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Abstract. Erosive rainfall varies pronouncedly in time and space. Severe events are often restricted to a few square 

kilometers. Rain radar data with high spatio-temporal resolution enable this pattern of erosivity to be portrayed for the first 

time. We used radar data collected with a spatial resolution of 1 km² for 452 503 km² to derive a new erosivity map for 

Germany and to analyze the seasonal distribution of erosivity. Extraordinarily large filtering was necessary to extract the 

expected long-term regional pattern from the scattered pattern of events. Filtering included averaging 2001 to 2017 and 15 

smoothing in time and space. The pattern of the resulting map generally agreed well with the previous map based on 

regressions of rain gauge data (mainly from the 1960s to 1980s). The pattern was predominantly shaped by orography. 

However, the new map has more detail; it deviates in some regions where the regressions previously used were weak; most 

importantly, it shows that erosivity is about 66% higher than in the map previously used. This increase in erosivity was 

confirmed by long-term data from rain gauge stations used for the previous map. The change was thus not caused by using a 20 

different methodology but by weather changes that may already be a dramatic result of climate change since the 1970s. 

Furthermore, the seasonal distribution of erosivity showed that more erosivity falls during the winter period when soil cover 

by plants is usually poor. For many crops higher erosion therefore also results from the change in seasonality. Predicted soil 

erosion in winter wheat is now about four times higher than in the 1970s due to the seasonal changes, combined with the 

increased erosivity. These topical erosivity data with high resolution will thus have definite consequences for agricultural 25 

advisory services, landscape planning and even political decisions. 

1 Introduction 

Soil erosion by heavy rain is regarded as the largest threat to the soil resource. Rain erosivity, which is a rain’s ability to 

detach soil particles and provide transport by runoff, is one of the factors influencing soil erosion. The most commonly used 

measure of rain erosivity is the R factor from the Universal Soil Loss Equation USLE (Wischmeier, 1959; Wischmeier and 30 

Smith, 1958, 1978), although other concepts also exist (Morgan et al., 1999; Schmidt, 1991; Williams and Berndt, 1977). 
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The R factor is given as the product of a rain’s kinetic energy and its maximum 30-min intensity. Both components are 

usually derived from hyetographs recorded by rain gauges. Such rain gauge data are spatially scarce. For instance, in 

Germany only one rain gauge per 2571 km² was available for the R map presently in use (Sauerborn, 1994). Hence, 

information has to be interpolated to derive an R map that enables R to be estimated for any location. Different interpolation 

techniques have been applied. Correlations (transfer functions) to other meteorological data available at higher spatial 5 

density were used the most (for an overview see Nearing et al., 2017). The German R-factor map is based on correlations 

between R and normal-period summer rainfall or normal-period annual rainfall, differing between federal states (Rogler and 

Schwertmann, 1981; Sauerborn, 1994, and citations therein).  

Recent research has shown that the erosivity of single events exhibits enormous gradients in space (Fiener and Auerswald, 

2009; Fischer et al., 2016; Fischer et al., 2018; Krajewski et al, 2003; Pedersen et al., 2010; Peleg et al., 2016), which is due 10 

to the small spatial extent of convective rain cells typical for erosive rains. The resulting heterogeneity has two 

consequences. First, interpolation between two neighboring rain stations will not be possible for individual rains because a 

rain cell in between may be completely missed. Second, even long records of rain gauge data may miss the largest events 

that occurred in close proximity to a rain gauge and thus underestimate rain erosivity. This is illustrated nicely by the data of 

Fischer et al. (2018). They showed that the largest event erosivity, which was recorded by contiguous measurements over 15 

only two months, was more than twice as large as the largest erosivity that occurred during 16 years when the same area was 

covered by 115 rain gauges. Furthermore, this single event contributed about 20 times as much erosivity as the expected 

long-term average. Even in a 100-yr record this single event would thus still change the long-term average erosivity. The 

large variability then directly translates to soil loss. This may be illustrated by soil loss measurements in vineyards in 

Germany. Emde (1992) found a mean soil loss of 151 t ha
−1

 yr
−1

 averaged over 10 plot years while Richter (1991) only 20 

measured 0.2 t ha
−1

 yr
−1

, averaged over 144 plot years. The difference is due to the largest event during the study by Emde 

(1992), which obviously had too much influence on the mean compared to the size of his data set. Such an event was missing 

entirely in Richter’s (1991) much larger data set. The inclusion of rare events when measured by chance by a rain gauge 

leads to statistical problems due to their extraordinary magnitude. Unstable and unreliable transfer functions result that differ 

pronouncedly depending on whether a large event is included or not. To avoid this, Rogler and Schwertmann (1981) 25 

excluded all events for which the estimated return period was more than 30 yr (assuming that event erosivities followed a 

Gumble distribution), prior to the development of their transfer function. This approach must underestimate erosivity and, in 

turn, soil erosion because the largest events are then replaced by zero. 

The demand for contiguous rain data to create R-factor maps has only recently been able to be met by radar rain data of high 

spatial and temporal resolution. Put simply, the measurements are based on the principle that radar beams are reflected by 30 

hydrometeors. The intensity of the reflection depends on rain intensity and the travel time of the reflected radar beam 

depends on the distance between the emitting and receiving radar tower and the hydrometeor. Radars usually measure with a 

resolution of approx. 1° azimuth and 125 to 250 m in the direction of beam propagation. The data are then typically 
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transformed to grids of square pixels of 1 km² (Bartels et al., 2004; Fairman et al., 2015), 4 km² (Koistinen & Michelson, 

2002; Michelson et al., 2010) or 16 km² (Hardegree et al., 2008) after many refinement steps.  

In this study, we used the new RW product from the radar climatology RADKLIM from the German Meteorological Service 

(Deutscher Wetterdienst, DWD). RW data provide gauge-adjusted and further refined precipitation for a pixel size of 1 x 1 

km² (Winterrath et al., 2017, 2018). RW data of 17 yr (2001 – 2017) are available as a contiguous source of rain information. 5 

Using these data to establish a new R-factor map for Germany should be a major step forward compared to the existing map, 

which was derived from an inconsistent set of data compiled by different researchers (e.g., some had winter precipitation 

data available and used it while others did not; see Sauerborn, 1994) and with equations developed independently for 16 

federal states. Our data set is much larger (by a factor of 2571 regarding locations) and, because of the contiguous data 

source, it does not require interpolation with transfer functions. We expect that there will be considerable changes in the 10 

pattern of erosivity due to the removal of transfer-function weaknesses. We also expect that the R-factor map will exhibit 

higher values than the existing map, for two reasons. Very large and rare events will no longer be missed, as occurred 

previously due to the large distances between meteorological stations, and there is no longer any need to remove these events 

to arrive at robust transfer functions. The second reason for higher R factors is due to global climate change, as Rogler and 

Schwertmann (1981) and Sauerborn (1994) mostly used data from the 1960s, 1970s and 1980s. Global climate change is 15 

expected to increase rain erosivity (Burt et al., 2016). 

