provided in the Appendix. This paragraph is included as follows: 

“A total of 42 gauges were used in the project, 18 of them measured precipitation and 24 measured 45 

temperature. The 42 gauges covered 41 sites, with one site (site 27) having both temperature and 

precipitation gauges. The locations of the temperature and precipitation gauges are shown in Figure 

1, while further details of the gauges (including the periods with information available and the 

percentage of missing values) are provided in Table A1 in the Appendix.” 

In addition, throughout the text, whenever we referenced a gauge, we changed or complemented their 50 

names with the number of the site in Figure 1, so it is easier for the reader to locate the gauges in the 

map without going to the Appendix. 

a. Merge Figure 2 and 3 in a two panel figure. 

The large number of figures was an issue in the previous version. Each figure that we planned to be a 

multiplot had to be split to follow the Copernicus Latex format, they were presented as multiple 55 

separate figures. Now, image files were merged prior to their inclusion in Latex so that many figures 

are now merged appropriately, including figure 2 and figure 3.  

We have also done a major review on the figure and their labels, and have improved their overall 

presentation. 

3. Section 2.3 – Lines 27-29 include references  of studies that have evidenced decreased  skill 60 

of remote sensed products in the mountain environment.  

Taking into account the suggestions from Reviwer 2 to reorganise the introduction, we moved this 

information to the introduction. The new paragraph includes the references supporting each one of 

the statements. 

“A broader review of the performance of satellite products for estimating precipitation in the Andes 65 

and other mountain areas (Nikolopoulos et al., 2013, Thiemig et al., 2012, Dinku et al., 2014), suggests 

that in these regions, satellite products tend to be good at detecting precipitation (except in very dry 

areas (Zambrano-Bigiarini et al., 2016, Manz et al., 2016)) and its overall spatial variability, but 

struggle to accurately predict the magnitudes of the events, particularly during extremely dry (e.g. in 

the north of Chile (Zambrano-Bigiarini et al.)) or extremely wet regions (e.g. western slopes in the 70 

Colombian Andes (Dinku et al., 2010)), and for daily and subdaily resolutions (Dinku et al., 2010, Manz 

et al., 2016, Thiemig et al., 2012).” 

a. Merge Figure 4 and 5 in a 2 panel figure.  

Figures have been merged. See answer to comment 2a. 

b. Specify what is the DEM used for. 75 

 

The DEM was used to define the elevation at all points in the catchment, as this variable is required for 

some of the interpolation approaches. The first part of this paragraph in section 2.3 was adjusted to 

include this as follows: 
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“The third spatial data set used was a Digital Elevation Model (DEM) based on the Shuttle Radar 80 

Topography Mission (SRTM) (Jarvis et al., 2008), with a spatial resolution of 90 m. The DEM was used 

to define the elevation in the catchment, in order to use this variable in some of the interpolation 

approaches.” 

c. Consider including a plot of MEI index to discuss el nino or la nina events during the 

period of analysis. Given the short length of the used time series, it could be difficult 85 

to have enough ENSO cycles to get a significant correlation between observations 

and MEI index. 

We considered this and concluded that there would not be too much added value by including this plot. 

As the reviewer highlights, the period of analysis is relatively short compared to the frequency of the 

ENSO events, and this may have hindered finding a better correlation between the MEI index and the 90 

climate variables. This, however, is clearly stated in section 4, where we describe the correlation 

analysis between variables and covariates. 

 

4. Section 3 – It is not clear if in the first paragraph the authors discuss literature or the 

methods 95 

We have done relevant changes in Section 3 and the introduction. We moved all the review of literature 

to the introduction, and in Section 3 kept only the detailed explanation of the added value of the GLMM 

within the context of this case study, how our method differs from alternatives like Kriging or GLMs 

and why we chose an approximate Bayesian inference method. 

a. Include at the beginning a structured list of the methods, possibly including 100 

literature on advantages/drawbacks.  

This was included at the beginning of Section 3 in Table 1. 

b. Discuss in more detail why the GLMM is potentially good for this application. 

We provide a detailed explanation of this at the beginning of Section 3.1. 

c. Be more clear on what type of data was used for each method.  105 

This was clearly included in Table 1. 

d. Provide details of the resolution of the climate outputs. 

The GLMM, IDW, LR and ChA methods were used to generate data at centre-points of 5 km x 5km 

grids, while WCA used the original 1 km x 1 km WC grids. However, we thought it was more important 

to specify in the paper how we generated the data for comparison with the validation gauges. This is 110 

explained in Section 3.3, where we specify that we generated the estimates at the location of the 

validation gauges at each round of the leave-one-out cross validation, and then we repeated this for 

each approach, both for temperature and precipitation.  

 

5. Section 3.1 – Clearly state in Section 2.2 and abstract that monthly precipitation data was 115 

used. 

Done 
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a. If monthly precipitation data was used, why including FAR and POD? 

Although POD and FAR are more commonly used for daily analyses, the large numbers of months 

without precipitation in the catchment make the calculation of these two categorical statistics 120 

valuable. This reason was made explicit in the article with the following paragraph: 

“Furthermore, two categorical statistics, the False Alarm Ratio (FAR) and the Probability of Detection 

(POD) (e.g. as applied in (Zambrano-Bigiarini et al., 2016)), were used to assess to what extent the 

model is able to predict precipitation occurrence (see Table 2). These categorical statistics are relevant, 

even at a monthly time-scale, considering that in the case study there are several months without any 125 

precipitation, thus accurately simulating its occurrence is not a trivial exercise.” 

6. Section 3.2 – Is WCA based on IDW using both station data and WorldClim maps? 

Yes, WCA is based on using IDW to interpolate the residuals between the WorldClim maps and the 

station data. We thought this was clear enough; however, we reworded the explanation in Table 1 and 

in Section 3.2 to further clarify. Two references explaining a similar method were included in the revised 130 

version, in case the reader wants to have more details about this procedure. Taking into account 

comment 10 from Reviewer 1, here we also explained how the same method was applied with CHIRPS 

data. 

“The WCA method attempts to couple the benefits of the spatial variability of the WC maps and those 

of the temporal resolution of the observations in a simple way. Likewise, ChA attempts to improve the 135 

performance of raw CHIRPS by doing a straightforward merging of this product with observations. 

These approaches are similar to the RIDW in Manz et al. (2016) or the bias adjustment in Dinku et al. 

(2014), but in this case using WC maps and CHIRPS. First, the residual between observations and 

WC/CHIRPS is computed at each gauge location at a daily resolution for temperature and at a monthly 

resolution for precipitation. Then, these residuals are interpolated using Inverse Distance Weighting 140 

(IDW) to each point in the catchment, and this interpolated surface is added back to the original 

WC/CHIRPS values. This procedure is repeated for every time-step.” 

a. Merge figures 6 and 7 

To address the previous comment we reviewed again some papers where similar methods were 

applied, and realised that none of them included this kind of figures, but only a brief explanation with 145 

the steps followed. Taking this into account, figure 6 and 7 were eliminated and the explanation of the 

method was improved by providing a more specific explanation, and some references to obtain further 

details about the approach. 

7. Section 3.3 – Divide LOOCV and sensitivity tests.  

The explanation of the LOOCV and the sensitivity test was divided. Section 3.3 explains the LOOCV 150 

while Section 3.4 explain the sensitivity tests. The results were also divided in Section 4. First, a table 

with the results of the LOOCV is provided, together with its explanation, and then another table with 

the results of the sensitivity analysis is included. 

a. Be more clear why for the GLMM it was required to use the expected value as 

opposed to the others (GLMM is a stochastic method, the others are not). Explain 155 

this in a better way for all methods. 

Further details of this were provided in the fourth paragraph of Section 3.3, as follows: 
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“For all tests, the average Root Mean Squared Error (RMSE) was used to assess the performance of 

temperature and precipitation predictions, following similar comparisons (Cameletti et al., 2013, Manz 

et al., 2016, Nerini et al., 2015). Being a stochastic approach, for the GLMM this involved the analysis 160 

of the expected values of each variable (y in Equation 3 and yP in Equation 6). 

b. Be more specific of the comparisons of raw WC maps and temperature data, and 

discuss its small RMSE. 

We thought sufficient details had been provided, however, we have improved the description of the 

comparison of this in Section 3.4. 165 

“The sensitivity test was complemented with the estimation of precipitation and temperature values 

at all locations using raw WC maps and CHIRPS, in order to understand the accuracy of these data sets 

when used independently of the observations. This involved comparing the observed values at each 

time-step with those reported by CHIRPS or the WC maps, which in the latter case meant estimating 

the climate variables based on the long-term averages in the WC maps.” 170 

Also, in Tables 4 and 6, which include the results of the sensitivity tests, we included footnotes to make 

this clearer. 

Furthermore, the discussion of these results was enhanced by rewording/adapting the following 

paragraphs in Section 5. 

“Furthermore, it was found that the quality of results of the GLMM are particularly sensitive to the 175 

number and location of gauges measuring temperature. As shown in Table 3, the RMSE for this 

approach rises sharply when only 8 (3.89 oC), 5 (3.99  oC) and 2 (14.44 oC) gauges are used to estimate 

its parameters. The performances of IDW and LR also decrease considerably (RMSE of 9.34 oC and 7.78 
oC respectively, with only two gauges), to the extent that using the raw WC maps for this case study 

(RMSE of 3.36 oC) may be preferable to any method other than WCA once the density of gauges 180 

becomes low.” 

“The other precipitation interpolation approaches decrease their performance at a relatively similar 

rate, when facing a reduction in the number estimation gauges. As shown for the LOOCV (see Figure 

7B), this may be because errors at high elevation gauges strongly influence the overall RMSE. When 

only 4 gauges are included, however, ChA and to a lesser extent WCA show a better RMSE (21 mm and 185 

23.5 mm respectively), although the former has a relatively low POD (88.4 %) and the latter a larger 

FAR (27.9 %). It was also found that CHIRPS as a standalone product is a useful alternative to the 

interpolation approaches when 4 or fewer gauges are available, with only marginally worse RMSE 

value than IDW and better RMSE than LR and GLMM (RMSE=26.2 mm, POD=88.5 % and FAR=28.6 %).” 

 190 

8. Include a paragraph in the methods section discussing the correlation analysis. 

A paragraph has been included at the beginning of Section 3.1 before Table 1, briefly describing the 

correlation analysis and its purpose. The more in-depth discussion of the results was kept in the first 

paragraph of the results section (Section 4), as we consider that this is a more suitable location than 

Section 3. The paragraph included is as follows: 195 

“Before using the covariates mentioned in Table 1 (e.g. WC, elevation, CHIRPS), an analysis of their 

correlation with the climate variables was done. This included plotting temperature and precipitation 

observations versus the covariates, and computing Pearson Correlation coefficients.” 
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a. Merge Fig 8-13 in a 6 panel figure.  

The figures have been merged. See answer to comment 2a. 200 

9. Section 4.1 – Explain how and why the 5 yrs daily average was calculated, and explain that 

this was for plotting purposes only in Figs 14-16. 

This aggregation was done for illustration purposes only. Our goal with these figures was to show: 

what methods over and under-estimate observations, by approximately how much, how this changed 

as a function of the period of the year, and how this changed as a function of different types of stations. 205 

The 5-year series of daily data contained too much variability to visually assess the trends, which was 

achieved using the averaged series. 

For the same reason, to facilitate the visualisation of the main trends, values were also smoothed using 

the LOESS method. Briefly, the method analyses data nearby a point X (how much data is included is a 

user defined parameter), and does a simple regression using this data. The value of X is adjusted to the 210 

value predicted by this regression.  

Although this may eliminate day-to-day fluctuations, the overall trend over several days is shown much 

more clearly, as the noise is reduced. The LOESS is just one of the several methods that could be used 

to do this (a simple moving average could have also been used). A reference was provided so the reader 

can have access to more details (Jacoby, 2000). This information was not provided in the previous 215 

version because we did not consider it to be very relevant, taking into account that the method is only 

used for illustration purposes.  

To address this, we have included the following paragraph: 

“Figure 5 illustrates the daily temperature averaged over the 5-year period of analysis for sites 18, 27 

and 28 (similar results were found for the rest of the gauges). Values were averaged in this way purely 220 

to facilitate visualisation of results, as the daily variability over the five years makes it difficult to see 

what approaches over and under-estimate observations, by approximately how much, and how this 

changes as a function of the period of the year. The performance metrics were calculated with the non-

aggregated data.” 

We have also included a footnote for the figure to better explain the purpose of using the LOESS 225 

method. 

“All curves were smoothed using the LOESS method (Jacoby, 2000) with \alpha= 0.045, this is similar 

to a moving average and is used to facilitate the visualisation of the main trends only” 

 

a. Merge these three in a three panel figure.  230 

The figures have been merged. See answer to comment 2a. 

10. Why CHIRPS data was not analysed in the same way as WC? Or be more clear how the 

CHIRPS data was merged with observations. 

In the revised manuscript, CHIRPS has been used in the same way as the WC maps, in order to generate 

methods WCA and ChA. Table 1 and Section 3 now explain in much more detail how alternative 235 

datasets were merged with observations. 

See also the response to comments 6 and 7B. 
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The new method ChA ended up having a very good performance, and this is mentioned in the 

Discussion and Conclusions. 

 240 

a. Merge figures 17 and 23. 19 and 21. 18 and 22.  

Figures 19-21, and 18 and 22 were merged. See answer to comment 2a. We consider that due to the 
size and content of figures 17 and 23, it is desirable to keep them separated. 
Reviewer 2 

Specific Comments 245 

Introduction  
 
How have other authors addressed this topic? There is a strong discourse on this issue and a 
large number of researchers developing precipitation products as MSWEP, CHIRPS and CR2 
have dealt with this problem. Please elaborate on the findings of other authors working with 250 
high elevation data. Also how do authors deal with missing information in hydrological 
modelling, which interpolation methods have worked and which were the results of 
evaluating different satellite based and combined precipitation data sets in data scarce 
Andean regions? Although you mention some authors, their findings are not described or 
compared. Ideally, these should help to justify your objectives.  255 

 
We have made a major revision of the introduction following this comment. We have complemented 
the literature review with further references, and we have explained in a clearer way how other authors 
have used other interpolation approaches and alternative datasets within the Andean mountains, for 
both temperature and precipitation. Then, we use this information to highlight the gaps in the 260 
literature, which end up supporting the scope of our paper.  
 
Furthermore, we have narrowed the scope of the paper so it is clearer from the beginning what the 
reader can expect from the rest of the paper. 
 265 
We have also explained in Section 3 in much better way, why we selected the GLMM, CHIRPS and WC 
data, from other approaches and alternative datasets.  

 
Data 
 270 
The data (input, validation..) should be presented in the main text. Otherwise the numbers in 
the map are useless. Also in the map, it would help to enlarge it and use other colours for 
elevation and delineate a stronger catchment area to make the map understandable even in 
black and white. Numbers in the map should also be visible in Figures 2 and 3.  

 275 
We are not sure about what the reviewer means by including the “data (input,validation..)” in the main 

text. We have tried to follow general practice from similar papers working with similar data, which 

commonly include: 

 A map of the region being analysed including the location of the gauges. 

 A list, usually in an appendix, of the stations analysed, providing detailed information of the 280 

location, variables measured and availability of observations (this is not included when 

analyses involve a very large number of stations e.g. > 100). 

 An overview of the data with some figures that shows seasonality patterns and the range of 

values of some of the gauges analysed.. 
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Furthermore, we are not sure how we could differentiate validation stations, as a leave-one-out cross 285 

validation method was used, which means that all stations were both used for calibration and 

validation in different runs of the model. We have included a paragraph in Section 3.3 to better explain 

the LOOCV, and what this means in terms of the gauges used for validation and as input data. 

“In order to assess the performance of the approaches, one gauge was removed from the group used 

to interpolate the climate variable, and the set of errors for that gauge were recorded as the difference 290 

between the interpolation results for that location and the corresponding observations. After repeating 

this for all gauges, the concatenated errors are used to calculate the validation metrics. This leave-

one-out cross-validation (LOOCV) procedure was applied separately for temperature and precipitation 

and for each interpolation approach.” 

The map has been updated following the comments from both reviewers, to make sure that the 295 

catchment is easy to identify, terrain elevation is easy to differentiate and the location of the stations 

is clearer. Figures 2 and 3 were updated as well following comments from reviewers. Also, a CHIRPS 

figure was provided for the reader to visualise this product and compare it with the WC data, 

particularly the resolution of both within the area of analysis. We did not think it was worth including 

the location of gauges in the new Figure 3, as the purpose of this figure is to give an idea of the 300 

resolution of the alternative datasets thus it could be redundant to include the gauges. 

It is not well explained why you only used such a short period. There are enough data available 

to fill gaps (CR2 P dataset, Chirps, MSWEPv2.2, etc.). Temperature of course is difficult but at 

least different time periods could be compared. The main variable of interest should be 

precipitation. - Why do you present a spatial distribution of Chirps in May 2009 instead of 305 

comparing it with values from observed data? 