2 Material and methods 

2.1 Radar-based precipitation data 

DWD runs a Germany-wide network of, at present, 17 C-Band Doppler radar systems (Fig. 1). This network underwent 

several upgrades during the analysis period. At the start of the time period considered, five single-polarization systems 20 

(DWSR-88C, AeroBase Group Inc., Manassas, USA) were operated without a Doppler filter, the latter being added between 

2001 and 2004. Between 2009 and 2017, DWD replaced the network of C-band single-polarization systems of the types 

METEOR 360 AC (Gematronik, Neuss, Germany)  and DWSR-2501 (Enterprise Electronics Corporation, Enterprise, USA) 

with modern dual-polarization C-band systems of the type DWSR-5001C/SDP-CE (Enterprise Electronics Corporation), all 

equipped with Doppler filters. During this period, a portable interim radar system of the type DWSR-5001C was installed at 25 

some sites. 

The radar systems permanently scan the atmosphere to detect precipitation signals. Every five minutes, the radars perform a 

precipitation scan, each with terrain-following elevation angle to measure precipitation near the ground. The resulting local 

reflectivity information over a range of 128 km is combined to form a Germany-wide mosaic of about 1100 km in the north-

south and 900 km in the west-east direction. The reflectivity information is converted to precipitation rates applying a 30 

reflectivity–rain rate (ZR) relationship. An operational quality control system screens the radar data. To further improve the 

quantitative precipitation estimates, the radar-derived precipitation rates are summed to hourly totals and immediately 
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adjusted to gauge data resulting in RADOLAN (i.e. online-adjusted, radar-derived precipitation), which provides 

precipitation data in real time, mainly for applications in flood forecasting and flood protection (Bartels et al., 2004; 

Winterrath et al., 2012).  

Based on RADOLAN, the climate version RADKLIM is derived. Compared to the real-time approach, the data are 

additionally offline-adjusted to daily gauge data, combining a total of more than 4400 rain gauges measuring hourly and 5 

daily (1 rain gauge per 80 km²). The data are then reprocessed by new climatological correction methods, e.g. for spokes, 

clutter or short data gaps. Spokes result from permanent obstacles blocking the radar beam, while clutter is introduced by 

non-meteorological targets like windmills or birds. The final product (RW data) has a temporal resolution of 1 h and a spatial 

resolution of 1 km x 1 km in polarstereographic projection. For more detailed information on RADKLIM the reader is 

referred to Winterrath et al. (2017). The RW data, restricted to the German territory, are freely available (Winterrath et al., 10 

2018). For the first time, the RADKLIM data set provides contiguous precipitation data with high temporal and spatial 

resolution. It includes local heavy precipitation events that are partly missed by point measurements alone. Thus, it 

particularly improves the analysis of extreme precipitation events.  

Two additional data sets were used to verify the validity of the approach and to examine effects of methodological details 

(see below). These data sets are erosivities derived from radar data at 5-min resolution taken from Fischer et al. (2016) and 15 

erosivities derived from 115 rain-gauge station data in Germany during 2001 to 2016, which were taken from Fischer et al. 

(2018).  

2.2 Erosivity calculation procedures 

According to Wischmeier (Wischmeier, 1959; Wischmeier and Smith, 1958, 1978), the erosivity of a single rain event (Re) is 

the product of the maximum 30-min rain intensity (Imax30) and the total kinetic energy (Ekin). For hyetographs recorded by 20 

rain gauges, an erosive rain event is defined as a total precipitation amount (P) of at least 12.7 mm or an Imax30 of more than 

12.7 mm h
-1

 that is separated from the next rain by at least six hours.   

𝑅𝑒 = 𝐼𝑚𝑎𝑥30 ∗  𝐸𝑘𝑖𝑛            (1) 

Kinetic energy Ekin,i per mm rain depth (in kJ m
-2

 mm
-1

) is given for intervals i of constant rain intensity I: 

𝐸𝑘𝑖𝑛,𝑖 = (11.89 + 8.73 ∗ 𝑙𝑜𝑔10𝐼) ∗ 10−3   for 0.05 mm h
-1 

≤ I < 76.2 mm h
-1

    (2.1) 25 

𝐸𝑘𝑖𝑛,𝑖 = 0      for I < 0.05 mm h
-1

     (2.2) 

𝐸𝑘𝑖𝑛,𝑖 =  28.33 ∗ 10−3      for I ≥ 76.2 mm h
-1

     (2.3) 

For all intervals i, Ekin,i is multiplied with the rain amount of this interval and then summed to yield Ekin for the entire event. 

The annual erosivity of a specific year is the Re sum of all n erosive events within this year. The average annual erosivity (R) 

is then the average of all annual erosivities during the study period (17 yr in this case). While in the USA and other countries 30 

the unit MJ mm ha
−1

 h
−1

 is often used for Re, we use N h
−1

 because it is the unit most often used in Europe and because of its 
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simplicity. Both units can be easily converted by multiplying the values in N h
−1

 with a factor of 10 to yield MJ mm ha
−1

 h
−1

. 

The unit for R is then N h
−1 

yr
−1

. 

Rain erosivity strongly depends on intensity peaks. Fischer et al. (2018) have shown that these peaks increasingly disappear 

the lower the spatial and temporal resolution becomes. This can be accounted for by scaling factors but these scaling factors 

can only adjust to an average behavior, while the influence of the true event Re may either be too large or too small. A high 5 

spatio-temporal resolution should be used to determine Re for individual events. To determine the long-term average pattern, 

i.e. an R-factor map for planning and prediction purposes, using data with lower resolution and applying appropriate scaling 

factors is advantageous because this will reduce the noise introduced by large events of small spatial extent that would not be 

leveled out by averaging alone. We will use data in 1-h time increments, which additionally have the advantages that they 

are adjusted to rain gauge measurements and the amount of data is reduced by a factor of 12 compared to 5-min increments. 10 

This is especially important when all calculations, including identification of rain breaks > 6 h and periods of Imax30, have to 

be carried out for many years and many locations. In our case, roughly 7 × 10
10

 1-h increments had to be processed. 

Gaps in the time series have been considered when calculating mean R factors by scaling the total sum of erosivity over the 

whole time series to 365.25 days. If the effective number of missing values exceeded two months per year, the respective 

year was excluded from the calculation for that pixel. 15 

According to Fischer et al. (2018), the following modifications in the calculation of Re had to be made to account for the 

temporal resolution of 1 h, the spatial resolution of 1 km² and radar measurement: (i) Imax30 was replaced by the maximum 1-

h rain depth and the threshold was lowered to 5.8 mm h
-1

, while the total precipitation threshold remained at 12.7 mm. (ii) 

Rain breaks separated events when five subsequent 1-h intervals without rain occurred. This assumed that rain events stop 

and start on average in the middle of the first and the last non-zero rain interval, yielding a total rain break of 6 h. (iii) The 20 

temporal scaling factor was 1.9 and the spatial scaling factor was 1.13, to which 0.35 has to be added to account for the radar 

measurement instead of the rain gauge measurement. The total scaling factor [(1.13 + 0.35) × 1.9] was then 2.81. 

2.2 Generating a Germany-wide R-factor map 

The reduction of noise by using 1-h increments was still not sufficient to level out the most extreme events. Two further 

filtering steps were therefore applied, in addition to using a 17-yr mean. The first averaging step was to winsorize the annual 25 

erosivities of the 17 yr (Dixon and Yuen, 1974) for each individual pixel by replacing the lowest value with the second-

lowest value and the highest value with the second-highest value. Winsorizing is an appropriate measure for calculating a 

robust estimator of the mean in symmetrically distributed data but it is biased for long-tailed variables like rain erosivity. 

Thus, the country-wide mean of all winsorized data (96 N h
−1 

yr
−1

) was lower than the mean of the original data (98 N h
−1 

yr
−1

). In order to remove this bias, we binned all data in 26 bins of 20 N h
−1

 yr
−1

 width and calculated the mean R before and 30 

after winsorizing. For bins with R < 180 N h
−1

 yr
−1

, comprising 95% of all pixels, the bias increased linearly with R (r² = 

0.92; n = 8) and amounted to 2.3% of R. Above 180 N h
−1

 yr
−1

 there was no further increase in the bias (r² = 0.01, n = 18), 
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which was, on average, 3.4 N h
−1

 yr
−1

. We removed the bias by adding 2.3% to all values < 180 N h
−1

 yr
−1

 and 3.4 N h
−1

 yr
−1

 

to all values above.  

The third noise-reduction step applied geostatistical methods. A semivariogram (over a range of 50 km) was calculated and 

ordinary kriging was applied. Geostatistical analysis was done in R (version 3.5.0; R Core Team, 2018) using gstat (Gräler et 

al., 2016). To remove noise, a block size of 10 × 10 km² was chosen, while the spatial resolution remained at 1 km. This step 5 

was also necessary to fill pixels with data gaps of more than one year (0.6% of the entire area). The missing information was 

obtained from neighbor pixels. The radar data extended beyond German borders. In total, 452 503 pixels were used to ensure 

low krige errors near borders or on islands, while the final map was restricted to the German land surface (357 779 pixels). 

Using 1-h data instead of 5-min data reduced the effect of single extreme events at certain locations. Winsorizing reduced the 

effect of extreme years at a location, in addition to the effect of averaging 17 yr. Finally, kriging used the information from 10 

neighbor pixels to reduce the effect of the extremes. This should not have affected the regional pattern. To evaluate whether 

this was the case and to quantify the effect of all smoothing steps, we used the data from Fischer et al. (2016), who 

calculated rain erosivity from 5-min-resolution radar data for two years (2011 and 2012) and an area of 14 358 km² (yielding 

a total of 28 770 pixel years), called “test region” in the following. Using these data we calculated semivariograms after each 

smoothing step from annual to biennial erosivities based on 5-min and 1-h resolution, for 17-yr average erosivities, for 15 

winsorized averages and finally for kriged values. Smoothing should reduce the influence of individual violent thunderstorm 

cells and reveal the regional pattern. In geostatistical analysis this decreases the sill of the semivariogram while the range 

increases as it changes from being dominated by thunderstorm cells to being dominated by the regional pattern. 

2.3 Return periods 

Rain erosivity usually follows long-tailed distributions, which leads to the question of how frequent years of extraordinarily 20 

large erosivity are, which requires the development of cumulative distribution curves (for basic concepts see Stedinger et al., 

1993). Seventeen years are not sufficient to reliably estimate a cumulative distribution curve for every pixel. We combined 

all data (452 503 pixels and 17 yr) after expressing the event erosivities of all individual years relative to the winsorized and 

bias-corrected mean of each pixel (in percent). This enabled the cumulative distribution curves to be calculated from a large 

data set (n = 7.7 million) and the expected maximum relative annual erosivity for a given return period to be estimated from 25 

the complementary cumulative distribution curve (exceedance). This was also done for the relative annual erosivities of the 

test region, calculated from 1-h rain data, to examine whether the general cumulative distribution curve also applies to 

smaller regions. 

The erosivities, when calculated from 1-h rain data, are already smoothed and do not adequately reflect the extremes that 

result from data that are more highly resolved, such as the 5-min rain data. The cumulative distribution curve for the test 30 

region was also calculated using the 5-min rain data. Given that the cumulative distribution curves of the entire study area 

and the test region agree for the relative erosivities calculated from 1-h data, this can also be expected to be the case for the 
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relative erosivities calculated from 5-min rain data. The cumulative distribution curve for the test region calculated from 5-

min data will then be a fair estimate of the return periods anywhere in the research area. 

2.4 Annual cycle of rain erosivity 

The seasonal variation, calculated as the relative contribution of each day to total erosivity, is called erosion index 

distribution or EI distribution (Wischmeier and Smith, 1978). It is required in erosion modeling to determine the influence of 5 

seasonally varying soil cover due to crop development. The convolution of the seasonal effect of soil cover with the seasonal 

EI distribution results in the so-called crop and cover factor (C factor). The EI distribution was calculated for each pixel and 

averaged over all 452 503 pixels. Seventeen years of data still did not suffice to show similar amounts of erosivity on 

subsequent days, despite the large number of pixels. There was still considerable scatter that required smoothing to illustrate 

the seasonal distribution. Smoothing between individual days during the year involved three steps (for details of the methods 10 

see Tukey, 1977): first a 13-d centered median was calculated for each day. A centered median preserves the common trend 

signal and the level shifts in the smooth (Gallagher and Wise, 1981), which is also true for the two subsequent steps. A 3-d 

skip mean (leaving out the second day) was calculated from the results, followed by a 25-d centered hanning mean (weighted 

mean with linearly decreasing weights). The year was recycled to allow the smoothing methods to be applied at the 

boundaries. 15 

The EI distribution deviated from the EI distribution used previously. This was especially pronounced during the winter 

months. However, radar measurements tend to have larger errors during wintertime with snowfall. The reduced reflectivity 

of snow particles may lead to an underestimation of the precipitation rate, while the increased reflectivity of melting particles 

in the bright band may cause on overestimation. Moreover, the lower boundary layer promotes a potential overshooting of 

the radar beam with regard to the precipitating cloud. Therefore, we also calculated the EI distribution using data from 115 20 

rain gauges distributed throughout Germany and covering 2001 to 2016. These data were taken from Fischer et al. (2018). 

This data set will also be used in the discussion for comparison of recent radar-derived erosivities with recent raingauge-

derived erosivities and with historic raingauge-derived erosivities taken from literature. 

3 Results 

3.1 Erosivity map 25 

The regional pattern (Fig. 2) was mainly determined by orography. Highest values (above 185 N h
−1 

yr
−1

) were found in the 

very south where the northern chain of the Alps reaches altitudes of almost 3000 m above sea level (a.s.l.). Smaller mountain 

ranges are also characterized by high mean annual erosivities. For instance, the Bavarian Forest, in the southeast on the 

Czech border with elevations of up to 1450 m a.s.l., exhibited annual erosivities of above 155 N h
−1 

yr
−1

. The Ore Mountains 

in the east also on the Czech border, with elevations of up to 1244 m a.s.l., had erosivities mostly between 125 and 155 N h
−1 

30 

yr
−1

. Also mountain ranges like the Black Forest (a mountain range in southwestern Germany oriented north-south) or the 
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Harz Mountains (an area of high erosivities located almost in the middle of northern Germany) clearly shape the erosivity 

map. Upwind-downwind effects were detectable. For example, the areas west-north-west (upwind) of the Harz Mountains 

had erosivities of between 70 and 80 N h
−1 

yr
−1

, while the areas east-south-east (downwind) received less than 65 N h
−1 

yr
−1

.  