One of the added values of our project was to include high elevation data for both precipitation and 

temperature. The dataset we received from the private companies in the area was limited to this period 

thus we think it was logical to stick to it. We have tried to explain this in much more detail in the 

following paragraph: 310 

“The period of analysis spans from September 2008 to August 2013 as the data obtained from the high 

elevation gauges was restricted to these years. Although not long enough to analyse long-term trends, 

the selected period allows testing of the interpolation approaches over both dry and wet years. Figure 

2 provides an overview of the data by showing the monthly average temperature at four representative 

gauges over the five year period of analysis, and the monthly precipitation at three representative 315 

gauges throughout the same period (see Figure 1 for the location of these gauges).” 

The temporal infilling using these products could have been inappropriate for creating a dataset for 

assessing the spatial interpolation methods. We thought that the spatial interpolation methods would 

be better assessed using observations from gauges only. The use of alternative spatial data sets is 

useful when used as inputs to the spatial interpolation methods, which he have done, as long as 320 

available observations from gauges are used to assess their proficiency. We used datasets such as the 

ones that the reviewer suggests, e.g. we used CHIRPS and WC maps, however, the scope of the paper 

was not to use all of the data sets available for the case study but to analyse the interpolation 

approaches. We have explained in more detail in Section 2.3 why we selected the alternative datasets 

we used. 325 

We would like to further stress that we have not attempted to claim that the results in the paper are 

representative of long term trends. We have been cautious highlighting in multiple parts of the paper 

that our findings are restricted by the limitations of the study, however, this does not mean that they 
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are not useful. We think that they provide valuable information of the performance of some methods, 

under a complex climatic region with few observation gauges. 330 

Methods section 3:  
The first paragraphs of this section should be part of the introduction as they deal with the 
general state of the art. - The advantage of using GLMMs and its exact output in this context 
is not clear to me. - There should be a conceptual figure explaining the methodology, input 
data and outputs - You use station data and as Covariates Chirps and ENSO as model input to 335 
test different interpolation methods. Then in the results section you correlate station data 
with Chirps and other data products for the station pixel? This part should be shifted to the 
data section and justify the method and data input (or not?). - 4.1 difference between input 
data and validation data not presented. 

 340 
As explained in the response to comment 4 by reviewer 1, we moved a lot of information on the state 
of the art of the methods and the datasets from Section 3 to the introduction. We also included a new 
paragraph in Section 3 better describing the correlation analysis between climate variables and 
covariates. However, we consider that it is better to keep the outcomes of this analysis in the results 
section, as they are part of the process to build the GLMM (i.e. defining the covariates to use).  345 
 
We have also described in detail why we used the GLMM and what were the specific methodological 
advantages of using it in this case study. We did not include a Figure explaining the GLMM because we 
provided this information in Table 1, and we think it is now much more clear what are the inputs and 
outputs of each one of the approaches. 350 
 
We are not sure what the reviewer means by differences between input data and validation data. By 
using a leave-on-out cross validation (for example as applied in Manz et al. (2016)), we believe we go 
a step ahead of using one part of the data for estimation purposes, and the rest for validation. We run 
each method several times, and in each of them we remove one station at a time, to validate the results 355 
of that specific run. We repeat this process for all stations, which means that all stations were used for 
estimation purposes, but at the same time each of them was used once for validation purposes. The 
overall output is the average results of all validation stations (i.e. all stations, but only when they were 
used for validation).  
 360 
We think that the revised manuscript explains this in much more detail. 
 

Results:  
In light of the above described missing information regarding the data input, validation data 
and output variables, it is difficult to understand the results and their interpretation. Overall 365 
presentation structure and language are still very poor. There are too many figures with little 
information content. Please focus on the main findings and try to present them in fewer self-
explanatory figures. 
 

In the revised manuscript we have explained in detail the Leave-one-out cross validation, the 370 

inputs/outputs of each approach and the reasons for using the GLMM. We have also improved the 

structure of the manuscript taking into account the comments from reviewers, particularly the 

introduction, data and methods section.  

 
The large number of figures was an issue in the previous version and we acknowledge this decreased 375 
the presentation quality of that version. However, as explained in the answer to the comment 2A of 
reviewer 1, we have solved this issue by merging lots of figures in multi-plots. 
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We have also narrowed the scope so there is consistency throughout the paper on the aims, results 
and key added value of the paper. 380 
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Abstract. The accuracy of hydrological assessments in mountain regions is often hindered by the low density of gauges,

coupled with complex spatial variations in climate. Increasingly, spatial data sets (i.e. satellite and gridded
::::
other

:
products)

and new computational tools are used
::::::
merged

::::
with

::::::
ground

:::::::::::
observations to address this problem, by assisting with the spatial

interpolation of ground observations. This paper presents a comparison of approaches of different complexity to spatially inter-

polate precipitation and
::::::
monthly

:::::::::::
precipitation

:::
and

:::::
daily temperature time-series in the upper Aconcagua catchment in central5

Chile. A Generalised Linear Mixed Model whose parameters are estimated through approximate Bayesian inference is com-

pared with three simpler alternatives: Inverse Distance Weighting, Lapse Rates and a method based on WorldClim
:::
two

:::::::
methods

:::
that

:::::::
analyse

:::
the

:::::::
residuals

:::::::
between

:::::::::::
observations

:::
and

::::::::::
WorldClim

::
or

::::::::
CHIRPS data. The assessment is based on a leave-one-out

cross validation, with the Root Mean Squared Error being the primary performance criterion for both climate variables, while

Probability of Detection and False Alarm Ratio are also used for precipitation. Results show that for spatial interpolation of the10

expected values of temperature and precipitation, the WorldClim approach
:::::::::
approaches

:::::
based

:::
on

:::
the

::::::::::
WorldClim

::
or

::::::::
CHIRPS

:::::::
residuals

:
may be recommended as being the more accurate, easy to apply and relatively more robust to tested reductions in the

number of estimation gauges, particularly for temperature. The Generalised Linear Mixed Model has comparable performance

when all gauges were included
:::
and

::
is

:::::
better

:::
for

::::::::
estimating

::::::::::
occurrence

::
of

::::::::::
precipitation, but is more sensitive to the reduction in

the number of gauges used for estimation, which is a constraint in sparsely monitored catchments.15

1 Introduction

Climate variables such as temperature and precipitation are key inputs for hydrological modelling and water resources manage-

ment, and generally, .
:::::::::
Generally, spatial interpolation of point observations is desirable to support detailed analysesa

:::::::::
necessary

:::
part

::
of

:::::::::
developing

:::
the

:::::::
climate

:::::
inputs

::
of

::::::
models. Many interpolation approaches perform well for gentle terrains, however, their

accuracy and precision decreases in mountain areas (Wu and Li, 2013; Frei, 2014; Buytaert et al., 2006; Falvey and Garreaud, 2007)20

:::::::::::::::::::::::::::::::::::::::::
(Wu and Li, 2013; Frei, 2014; Buytaert et al., 2006). As highlighted by Dorninger et al. (2008), challenges include obser-

vation errors, anisotropic climate patterns and sensitivity of results to density and location of observations. Strongly non-

linear relations between temperature and altitude may be related to physiographic features (Stahl et al., 2006; Diodato, 2005)

1



:::::::::::::::
(Stahl et al., 2006), to cold-air trapped in enclosing hill ranges (Frei, 2014), and also to the presence of glaciers (Ragettli et al., 2014; Petersen and Pellicciotti, 2011)

:::::::::::::::::
(Ragettli et al., 2014). For precipitation, non-linearity can be related to physiographic features (Daly et al., 2008), to the interac-

tion between topography and rain-storms (Falvey and Garreaud, 2007; Garreaud, 2013; Viale and Garreaud, 2015; Diodato, 2005)

:::::::::::::::::::::::::::::::::::::
(Falvey and Garreaud, 2007; Garreaud, 2013) and to summertime convective precipitation events (Viale and Garreaud, 2014).

These effects can be incorporated into spatial interpolation through deterministic approaches (Frei, 2014; Masson and Frei, 2014; Thornton et al., 1997, 2014; Hasenauer et al., 2003)5

, inclusion of physiographic factors (Daly et al., 2002, 2008), geostatistics (Wu and Li, 2013; Goovaerts, 2000), and other stochastic

models (Aalto et al., 2013; Kenabatho et al., 2012). The quality of the outputs of these approaches often depends on the reliability

and accuracy of climate gauges, which in many catchments are sparsely situated and/or of short record length. As a consequence,

there is an increasing interest on alternative sources of data beyond point observations such as satellite and other gridded

products (Dinku et al., 2014; Manz et al., 2016; Zambrano-Bigiarini et al., 2016; Dinku et al., 2010; Hobouchian et al., 2017; Demaria et al., 2013; Hijmans et al., 2005)10

.

The Andes Cordillera in South America is an example of a steep terrain with sparse ground data and complex weather condi-

tions. This mountain range is an important source of natural resources, including water for agriculture, mining and other indus-

tries. The stream-flows in the region are highly variable in both time and space (Pellicciotti et al., 2007; Mernild et al., 2017, 2016; Montecinos and Aceituno, 2003; Wolter and Timlin, 2011; Viale and Garreaud, 2014)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Pellicciotti et al., 2007; Mernild et al., 2017; Montecinos and Aceituno, 2003; Viale and Garreaud, 2014), therefore under such15

circumstances, quality of spatial climate data is a key issue when modelling water resources (Zambrano-Bigiarini et al., 2016; Mernild et al., 2017; Garreaud et al., 2017; Demaria et al., 2013)

.

This paper compares four approaches for interpolating temperature and precipitation in the upper section of the Aconcagua

River (in the Chilen Andes ). Despite being quite sparsely gauged compared to some mountain ranges globally (
:::::::::::::::::::::::::::::::::::::::::::
(Zambrano-Bigiarini et al., 2016; Mernild et al., 2017)

:
.
::::
This

::::::::
challenge

::
is

::::::
further

:::::::::::
complicated

::
by

:::
the

::::
lack

:::
of

::::::
gauges

::::
(i.e.

:::::
when

::::::::
compared

:::
to

::::::::
mountain

::::::
regions

:::
in

::::::
Europe

::
or

::::::
North20

::::::::
America),

::::::::::
particularly

::
at

::::
high

::::::::
elevation

::::::
points.

:::
As

:
a
::::::::::::
consequence,

::::::
several

:::::::::::
hydrological

:::
and

:::::
water

::::::::
resources

:::::::
models

::
in

:::::
some

::::::
regions

::
of

:::
the

:::::::
Andes,

::::
such

::
as

:::::::
central

:::::
Chile,

::::
have

:::::::
applied

:::::::::::
deterministic

:::::::::::
interpolation

::::::::::
approaches

::::
such

:::
as

:::::
Lapse

:::::
Rates

:::::
(LR)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ragettli and Pellicciotti, 2012; Ragettli et al., 2014; Vicuña et al., 2011; Stehr et al., 2008; Correa-Ibanez et al., 2017)

::
to

:::::
define

::::::
climate

::::::
inputs.

::::::::
Although

:::::
easy

::
to

:::::
apply,

::::
LR

::
in

:::::::::::
hydrological

::::::::::
applications

::
is

:::::::
usually

:
a
:::::
linear

:::
or

::::::::::
logarithmic

:::::::::
regression

:::::
using

:::::::
elevation

:::
as

:::
the

::::
only

::::::::
covariate

::::::::::::::::::::::::::
(Ragettli and Pellicciotti, 2012)

:
,
:::
and

::::::
hence

::::
does

:::
not

::::
aim

::
to
::::::::

maintain
:::
the

::::::
spatial

::::::::::
correlation25

:::::::
between

::::::::::
observations

::
or

::
to

:::::
fully

::::::
explore

:::
the

::::::
spatial

::::::::
dynamics

::
of

:::
the

::::::
climate

::::::::
variables.

:::::::::
Therefore,

:::::
there

:
is
:::
an

::::::::
increasing

:::::::
interest

::
in

:::
the

:::
use

::
of

::::::::
improved

:::::::::::
interpolation

::::::::::
approaches

:::::::
together

::::
with

:::::::::
alternative

::::::
sources

:::
of

::::
data,

::::::
beyond

:::::
point

:::::::::::
observations,

::::
such

:::
as

::::::
satellite

:::
and

:::::
other

::::::
gridded

::::::::
products

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Manz et al., 2016; Zambrano-Bigiarini et al., 2016; Dinku et al., 2010; Hobouchian et al., 2017; Demaria et al., 2013)

:
.

::
In

:::
the

::::::
Andes,

::::::::::::::::::::::
Álvarez-Villa et al. (2011)

::::
tested

::::
four

:::::::::
stochastic

::::::::::
interpolation

::::::::::
approaches

::
in

::::::::
Colombia

:::
and

::::::
found

:::
that

:::::::
Kriging30

::::
with

:::::::
External

:::::
Drift

:::::
(using

:::::
long

::::
term

::::::::
averages

::
of

:::
the

::::::::
Tropical

:::::::
Rainfall

:::::::::
Measuring

:::::::
Mission

::
-
::::::
TRMM

:::
as

:::
the

::::
drift

:::::
term)

::::
had

::
the

::::
best

::::::::::::
performance,

::::
with

:::::::
RMSEs

:::::::
between

::::
519

:::
and

::::
866

:::::
mm,

:::::::
however

::::
this

:::::::
analysis

:::
was

:::::::::
restricted

::
to

::::::
annual

:::::::::::
precipitation

::::::::
estimates.

::
In

:::::::::::::::::
Castro et al. (2014)

::
the

:::::::
authors

::::::::
developed

::
a
:::::::::::
deterministic

:::::::
method

:::
that

::::::::
separated

:::
the

::::::::
analysis

::
of

:::::::::
occurrence

::::
and

::::::::
magnitude

:::
of

::::::
events,

::::
and

::::
that

::::
took

::::
into

:::::::
account

:::
the

::::::::
influence

::
of

::::::::::
topography

::::
(i.e.

:::::
slope

:::::::::
orientation

::::
and

:::::
wind

::::::::
direction)

:::
to

:::::::::
interpolate

::::
daily

:::::::::::
precipitation

:::::
values

::
in

::
a

::::::::
catchment

::
in

::::::
central

:::::
Chile,

::::
and

:::::
found

:::
that

::::
this

::::::
method

::::::::::::
outperformed

::::::
inverse

:::::::
distance35
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::::::::
weighting

::::::
(IDW)

:::
and

:::::
other

::::::
simple

:::::::
methods.

::::
This

:::::::
analysis

::::
was

::::::::
restricted

::
to

::::::
gauges

:::::
below

:::::
1000

::::
masl

::::
thus

::::::::::
conclusions

::::
may

:::
not

::
be

::::
valid

:::
for

::::::
higher

::::::::
elevation

::::::
points.

::::
This

::
is
::
a
:::::::
common

:::::::::
limitation

::
in

:::
the

:::::
south

::::::
Andes

:::::
where

:::::
there

:::
are

::::
few

::::::
gauges

:::::
above

::::
this

::::::::
elevation.

::
In

:::::::::::::::
Manz et al. (2016)

:::
the

::::::
authors

::::::::
analysed

:
a
:::::::
database

:::
of

:::
735

::::::
gauges

::
in

:::::::
Bolivia,

:::::
Peru,

::::::::
Colombia

:::
and

::::::::
Ecuador

::::::::
(including

::::
455

::::::
gauges

:::::
above

::::
1000

:::::
masl

::
in

:::
the

:::::::
tropical

::::::
Andes)

:::
and

:::::::
merged

::::
them

:::::
with

:::
the

:::::::
Tropical

:::::::
Rainfall

:::::::::
Measuring

:::::::
Mission

:::::::::::
Precipitation5

:::::
Radar

:::::::
product

:::::::
(TRMM

::::::
2A25).

::::
The

:::::::
authors

::::
used

:::::::::::
deterministic

:::::::::
(including

:::::
IDW

::
of

::::::::
residuals

::::::::
between

:::::::
monthly

:::::::::::
precipitation

::::::::::
observations

::::
and

::::::
satellite

:::::::::
estimates)

::::
and

:::::::
Kriging

:::::::
methods

:::::::::
(including

:::::
KED

:::::
using

:::::
mean

:::::::
monthly

:::::::
TRMM

:::::
2A25

:::::
values

:::
as

:::
the

::::::
external

::::
drift

::::::
term).

:
It
::::
was

:::::
found

:::
that

:::
for

::::
this

::::
case

:::::
study,

::::
KED

::::
had

:::
the

:::
best

:::::::::::
performance

:::::::
amongst

:::
the

:::::::
Kriging

:::::::
methods,

::::
that

:::
the

:::::
overall

:::::::::::
performance

::
of

:::::::
Kriging

:::::::
methods

::::
was

::::::
similar

::
to

:::
the

:::::::::::
interpolation

::
of

::::::::
residuals

::
to

:::::::
estimate

:::::::
monthly

:::::::::::
precipitation

::::::
values,

:::
and

:::
that

::::
this

:::::::::::
interpolation

::
of

:::::::
residuals

::::
was

:::
less

::::::::
sensitive

::
to

:::
low

::::::
gauge

::::::::
densities.