3.2 The effects of smoothing 

Winsorizing reduced the standard deviation (SD) of a pixel over time from, on average, 49 N h
−1 

yr
−1

 to 39 N h
−1 

yr
−1

, while 5 

bias correction left the mean for all pixels unchanged at 98 N h
−1 

yr
−1

. Using kriging, the mean remained the same at 98 N h
−1 

yr
−1

, because kriging is an unbiased linear interpolator that smoothed locally (over distances of about 10 to 15 km). Only the 

very extreme values disappeared. Values lower than 45 N h
−1 

yr
−1

, which had contributed 0.06% to the winsorized data, 

disappeared. In addition, values larger than 450 N h
−1 

yr
−1

, which had contributed 0.03% to the winsorized data, also 

disappeared. 10 

Rain erosivity from 5-min resolution data for the test region showed large small-scale variability, even for annual sums of 

erosivity (Fig. 3, upper panel). The range was only 20 km, indicating that the annual pattern was dominated by individual 

cells of violent rain. The semivariance for a lag of 20 km was 2749 N
2
 h

-2
 yr

-2
 (Table 1). Using the normal distribution, in 

31.8% of all cases the difference between two pixels separated by 20 km must then be larger than 52 N h
-1

 yr
-1

 (square root 

of 2749 N
2
 h

-2
 yr

-2
), which is more than half the average annual erosivity in Germany. After averaging both years (2011 and 15 

2012), the semivariance for a lag of 20 km was reduced to 1569 N
2
 h

-2
 yr

-2
 and the range stayed the same at approximately 

20 km. Both findings indicated that even after averaging two years, the individual cells of violent rain were still fully 

detectable and had not merged to form a larger pattern.  

The effect when using data with a resolution of 1 h was almost as strong as when two years were averaged. Semivariance at 

a lag of 20 km was only 1667 N
2
 h

-2
 yr

-2
 for annual values and 953 N

2
 h

-2
 yr

-2
 for biannual averages. Even more importantly, 20 

due to smoothing of the extreme events, the regional trend became better visible. This trend is evident from the gradual 

increase in semivariance over the entire range of lags shown in Fig. 3. This regional trend was already detectable in the 

annual erosivities calculated from 5-min data (Table 1), but did not appear to be significant due to the large semivariance 

caused by cells of violent rain. Importantly, smoothing using 1-h data did not change overall erosivity. The biannual average 

for the test region was 115 N h
-1

 yr
-1

 when calculated from 5-min data and 114 N h
-1

 yr
-1

 when calculated from 1-h data.  25 

Averaging 17 yr further reduced variability (Fig 3, upper panel). Semivariance strongly decreased to 197 N
2
 h

-2
 yr

-2
 and the 

influence of individual cells of violent rain became small relative to the regional trend, leading to an almost linear increase in 

semivariance over distance. The influence of extraordinary years in individual pixels was further reduced by winsorizing, 

which slightly reduced semivariance at 20 km distance to 190 N
2
 h

-2
 yr

-2
.  

Finally, kriging reduced semivariance at 20 km distance to 121 N
2
 h

-2
 yr

-2
, leaving mainly the regional trend. Thus, the step 30 

from 5-min to 1-h resolution reduced semivariance at 20 km by a factor of 1.6; averaging 17 yr reduced semivariance by a 

factor of 8.5; winsorizing contributed a factor of 1.04 and kriging a factor of 1.6. In total, semivariance was reduced by a 

factor of 23, indicating a pronounced patchiness of erosive rains on the annual scale that could not be leveled out by 
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averaging 17 years alone. These factors became larger at shorter distances (e.g. the combined factor was 32 for a lag of 10 

km) because the importance of thunderstorm cells, relative to the regional trend, increased. Correspondingly, the combined 

effect decreased with increasing distance (e.g., the factor was only 13 for a lag of 40 km) because the regional trend, which 

was not removed by the smoothing procedures, became increasingly important. The regional trend, extracted from the 

change in semivariance between lags of 20 km and 40 km, remained practically unchanged at 0.2 N h
-1

 yr
-1

 km
-1

, 5 

independent of the degree of smoothing (Table 1). In contrast, the effect of violent rain cells decreased greatly from 2.4 N h
-1

 

yr
-1

 km
-1

 to 0.3 N h
-1

 yr
-1

 km
-1

.  

After winsorizing and kriging, the semivariances for the test region followed a linear regression through the origin almost 

perfectly (r² = 0.9889, n = 50). This indicated that the variation in erosivity over a distance of 50 km followed linear trends 

without any noise (nugget) or small-range structures that could be attributed to individual cells of violent rain. The 10 

semivariances, when calculated for the whole of Germany, were considerably higher (twice as high at a lag of 50 km; Fig. 3, 

lower panel) and close to a linear trend only for short distances (e.g. a linear regression through the origin for the first 15 km 

yielded r² = 0.9905). For larger distances, the semivariogram followed an exponential model (nugget 4 N
2
 h

-2
 yr

-2
, partial sill 

970 N
2
 h

-2
 yr

-2
, effective range 123 km). The inclusion of mountain areas with high erosivities and steep erosivity gradients 

that were missing in the test region led to both the higher semivariance and the exponential model. 15 

3.3 Return periods 

The cumulative distribution of the relative annual erosivities followed a straight line in a probability plot fairly well when the 

logarithm was used (Fig. 4), indicating a log-normal distribution (log mean 1.96; log SD 0.19). A very similar cumulative 

distribution was found for annual values derived from the 1-h data of the test region (log mean 1.97; log SD 0.18), while the 

distribution was considerably wider for the less-smoothed 5-min data (log mean 1.94; log SD 0.22). The annual expected 20 

erosivity was 88%, 216% and 273% of the respective mean for return periods of 2 yr, 30 yr, and 100 yr when the 5-min data 

were used (Fig. 4). It is important to note that these values apply for averages of 1 km² pixels and include the smoothing that 

results from the radar measurement, the radar reprocessing, and from using 5-min rain increments. Even extremer years are 

expected to occur in reality.   

3.4 Erosion index distribution 25 

There was a pronounced peak in the relative seasonal variation during summer months (Fig. 5). The relative daily erosion 

index increased rapidly from mid-April to mid-May to a mean of 0.61 % d
-1

 in June, July and August, and declined rapidly 

again from mid-August to September. The contribution of winter months was small (mean of December, January, February, 

and March: 0.08 % d
-1

). Even more striking was the fact that this pattern required considerable smoothing to yield a 

continuous seasonal time course. The difference between subsequent days in the unsmoothed data was enormous (e.g., 1.5 % 30 

d
-1

, 0.4% d
-1

 and 0.4% d
-1

 on July 29, 30 and 31). This was despite the large number of measurements (17 yr and 455 309 

pixels) that were averaged for each day. It highlights how extreme some violent rains must be. Despite the rather small 
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extent of individual erosivity cells, many of them occurred at the same day making a high relative contribution to total 

erosivity for this day. While particular days of the year are influenced by heavy precipitation, during other days no erosive 

rain fell anywhere within the research area. Seventeen years were not sufficient to level out the contrast between subsequent 

days. The results of the smoothing procedure show that even 221 yr (17 yr multiplied by a moving-average window of 13 d) 

would not be sufficient to level out these differences because two additional smoothing steps had to be applied to arrive at a 5 

smooth time course.  

The EI distribution, when calculated from rain gauge data (1840 station years), was very similar to the distribution calculated 

from the much larger radar data set. This was especially true during winter months, when values derived from both 

measurement methods were considerably higher than expected. 

4 Discussion 10 

4.1 Increase in erosivity 

The most striking difference between the German R map presently in use (Sauerborn, 1994) and the radar-derived map is a 

pronounced increase in erosivity. A German average of 58 N h
−1 

yr
−1

 was derived from the Sauerborn map (1994) 

(Auerswald et al., 2009), while the radar-based map suggests an average of 98 N h
−1 

yr
−1

. This will increase predicted soil 

losses by 69%. An almost identical increase resulted when the erosivity of meteorological stations, as reported by Sauerborn 15 

(1994), was compared with the erosivity derived from radar data at the same locations, which resulted in an increase of 63% 

(Fig. 6). Thus, the increase in erosivity is not an effect of the regression approach that was previously used or due to better 

capturing of extreme events by the contiguous radar data. 

Fischer et al. (2018) calculated erosivity for 33 of the Sauerborn stations from recent (2001 to 2016) rain gauge data. A 

comparison of these data with the Sauerborn data (1994) also showed a similar increase of 52% (Fig. 5). The increase in 20 

erosivity between the Sauerborn map (1994) and the new radar-derived map is thus also not an artifact of using radar data 

but the result of a true change in erosivity over time. This is further corroborated by Fiener et al. (2013), who analyzed long-

term records from ten meteorological stations in western Germany. They found an increase in erosivity of 63% between 

1973 and 2007. Both independent findings leave little doubt that the pronouncedly higher values in the new erosivity map 

are a result of a change in weather properties and not a result of the difference in the applied methodologies, although we did 25 

expect the mean to increase due to the contiguous data set, which is better at recording rare extremes. 

4.2 Change in the regional pattern 

The regional patterns of the Sauerborn erosivity map (1994) that is currently used, and that of the radar-based map, generally 

agree well, but with two exceptions. First, the radar-based map shows distinctly higher values south-east of the German 

Bight where the air masses coming from the North Sea are channeled by the Elbe river estuary and its Pleistocene meltwater 30 

valley and then hit the higher areas of the North German moraines. A high frequency of large rains is not unlikely in this 
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situation. The reason that this was missed by Sauerborn (1994) using the data obtained by Hirche (1990) for Lower Saxony 

is mainly due to the low data density and the regression approach. Only 18 stations were available for the whole of Lower 

Saxony and only five of them were in the area of high erosivity. Using the 18 stations in the state of Lower Saxony only, and 

ignoring the difference between landscapes, resulted in a rather poor regression with long-term annual rainfall (r² was only 

0.32), and therefore a large prediction error and considerable smoothing of the true erosivity pattern can be expected. For 5 

comparison: in Bavaria the regression with long-term rainfall yielded r² of 0.92 (Rogler and Schwertmann, 1981). 

The second difference in the pattern is that the radar-derived map reveals more detail than the regression-based map by 

Sauerborn (1994). This is especially evident in southern Germany where southwest-northeast oriented structures seem to 

follow thunderstorm trains. In the north-east quarter of Germany, where the pattern is not shaped by mountain ranges, a 

rather patchy pattern resulted. Although Sauerborn (1994) had already found a patchy pattern in this area it appears to be 10 

patchier now. It is, at present, difficult to decide whether this pattern is random due to large multi-cell clusters of rainstorms 

and will level out on the long term, or whether landscape properties, e.g. the existence of large forests, cause a stable pattern 

in an area where other factors affecting the pattern are missing. More detailed variation may also be expected in mountainous 

areas but radar measurements cannot adequately show this variation. In the future, using data obtained by commercial 

microwave links as an additional source for retrieving precipitation (Chwala et al., 2012, 2016; Overeem et al., 2013) may 15 

improve high resolution estimates, particularly in these areas. 

4.3 Change in the seasonal distribution of the erosion index 

The third pronounced difference was found for the erosion index distribution needed for C-factor calculations. A change in 

the seasonality of erosivity was already suggested by Fiener et al. (2013) analyzing an 80-yr time series. However, Fiener et 

al. (2013) used data from April to October only, and their results therefore cannot be compared directly with our results that 20 

show the most pronounced changes for the period from December to March. 

At present, only the erosion index developed by Rogler and Schwertmann (1981) for Bavaria is used for C-factor 

calculations in Germany (e.g. Schwertmann et al., 1990; DIN, 2017), although unpublished erosion indices are also available 

for other federal states (e.g., Hirche, 1990). The index by Rogler and Schwertmann (1981) is characterized by very low 

values during winter months, which in turn causes a sharp increase during summer months. In contrast, the radar-based 25 

index, although still having a pronounced summer maximum, predicts a higher percentage of erosivity during winter. Rogler 

and Schwertmann (1981) found that only 1.5% of the annual erosivity fell from January to March, while Fig. 5 indicates that 

these months contributed 6.9% to annual erosivity. This deviation may be caused by a regional variation in the erosion index 

because the unpublished indices for other federal states also suggested a higher contribution by winter months (e.g., January 

to March contributed 7.5% in Lower Saxony according to Hirche, 1990). However, restricting our data set to Bavaria led to a 30 

very similar index during winter months (e.g., 6.2% for January to March) to the index for the whole of Germany and the 

discrepancy with Rogler and Schwertmann (1981) remained.  
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A second explanation is that the Rogler and Schwertmann data (1981) were too limited to capture enough erosive rains. This 

explanation is corroborated by the large scatter between individual days that still exists in our data set (Fig. 5), although our 

data set was more than 50 000 times larger than the data set used by Rogler and Schwertmann (1981).  

A third explanation could again be climate change. In Germany extreme rainfall events have increased in winter by 463% 

during the last century with the trend greatest during the last few decades, while summer and autumn remained unchanged 5 

(Schönwiese et al., 2003). 

The change in erosion index may be regarded as being rather unimportant at first glance because erosivity is still dominated 

by precipitation in summer. This small increase in erosivity during the winter months, however, could have important 

consequences for the C factor of crops that, due to their crop development stage, provide only a small amount of soil cover 

during the winter. As there is practically no growth during winter, these crops are susceptible to erosion over a long period 10 

and thus experience a considerable amount of erosivity, even though erosivity per day is low. Calculating the C factor for 

continuous winter wheat from the soil loss ratios and cropping-stage dates reported by Schwertmann et al. (1990) yields a C 

factor of 0.04 if the erosion index from Rogler and Schwertmann (1980) is used. The C factor increases to 0.10 when the 

erosion index in Fig. 5 is applied. Thus, the predicted soil loss for continuous wheat is more than twice as high as previously 

expected due to the change in the erosion index (and four times higher if the change in erosivity is also considered). While 15 

the C factor of the maize year in a typical maize-winter wheat rotation is currently regarded to be eight times higher than that 

of winter wheat, it is only four times higher when the new erosion index is applied. Furthermore, the C factor of the entire 

rotation increases by 15%. 

4.4 Stochasticity 

Soil erosion is characterized by a large temporal variability at a small spatial scale due to the stochastic character of erosive 20 

rains. About 20 yr are necessary, according to Wischmeier and Smith (1978), until this variability levels out and average soil 

loss approaches values predicted with the (R)USLE. Our data set covered 17 yr but significant additional smoothing was still 

necessary. This implies that 20 yr will still not be sufficient to level out extraordinary events. Most studies measuring soil 

erosion under natural rain use much shorter intervals that usually cover only a few years and rarely exceed ten years (see 

Auerswald et al., 2009, for a meta-analysis of German studies and Cerdan et al., 2010, for European studies). The 25 

interpretation of such short-term studies and the applicability of the results are limited due to the pronounced variability of 

natural rains. 