::
In

:::
that

:::::
study

:::::::::::
performance

::::
was

:::::::
assessed

:::::
using10

:::::::::::
leave-one-out

:::::
cross

::::::::
validation

::
of

:::
the

:::::::
gauges,

::::
using

:::::::
metrics

::::
such

::
as

:::::::
RMSE,

:::
and

:::::
runoff

::::::
ratios.

:
A
:::::::
broader

::::::
review

::
of

:::
the

::::::::::
performance

:::
of

::::::
satellite

::::::::
products

::
for

:::::::::
estimating

:::::::::::
precipitation

::
in

:::
the

:::::
Andes

::::
and

::::
other

::::::::
mountain

:::::
areas

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Nikolopoulos et al., 2013; Thiemig et al., 2012; Dinku et al., 2014)

:
,
:::::::
suggests

:::
that

::
in

:::::
these

:::::::
regions,

::::::
satellite

::::::::
products

:::
tend

::
to
:::
be

::::
good

::
at

::::::::
detecting

:::::::::::
precipitation

::::::
(except

::
in
:::::

very
:::
dry

:::::
areas

::::::::::::::::::::::::::::::::::::::::::
(Zambrano-Bigiarini et al., 2016; Manz et al., 2016)

:
)
:::
and

:::
its

::::::
overall

:::::
spatial

:::::::::
variability,

:::
but

:::::::
struggle

::
to

:::::::::
accurately

::::::
predict

:::
the

::::::::::
magnitudes

::
of

:::
the

::::::
events,

:::::::::
particularly

::::::
during

::::::::
extremely

::::
dry

:
(e.g. Swiss15

Alps), in the context of
:
in

:
the central and southern Andes , this catchment has an unusually high number of gauges in high

elevation points. Particularly,
::::
north

::
of

:::::
Chile

:::::::::::::::::::::::::::
(Zambrano-Bigiarini et al., 2016)

:
)
::
or

::::::::
extremely

:::
wet

:::::::
regions

::::
(e.g.

::::::
western

::::::
slopes

::
in

::
the

::::::::::
Colombian

:::::
Andes

::::::::::::::::
(Dinku et al., 2010)

:
),
::::
and

::
for

:::::
daily

:::
and

:::::::
subdaily

:::::::::
resolutions

:::::::::::::::::::::::::::::::::::::::::::::::::
(Dinku et al., 2010; Manz et al., 2016; Thiemig et al., 2012)

:
.

::
In

:
a
:::::::::::::
comprehensive

:::::::
analysis

::
of
:::::::::::

precipitation
::::::::
estimates

:::::
from

:::::::
satellite

::::::::
products

::
in

:::::
Chile,

::::::::::::::::::::::::::::
Zambrano-Bigiarini et al. (2016)20

:::::
found

:::
that

:::
the

:::::::
satellite

:::::::
product

::::::
PGFv3

::::::::
exhibited

:::
the

::::
best

::::::
overall

:::::::::::
performance

:::
for

:::
the

:::::::
country,

::::::::
followed

:::
by

::::::::
CHIRPS,

::::::
TMPA

:::::::
3B42V7

:::
and

::::::::::::
MSWEPv1.1.

:::
The

:::::::
authors

:::::::
mention

:::
that

:::
the

:::::::
superior

:::::::::::
performance

::
of

::::::
PGFv3

::
is

:::::
likely due to the recent installation

of several gauges by private companies operating in the area. The methodologies used include a Generalised Linear Mixed

Model (GLMM - a spatio-temporal model) (Faraway, 2016), whose parameters were estimated using approximate Bayesian

inference (Rue et al., 2009). This approach is relatively common in the statistics literature but is rarer in the hydrology realm.25

::::::::::::
bias-correction

::
of

::::
this

:::::::
product,

::::::
which

::::
uses

:::::::
several

::::::
gauges

::::
from

::::::
Chile.

::::
The

:::::::
authors

::::
also

:::::
found

::::
that

:::
for

::::
most

:::::::::
products,

:::
the

::::::::::
performance

::
in

::::::
central

:::::
Chile

:::
was

:::::::
superior

::
to

::::
that

::
in

:::
the

::::
north

::
of

:::
the

:::::::
country

:::
(the

:::::
driest

:::::::
region),

:::
that

:::::
better

::::::
results

::::
were

::::::::
achieved

:::::
during

:::
the

::::
wet

:::::
season

::::
and

:::
that

::::::
errors

::::
were

:::::
lower

::
in

:::::
areas

:::::
below

:::::
1000

::::
masl.

:::
In

:
a
::::::
similar

:::::::
analysis

:::::
using

:::::
three

::::::
satellite

::::::::
products

::::
with

::::
long

::::::::
historical

::::
data

::::::
records

:::::::::
(CHIRPS,

::::::
TMPA

:::
and

::::::::::::::::
PERSIANN-CDR)

::
to
::::::::

estimate
::::::::::
precipitation

::::
and

:::::::
monitor

::::::::
droughts

::
in

:::::
Chile,

:::::::::::::::::::
Zambrano et al. (2017)

:::::
found

:::
that

:::::
there

::::
were

::
no

:::::
major

::::::::::
differences

::
in

::
the

::::::::::::
performances

::
of

:::
the

::::
three

:::::::
products

::::::
except

::
in

:::
the30

:::::::
southern

::::
most

::::
part

::
of

:::
the

::::::
country

:::::
where

:::::::::::::::
PERSIANN-CDR

::::::
highly

::::::::::::
underestimated

::::::
values.

::::
The

::::::
authors

::::
also

::::::::
confirmed

::::
that

:::::
errors

::
are

::::::
lower

:::::
during

:::
the

::::
wet

::::::
season

:::
and

:::
in

::::::::
relatively

:::::
humid

:::::
parts

::
of

:::
the

:::::::
country.

:::
In

::::
these

::::
two

::::::
papers

:::::
there

:::
was

:::
no

:::::::::::
interpolation

::
or

:::::::
merging

::
of

:::::::
satellite

::::::::
products

::::
and

:::::
gauge

:::::
data,

:::
but

:::
the

:::::::
authors

::::::::::::
recommended

::::::::::
site-specific

::::::::
analyses

::::::
before

:::::
using

:::::::
satellite

:::::::
products

::
in

:::::::::::
hydrological

:::::::
models.

:::::::::::
Furthermore,

:::
the

:::::::
authors

:::
also

::::::::::
mentioned

:::
the

:::::::::
limitations

:::
due

:::
to

:::
the

::::
lack

::
of

:::::::::::
observations

::
at

:::::
higher

::::::::
elevation

::::::
points.35
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Also applied are more commonly used (in hydrological and water resources modelling) deterministic approaches for interpolation,

including Lapse Rates (LR) (Ragettli et al., 2014)) and Inverse Distance Weighting (IDW) . Finally, it was also useda method

based on merging gauged data with WorldClim climate maps (Hijmans et al., 2005))
::
In

:::::::::::::::::::::::::
Alvarez-Garreton et al. (2018)

::::::
authors

:::::::
describe

::::::::
CR2MET

::::::::::::
(DGA, 2017),

::
a
:::::::
gridded

:::::::
product

:::
for

::::::
Chile,

:::::
which

::::::::
includes

:::::::::::
precipitation

:::
and

:::::::::::
temperature.

::::
This

:::::::
dataset

:::
was

:::::::::
developed

:::::
based

:::
on

:::::::
logistic

::::
(for

::::::::::
precipitation

:::::::::::
occurrence)

:::
and

::::::
linear

:::
(for

:::::::::::
precipitation

:::::::::::
maagnitudes

::::
and

:::::::::::
temperature)5

:::::::::
regressions

:::::
using

:::::::::
covariates

::::
such

:::
as

::::::::::
topography,

:::::
slope,

::::::::::::
ERA-Interim

::::::::
reanalysis

::::::::
variables

:::::::::::::::::::
(Balsamo et al., 2015)

:::
and

:::
in

:::
the

:::
case

:::
of

::::::::::
temperature,

:::::::
MODIS

:::::::
satellite

:::
data

:::::
were

:::
also

:::::
used.

::::::::
Estimates

::
of

::::
both

::::::::
variables

:::
on

:
a
:
5
:::
km

::::
grid

::::
were

:::::::::
generated,

::::::::
however,

::::::::::
performance

:::::::
metrics,

::::::::::
particularly

::
at
:::::
high

:::::::
elevation

:::::::
gauges,

:::::
were

:::
not

::::::::
reported.

:::::
There

:::
are

::::
few

:::::
other

:::::::
analysis

::
of

:::::::::::
temperature

::::::::::
interpolation

::
in

:::
the

::::::
Andes,

::::::::
compared

::
to

:::::
other

::::::
regions

::::::::::::::::::::::::
(Frei, 2014; Wu and Li, 2013)

:
.
::::::::
However,

::::
there

:::
are

::::::
global

::::::
gridded

:::::::
datasets

::::
such

::
as

:::::::::
WorldClim

::::::::::::::::::
(Hijmans et al., 2005)

:
,
:::::
which

:::
are

::::::
based

::
on

::::::::::
regressions

:::::
using

::::::::::
observations

:::::
from

::::::
around

:::
the

:::::
world

:::::::
(further10

:::::
details

::
of

::::
this

::::::
product

:::
are

:::::
given

::
in

:::::::
Section

::::
2.3).

::::
This

::::::
review

::::::::
highlights

::::
that

:::::
there

::
is

::::
still

:
a
::::
lack

:::
of

:::::::::
knowledge

::
of

::::
how

:::
to

:::::::::
interpolate

:::::
point

:::::::::::
observations

::
at

::::
high

:::::::::
elevations

::
in

:::
the

:::::::
sparsely

:::::::
gauged

::::::::::
sub-tropical

::::::
Andes,

::::
and

::::
how

::::
this

::::::
process

::::
can

::
be

:::::::::
supported

:::
on

:
a
::::::::::::::::

catchment-specific
:::::
basis

:::
by

:::::
using

::::::::
alternative

:::::::
sources

::
of

::::
data.

:::::::::::
Furthermore,

::
it
::
is

:::
not

::::
clear

:::::
what

:::::::::
approaches

:::
are

:::::
more

:::::::
suitable

::
for

:::::::
merging

::::::::
different

:::::::
datasets

:::::
under

::::
these

:::::::::
conditions

::::
(e.g.

:::::::::::
deterministic

::
or

::::::::::
stochastic),

::::::::::
particularly

::::
when

:::::::::
compared

::
to

::::::
simple

:::::::::
alternatives

:::::
such

::
as

:::
LR

::::
often

:::::
used

::
to15

::::::
support

::::::::::::
hydrological

:::
and

:::::
water

::::::::
resources

::::::
models

::
in

::::
this

:::::
region.

The aim of the
:::
this

:
paper is to compare the performance of the approaches in

:::
five

:::::::::::
precipitation

:::
and

::::
four

:::::::::::
temperature

::::::::::
interpolation

::::::::::
approaches

::
in

:::
the

::::::
Upper

:::::::::
Aconcagua

:::::
River

:::
in

::::::
central

:::::
Chile,

:
a mountainous catchment with steep and complex

topography. It specifically expects to test
:::
The

:::::
paper

::::::
builds

:::
on

:::
the

::::::::
literature

:::
by:

:
(1) the applicability of a GLMM whose

parameters are estimated through approximate Bayesian Inference in a hydrological context,
:::::::
including

::
a
::::::
unique

::::::
dataset

:::
of20

::::::::::
precipitation

:::
and

:::::::::::
temperature

::::::
stations

:::::
above

:::::
2000

::::
masl

::::
from

::::::
private

:::::::::
companies

::
in
:::
the

:::::
area,

:::::
which

:::
has

:::
not

::::
been

:::::
used

::
in

::::::
similar

:::::::
analyses

::::::
before;

:
(2) compare the quality of outcomes of the four approachesand their sensitivity to the reduction of available

gauges and
:::
The

:::::
paper

::::::::
compares

:::
the

:::::::::::
approaches,

:::::::
focusing

:::
on

:::
the

:::::::
relative

::::::::::
performance

:::
of

:::
the

::::::
simple

:::
and

::::::::
complex

:::::
ones. (3)

::::::
Finally,

:::
the

:::::::::
sensitivity

::
of the added value of including alternative data sources. A full rationale for the selection of the GLMM

and the approximate Bayesian Inference method is provided later in the paper
:::::::::::
methodologies

:::
to

::
the

:::::::
number

::
of

::::::::
available

::::::
gauges25

:
is
:::::
tested.

The paper includes a description of the case study, the methods and the alternative sources of data. This is followed by

a description of results, a discussion of the latter and the conclusions
:
It

::
is

:::
not

::
in
:::

the
::::::

scope
::
of

::::
this

:::::
paper

::
to

:::::::
compare

:::::::
several

::::::::
stochastic

:::::::::::
interpolation

::::::::
methods

::::
such

:::
as

::
in

:::::::::::::::::
Nerini et al. (2015)

:
or

::::::::::::::::::::::
Álvarez-Villa et al. (2011)

:
;
:::::
rather

::::
the

:::::
paper

::::::
selects

::::
one

::::::::
stochastic

:::::::::::
methodology

::::
(see

::::::
section

::
3)

:::
as

:::::::::::
representative

:::
of

:
a
::::::::
complex,

::::::::::::::
computationally

::::::::
expensive

:::::::::
approach,

:::
for

::::::::::
comparison30

::::
with

:::::
simple

:::::::::::
deterministic

::::::::::
alternatives.

4



2 Case study and input data

The Aconcagua River is an important source of water in Central Chile (Pellicciotti et al., 2007). The source is located in the

Andean mountains in the border between
:::
near

:::
the

::::::
border

::
of

:
Chile and Argentina, and the river flows west towards the Pacific

Ocean. Topography fluctuates from coastal areas to peaks of around
::::::::::::
approximately 5900 m above sea level. The catchment has

an area of around 7500km2
::::::::::::
approximately

::::
7500

::::
km2; however, the upper section, which is the subject of this research, is only5

around a third of this and includes the Andean mountains and a portion of the central valley (see Figure 1).

2.1 Climate Settings

Climate within the basin
:::::::::
Aconcagua

:::::::::
catchment is Mediterranean, close to semi-arid conditions (Ohlanders et al., 2013). Yearly

::::::
Annual

:
average precipitation is

::::::::::::
approximately

:
350 mm, however, most of it

:::
this is concentrated during the austral winter

(i.e. frontal rainstorms during June, July and August), when the South Pacific Anticyclone retreats from the region (Falvey10

and Garreaud, 2007; Montecinos and Aceituno, 2003). This is complemented by occasional convective storms (Garreaud et al.,

2009; Viale and Garreaud, 2014). Furthermore, precipitation is also highly influenced by the orographic effects on the windward

slope of the Andes (Viale and Garreaud, 2015). The occurrence of solid or liquid precipitation is determined by the location of

the zero isotherm during winter, however, above 3000 masl, low temperatures prevail and precipitation is mostly snowfall. This

thermal regime allows a relevant presence of snowpack and glaciers (e.g Juncal Norte) (Janke et al., 2017; Ohlanders et al.,15

2013).

Streamflow peaks at the beginning of the austral summer, although it remains high between late spring and summer (Pellic-

ciotti et al., 2007) (i.e. the dry season). This means that during this period almost all runoff comes from snowmelt and glacier

melt, although the contribution from
:::
the latter seems to be particularly relevant during very dry years only (Ohlanders et al.,

2013).20

Water resources management in some sub-catchments of the Aconcagua have received attention from researchers (Ragettli and Pellicciotti, 2012; Ragettli et al., 2014)

, who highlighted the importance of properly modelling snow accumulation and melt, which in turn requires accurate estimates

of precipitation and temperature. This is particularly important for analysing potential impacts of changes in climate conditions

on economic activities (Pellicciotti et al., 2014; Vicuña et al., 2011) .

2.2 Precipitation and temperature gauges25

Observations of daily average temperature and precipitation in the catchment were sourced from the Chilean General Wa-

ter Directorate (DGA) and the Chilean Meteorological Directorate (DMC), through the Chilean Centre for Climate and Re-

silience Research (CR2) databases. Most of these gauges are located in lowlands, whereas the mountain areas are sparsely

monitored with the only available gauges from operational mine sites
::::::
sourced

::::
from

:::::
mine

:::::::
projects in the area. Amongst these

gauges
:::::::::::
high-elevation

::::::
gauges

:::::::
operated

:::
by

::::::
mining

:::::::::
companies, there are two that record liquid and solid precipitation (Lagunitas30

and Los Bronces
:::
sites

:::
27

:::
and

:::
17, see the Appendix for more details). The latter were transformed to snow water equivalents

(SWE) before being analysed here.

5

http://www.cr2.cl/recursos-y-publicaciones/bases-de-datos/


Figure 1. Temperature and precipitation gauges in the catchment with available data during the period of analysis. The numbers correspond

to
:::::
Further

:::::
details

::
of

:
the numeration

:::::
gauges

:::
are

::::::
provided

:
in the Appendix.

This data was
::::
were

:
complemented with information from Universidad de Chile (Ohlanders et al., 2013) (available for

some months only) and with measurements done by ETH-Zurich in the 2008-2009 summer season
::::
(sites

::::::
21-23

:::
and

::::::
30-41

::
in

::::::
Figure

::
1)

:
(Ragettli and Pellicciotti, 2012; Pellicciotti et al., 2010). The latter was available during a very short period,

but the measurements were done in an area different than the mine sites and nearby a major glacier , thus
:::
and

::
in

:
a
::::::::
different

::::::::::::
sub-catchment

::::
from

:::
the

:::
one

::::::
where

::
the

::::::
private

:::::::::
companies

::::::::
installed

::::
their

::::::
gauges.

:::::
Thus,

:
they provide valuable information to test5

the interpolation approaches.
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A total of 41
::
42 gauges were used in the project, 17

::
18 of them measured precipitation only, 23 measured temperature only

and 1 measured both variables. The location
:::
and

::
24

::::::::
measured

:::::::::::
temperature.

::::
The

::
42

::::::
gauges

:::::::
covered

::
41

:::::
sites,

::::
with

:::
one

::::
site

::::
(site

:::
27)

::::::
having

::::
both

::::::::::
temperature

:::
and

:::::::::::
precipitation

::::::
gauges.

::::
The

::::::::
locations of the temperature and precipitation gauges is

::
are

:
shown

in Figure 1, while further details of the gauges (including the periods with information available and the percentage of missing

values) are provided in Table A1 in the Appendix.5

The period of analysis spans from September 2008 to August 2013 because this was the period with more data available,

as some gauges started or stopped recording measurements during these years(Figure 2 show some of the data)
::
as

:::
the

::::
data

:::::::
obtained

::::
from

:::
the

::::
high

::::::::
elevation

::::::
gauges

::::
was

::::::::
restricted

::
to

:::::
these

::::
years. Although not long enough to analyse long-term trends,

the selected period allows testing
::
of the interpolation approaches over both dry and wet years(the average yearly precipitation

of the gauges analysed during this period was 217 mm.
::::::

Figure
::
2
:::::::
provides

:::
an

::::::::
overview

::
of

:::
the

::::
data

:::
by

:::::::
showing

:::
the

::::::::
monthly10

::::::
average

::::::::::
temperature

::
at
::::
four

::::::::::::
representative

::::::
gauges

::::
over

:::
the

:::
five

::::
year

::::::
period

::
of

::::::::
analysis,

:::
and

:::
the

::::::::
monthly

::::::::::
precipitation

::
at

:::::
three

:::::::::::
representative

::::::
gauges

:::::::::
throughout

:::
the

:::::
same

::::::
period

:::
(see

::::::
Figure

::
1

::
for

:::
the

:::::::
location

::
of

:::::
these

::::::
gauges).

Quality control of climate data was done by analysing double mass plots and Pearson correlation values with patron gauges

(e.g. long-term gauges previously used by academic and government sources (Jacquin and Soto-Sandoval, 2013; Ragettli et al.,

2014; Correa-Ibanez et al., 2017)). Beyond some issues with precipitation measurements in Hornitos and Saladillo (it was15

decided not to include these gauges in the precipitation Analysis), no
::::
This

:::
led

::
to

:::
the

::::::::
exclusion

::
of

:::::::::::
precipitation

::::::::::::
measurements

:
at
::::
sites

:::
26

:::
and

:::
29

:::
(the

::::::::::
temperature

::::::::::::
measurements

::
at
:::::
these

::::
sites

:::
did

:::
not

:::::
show

:::
any

:::::::::
anomaly).

:::
No further issues with data quality

were noted.

2.3 Spatially distributed data sets

To complement the point observations, the Climate Hazards Group InfraRed
::::::
Infrared

:
Precipitation with Station data (CHIRPS)20

satellite product (Funk et al., 2015) was used. Including remotely sensed data to analyse climate variables is increasingly

popular amongst researchers, and several examples exist for precipitation in the Andes (Dinku et al., 2010; Zambrano-Bigiarini et al., 2016; Manz et al., 2016; Álvarez-Villa et al., 2011)

and beyond (Nikolopoulos et al., 2013; Thiemig et al., 2012; Dinku et al., 2014). Based on these experiences in mountain regions,

it could be said that generally, satellite products tend to be good at detecting precipitation and its overall spatial variability,

but struggle to accurately predict the magnitudes of the events, particularly heavy rainfall events, and for daily and subdaily25

resolutions (Dinku et al., 2010; Manz et al., 2016; Thiemig et al., 2012). This is usually a consequence of orographic effects

and convective precipitation events.

Despite this , merging satellite data is one of the most promising options for spatial interpolation of precipitation, and

catchment-specific studies are needed to develop this potential (Zambrano-Bigiarini et al., 2016). CHIRPS was chosen for this

case study because its resolution (daily values with
::::::::
Although

:::::
there

::
is

:
a
:::::
wide

:::::
range

::
of

:::::::
products

:::::::::
available,

:::
this

::::::::
selection

::::
was30

::::
done

:::::
taking

::::
into

::::::
account

:::
the

:::::
good

::::::::::
performance

::
of

::::
this

::::::
product

::
in

:::::
Chile,

::
as
::::::::
reported

::
by

:::::::::::::::::::::::::::
Zambrano-Bigiarini et al. (2016),

:::
and

:::
its

:::::
spatial

:::::::::
resolution

:
(0.05o pixels)was ideal .

:::::
Most

::::
other

::::::::
products

::::
(e.g.

::::::
TMPA

:::::::
3B42v7,

:::::::
MSWEP

::::
and

::::::
PGFv3)

:::
are

::::::::
relatively

::::::
coarse

for the size of the case study, and because recent studies showed good performance in Chile (Zambrano-Bigiarini et al., 2016)

::::::::
catchment

::::::
(0.25o

::::::
pixels). A sample image of CHIRPS

:::::::::
illustrating

::::::::
CHIRPS’

::::::::
resolution

:::::::::
compared

::
to

:::
the

:::
size

::
of

:::
the

::::
case

:::::
study is
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Figure 2.
::

(A)
:
Monthly average temperature aggregated

::::::
averaged

:
over the period of analysis

:
,
::::::
09/2008

:
-
:::::::

08/2013,
:
for four of the gauges in

the catchment (above
::
B) and monthly

:::::::
Monthly precipitation between 09/2008 and 08/2013

::
in

::
the

:::::
period

::
of
:::::::

analysis for three of the gauges

in the catchment(below).
:::
The

::::::
numbers

::
in
:::

the
::::::
legend

::::::::
correspond

::
to
:::::
those

::
in

:::::
Figure

::
1,

:::::
while

::
the

::::
texts

::
in
:::::::::
parenthesis

:::
are

:::
the

:::::
names

::
of

:::
the

:::::
gauges.

:
330020 (527 masl), Saladillo (1580 masl), Lagunitas (2765.5 masl), MP (4250 masl), 05410007-8 (820 masl) and 05403006-1 (1290

masl).The location of the gauges can be checked in Figure 1 and the Appendix.
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presented in Figure 3.
:::::::
CHIRPS

::::
does

:::
not

::::::
include

::::::::
estimates

:::
of

::::::::::
temperature

:::
and

::::::::
therefore

:::
was

::::
only

::::
used

:::
to

::::::
support

:::::::::::
interpolation

::
of

:::::::::::
precipitation.

Gridded products such as
:::
The WorldClim (WC) Version 1 (Hijmans et al., 2005) provide another potentially valuable

::::
maps

::::::::::::::::::
(Hijmans et al., 2005)

::::
were

::
a

::::::
further source of data (see Figure 3). These climate surfaces

:::::::::
WorldClim

::::
was

:::::::
suitable

:::
due

:::
to

::
its

::::::
spatial

::::::::
resolution

:::::::
(1km),

:::::::
because

:
it
::::::::
provides

::::
both

::::::::::
temperature

:::
and

:::::::::::
precipitation

::::::
values,

::::
and

::
as

:::
for

::::::::
CHIRPS,

:::::::
because

::
it

::
is5

:::::::
available

:::::::::
worldwide

::::
and

::
so

::::
may

::
be

::::
used

::
to
:::::::
support

:::::::::::
interpolation

::
in

:::
any

::::
case

:::::
study.

:

:::
WC

::::
data provide a historical average for each one of the 12 calendar months (one map for every month) , with a 1km spatial

resolution.

WC data originates from an
:::
and

::::::::
originates

:::::
from

:
a statistical analysis of weather observations worldwide between 1950 and

2000, through an algorithm included in the ANUSPLIN interpolation package (Hutchinson, 2004), using latitude, longitude10

and elevation as independent variables in a regression. The developers of this
::
the

::::
WC

:
data warn about potential inaccuracies

of WC
::
its

:::::::
potential

:::::::::::
inaccuracies in mountainous areas (Hijmans et al., 2005), therefore,

:
.
:::::::::
Therefore, the WC data were never

used independently but
::::
used

:
only to complement point-observations,

::::
point

::::::::::
observations

:
or as a benchmark for testing other

interpolation approaches.

Although different in essence, both WC and CHIRPS can be used as a
:
to

:
complement to point observations to construct15

daily or monthly interpolated fields. None of the selected gauged data were used as input in the construction of WC or CHIRPS
1, furthermore the 5-year period of analysis here does not overlap with the period used to develop WC.

The third spatial data set used was a Digital Elevation Model (DEM) based on the Shuttle Radar Topography Mission

(SRTM) (Jarvis et al., 2008), with a spatial resolution of 90m. The DEM was used to define the elevation in the catchment,

in order to use this variable in some of the interpolation approaches. Finally, although not spatially distributed, a multivari-20

ate ENSO (El Niño-Southern Oscillation) index was included to analyse the inter-annual variability of precipitation in the

catchment (Wolter and Timlin, 2011).

3 Analysis
:::::::::::
Interpolation

:
of Climate Data

The analysis and interpolation of climate variables in hydrology is done using a wide range of approaches
:
A

:::::::::
stochastic

::::::::
approach,

:
a
:::::::::::

Generalised
::::::
Linear

::::::
Mixed

::::::
Model

::::::::
(GLMM),

::::
was

:::::::::
compared

::
to

:::::::
simpler

:::::::::::
deterministic

::::::::::
approaches:

:::::
IDW

:::
and

::::
LR25

::::::::::::::::::::::::::::::::::::
(Pellicciotti et al., 2014; Ragettli et al., 2014)

:
,
:::
and

::::
two

:::::::
methods

::::::
based

::
on

:::
the

::::::::
residuals

:::::::
between

:::::::::::
observations

::::
and

:::::::::
alternative

:::::::
datasets.

::::
The

::::
first

::
of

:::::
these

::::
uses

:::::
IDW

::
to

:::::::::
interpolate

:::
the

::::::::
residuals

::::::::
between

::::
WC

:::::
maps

:::
and

:::::::
gauged

::::::
values

:::::::::::
(precipitation

::::
and

::::::::::
temperature), including simple methods such as Inverse Distance Weighting (Lu and Wong, 2008; Chen and Liu, 2012) and

linear regressions (Ragettli et al., 2014; Ragettli and Pellicciotti, 2012; Meza et al., 2014; Masson and Frei, 2014). Other approaches

like non-linear functions and Generalised Linear Models (GLM)(Frei, 2014; Aalto et al., 2013) have also been used, sometimes30

including parameters that analyse the spatial correlation between observations (i. e. inter-site dependency) (Kenabatho et al., 2012; Kigobe et al., 2011; Chandler and Wheater, 2002)

. The Kriging family of methods, borrowed from the geostatistics literature, has also been widely used to analyse climate

1The name of the gauges used to calibrate CHIRPS can be checked here.

9
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Figure 3. Sample of
:::
(A) CHIRPS daily values aggregated

::::::::::
precipitation for May 2009 (left

:
B) and sample of Worldclim precipitation values

for May (long-term average)(right).

variables(Nerini et al., 2015; Álvarez-Villa et al., 2011; Benavides et al., 2007; Yao et al., 2013) (a more detailed review of examples

can be seen in Li and Heap (2014); Bivand et al. (2013))
:::
the

::::::
second

::::
uses

:::::
IDW

::
to

:::::::::
interpolate

:::
the

::::::::
residuals

:::::::
between

::::::::
CHIRPS

:::
and

:::::::::::
precipitation

:::::::::::
observations.

:::::
These

:::
two

::::::::
methods

:::
are

::::
from

::::
now

:::
on

:::::
called

::::
WC

:::::::::
Adjustment

:::::::
(WCA)

:::
and

::::::::
CHIRPS

::::::::::
Adjustment

::::::
(ChA).

::
A

::::::::
summary

::
of

:::
all

::::::::::
interpolation

::::::::::
approaches

::::::::
including

:::
the

::::
data

:::::::
required

::
is
::
in

:::::
Table

::
1.
::::

The
::::::::
following

:::::::
sections

::::::::
describe

::
the

::::::::
methods

::
in

::::
more

:::::
detail

::::
and

::::
their

::::::::::
application.5

GLMMs allow the analysis of non-normal observations as GLMs do, but the former are an extension of the latter due to

their larger flexibility to analyse
:::::
Before

:::::
using

:::
the

::::::::
covariates

:::::::::
mentioned

::
in

:::::
Table

:
1
::::
(e.g.

:::::
WC,

::::::::
elevation,

::::::::
CHIRPS),

:::
an

:::::::
analysis

::
of

::::
their

:::::::::
correlation

::::
with

:::
the

::::::
climate

::::::::
variables

:::
was

:::::
done.

::::
This

::::::::
included

:::::::
plotting

::::::::::
temperature

:::
and

:::::::::::
precipitation

::::::::::
observations

::::::
versus

::
the

:::::::::
covariates,

::::
and

:::::::::
computing

:::::::
Pearson

:::::::::
Correlation

:::::::::::
coefficients.

3.1
::::::::

Stochastic
:::::::::
Approach

:
-
:::::::
GLMM10

::
In

:::::::
addition

::
to
:::::::::

including
:::
the

::::::
effects

:::
of

:::::::::
covariates,

::::::::
GLMMs

:::::
allow

:::::::::
modelling

::
of

::::
the

:::::::::::::
spatio-temporal

:::::::::
variability

::
of

::::
the

::::
data

::::
(after

:::::::::
removing

:::
the

:::::
effect

::
of

:::
the

::::::::::
covariates)

::
by

::::::
means

::
of

:
random effects (Faraway, 2016). GLMMs are frequently specified

by means of a set of equations connected hierarchically; for this reason they are also known as multilevel or hierarchical

models (Kéry and Royle, 2015; Rue et al., 2009). GLMMs can be estimated using Bayesian or likelihood-based approaches;

the former being adopted in this paper. In both cases, they avoid
:::
For

::::::::
example,

:::
the

::::::::
temporal

::::::::::
correlation

::
of

:::::::::::
temperature15

::::::::::
observations

::
in
::::

this
::::
case

:::::
study

::::
was

::::::::
analysed

:::::::
through

:::
an

::::::::::::
autoregressive

::::::
(AR1)

::::
term

:::::::::
(although

::::::
further

::::::::::
alternatives

::::
such

:::
as

::::::
random

:::::
walks

:::::
could

::::
also

::
be

::::::
used).

:::::::::::
Furthermore,

::::::
spatial

:::::::::
correlation

::
of

:::::::::::
precipitation

:::
and

::::::::::
temperature

::::
was

::::::::
modelled

::
as

:::::::
random

10



Table 1.
:::::::
Summary

::
of
:::::::::
approaches

::
to

::::::::
interpolate

::::::
climate

:::::::
variables.

::::::
Approach

:::::::
Description

:::
Input

:::
Data

:::::::
Advantages

::::::::
Disadvantages

::::::
References

:

:::
IDW

::::::::
(Precipitation

::
and

::::::::
Temperature)

:::::::
Interpolation

::::
based

::
on
:::

the
:::::

inverse
::
of

::
the

:::::
distance

:::::
between

:::::
gauges

::
for
::::

each

:::::
time-step

:::::::::
independently.

:::::::
Observations

::::
and

:::::
distances

::::::
between

::::
gauges

::::
Simple

::
and

:::
easy

::
to

::::::
implement

::::::
approach.

::::
Ignores

::
the

::::
effects

::
of

:::::
elevation

:
on
:::

the
:::::
climate

:::::
variables

:::
and

:::
does

::
not

:::::
include

:::::::
information

:::
from

::::::
alternative

:::::
datasets.

::
LR

::::::::
(Precipitation

::
and

::::::::
Temperature)

:::::::
Interpolation

::::::
based

::::
on

::::::
linear

::::::::
(temperature)

:::::
and

::::::::::
logarithmic

::::::::
(precipitation)

:::::::::
regressions

::::::
using

:::::
elevation

:::
as

::::::::
independent

:::::::
variable,

::
for

:::
each

:::::
time-step

:::::::::
independently.