We applied stepwise smoothing in order to minimize the disadvantages inherent in different smoothing procedures and to be 

able to smooth in time and space. We used rain data with hourly resolution instead of more highly resolved data and 

compensated for the disadvantages by using a scaling factor and by adjusting the threshold intensity according to Fischer et 30 

al. (2018). This procedure smoothed between individual rains. We added winsorizing and bias correction to smooth between 

years at a certain location. Finally, we added geostatistical smoothing to level out differences between neighboring locations 

caused by the small spatial extent of erosive rain cells. While the effects of winsorizing and geostatistical smoothing are 
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rather easy to assess, the effects are less clear when hourly resolved data are used, although the mean erosivity was identical 

for our test region when calculated with both resolutions. The pronounced influence of orography on the R-factor map could 

have, at least partly, been caused by this smoothing step. Orographic rainfall may increase hourly rainfall but it may not, to 

the same degree, increase high intensity peaks that exert a dominant influence on erosivity.  Still, this is presently speculative 

because the high variability of erosive events means that this question cannot be answered using a 17-yr time series. In one 5 

or two decades the data series may be long enough to use data of 30-min or even 5-min resolution. 

In addition, the erosion index required pronounced smoothing to improve representation of the seasonal variation. The shift 

of a certain crop stage by only one day can cause large discrepancies in the resulting C factor, depending on whether a day of 

large erosivity in the past is included or excluded at the bounds of the crop stage. Smoothing can prevent this. This is 

especially important for short crop stages, while the effect becomes small for longer periods. For instance, the monthly sums 10 

of the smoothed data correlated closely with the sums of the unsmoothed data (coefficient of determination: 0.995; Nash-

Sutcliffe efficiency: 0.994). 

5. Conclusions 

Radar-derived rainfall enables highly resolved and contiguous maps of erosivity to be derived. This yielded a rain erosivity 

map with high spatial detail and avoided errors in landscapes with insufficient rain gauge density. The data showed that 15 

present (2001 to 2017) rain erosivity is considerably higher than previously expected. Furthermore, the seasonal distribution 

of rain erosivity also deviated from current expectations and indicated that winter months make a higher contribution to total 

erosivity than previously thought. Considerably more erosion can be expected for crops that are at a highly susceptible stage 

of development in winter. In consequence, the predicted soil loss will change pronouncedly by using radar-derived erosivity 

and the ranking of crops regarding their erosion potential will change. This will have definite consequences for agricultural 20 

extension and advisory services, landscape planning and even political decisions.  
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Figure 1: Coverage (blue circles) of the 17 German rain radars for a range of 128 km and the 2017 configuration (locations of 

some radar towers have changed over time). Black lines denote federal states; the federal states of Bavaria (cross-hatched), Lower 

Saxony (hatched) and selected mountain ranges (light brown) are mentioned in the text. Axis ticks represent distances of 100 km. 
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Figure 2: Erosivity map of Germany from 17 yr of radar rain data. Axes ticks represent distances of 100 km. Color classes from 

yellow to dark blue comprise approximately 10%, 20%, 20%, 25%, 15%, 4%, 3%, and 3% of the area, respectively. For 

comparison with the map before winsorizing and before kriging see Figs. A1 and A2 in the Appendix. For average values for the 

294 local authority areas (average size 1214 km²), see Table A1 in the Appendix. Average values for the 11 254 communities 5 
(average size 32 km²) can be obtained at https://www.lfl.bayern.de/iab/index.php. 
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Figure 3: Upper panel: Semivariograms of erosivity for different temporal resolutions of rain data (5 min and 1 h), different 

averaging (1 yr, 2 yr, 17 yr), winsorizing and kriging for the test region (for selected lag classes see Table 1). The line through the 

semivariances of the 1 h, 17 yr, winsorized and kriged data is a linear regression through the origin (r² = 0.9889).   

Lower panel: Comparison of semivariances for the 1 h, 17 yr and winsorized data before kriging for the test region and for the 5 
whole of Germany. 
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Figure 4: Cumulative distribution curve of the annual R factor relative to the long-term annual mean of a pixel. Dashed black line 

applies for erosivities derived from 1-h data for the whole of Germany and 17 yr (n = 7.7 million). Solid green line applies for 

erosivities derived from 5-min data for the test region and 2 yr (n = 24 770). Straight vertical and horizontal lines indicate return 

periods between 2 yr and 100 yr. The y axis is probability scaled, the x axis is log scaled.  5 

 

 

Figure 5: Measured (circles) and smoothed (solid blue line) daily erosion index. The daily erosion index calculated from 

measurements between 2001 and 2016 at 115 rain gauges distributed throughout Germany is given for comparison (orange dashed 

line). For C-factor calculations the smoothed values can be taken from Table A2 in the Appendix. 10 
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Figure 6: Comparison of erosivities reported by Sauerborn (1994), measured mainly in the 1960s to 1980s, with recent erosivities. 

Recent erosivities were either determined from rain gauge measurements at the same meteorological stations (mean of 2001 to 

2016; taken from Fischer et al., 2018; n = 33; black dots) or from radar data (mean of 2001 to 2017 and all radar pixels at a 

distance of 1.5 km from the meteorological stations; n = 101, white dots). Both axes are square-root scaled to improve resolution at 5 
low erosivities. Dashed line denotes 1:1. Solid lines are regressions through the origin.  

 

Table 1: Influence of temporal resolution of rain data (5 min and 1 h), averaging (1 yr, 2 yr, and 17 yr), winsorizing and kriging on 

the semivariance (gamma) at three lags h. For complete semivariograms see Fig. 3, upper panel.  
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 yr
-1

 km
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5-min annual erosivity 1925 2749 3136 0.2 2.4 

5-min biannual erosivity 1111 1569 1755 0.1 1.9 

1-h annual erosivity 1413 1667 2147 0.3 1.8 

1-h biannual erosivity 782 953 1259 0.2 1.3 

1-h 17-yr mean erosivity 144 197 315 0.2 0.5 

1-h winsorized mean erosivity 139 190 309 0.2 0.5 

1-h kriged erosivity 60 121 239 0.2 0.3 

① The regional trend was calculated as the difference between the square roots of gamma at lags of 40 and 20 km 10 

divided by the difference in lag of 20 km.  

② The effect of violent rain cells was calculated as the square root of gamma at a lag of 20 km divided by the 

difference in lag of 20 km minus the regional trend.  
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Appendix 

 
Figure A1:  Erosivity map of Germany from 17 yr of radar rain data before statistical smoothing by winsorizing, removal of 

spokes and kriging. Axes ticks represent distances of 100 km.  
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Figure A2:  Erosivity map of Germany from 17 yr of radar rain data after winsorizing and removal of spokes but before kriging. 

Axes ticks represent distances of 100 km. 