:::::::
Observations

::::
and

:::::
elevation

::
of

::::
gauges

::::
Simple

::
and

:::
easy

::
to

::::::
implement

::::::
approach

::
that

::::
takes

:::
into

::::::
account

:::
the

:::::
effects

:
of
::::::

elevation
::

on
:::

the
:::::
climate

:::::
variables.

However, as in many other fields

beyond statistics, Generalised Linear

Mixed Models (GLMM - also defined

as Generalised Linear Mixed Effects

Models) are less frequent.

:::::
Although

:::::::
alternative

:::::
datasets

:::
could

::::
be

:::::::
included

:::
as

::::::
covariates,

::::
in
:::::::

similar

:::::::
applications

::::
in

::::::
nearby

::::::
catchments

:
it
::

is
:::
more

:::::
common

:
to
:::

find
::::::
elevation

::
as

::
the

:::
only

:::::::
independent

:::::
variable.

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Ragettli and Pellicciotti, 2012; Ragettli et al., 2014; Vicuña et al., 2011; Stehr et al., 2008)

:::
WCA

::::::::
(Precipitation

::
and

::::::::
Temperature)

:::::::
Interpolation

:::
of
:::::::

residuals
::::::

between

:::::::
observations

::::
and

:::::
values

:::
in

::::
WC

:::
maps.

:::::
Each

::::::
time-step

::
is
:::::::

analysed

::::::::
independently.

:

::
WC

:::::
Maps

::::
and

:::::::
observations.

:

::::
Simple

:::
and

:::
easy

::
to
::::::::

implement.
:::
The

::::
effects

:
of
:::::

spatial
:::::
location

::
and

::::::
elevation

::
are

:::::
included

::
to

:::
some

::::
extent

:::::
through

::
the

::
WC

::::
values.

:

::
WC

::::
maps

::
are

::
not

:
a
::::::
continuous

::::
dataset

:::
but

:::
only

:
a
::::::

monthly

::::::
long-term

:::::
average.

:::::::::::::
(Hijmans et al., 2005)

:::
ChA

::::::::
(Precipitation)

:::::::
Interpolation

:::
of
:::::::

residuals
::::::

between

:::::::
observations

::::
and

:::::::
CHIRPS.

:::::
Each

:::::
time-step

:
is
::::::

analysed
::::::::
independently.

:

:::::
CHIRPS

:::
data

:::
and

:::::::
observations.

:

::::
Simple

:::
and

:::
easy

:
to
:::::::

implement.
:::::

Makes

:::
direct

::
use

::
of

:::::
remotely

::::
sensed

:::
data.

:

:::::
Remotely

::::::
sensed

::::::
products

::
tend

::
to
:::::::::

underperform
::::

when

:::::
analysing

::::::
extreme

::::::
weather

::::::
conditions.

:

::::::::::::::::::::::::::::::::::::::::
(Funk et al., 2014; Zambrano-Bigiarini et al., 2016; Manz et al., 2016)

::::
GLMM

::::::::
(Temperature)

:::::::::
Spatio-temporal

:::::::
model

:::::::
whose

::::::
parameters

::::
are

:::::::
estimated

::::::
through

:::::::
approximate

::::::::
Bayesian

::::::::
inference.

::
The

:::::
model

::::::
includes

::
a
:::

first
:::::

order

::::::::
autoregressive

:::::
process

::::
with

::::::
spatially

::::::
correlated

::::::
innovations

::
for

::::::::
temperature.

::::::::
Observations,

:::::
elevation

::::::
and

::::::
coordinate

:::::
of

::::
gauges,

::::
and

:::
WC

:::
maps.

:

:::
Takes

:::
into

:::::
account

:::::
multiple

:::::::
covariates,

::
and

::::::
analyses

::
the

::::::
random

:::::::
component

:
of
:::

the
::::::

climate
:::::

variable
::::::

thought
::

a

:::::::::
spatio-temporal

::::
model.

:::::::::
Computationally

::::::::
expensive

::::::
compared

:
to
:::

the
:::
rest

::
of

::
the

::::
models.

:

:::::::::::::::::::::::
(Cameletti et al., 2013; Rue et al., 2009)

::::
GLMM

::::::::
(Precipitation)

:::::::::
Spatio-temporal

:::::::
model

:::::::
whose

::::::
parameters

::::
are

:::::::
estimated

::::::
through

:::::::
approximate

::::::::
Bayesian

::::::::
inference.

:::::::
Precipitation

::
is

:::::
modelled

::
as
:

a
::::::

spatially

::::::
correlated

::::
variable

:::
with

:::::
monthly

:::::
dummy

:::::
variables.

:

::::::::
Observations,

:::::
elevation

::::::
and

::::::
coordinate

:::::
of

::::
gauges,

:::::::
CHIRPS,

::::
ENSO

::::
index

:::
and

::
WC

::::
maps.

:::
Takes

:::
into

:::::
account

:::::
multiple

:::::::
covariates

:::::
including

::::::
satellite

::::
data,

::::::::
reproduces

::
both

::::::::
occurrence

:::
and

:::::::
magnitude

:::
of

:::::::
precipitation

:::::
events,

:::
and

:::::
analyses

:::
the

::::
random

::::::::
component

::
of
:::

this
::::::

climate

::::
variable

:::::
thought

:
a
::::
spatial

::::
model.

:

:::::::::
Computationally

::::::::
expensive

::::::
compared

:
to
:::

the
:::
rest

::
of

::
the

::::
models.

:

:::::::::::::::::::::::::::::
(Rue et al., 2009; Blangiardo and Cameletti, 2015)

:::::::
variables

::::::
whose

:::::::::
covariance

:::::
matrix

::
is

::::::
defined

:::
by

:
a
:::::::::
covariance

:::::::
function

::
(in

::::
this

::::
case

::
the

:::::::
Matern

:::::::
Function

:::::::::::::::::::::::::::
(Minasny and McBratney, 2005)

:
)
:::::
which

:::::::
depends

:::
on

:::
the

:::::::
distance

:::::::
between

:::::::
gauges

:::
and

:::::
some

::::::
spatial

:::::::::
parameters

:::
(as

:::::::
opposed

:::
to

:::::::
intersite

::::::::::
dependence

::::::::
functions

:::
that

:::
do

::::
not

:::
take

::::
into

:::::::
account

:::::::
distance

:::::::
between

::::::::::
observations

::::::::::::::::
(Yang et al., 2005)

:
).

::
In

:::::::
addition,

::::::::
inference

:::
on

:::::::
GLMMs

::
is

:::::::::
performed

:::::
jointly

:::
for

:::
all

:::
the

:::::::::
parameters,

:::::::
without

::::::
having

::
to

::::
split

:::
the

:::::::::
estimation

:::::::
problem

:::
into

:::::::
separate

:::::
steps

:::
(i.e.

::::
one

:::
for

::::
each

::::::::
time-step

::
or

:::::
doing

:::
the

:::::::::
covariates

::::::::
regression

::::
first

::::
and

:::
the

:::::::::::::
spatio-temporal

:::::::
analysis

::::::
second5
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::::::::::::::::
(Hengl et al., 2003)

:
).
::::
This

::::::::
approach

::::::
differs

:::::
from

:::::::
Kriging

::::::::
methods,

::
as

::
it

::::::
avoids using the method of moments to define em-

pirical/experimental variograms (Minasny and McBratney, 2005), and the subsequent adjustment of a theoretical variogram

through a curve-fitting exercise (Ecker and Gelfand, 1997; Müller, 1999), as sometimes done for Kriging applications in hydrol-

ogy (Goovaerts, 2000; Nerini et al., 2015).
::::::
Further

::::::
details

::
of

:::::::
GLMMs

::::
and

:::
the

:::::::
different

::::::::::
alternatives

::
to

::::::
model

:::::::::::::
spatio-temporal

:::::::
variables

:::
can

:::
be

:::::
found

::
in

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Faraway (2016); Rue et al. (2009); Lindgren et al. (2011); Cameletti et al. (2013)

:
.5

The main drawback of analysing
:::::
using GLMMs with the Bayesian approach

:
,
::
as

::::
done

::::
here,

:
is the computational requirements

of the classical simulation-based methods such as Markov Chain Monte Carlo (MCMC) (Cameletti et al., 2011), and this is

perhaps why they are less attractive compared to simpler alternatives in fields like hydrology. However, the relatively recent

:::
here

:::
we

:::
use

:::
the

:
Integrated Nested Laplace Approximation together with the Stochastic Partial Differential Equation approach

(INLA-SPDE) (Rue et al., 2009; Lindgren et al., 2011; Cameletti et al., 2013),
:::::
which represents a computationally efficient10

way to do approximate Bayesian inference on GLMMs and other models belonging to the class of latent Gaussian models (Rue

et al., 2009).

3.2 The GLMM in the Aconcagua case study

The
:
In

::::
this

::::::::
approach,

:::
the climate variables in the case study (temperature and precipitation) are assumed to be realisations (e.g.

observations) of a spatio-temporal process (random field) of the form:15

Y (s, t)≡ {y(s, t),:(s, t) ∈ D⊆ R2×R} (1)

where s and t denote the spatial location and time. This process has a mean µ and covariance functionCov(y(s, t),y(s′, t′)) =

σ2C((s, t),(s′, t′)) (Blangiardo et al., 2013; Cameletti et al., 2013). Assuming that climate observations, y = {y(si, t), i=

1, ...,N,t= 1, ...,T}, follow an exponential family probability distribution function (PDF), µi can be connected to a structured

additive predictor ηi through a link function g( ) as shown below (Rue et al., 2009):20

g(µ(si, t)) = η(si, t) = α+

nf∑
j=1

f (j)(uj(si,t)) +

nβ∑
k=1

βkzk(si,t) + ε(si, t) (2)

x = (α,{f (j)(.)},{βk},{η(si, t)})

ε(si, t)∼N(0,σ2
ε )

where x
:::::
where

::::::::::::::::::::::::::::
x = (α,{f (j)(.)},{βk},{η(si, t)}):is the vector including the Gaussian latent processes (i.e. the parameters

describing the random field), ε(si, t) :::::::::::::::
ε(si, t)∼N(0,σ2

ε )
:
is the random error component, the f (j)(uj(si,t)) are functions of25

covariates u and the βs are the multipliers of covariates z.
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For temperature, the model in this project was defined based on the one described in Cameletti et al. (2013) and Cameletti

et al. (2011) for particulate matter, with daily time-steps. This selection was done taking into account that both variables are

affected by their values in previous time-steps, but also because both of them have a spatial correlation. The model is described

as follows:

y(si, t) = z(si, t)β+ ξ(si, t) + ε(si, t) (3)5

ξ(si, t) = aξ(si, t− 1) +ω(si, t) (4)

where y(si, t) represents a realisation of the gaussian field (GF)
:::::::
Gaussian

:::::
field Y (., .) for site si and time t, z(si, t) =

(z1(si, t), ...,zp(si, t)) are the covariates (fixed effects), βs are the coefficients of the covariates, ε is the measurement/observation

error component, both serially and spatially uncorrelated (ε(si, t)∼N(0,σ2
ε )), and ξ represents the random component in the

model. The latter is defined as a first-order autoregressive (AR) component with spatially correlated innovations ω(si, t) ::
(a

::
is10

::
the

:::::::::
parameter

::
of

:::
the

:::::
AR1

:::::::
process). The covariates included latitude, longitude, elevation and WC. Data from WC maps were

included in the model as covariates, after extracting the values of the pixels containing the gauges.

The spatio-temporal model for precipitation was defined based on previous experiences of applications of INLA-SPDE on

GLMMs for this variable. This involved dividing the analysis into occurrence (Eq. 5) and magnitude (Eq. 6) components, based

on Eq. 8.5 and Eq. 8.6 in Blangiardo and Cameletti (2015). However, it was decided to use monthly time-steps as preliminary15

results of daily runs were far from satisfactory. In addition, CHIRPS and the ENSO index were included as covariates to

complement the ones used for temperature.

O(si, t)∼Binomial(π(si, t),1) (5)

yP (si, t)∼Gamma(a(si, t), b(si, t)) (6)

Dummy variables for each calendar month were included as additional covariates, in order to better represent the strong20

seasonality of precipitation in the case study (Falvey and Garreaud, 2007; Montecinos and Aceituno, 2003). In this way, the

random process
::
for

::::
this

:::::::
variables

:
Φ(si, t) is spatially correlated but independent of other time-steps. The model is described as

follows:

logit(π(si, t)) = zP (si, t)β
P + Φ(si, t) + εP (si, t) (7)

log(µP (si, t)) = zP (si, t)β
P + εP (si, t) +βP

′
Φ(si, t) (8)25
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The link functions connecting the mean of the GF and the predictors are not unitary, as for temperature, but logit (occurrence)

and log (magnitude). Both Eq. 7 and Eq. 8 share the same
:::::::
covariate

::::::::::
coefficients βP s, but the latter has an extra parameter (βP

′
)

connecting the random field in both equations.

It is acknowledged that many more models
::::
other

::::::
models

::::
(i.e.

::::
with

::::::::
different

:::::::
random

::::::
effects)

:
could be tested with these

climate variables (
:::
after

::::::::
changing

:::::::::
covariates,

::::::::::::::
spatio-temporal

::::::::::
components,

:::
the

:::::
prior

::::::::::
distributions

:::::::::
(currently

::
we

::::
use

:::
the

::::::
default5

::
in

::
the

::::::::
R-INLA

:::::::
package)

::::
and

:::::::::
correlation

::::::::
functions

:
(e.g. as done in Cameletti et al. (2011) for PM10

::::::::
particulate

::::::
matter), and this

represents a subject for future research. However, this project is focused on the comparison of the performance of GLMMs

(whose parameters are estimated with INLA-SPDE) with simpler methods often used in hydrology, and on the inclusion of

alternative data sets. Therefore,
:::::
taking

::::
into

:::::::
account

:::
the

:::::
scope

:::
of

:::
the

:::::
paper,

:
it was desired to work with GLMMs already

available
::::::
existing

::::::::
GLMMs in the literature (or close adaptations) , which have been previously

:::
that

:::::
have

::::
been

:
analysed with10

the INLA-SPDE approach.

3.2 Alternative
:::::::::::
Deterministic

:
approaches

The GLMM was compared to simpler deterministic approaches: IDW, LR (Pellicciotti et al., 2014; Ragettli et al., 2014), and

a simple method developed in this project based on WC maps, which from now on is defined as WC Adjusting (WCA). It is

assumed that the reader is familiar with IDW and LR. Briefly, the former estimates variables at unsampled locations y(sj , t) as15

a function of the inverse of the distance d(sj ,si) between sj and all sampled locations si following

y(sj , t) =

∑n
i=1 y(si, t)

1
d(sj ,si)∑n

i=1
1

d(sj ,si)

(9)

where y(si, t) are the values at the n sampled locations. This method does not consider elevation effects. LR, on the other

hand, uses linear and logarithmic regressions to model the relation between temperature or precipitation and elevation. The

regressions could be extended to include all the covariates of the GLMM, however, the objective here was to apply the methods20

as they are commonly used to define inputs of hydrological and water resources models
::
in

::::::
nearby

:::::::::
catchments

:
(Ragettli et al.,

2014; Vicuña et al., 2011; Meza et al., 2014).

The WCA method attempts to couple the benefits of the spatial variability of
:::
the WC maps and those of the temporal

resolution of the observations . This method is described as follows:

For each time-step, each climate observation y(si, t) was compared with the corresponding value in the WC mapsWC(si, t)25

(i. e. the value of the pixel where the observation is located), to define a residual R. Assuming that in the centre left pixel of

map A in Figure ?? there is a gauge, and that WC(si, t) = 5.1(oC) and B y(si, t) = 7.1(oC)
::
in

:
a
::::::
simple

::::
way.

::::::::
Likewise,

:::::
ChA

:::::::
attempts

::
to

:::::::
improve

:::
the

:::::::::::
performance

::
of

::::
raw

:::::::
CHIRPS

:::
by

:::::
doing

::
a
:::::::::::::
straightforward

:::::::
merging

::
of

::::
this

::::::
product

:::::
with

:::::::::::
observations.

:::::
These

:::::::::
approaches

:::
are

::::::
similar

::
to
:::
the

::::::
RIDW

::
in

::::::::::::::::
Manz et al. (2016)

::
or

:::
the

::::
bias

:::::::::
adjustment

::
in

::::::::::::::::
Dinku et al. (2014),

:::
but

::
in

::::
this

::::
case

::::
using

::::
WC

:::::
maps

::::
and

::::::::
CHIRPS.

::::
First, the residual can be defined as R= 2.0(oC).

:::::::
between

:::::::::::
observations

:::
and

::::::::::::
WC/CHIRPS

::
is30

::::::::
computed

::
at

::::
each

:::::
gauge

:::::::
location

::
at

:
a
:::::
daily

::::::::
resolution

:::
for

::::::::::
temperature

:::
and

::
at
::
a

:::::::
monthly

::::::::
resolution

:::
for

:::::::::::
precipitation.

:::::
Then,

:::::
these
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:::::::
residuals

:::
are

::::::::::
interpolated

:::::
using

::::::
Inverse

::::::::
Distance

::::::::
Weighting

::::::
(IDW)

::
to

::::
each

:::::
point

::
in

:::
the

:::::::::
catchment,

:::
and

:::
this

:::::::::::
interpolated

::::::
surface

:
is
::::::
added

::::
back

::
to

:::
the

:::::::
original

:::::::::::
WC/CHIRPS

::::::
values.

::::
This

::::::::
procedure

::
is
::::::::
repeated

::
for

:::::
every

:::::::::
time-step.

This residual R was added to the WC map (map A in Figure ??) to define an adjusted map (map C in Figure ??). Steps 1

and 2 were repeated for all gauges available, in order to generate one adjusted map for each gauge at each time-step.

Step 1 Compares a WC value (A) with the observed value (B) to define the residual, which is added to the original WC map5

(A) to define an adjusted WC map (C) in step 2. This process is repeated for every gauge available at each time-step.

All adjusted maps for the same time-step were merged to define the values at all pixels (see Figure ?? for an example of

the top left pixel). This was done using inverse distance weighting, between the location of the gauges and the pixel being

interpolated (the example in Figure ?? uses 2 gauges). The same process is done for temperature and precipitation.

(A) shows two pixels of map C in Figure ??. (B) Shows the observed value of a second gauge in the bottom left corner (28.410
oC) and the adjusted value in the upper left corner (11.6 oC), after applying Steps 1 and 2. Taking into account that distance

from gauge A (red dot) to the upper left pixel is half of that from gauge B (pink dot), Step 3 uses inverse weighting to define

the merged value (9.6 oC). This is repeated for all pixels first, and then for all time-steps.

A summary of all interpolation approaches is provided in Table 1. For precipitation, due to the spatial smoothing that is

inherent to all approaches, it is common to have very low values of precipitation where none is observed. Therefore, a threshold15

of 1 mm/month was set , below which all values were deemed to be 0.

Summary of approaches to interpolate climate variables. Approach Description Error Model Temporal Correlation IDW

Interpolation based on the inverse of the distance No random component The method is run for every time-step independently

LR Interpolation based on regressions using elevation as independent variable No random component The method is run

for every time-step independently WCA Interpolation based on residuals of observations and values in WC maps No random20

component The method is run for every time-step independently GLMM Spatio-temporal model whose parameters are estimated

through approximate Bayesian inference First order autoregressive process with spatially correlated innovations for temperature

and spatially correlated innovations for precipitation AR1 for temperature and monthly dummy variables for precipitation

The approximate Bayesian inference approach (INLA-SPDE) used to estimate the parameters of the GLMM was run using

the INLA package for R (Rue et al., 2013), and this required using the Euramoo and Flashlite High Performance Computers25

(HPC) system from the Queensland Cyber Infrastructure Foundation (QCIF). All other interpolation approaches were run on a

computer with 16 Gb of memory, an i7 processor and 4 cores.

3.3 Comparison of interpolation approaches

A
::
In

:::::
order

::
to

::::::
assess

:::
the

:::::::::::
performance

:::
of

:::
the

::::::::::
approaches,

::::
one

:::::
gauge

::::
was

::::::::
removed

:::::
from

:::
the

:::::
group

:::::
used

::
to

:::::::::
interpolate

::::
the

::::::
climate

::::::::
variable,

:::
and

:::
the

:::
set

:::
of

:::::
errors

:::
for

::::
that

:::::
gauge

:::::
were

::::::::
recorded

::
as

:::
the

:::::::::
difference

::::::::
between

:::
the

:::::::::::
interpolation

::::::
results

:::
for30

:::
that

:::::::
location

::::
and

:::
the

::::::::::::
corresponding

::::::::::::
observations.

:::::
After

::::::::
repeating

::::
this

:::
for

:::
all

:::::::
gauges,

:::
the

:::::::::::
concatenated

::::::
errors

:::
are

::::
used

:::
to

:::::::
calculate

:::
the

:::::::::
validation

::::::
metrics.

:::::
This leave-one-out cross-validation (LOOCV) (Manz et al., 2016) method was used to assess

the performance of the approaches for both
::::::::
procedure

::::
was

:::::::
applied

::::::::
separately

::::
for temperature and precipitation . Then, the

sensitivity of performance to the number of gauges used for estimation was tested
:::
and

:::
for

::::
each

:::::::::::
interpolation

::::::::
approach.
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For temperature there were
:::
was

:
a total of 24 gauges available, thus, the LOOCV analysed the 24 combinations of 23 gauges,

leaving one at a time for validation. For the sensitivity analysis it was only used the 9 gauges with relatively large observation

periods (i.e. 15 out of the 24 gauges had observations for the 2008-2009 summer season only - see Figure 1 around −70o06′

longitude and −33o00′ latitude). Including the 24 gauges in the sensitivity analysis would have been a problem when using a

reduced number of gauges for estimation, as several combinations would have had no data for most of the period of analysis.5

In this way, the performance of all approaches was tested by using all combinations of 8 gauges to estimate results, and

using the remaining gauges of each combination (plus the 15 with few data) for validation purposes. The overall metric was

the average result of the validation groups. This was then repeated for all combinations of 5 and 2 gauges.

For precipitation , .
::::
For

::::::::::
precipitation

:
there were 18 gauges availableduring most of the period of analysis, however only two

of them were located in the mountains. The same procedure was followed for this variable for the LOOCV (
:
,
:::
thus

:::
the

::::::::
LOOCV10

:::::::
involved

::::::::
analysing 18 combinations of 17 gauges) and for the sensitivity analysis, but this time the latter was done with 14 and

4 gauges.

For all tests, the average Root Mean Squared Error (RMSE) of the validation group was used to assess the performance

of temperature and precipitation predictions, following similar comparisons (Cameletti et al., 2013; Manz et al., 2016; Nerini

et al., 2015). For the GLMM , this involved analysing the
:::::
Being

::
a

::::::::
stochastic

::::::::
approach,

:::
for

:::
the

::::::
GLMM

::::
this

:::::::
involved

:::
the

:::::::
analysis15

::
of

:::
the expected values of each variable for each time-step.

::
(y

::
in

:::::::
Equation

::
3
:::
and

:::
yP

::
in

::::::::
Equation

:::
6).

This was complemented with an analysis of the distribution of the residualsof the validation groups of the LOOCV. Fur-

thermore, two categorical statistics, the False Alarm Ratio (FAR) and the Probability of Detection (POD)
::::
(e.g.

::
as

:::::::
applied

::
in

::::::::::::::::::::::::::
Zambrano-Bigiarini et al. (2016)

:
), were used to assess to what extent the model is able to predict precipitation occurrence (see

Table 2)(Castro et al., 2015; Tobin and Bennett, 2012).
:
.
:::::
These

:::::::::
categorical

::::::::
statistics

:::
are

:::::::
relevant,

::::
even

::
at

:
a
::::::::
monthly

:::::::::
time-scale,20

:::::::::
considering

::::
that

::
in

:::
the

::::
case

:::::
study

::::
there

:::
are

::::::
several

:::::::
months

::::::
without

:::
any

::::::::::::
precipitation,

:::
thus

:::::::::
accurately

:::::::::
simulating

::
its

::::::::::
occurrence

:
is
:::
not

::
a
:::::
trivial

:::::::
exercise.

:

Table 2. Categorical statistics used to assess the capacity of the interpolation approaches to predict the occurrence of precipitation.

Precipitation Observed Not Observed

Predicted A B

Not Predicted C D

POD A
A+C

FAR B
A+B

3.4
::::::::

Sensitivity
:::
to

:::
the

:::::::
number

::
of

::::::::::
estimation

::::::
gauges

:::
The

:::::::::
sensitivity

:::
of

:::
the

:::::::::::
performance

::
of

::::
the

:::::::
different

::::::::::
approaches

:::
to

:::
the

:::::::
number

::
of
::::::::::

estimation
::::::
gauges

::::
was

::::
also

::::::
tested.

::::
For

::::::::::
temperature,

::::
only

::
9

::::::
gauges

::::
with

::::::::
relatively

::::
long

:::::::::
observation

:::::::
periods

::::
were

::::
used

::
as

:::::::::
estimation

::::::
gauges

::
in

::::
this

::::::::
sensitivity

::::::::
analysis.25

:::
The

:::::
other

:::
15

::::::
gauges

:::::
were

::::::::::
operational

:::
for

::::
only

::::
one

:::::::
summer

:::::::
period,

::::::::::
2008-2009,

:::
and

:::
the

:::::::::
variability

:::
in

::::::
record

::::::
length

::::
they

16



:::::::::
introduced

::::
made

::
it
:::::::
difficult

::
to

::::::
isolate

:::::::::
sensitivity

::
to

:::::::
number

::
of

:::::::::
estimation

:::::::
gauges.

:::::
These

:::
15,

::::::::
however,

::::::::
remained

::
as

:::::::::
validation

::::::
gauges.

:

::::
This

::::::
allowed

::
9

:::::::::::
combinations

::
of

:
8
:::::::::
estimation

:::::::
gauges.

:::
The

::
9

::::::::
validation

::::::
results

::::
were

::::::::
averaged

::
for

:::
the

:::::::
purpose

::
of

:::
the

:::::::::
sensitivity

:::::::
analysis.

::::
This

::::
was

:::::::
repeated

:::::
using

:::::::
different

::::::::
numbers

::
of

:::::::::
estimation

:::::::
gauges:

::
all

:::::::
possible

::::::::::::
combinations

::
of

:
5
::::
and

:
2
::::::
gauges

::::
out

::
of

::
the

::
9.
::::
The

:::::::::
sensitivity

:::::::
analysis

:::
for

:::
the

::::::::::
precipitation

::::::
results

::::
was

::::
done

::
in

:
a
::::::
similar

:::::
way,

:::
but

:::
this

::::
time

::::
with

:::
all

:::::::::::
combinations

::
of

:::
145

:::
and

:
4
:::::::
gauges.

:::
The

:::::::::
sensitivity

:::
test

::::
was

::::::::::::
complemented

::::
with

:::
the

:::::::::
estimation

::
of

::::::::::
precipitation

::::
and

::::::::::
temperature

:::::
values

::
at
:::
all

:::::::
locations

:::::
using

::::
raw

:::
WC

:::::
maps

::::
and

::::::::
CHIRPS,

::
in

:::::
order

::
to

:::::::::
understand

:::
the

::::::::
accuracy

::
of

:::::
these

::::
data

:::
sets

:::::
when

::::
used

::::::::::::
independently

:::
of

:::
the

:::::::::::
observations.

::::
This

:::::::
involved

:::::::::
comparing

:::
the

::::::::
observed

:::::
values

::
at

::::
each

::::::::
time-step

::::
with

:::::
those

:::::::
reported

:::
by

:::::::
CHIRPS

::
or

:::
the

::::
WC

:::::
maps,

::::::
which

::
in

:::
the

::::
latter

::::
case

:::::
meant

:::::::::
estimating

:::
the

:::::::
climate

:::::::
variables

:::::
based

:::
on

:::
the

::::::::
long-term

::::::::
averages

::
in

:::
the

:::
WC

::::::
maps.10

::::::::
Regarding

:::
the

::::::::::::
computational

::::::::::::
requirements,

::
the

:::::::::::
approximate

::::::::
Bayesian

::::::::
inference

::::::::
approach

::::::::::::
(INLA-SPDE),

::::::
which

:::
was

:::
run

:::
on

::
the

::::::
INLA

:::::::
package

:::
for

::
R

:::::::::::::::
(Rue et al., 2013),

::::::::
required

:::::
using

:::
the

::::::::
Euramoo

:::
and

::::::::
Flashlite

::::
High

:::::::::::
Performance

::::::::::
Computers

::::::
(HPC)

::::::
system

::::
from

::::
the

::::::::::
Queensland

::::::
Cyber

:::::::::::
Infrastructure

::::::::::
Foundation

::::::::
(QCIF).

:::
All

:::::
other

:::::::::::
interpolation

::::::::::
approaches

:::::
were

:::
run

:::
on

::
a

::::::::
computer

::::
with

::
16

:::
Gb

::
of

::::::::
memory,

::
an

::
i7

::::::::
processor

::::
and

:
4
:::::
cores.

:

4 Results15

Before starting the interpolation of variables, their correlation with the covariates was assessed. As expected a priori,

4.1
::::::::::

Preliminary
:::::::
analysis

::
of

:::::::::::
correlations

:::::::
between

::::::::::
covariates

:::
and

:::::::
climate

::::::::
variables

:::::
Figure

::
4
::::::
shows

:::
that

:
monthly temperature values were

::
are

:
inversely correlated to elevation (Pearson Correlation Coefficient

ρ=−0.81- see Figure 4). There was also
:
).
::::
The

:::::
figure

::::
also

:::::
shows

:
a strong correlation between WC values and monthly tem-

peratures (ρ= 0.98, see Figure 4). Daily temperature values showed
:
).

::::::::
Likewise,

:::::
daily

::::::::::
temperature

:::::
values

:::::
show

:
considerable20

correlation with elevation (ρ=−0.77) and WC (ρ= 0.93)as well. ENSO showed a .
::
In

::::::::
contrast,

:::::
ENSO

:::
has

::
a
:
a
:
low correlation

with temperature (ρ= 0.04), thus it was decided not to include this covariate in this model
:::
the

::::::
GLMM.

The
:::::
Figure

:::
4C

:::
and

::::::
Figure

:::
4D

::::
show

::::
that

:::
the correlation between CHIRPS and daily precipitation observations was weak(see

Figure 4)
::
is

::::
weak, but considerably improved when both were

:::::::
improves

:::::
when

::::
both

:::
are

:
aggregated to monthly values (ρ= 0.81-

see Figure 4). The ρ for monthly precipitation and WC values was lower
:
is
:::::
lower

:::
but

:::::::::
significant (ρ= 0.62, see Figure 4), while25

monthly correlation with elevation was
:
is

:
above 0.6 for most months(see Figure 4). ENSO showed

:
.
::::::
ENSO

:::::
shows

:
a weak

correlation with precipitation (ρ= 0.12), however, a monthly analysis showed
:::::
shows

:
that for several months the correlation

was
:
is
:
close to ρ= 0.5, therefore, it was decided to keep ENSO as a covariate for the precipitation model

:::::::
GLMM. These

correlations may be stronger in longer-term analyses that cover several Niño-Niña cycles, which last around
::::::::::::
approximately

2-5 years each (Wolter and Timlin, 2011; Garreaud et al., 2017; Montecinos and Aceituno, 2003).30
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Figure 4. (A) WC values vs.
::::

versus monthly aggregated (averaged) temperature values. (B) Elevation of gauges vs
:::::
versus average temperature

in four months. (C) CHIRPS vs
::::
versus

:
precipitation. Daily values for all stations used. (D) Monthly aggregated (sum) CHIRPS vs

:::::
versus

monthly aggregated
::::
(sum)

:
precipitation values. (E) WC values vs.

:::::
versus monthly aggregated (sum) precipitation values. (F) Elevation of

gauges vs
:::::
versus

:
average precipitation in

::
for four months. The red lines correspond to the 1:1 line.
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4.2 Temperature results

Table 3 shows the results of all interpolation approaches in terms of the average RMSE of the validation gauges in the LOOCV

(23 gauges). It was found that the GLMM and WCA have the best performance, while LR and particularly IDW have larger

RMSE values.

In addition, Table 3 also

Table 3.
::::::::::
Temperature

::::::
RMSEs

:
in
:::

the
::::::::::
leave-one-out

:::::
cross

:::::::
validation

:::
for

:::
each

::::::::::
interpolation

::::::::
approach.

:::::::
Approach

: :::::
RMSE

::::
(oC)

::::::
GLMM

:::
1.20

:

::::
WCA

: :::
1.22

:

:::
LR

:::
1.53

:

::::
IDW

:::
2.72

:

5

::::
Table

::
4 shows the results of the validation groups of all combinations in the sensitivity analysis. As expecteda priori, it can be

seen that errors increase when the number of estimation gauges decreases. However, values for WCA increase the least, and its

loss of performance is relatively small even when only two estimation gauges are used. On the other hand, the performances of

all other approaches, including the GLMM, show a sharp decline, to the point that some of their RMSE values are comparable

with the range of observed temperatures (see Figure 2).10

Table 4. Average RMSE in
::::::::
Sensitivity

:::
test

::
of the leave-one-out cross validation for each

:::::::::
temperature interpolation approach

::::::::
approaches.

Approach Number of estimation gauges RMSE (oC)

GLMM 23 (LOOCV) 1.2 8 3.89

5 3.99

2 14.44

WCA 23 (LOOCV) 1.22 8 1.77

5 1.98

2 2.54

0 (Raw WC Maps)
:
* 3.36

LR 23 (LOOCV) 1.53 8 2.12

5 4.14

2 7.78

IDW 23 (LOOCV) 2.72 8 4.42

5 6.15

2 9.34

:
*
::::
Using

:::
the

::::::
monthly

:::
long

::::
term

:::::
values

::::::
provided

::
by

:::
WC

::
to

:::::::::
approximate

::::
daily

:::::::::
temperature

::
at

::
all

:::
sites

:::
(i.e.