 

  5 
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Table A1. Mean erosivity (N h−1 yr−1) of all German counties 

County (Landkreis) Identifier Size (km²) Mean R 

Ahrweiler 07131001 789 74.3 

Aichach-Friedberg 09771111 780 109.9 

Alb-Donau-Kreis 08425002 1358 103.4 

Altenburger Land 16077001 570 90.5 

Altenkirchen (Westerwald) 07132001 643 100.4 

Altmarkkreis Salzwedel 15081026 2304 62.2 

Altötting 09171111 569 128.9 

Alzey-Worms 07331001 589 68.7 

Amberg 09361000 50 81.0 

Amberg-Sulzbach 09371111 1255 92.2 

Ammerland 03451001 731 80.6 

Anhalt-Bitterfeld 15082005 1461 68.0 

Ansbach 09561000 2073 80.8 

Aschaffenburg 09661000 762 118.7 

Augsburg 09761000 1218 123.3 

Aurich 03452001 1298 85.0 

Bad Dürkheim 07332001 595 88.4 

Bad Kissingen 09672111 1138 84.9 

Bad Kreuznach 07133001 866 80.5 

Bad Tölz-Wolfratshausen 09173111 1112 257.1 

Baden-Baden. Stadtkreis 08211000 140 131.2 

Bamberg 09461000 1222 85.5 

Barnim 12060005 1481 72.7 

Bautzen 14625010 2397 86.9 

Bayreuth 09462000 1341 108.0 

Berchtesgadener Land 09172111 840 250.0 

Bergstraße 06431001 720 120.7 

Berlin. Stadt 11000000 892 73.2 

Bernkastel-Wittlich 07231001 1173 89.5 

Biberach 08426001 1411 129.8 

Bielefeld. Stadt 05711000 259 94.4 

Birkenfeld 07134001 779 98.1 

Böblingen 08115001 618 96.2 

Bochum. Stadt 05911000 145 103.7 

Bodenseekreis 08435005 666 149.3 

Bonn. Stadt 05314000 142 94.5 

Börde 15083020 2377 58.4 

Borken 05554004 1426 94.4 

Bottrop. Stadt 05512000 101 109.6 

Brandenburg an der Havel. Stadt 12051000 229 78.8 

Braunschweig. Stadt 03101000 192 69.3 

Breisgau-Hochschwarzwald 08315003 1380 163.9 
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Table A1. Mean erosivity (N h−1 yr−1) of all German counties (continued) 

County (Landkreis) Identifier Size (km²) Mean R 

Bremen. Stadt 04011000 326 78.0 

Bremerhaven. Stadt 04012000 94 86.4 

Burgenlandkreis 15084012 1419 77.0 

Calw 08235006 798 105.6 

Celle 03351001 1551 70.8 

Cham 09372112 1527 106.1 

Chemnitz. Stadt 14511000 221 107.5 

Cloppenburg 03453001 1424 80.5 

Coburg 09463000 639 82.4 

Cochem-Zell 07135001 695 80.0 

Coesfeld 05558004 1115 93.1 

Cottbus. Stadt 12052000 165 74.0 

Cuxhaven 03352002 2062 99.6 

Dachau 09174111 580 115.1 

Dahme-Spreewald 12061005 2277 79.2 

Darmstadt. Wissenschaftsstadt 06411000 123 102.3 

Darmstadt-Dieburg 06432001 659 91.5 

Deggendorf 09271111 861 118.8 

Delmenhorst. Stadt 03401000 63 69.6 

Dessau-Roßlau. Stadt 15001000 246 65.0 

Diepholz 03251001 1993 69.9 

Dillingen a.d.Donau 09773111 792 94.7 

Dingolfing-Landau 09279112 877 90.8 

Dithmarschen 01051001 1444 122.5 

Donau-Ries 09779111 1275 87.9 

Donnersbergkreis 07333001 646 89.5 

Dortmund. Stadt 05913000 280 88.7 

Dresden. Stadt 14612000 328 96.9 

Duisburg. Stadt 05112000 234 87.2 

Düren 05358004 944 80.0 

Düsseldorf. Stadt 05111000 218 75.6 

Ebersberg 09175111 550 154.0 

Eichsfeld 16061001 943 68.4 

Eichstätt 09176111 1214 91.0 

Eifelkreis Bitburg-Prüm 07232001 1634 82.0 

Eisenach. Stadt 16056000 105 72.1 

Elbe-Elster 12062024 1901 74.7 

Emden. Stadt 03402000 112 73.3 

Emmendingen 08316002 682 152.6 

Emsland 03454001 2891 81.0 

Ennepe-Ruhr-Kreis 05954004 412 116.1 

Enzkreis 08236004 574 94.5 

Erding 09177112 871 113.8 
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Table A1. Mean erosivity (N h−1 yr−1) of all German counties (continued) 

County (Landkreis) Identifier Size (km²) Mean R 

Erfurt. Stadt 16051000 270 74.5 

Erlangen 09562000 78 81.9 

Erlangen-Höchstadt 09572111 565 80.2 

Erzgebirgskreis 14521010 1827 136.9 

Essen. Stadt 05113000 211 113.5 

Esslingen 08116004 640 109.5 

Euskirchen 05366004 1255 82.3 

Flensburg. Stadt 01001000 57 108.8 

Forchheim 09474119 643 98.3 

Frankenthal (Pfalz). kreisfreie Stadt 07311000 44 80.3 

Frankfurt (Oder). Stadt 12053000 148 89.6 

Frankfurt am Main. Stadt 06412000 249 94.2 

Freiburg im Breisgau. Stadtkreis 08311000 155 139.1 

Freising 09178113 798 107.1 

Freudenstadt 08237002 873 160.4 

Freyung-Grafenau 09272116 985 175.0 

Friesland 03455007 619 85.5 

Fulda 06631001 1382 85.6 

Fürstenfeldbruck 09179111 435 133.2 

Fürth 09563000 371 78.3 

Garmisch-Partenkirchen 09180112 1012 215.8 

Gelsenkirchen. Stadt 05513000 106 108.9 

Gera. Stadt 16052000 152 78.2 

Germersheim 07334001 464 90.3 

Gießen 06531001 857 88.0 

Gifhorn 03151001 1570 72.1 

Göppingen 08117001 643 119.3 

Görlitz 14626010 2113 96.8 

Goslar 03153002 969 122.9 

Gotha 16067003 936 82.2 

Göttingen 03159001 1756 92.2 

Grafschaft Bentheim 03456001 985 80.6 

Greiz 16076003 846 84.2 

Groß-Gerau 06433001 454 73.4 

Günzburg 09774111 764 112.4 

Gütersloh 05754004 971 79.6 

Hagen. Stadt der FernUniversität 05914000 161 104.8 

Halle (Saale). Stadt 15002000 136 78.3 

Hamburg. Freie und Hansestadt 02000000 753 87.7 

Hameln-Pyrmont 03252001 799 79.0 

Hamm. Stadt 05915000 228 77.6 

Harburg 03353001 1250 88.4 

Harz 15085040 2108 73.0 
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Table A1. Mean erosivity (N h−1 yr−1) of all German counties (continued) 