:::
one

::::
value

:::::
applied

::
to

::
all

:::
days

::
in
:::
the

::::::
month).
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Figures ??, ?? and ?? show
:::::
Figure

::
5

::::::::
illustrates

:
the daily temperature averaged over the 5-year period of analysis for three

validation gauges (
::::
sites 18, 27 and 28 in Figure 1 - (similar results were found for the rest of them). It

::
the

::::::::
gauges).

:::::
Values

:::::
were

:::::::
averaged

::
in

::::
this

::::
way

:::::
purely

::
to

::::::::
facilitate

::::::::::
visualisation

:::
of

::::::
results,

::
as

:::
the

:::::
daily

::::::::
variability

::::
over

:::
the

::::
five

:::::
years

:::::
makes

::
it

:::::::
difficult

::
to

:::
see

::::
what

::::::::::
approaches

::::
over

:::
and

:::::::::::::
under-estimate

:::::::::::
observations,

::
by

::::::::::::
approximately

::::
how

::::::
much,

:::
and

::::
how

::::
this

:::::::
changes

::
as

:
a
::::::::

function

::
of

:::
the

:::::
period

::
of

:::
the

:::::
year.

:::
The

:::::::::::
performance

::::::
metrics

:::::
were

::::::::
calculated

::::
with

:::
the

:::::::::::::
non-aggregated

::::
data.

:
5

::
In

:::
the

:::::
figure

::
it can be seen that the GLMM and WCA manage to reproduce the values from most of them relatively well ,

except for the MP gauge
::::::::
reproduce

:::
the

:::::::
observed

:::::::::::
temperatures

::::::::
relatively

::::
well

::::::
except

::
for

::::
site

::
28

:
(the one at the highest elevation

- 4250 masl)where larger differences can be seen. LR and particularly IDW tend to underestimate values in
:::::::::
temperature

::
at

:
all

gauges, except for MP, which they overestimate
:
at

:::
site

:::
28

:::::
where

::::
they

:::::::::::
overestimate

:
it.

It is worth mentioning that in Figure ??, the
:
In
::::::

Figure
::::
5A,

:::
the

:::::::::
anomalous

:
overestimation of temperature for

:::
with

:
the LR10

method around March , was
:
is

:
because during March 2009 all other gauges in the mine site

::::
high

::::::::
elevation

::::::
gauges

:
stopped

measuring, thus the predictions for Lagunitas
::
site

:::
27 were done with the lower elevation data only. This generated large errors

for this gauge and this method, highlighting the issues with LR when few
::::::::
approach,

:::::
which

::::
may

::::::::
highlight

:::
the

:::::::::
limitations

::
of

:::
the

::::
latter

:::::
when

:::
few

:::::::::
estimation

:
gauges are available for estimation purposes

::
or

:::::
when

:
it
::
is
:::::::
required

:::
to

:::::::::
extrapolate

::::::
results

::
far

:::::::
beyond

::
the

::::::::
elevation

::
of

::::::::
available

::::::
gauges. This will be further discussed later in this section.15

Daily temperature averaged over the 5 years of analysis for Lagunitas (All curves were smoothed using the LOESS method

((Jacoby, 2000)) with α= 0.045 to facilitate visualisation).

Daily temperature averaged over the 5 years of analysis for MP (All curves were smoothed using the LOESS method

((Jacoby, 2000)) with α= 0.045 to facilitate visualisation).

Figure 6 shows histograms of the validation residuals. It can be seen that the GLMM, WCA and LR have
:::
give

:
residuals20

that are more or less evenly distributed around zero, although those of the GLMM are more peaked. The distribution of IDW

residuals is strongly multi-modal indicating consistent over or under-estimation at particular gauges. Furthermore, Figure ??

:::::
Figure

:::
7A

:
shows the relationship between

::::::::::
temperature RMSE values and elevation.

4.3 Precipitation results

Table 5 shows that the performances of all interpolation approaches are similar in the LOOCV
::::::::
relatively

::::::
similar, in terms of25

RMSE, although WCA and IDW have
::::
ChA

:::
has

:
slightly smaller RMSE values. All probability of detection (POD) indices are

above 90%, although WCA and IDW have values closer to 100%. Differences in false alarm ratios (FAR) are larger, as the

GLMM has a ratio of only 7.1%, which is almost half of the one for LR and
::::
ChA,

::::
and

:
less than a third of that of IDW and

WCA.

Table 5 also shows how sensitive are the interpolation approaches to the reduction30

::::
Table

::
6
::::::
shows

:::
the

:::::::::
sensitivity

::
of

::::::::::::
performances

::
to

:::::::::
reductions

:
in the number of estimation gauges. It can be seen that the

GLMM was
:
is

:
quite sensitive to these changes, and its performance decreased sharply with

::::::
RMSE

::::::::::
performance

:::::::::
decreases

::::::
sharply

:::::
when

::::::
moving

:::::
from

::
17

::
to 14 and particularly with

::::::
gauges,

:::
and

:::::
even

::::
more

::::
from

:::
14

::
to 4 gaugesin terms of the RMSE. Its

POD and FAR remained similarto the values in the LOOCV. The other 3 approaches behaved similarly with
::::::
remain

::::::
similar.

::::
The

20



Figure 5. Daily temperature averaged over the 5 years of analysis for gauge
::

(A)
:::
Site

:::
27

::::::::
(Lagunitas)

:::
(B)

::::
Site

::
18

:
(330019

:
) (

::
C)

:::
Site

::
28

:::::
(MP)

:
(All curves were smoothed using the LOESS method ((Jacoby, 2000) ) with α= 0.045,

:::
this

::
is
::::::
similar to

:
a
::::::
moving

::::::
average

:::
and

::
is

::::
used

::
to

facilitate
::
the visualisation

:
of
:::
the

::::
main

:::::
trends

::::
only).

Table 5.
::::::::::
Precipitation

:::::
results

::
in

::
the

:::::::::::
leave-one-out

::::
cross

:::::::
validation

:::
for

::::
each

:::::::::
interpolation

::::::::
approach.

:::::::
Approach

: :::::
RMSE

:::::
(mm)

::::
POD

:::
(%)

::::
FAR

:::
(%)

::::::
GLMM

:::
14.2

: :::
92.3

: ::
7.1

:

:::
LR

:::
15.5

: :::
93.7

: :::
12.9

::::
WCA

: :::
13.4

: :::
97.3

: ::
24

::::
IDW

:::
13.5

: ::
98

:::
22.7

::::
ChA

:::
12.8

: :::
90.1

: :::
12.2

:

:::::
RMSE

:::::::::::
performance

::
of

:::
the

:::::
other

::::
four

:::::::::
approaches

:::::::::
decreases

::
by

::
a

::::::
similar

:::
rate

::
(3

::
-
:
4
::::
mm)

:::::
when

:::::::
moving

::
to

:
14 gauges, although

LR had
:::
and

:::::
ChA

::::
have lower POD and FAR. With

::::
When

:::::::
moving

::::
from

:::
14

::
to

:
4 gauges WCA

::::
ChA

:
shows the smallest increase

in RMSE, although its FAR has the largest increase. On the other hand,
::::::::
followed

::
by

::::::
WCA,

:::::
while LR has a larger RMSE but a

low FAR again.
::::
large

:::::::::
increment.

::::::
PODs

:::
and

:::::
FARs

::
of

:::::
these

::::
four

:::::::
methods

::::::
remain

::::::
similar

:::::
when

:::::::
moving

::
to

::
4

::::::
gauges,

::::::
except

:::
for

::
the

::::
LR

:::::
POD

::::::
which

:::::
drops

::::::
around

::::
6%.

:
5
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Figure 6. Residuals of the temperature LOOCV for each interpolation approach.

Figure 7.
:::
(A) Elevation

::
of

:::::
gauges

:
vs Temperature

::::::
Average

:::::::::
temperature

:
RMSE for all gauges in the validation groups

:::::::
LOOCV.

:::
(B)

:::::::
Elevation

of
:::::
gauges

::
vs

::::::
Average

::::::::::
precipitation

:::::
RMSE

::
in

:
the LOOCV.

When these values are compared with raw CHIRPS and WC values, it can be seen that the performance of both
:::::::::
alternative

:::
data

::::
sets

:::
by

::::::::::
themselves

:
is not competitive when there are 17 or 14 gauges available. However, the quality of CHIRPS

predictions is similar to results with
::::
The

:::::::
accuracy

::
of

::::::::
CHIRPS

::::
gets

:::::
closer

::
to

::::
that

::
of

:::
the

:::::::::::
interpolation

:::::::::
approaches

:::::
when

:
only 4

gauges in terms of RMSE, POD and FAR. This suggests that if there were four or less gaugesavailable in the catchment, using

CHIRPS would be a useful alternative
:::
are

::::
used

:::::::::
suggesting

:::
its

:::::::
potential

:::::
value

:::
for

:::::::::
especially

:::::
poorly

:::::::
gauged

:::::::
regions;

::::::::
however,5

::::
still,

::::
ChA

:::
and

:::::
WCA

:::::::
perform

:::::
better

::::
with

::
4
:::::::::
estimation

::::::
gauges.
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Table 6. Results
::::::::
Sensitivity

:::
test of the approaches tested to interpolate precipitation

:::::::::
interpolation

::::::::
approaches.

Approach Number of estimation gauges RMSE (mm) POD (%) FAR (%)

GLMM 17 (LOOCV) 14.2 92.3 7.1 14 32.1 91.8 7.07
::
7.1

:

4 135.8 87.8 10.6

WCA
::
LR

:
17 (LOOCV)

::
14

:
13.4

:::
18.9 97.3

:::
90.6 24

::::
15.7

:
4
: :::

26.4
: :::

84.4
: :::

11.7
:

::::
WCA

:
14 17.4 97.5 25.8

4 23.5 95.3 27.9

0 (Raw WC Maps)
:
* 34.1 98.6 40.5

IDW 17 (LOOCV) 13.5 98 22.7 14 17.8 97.2 22.1

4 25.4 94 19.1

LR
:::
ChA

:
17 (LOOCV) 15.5 93.7 12.9 14 18.9

:::
16.1 90.6

:::
90.2 15.7

:::
13.4

4 26.4
:::
21.0 84.4

:::
88.4 11.7

:::
16.4

CHIRPS 0 (Raw CHIRPS data)
::
** 26.2 88.5 28.6

:
*
::::
Using

:::
the

::::::
monthly

:::
long

::::
term

:::::
values

::::::
provided

::
by

:::
WC

::
to

:::::::::
approximate

::::
daily

:::::::::
temperature

::
at

::
all

:::
sites

:::
(i.e.

:::
one

::::
value

:::::
applied

::
to

::
all

:::
days

::
in
:::
the

::::::
month).

:
**

:::::
Using

::
the

::::::
monthly

:::::::
CHIRPS

::::
values

::
at

::
all

::::
sites.

Figures ??, ?? and ?? show
::::::
Figure

:
8
:::::
shows

:
the observed and simulated monthly precipitation values for three representative

gauges. Figure ??
::
8A

:
shows the performance of 05200007− 6

::
the

::::
low

:::::::
elevation

::::::
gauge

::
at

:::
site

::
1, which is quite similar to that

of all gauges in the lowlands
:::::::::::
representative

:::
of

:::
the

:::::::::::
performance

::
at

:::
the

:::::
other

:::
low

::::::::
elevation

:::::::
gauges. It can be seen that most

approaches reproduced observed values relatively well (
::::::::::
precipitation

::
at

::::
this

:::::::
lowland

:::::
gauge

::::
well

:
compared to the gauges in

the mountains). Furthermore, it
::::
high

::::::::
elevation

::::::
gauges.

::
It
:

can also be seen that IDW and WCA predicted small amounts of5

precipitation in several months during the dry season when no precipitation was observed, which causes a larger FAR for both

of them (see Table 5).

Figure ??

:::::
Figure

:::
8B shows the performance of all approaches for Lagunitas

:::
site

::
27, which is in the mountains at 2765masl. In this plot

it can be seen that observed precipitation is larger than in the lowlands, and that all approaches fail to reproduce observations10

with the level of accuracy shown in Figure ??. Figure ??
::::
seen

:::
for

:::
the

:::::::
lowland

:::::
gauge

::::
(see

::::::
Figure

::::
8A).

::::::
Figure

:::
8C

:
illustrates

results for Los Bronces gauge
::
site

:::
17, the highest of the precipitation gauges (3420masl). Once more, larger errors can be seen

compared to the gauges in the lowlands, particularly for the GLMM, which nevertheless had
:::::::
although

:::
this

::::::::
approach

::::
has the

best results for Lagunitas.
::
in

:::
site

:::
27.

Validation monthly precipitation estimates for gauge 05200007-6.15

Validation monthly precipitation estimates for Lagunitas.

Validation monthly precipitation estimates for Los Bronces.

This behaviour can be better appreciated after plotting the elevation of the gauges versus their average RMSEs (see Figure

??
::
7B). While RMSE values below 1500 masl are rarely above 20 mm, all the RMSE values of the two gauges above 1500

23



Figure 8.
::::::::
Validation

::::::
monthly

::::::::::
precipitation

:::::::
estimates

::
for

::::
sites

:::
(A)

:
1
:::::::::::
(05200007-6)

:::
(B)

::
27

:::::::::
(Lagunitas)

::
(C)

:::
17

:::
(Los

::::::::
Bronces).

masl are above this threshold, some of them are beyond 40 mm and two points are above 60 mm. This suggests that the

performance of all approaches is likely to be determined by inaccuracies at high elevation gauges, where frontal systems

interact with the topography to create very wet conditions
:::
high

:::::::::::
precipitation during the wet season.

Elevation vs Precipitation RMSE for all gauges in the validation groups of the LOOCV.

Regarding the residuals of all approaches
::::::::
Regarding

:::
the

::::::::::
distribution

:::
of

::::::::
residuals (see Figure 9), as for temperature, the5

residuals using GLMM are more peaked around zero. Nevertheless,
::
all

::::::::
aproaches

:::::
show

::::::
values

:::
that

::::
are

::::
more

:::
or

:::
less

:::::::
equally

:::::::::
distributed

::::::
around

:
0.
::::
The

:::::::
GLMM

:::::::
residuals

:::
are

::::::::::
particularly

::::::
peaked

::
at

::
0,

:::::::::::
nevertheless, its greater number of very large residuals

gives the GLMM a higher RMSE than
::::
ChA,

:
WCA or IDW.
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Figure 9. Residuals of the precipitation LOOCV for each interpolation approach.

5 Discussion

The LOOCV analysis of air temperature in Section 4.2 showed
:::::
shows

:
that for this case study, the GLMM and the WCA have

the best performance (i.e. smallest RMSE values - see Table 3), although the magnitudes of LRresults are also .
:::::
These

:::::::
results,

:::
and

:::::
those

::
of

:::
LR,

:::
are

:
comparable with those obtained from similar analyses in USA and Canada (Stahl et al., 2006; Wu and Li,

2013). However, compared to the GLMM, WCA has less computational requirements thus is easier to implement (i.e. WCA5

was run on a desktop computer as described in Section 3.4, while the GLMM was run on 20 HPC cores in parallel).

On the other hand, IDW had the largest
:::
has

:::
the

::::::
largest

::::::::::
temperature errors and this, together with the skewed and multi-modal

nature of its residuals, showed
:::::
shows the limitations of this approachto analyse this variable. Figure ?? and ??

:
.
::::::
Figure

::
5C

::::
and

::
7A

:
suggest that IDW residuals can sometimes be related to the high elevation (e.g. MP

:::
site

:::
28) or isolation (e.g. Saladillo

:::
site

::
29) of gauges. The

::::::::::
Temperature

:
observations from the 2008-2009 summer season have the best RMSE values for IDW, and10

:::
but this is likely to be due to the proximity and quantity of gauges in this period. The latter, however, could be a problem for

the estimation of values of other gauges as IDW does the interpolation based on distances between gauges only, but does not

necessarily analyse the effects of data clustering.

In terms of the influence of the elevation of gauges on
:::::::::
temperature

:
results, WCAand LR showed

:
,
:::
LR

:::
and

:::
the

:::::::
GLMM

:::::
show

similar performance across all elevations, but the GLMM had
:::::::
although

:::
the

:::::
latter

::::
has an outstanding error in

:
at

:
the highest15
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gauge (MP
:::
site

::
28). This may suggest that compared to WCA and LR, this approach is more sensitive to the extrapolation of

results beyond the altitude ranges of the estimation gauges.

Furthermore, it was found that the quality of results of the GLMM are
::::::::::
particularly sensitive to the number and location of

gauges measuring temperature. As shown in Table 3
:
4, the RMSE for this approach rose considerably

::::
rises

::::::
sharply

:
when only 8

:::::::
(3.89oC), 5

:::::::
(3.99oC)

:
and 2 gauges were

::::::::::::::
(14.44oC)gauges

:::
are used to estimate its parameters. The performance

:::::::::::
performances5

of IDW and LR also decreased
:::::::
decrease

::::::::::
considerably

:
(RMSE of 9.34oC and 7.78oC respectively, with only two gauges), to the

extent that using estimates of long-term monthly average temperatures provided by the WC maps would be a better alternative

::
the

::::
raw

::::
WC

:::::
maps

::
for

::::
this

::::
case

:::::
study (RMSE of 3.36oC)

::::
may

::
be

:::::::::
preferable

::
to

::::
any

::::::
method

:::::
other

::::
than

:::::
WCA

::::
once

:::
the

:::::::
density

::
of

::::::
gauges

:::::::
becomes

::::
low.

On the other hand, WCA was
:
is

:
quite resilient to the reduction of estimation gauges, and its errors were lower, even with10

two gauges only (RMSE of
:
.
::::
Even

::::
with

::::
two

:::::::::
estimation

::::::
gauges

:::
the

:::::::
average

::::::
RMSE

::::
was

::::
only

:
2.54oC). This may be because

the raw WC maps have internalised the average effect of elevation, longitude and latitude on this climate variable through the

long-term analysis (a worldwide generalisation), which can then be adapted to local conditions by including a small number of

gauges. This suggest
:::::::
suggests that WCA is an accurate and easy to use alternative to model air temperature in the case study.

Regarding precipitation, the LOOCV showed
:::::
shows

:
that all approaches have a similar performance

:::::
similar

::::::::::::
performances15

in terms of RMSE(13− 15mm )
:
,
:::::::
although

:::
the

::::::
simple

::::::
merge

::
of

::::::::
CHIRPS

:::
and

:::::::::::
observations

:::::
(ChA)

::::
has

:
a
:::::::
slightly

:::::
better

:::::
value

::::::::
(12.8mm

:
). However, the GLMM

:::
also stands out due to its lower FAR (7.1%), which may be a positive outcome of separating

the analysis of precipitation into occurrence and magnitude. This could also be related to the fact that the GLMM analyses

the correlation between measurements
:::::::::
randomness

::
of

::::::::::
occurrences

::::
and

::::
their

::::::
spatial

:::::::::
correlation

::::
(see

:::::::
Equation

::
7), thus limits the

possibility of one or few gauges with non-zero precipitation overly influencing the precipitation estimate at all points (e.g.20

smoothing).

As opposed to this, other alternatives, particularly WCA and IDW, tend to predict precipitation when at least one (IDW)

or even when no gauges (WCA - due to the inclusion of long-term averages) record non-zero values. This is evidenced with

::::::
evident

::::
from

:
the prediction of dry-season precipitation events that were never observed

:::
(see

::::::
Figure

::
8). Preliminary results

obtained using a different threshold (0.3 mm) for the detection of precipitation were similar, thus, the preference for GLMM25

in terms of FAR and POD performance seems not to be sensitive to the selection of this threshold.

When the interpolation approaches were
::::::::::
precipitation

:::::::::::
interpolation

:::::::::
approaches

:::
are

:
tested with a reduced number of esti-

mation gauges, it was
::
is found that the GLMM failed to maintain relatively good precipitation results, and its precipitation

RMSE values rose
::::::
RMSE

:::::
values

::
of

:::
the

:::::::
GLMM

:::
rise

:
drastically (beyond 100mm with 4 gauges only). Once more, this suggests

that compared to the alternatives, in this case study the GLMM is more sensitive to the number and distribution of estimation30

gauges. The importance of the latter is highlighted when using only 14 gauges for model estimation but including at least one

of the high elevation gauges , Los Broncesor Lagunitas
::
at

:::
site

::
17

:::::
(Los

:::::::
Bronces)

::
or

::::
site

::
27

::::::::::
(Lagunitas). This gives an RMSE of

19mm, which is considerably less than the overall
::::::
average RMSE for the GLMM

:::
with

:::
14

::::::
gauges(32.1 mm).

All other interpolation approaches for precipitation behaved similarly
:::
The

:::::
other

:::::::::::
precipitation

:::::::::::
interpolation

::::::::::
approaches

:::::::
decrease

::::
their

:::::::::::
performance

::
at

:
a
::::::::
relatively

::::::
similar

::::
rate, when facing a reduction in the number estimation gauges. As shown for35
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the LOOCV (see Figure ??
::
7B), this may be because errors in

::
at

:
high elevation gauges strongly influence the overall RMSE.

When only 4 gauges were
:::
are included, however, WCA showed a slightly

:::
ChA

::::
and

::
to

::
a
:::::
lesser

::::::
extent

:::::
WCA

:::::
show

:
a
:

better

RMSE (
:::::
21mm

::::
and

:
23.5mm ) but a

:::::::::::
respectively),

:::::::
although

:::
the

:::::::
former

:::
has

::
a

::::::::
relatively

:::
low

:::::
POD

:::::::
(88.4%)

::::
and

:::
the

:::::
latter

::
a

larger FAR (27.9%). It was also found that CHIRPS , as a standalone product , represents
:
is
:
a useful alternative source of data

(i.e. compared to the methods tested in this project, some of which are used in hydrological modelling)
::
to

:::
the

:::::::::::
interpolation5

:::::::::
approaches

:
when 4 or less gauges were available

:::::
fewer

::::::
gauges

:::
are

::::::::
available,

:::::
with

::::
only

:::::::::
marginally

::::::
worse

::::::
RMSE

:::::
value

::::
than

::::
IDW

:::
and

:::::
better

::::::
RMSE

::::
than

:::
LR

::::
and

::::::
GLMM

:
(RMSE = 26.2mm, POD = 88.5% and FAR= 28.6%).

The results in this paper show how a simple approach that
:::::
simple

::::::::::
approaches,

::::::
which

:
can be easily reproduced elsewhere,

may perform at least as well as other more complex or more commonly used approaches, in a catchment with sparse monitoring

networks and complex climate dynamics. Based on this evidence and its simplicity, it would be desirable to use WCA to analyse10

:::::::
estimate temperature in this case study. For precipitation, WCA is also

:::
ChA

:::
or

:::::
WCA

::::
may

::
be

:
preferable, unless the modeller

was
:
is particularly interested in the occurrence of precipitation in the dry season, in which case the GLMM would be desirable

if computational requirements are not an issue , or LR otherwise
:::
and

:::::
there

::
is

:
a
::::::::::
reasonable

:::::::
coverage

:::
of

::::::
gauges. Analyses of

further case studies are required to be able to generalise
:::
test

:::
the

::::::::
generality

::
of

:
these findings.

The fact that 15 temperature gauges in the mountain areas measured during one summer season only, or just started15

measuring values after 2008, means that although ideal to increase the reliability of results, an analysis of a longer period

is still not possible. For precipitation, it would also have been desirable to have good quality gauges between 1300 and 2700

masl, to better understand what happens between the observations in low elevation points and the two high elevation gauges in

the mine sites.

Beyond the issues with the number and location of gauges to estimate the parameters of the GLMM, this paper shows how20

approximate Bayesian inference methods can be applied to estimate parameters of these models in a hydrological context.

Despite there being high computational requirements with the the R-INLA package, these are lower than those of MCMC, and

this facilitates the use of GLMMs. It would now be useful to test if the benefits of GLMMs and Bayesian approaches discussed

in this paper and in the non-hydrology literature (Pilz and Spöck, 2008; Ecker and Gelfand, 1997) can equally be achieved by

stochastic approaches like Kriging and GLMs that are more common in hydro-climate applications. It would be particularly25

interesting to analyse how these approaches behave in well and poorly monitored regions, and how this influences hydrological

modelling. Furthermore

::::::
Results

::
in

::::
this

::::
case

:::::
study

:::
are

:::
of

::::::
course

::::::
limited

:::
by

:::
the

::::
fact

:::
that

:::
15

::::::::::
temperature

:::::::
gauges

::
in

:::
the

::::::::
mountain

:::::
areas

:::::::::
measured

:::::
during

::::
one

::::::
summer

::::::
season

:::::
only.

:::
For

::::::::::
precipitation, it would also be useful to analyse further prior distributions for the Bayesian

estimation of the GLMM’s parameters. This project used the default priors of the R-INLA package, to facilitate its implementation,30

but this could be enhanced
::::
have

::::
been

::::::::
desirable

::
to

::::
have

:::::
good

::::::
quality

::::::
gauges

:::::::
between

:::::
1300

:::
and

:::::
2700

::::
masl,

::
to
:::::
better

::::::::::
understand

::::
what

:::::::
happens

:::::::
between

:::
the

:::
low

::::
and

::::
high

::::::::
elevation

::::::
gauges.
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6 Conclusions

Interpolation of climate variables is a major field of research in hydrology , and its relevance is related to the importance of

this data for
:::
due

::
to

::::
their

::::::::::
importance

::
in

:
water resources modelling. The scope of this paper was to compare four interpolation

approaches for
::::
This

:::::
paper

::::::::
compared

:::
five

::::::::::
approaches

::
to

:::::::::::
interpolating temperature and precipitation

::::::
gauged

::::
data in a catchment

with complex and steep terrain, and a low density network of gauges.
:::::
tested

::::
their

:::::::::
sensitivity

::
to

:::
the

::::::::
reduction

::
of

:::
the

:::::::
number

::
of5

::::::::
estimation

:::::::
gauges.

::::
High

::::::::
elevation

:::::::
gauges,

:::
not

:::::::::
previously

::::
used

:::::
before

:::
for

::::
this

::::
type

::
of

:::::::
research,

:::::
were

::::::::
employed

::
to

:::::::
partially

::::
test

::
the

::::::
ability

::
of

:::
the

::::::::::
approaches

::
to

:::::::::
extrapolate

::
to

:::
the

::::
high

::::::
Andes.

:

For temperature, the
:
a
:
Generalised Linear Mixed Model (GLMM) reproduced observations in this case study in the best

way (i.e. smallest Root Mean Squared Errors
::::
Error

:
- RMSE, in a leave-one-out cross validation - LOOCV), although it was

closely followed by a more simple
::::::
simpler alternative based on merging observations and WorldClim maps (WCA).

:::
The

:::::
latter10

::::::::
performed

::::::::
relatively

::::
well

:::
at

::
all

::::
high

::::::::
elevation

::::::
points.

:
Inverse Distance Weighting (IDW) and Lapse Rates (LR - i.e. a linear

regression using only elevation as a covariate) showed a worse performance.

Furthermore,
::
for

:::::::::::
temperature only WCA demonstrated resilience to the reduction of the number of estimation gauges, and

so shows
:::::::
showing good prospects for using this alternative to generate input climate data of hydrological models

:::::::::
supporting

::::::::::
hydrological

:::::::::
modelling in sparsely monitored catchments. The GLMM, IDW and LR, on the other hand, had larger errors to the15

point that for this case study, it was desirable to use the long-term temperature estimates in the raw WorldClim maps instead,

when few gauges were made available
:::
for

::::::::::
temperature

:::::::::::
interpolation

:::::
using

:::
few

:::::::
gauges,

:::::::::
long-term

::::::::
estimates

::::
from

::::::::::
WorldClim

::::
maps

::::
gave

:::::
better

::::::
RMSE

::::::
results.

For precipitation, the LOOCV evidenced that no alternative was clearly superior in this case study in terms of RMSE
:::
the

:::::::
LOOCV, and this may be because errors in high elevation pointsseem to be more determining the overall RMSE , than the20

quality of calculations of each approach. All
:
,
:::::
which

:::::
were

::::
large

::::::::::
irrespective

:::
of

:::
the

::::::::
approach,

:::::::::
dominated

:::
the

:::::::
RMSE

::::::
values.

::::
ChA

:::::::
showed

::::::
smaller

::::::
RMSE

::::::
values

:::
in

:::
the

:::::::::
sensitivity

:::
test

:::::::::
(although

::
it

:::
had

:::::
lower

:::::::::::
probabilities

:::
of

::::::::
detection

:
-
::::::
POD),

::::::
which

::::::::
highlights

:::
the

::::::::::
desirability

::
of

:::
the

:::::::
method

::
in

::::
this

::::
case

:::::
study,

::::::
unless

::::::::
detecting

::::
most

::::::
events

::::
was

::::::::::
fundamental

:::
for

::::
the

::::
user.

::::
The

::::
other

:
approaches showed a

:::::::
relatively

:
similar resilience to the reduction of estimation gauges, except for the GLMM, which

had a poorer performance with a
:
an

:
RMSE value larger than 100mm when only 4 gauges were made available. WCA showed25

slightly better RMSE than the rest in most cases, which together with its simplicity, highlights the desirability of the method,

even if it did not outperform others as much as for temperature.
::::
used.

:

In terms of the added value of alternative datasets, it was found that in this case study the inclusion of CHIRPS and World-

Clim maps was as relevant and illustrative as the comparison of interpolation approaches
:::
was

::::::::
valuable. On the one hand,

WorldClim maps allowed developing a very simple but quite
:::::
using

:::
the

:::::::
residuals

::::::::
between

:::::::::
WorldClim

:::::
maps

:::
or

:::::::
CHIRPS

::::
and30

::::::
climate

:::::::::::
observations,

::::::::::
represented

:
a
::::::
simple

:::
but efficient method that showed good performance and high resilience when work-

ing with few gauges. On the other hand, CHIRPSwas
:
,
::
as

::
a

:::::::::
standalone

:::::::
product, demonstrated to be a useful source of precip-

itation data where few gauges are available. Thus, both represent alternatives to support the development of water resources

models in regions with few point observations.

28



The paper also illustrated how approximate Bayesian inference methods, particularly the INLA-SPDE method available

in the R-INLA package, can be used to estimate the parameters of spatio temporal models in hydrological contexts. Further

research could explore other spatio-temporal models and prior distributions, and how the results of this approach compare to

those of GLMs or Kriging
::::
when

:::
no

::
or

:::
few

::::::
gauges

:::::
were

::::::::
available.

Appendix A: Gauges Used5
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Table A1. Details of gauges used

Station Elevation Long Lat Variable Dates available % of Missing Gaps in

the 5 year period

1 05200007-6 1202 -70.68 -32.42 P All period 0

2 05403006-1 1313 -70.36 -32.92 P All period 1.67

3 05410002-7 954 -70.51 -32.85 P All period 5

4 05410005-1 642 -70.74 -32.76 P All period 3.33

5 05410006-K 1078 -70.47 -32.86 P All period 0

6 05410007-8 830 -70.6 -32.83 P All period 0

7 05410008-6 650 -70.72 -32.75 P All period 0

8 05414001-0 1193 -70.58 -32.50 P All period 23.33

9 05414004-5 1209 -70.57 -32.49 P All period 5

10 05414005-3 943 -70.7 -32.57 P All period 0

11 05415004-0 1023 -70.6 -32.68 P All period 1.67

12 05422002-2 835 -70.82 -32.93 P All period 1.67

13 05732001-K 575 -70.8 -33.09 P All period 1.67

14 05732002-8 597 -70.77 -33.08 P All period 5

15 05733006-6 973 -70.75 -32.95 P All period 0

16 05733010-4 809 -70.81 -32.95 P All period 1.67

17 Los Bronces 3423 -70.29 -33.15 P All period 0

18 330019 654 -70.55 -33.45 T All period 44.58

19 330020 529 -70.68 -33.45 T All period 0.16

20 330021 481 -70.79 -33.39 T All period 1.04

21 AWS1 3088 -70.11 -32.99 T Summer 08-09 96.11

22 AWS2 2785 -70.11 -32.97 T Summer 08-09 96.11

23 AWS3 3269 -70.1 -33 T Summer 08-09 96.66

24 Angela 3573 -70.27 -33.08 T All period 1.81

25 Barroso 3776 -70.23 -33.11 T All period 4.05

26 Hornitos 2214 -70.15 -32.87 T From Sept/12 80.01

27 Lagunitas 2922 -70.25 -33.08 P and T All period 0

28 MP 4080 -70.26 -33.17 T All period 2.35

29 Saladillo 1585 -70.28 -32.93 T From Dec/11 66.32

30 TLog1 3254 -70.1 -33 T Summer 08-09 96.22

31 TLog10 3004 -70.11 -32.99 T Summer 08-09 96.22

32 TLog11 2968 -70.11 -32.98 T Summer 08-09 96.22

33 TLog12 2911 -70.11 -32.98 T Summer 08-09 96.22

34 TLog2 3269 -70.1 -33 T Summer 08-09 96.22

35 TLog3 3269 -70.1 -33 T Summer 08-09 96.22

36 TLog4 3212 -70.1 -33 T Summer 08-09 96.22

37 TLog5 3153 -70.11 -32.99 T Summer 08-09 96.22

38 TLog6 3081 -70.11 -32.99 T Summer 08-09 96.22

39 TLog7 3094 -70.11 -32.99 T Summer 08-09 96.22

40 TLog8 3092 -70.11 -32.99 T Summer 08-09 96.22

41 TLog9 3070 -70.11 -32.99 T Summer 08-09 96.22
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