County (Landkreis) Identifier Size (km²) Mean R 

Haßberge 09674111 957 83.4 

Havelland 12063036 1728 74.5 

Heidekreis 03358001 1883 80.3 

Heidelberg. Stadtkreis 08221000 109 124.1 

Heidenheim 08135010 628 99.8 

Heilbronn 08125001 1100 90.5 

Heilbronn. Stadtkreis 08121000 101 79.9 

Heinsberg 05370004 630 71.1 

Helmstedt 03154001 676 61.0 

Herford 05758004 451 89.9 

Herne. Stadt 05916000 52 104.6 

Hersfeld-Rotenburg 06632001 1099 76.6 

Herzogtum Lauenburg 01053001 1263 78.6 

Hildburghausen 16069001 938 90.1 

Hildesheim 03254002 1208 74.4 

Hochsauerlandkreis 05958004 1963 107.5 

Hochtaunuskreis 06434001 482 108.3 

Hof 09464000 952 95.5 

Hohenlohekreis 08126011 778 97.5 

Holzminden 03255001 695 84.1 

Höxter 05762004 1202 80.5 

Ilm-Kreis 16070001 844 97.1 

Ingolstadt 09161000 134 90.5 

Jena. Stadt 16053000 115 79.0 

Jerichower Land 15086005 1589 69.9 

Kaiserslautern 07335002 642 97.5 

Kaiserslautern. kreisfreie Stadt 07312000 141 100.7 

Karlsruhe 08215007 1086 90.8 

Karlsruhe. Stadtkreis 08212000 174 98.7 

Kassel 06633001 1296 69.7 

Kassel. documenta-Stadt 06611000 105 66.7 

Kaufbeuren 09762000 40 168.0 

Kelheim 09273111 1065 91.9 

Kempten (Allgäu) 09763000 63 222.1 

Kiel. Landeshauptstadt 01002000 120 92.5 

Kitzingen 09675111 684 81.1 

Kleve 05154004 1238 98.9 

Koblenz. kreisfreie Stadt 07111000 106 80.2 

Köln. Stadt 05315000 408 91.3 

Konstanz 08335001 819 121.1 

Krefeld. Stadt 05114000 137 83.1 

Kronach 09476145 652 107.4 

Kulmbach 09477117 658 100.4 
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Table A1. Mean erosivity (N h−1 yr−1) of all German counties (continued) 

County (Landkreis) Identifier Size (km²) Mean R 

Kusel 07336001 575 101.2 

Kyffhäuserkreis 16065001 1038 61.5 

Lahn-Dill-Kreis 06532001 1067 102.7 

Landau in der Pfalz. kreisfreie Stadt 07313000 83 104.7 

Landkreis Rostock 13072001 3429 59.5 

Landsberg am Lech 09181111 804 156.0 

Landshut 09261000 1414 103.9 

Leer 03457002 1089 72.8 

Leipzig 14729010 1652 79.9 

Leipzig. Stadt 14713000 299 87.6 

Leverkusen. Stadt 05316000 79 98.0 

Lichtenfels 09478111 520 80.7 

Limburg-Weilburg 06533001 740 95.0 

Lindau (Bodensee) 09776111 323 306.6 

Lippe 05766004 1247 99.9 

Lörrach 08336004 809 182.7 

Lübeck. Hansestadt 01003000 212 76.1 

Lüchow-Dannenberg 03354001 1227 73.6 

Ludwigsburg 08118001 687 88.6 

Ludwigshafen am Rhein. kreisfreie Stadt 07314000 78 87.5 

Ludwigslust-Parchim 13076001 4768 71.8 

Lüneburg 03355001 1327 80.4 

Magdeburg. Landeshauptstadt 15003000 201 54.2 

Main-Kinzig-Kreis 06435001 1398 110.4 

Main-Spessart 09677114 1323 95.1 

Main-Tauber-Kreis 08128006 1306 93.8 

Main-Taunus-Kreis 06436001 222 102.2 

Mainz. kreisfreie Stadt 07315000 98 68.4 

Mainz-Bingen 07339001 607 68.8 

Mannheim. Stadtkreis 08222000 145 92.9 

Mansfeld-Südharz 15087010 1456 66.8 

Marburg-Biedenkopf 06534001 1264 83.0 

Märkischer Kreis 05962004 1064 121.3 

Märkisch-Oderland 12064009 2159 80.6 

Mayen-Koblenz 07137001 819 69.6 

Mecklenburgische Seenplatte 13071001 5496 67.2 

Meißen 14627010 1458 76.5 

Memmingen 09764000 70 157.0 

Merzig-Wadern 10042111 559 108.4 

Mettmann 05158004 409 101.9 

Miesbach 09182111 867 281.4 

Miltenberg 09676111 716 105.2 

Minden-Lübbecke 05770004 1153 77.0 
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Table A1. Mean erosivity (N h−1 yr−1) of all German counties (continued) 

County (Landkreis) Identifier Size (km²) Mean R 

Mittelsachsen 14522010 2115 102.9 

Mönchengladbach. Stadt 05116000 171 76.8 

Mühldorf a.Inn 09183112 805 110.8 

Mülheim an der Ruhr. Stadt 05117000 92 101.4 

München 09184112 664 161.1 

München. Landeshauptstadt 09162000 311 149.4 

Münster. Stadt 05515000 304 88.9 

Neckar-Odenwald-Kreis 08225001 1127 104.4 

Neuburg-Schrobenhausen 09185113 740 93.8 

Neumarkt i.d.OPf. 09373112 1345 92.8 

Neumünster. Stadt 01004000 71 100.2 

Neunkirchen 10043111 249 117.5 

Neustadt a.d.Aisch-Bad Windsheim 09575112 1268 81.8 

Neustadt a.d.Waldnaab 09374111 1428 88.8 

Neustadt an der Weinstraße. kreisfreie Stadt 07316000 118 92.1 

Neu-Ulm 09775111 516 121.0 

Neuwied 07138002 629 80.4 

Nienburg (Weser) 03256001 1403 66.6 

Nordfriesland 01054001 2090 101.3 

Nordhausen 16062002 714 63.2 

Nordsachsen 14730010 2028 73.1 

Nordwestmecklenburg 13074001 2125 68.6 

Northeim 03155001 1270 81.7 

Nürnberg 09564000 188 82.7 

Nürnberger Land 09574111 798 103.9 

Oberallgäu 09780112 1529 315.6 

Oberbergischer Kreis 05374004 920 144.4 

Oberhausen. Stadt 05119000 78 103.9 

Oberhavel 12065036 1808 71.3 

Oberspreewald-Lausitz 12066008 1224 75.4 

Odenwaldkreis 06437001 626 124.6 

Oder-Spree 12067024 2259 81.0 

Offenbach 06438001 357 83.0 

Offenbach am Main. Stadt 06413000 45 88.5 

Oldenburg 03458001 1067 73.1 

Oldenburg (Oldenburg). Stadt 03403000 104 78.8 

Olpe 05966004 713 124.0 

Ortenaukreis 08317001 1864 137.3 

Osnabrück 03459001 2125 83.1 

Osnabrück. Stadt 03404000 120 85.0 

Ostalbkreis 08136002 1511 106.0 

Ostallgäu 09777111 1394 215.5 

Osterholz 03356001 654 84.5 
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Table A1. Mean erosivity (N h−1 yr−1) of all German counties (continued) 

County (Landkreis) Identifier Size (km²) Mean R 

Ostholstein 01055001 1394 77.3 

Ostprignitz-Ruppin 12068052 2526 77.0 

Paderborn 05774004 1248 91.8 

Passau 09262000 1600 121.0 

Peine 03157001 536 65.8 

Pfaffenhofen a.d.Ilm 09186113 761 100.8 

Pforzheim. Stadtkreis 08231000 98 89.3 

Pinneberg 01056001 664 97.6 

Pirmasens. kreisfreie Stadt 07317000 62 99.4 

Plön 01057001 1084 83.3 

Potsdam. Stadt 12054000 187 70.5 

Potsdam-Mittelmark 12069017 2593 78.3 

Prignitz 12070008 2139 69.6 

Rastatt 08216002 740 126.3 

Ravensburg 08436001 1633 178.3 

Recklinghausen 05562004 763 100.3 

Regen 09276111 975 164.4 

Regensburg 09362000 1473 84.4 

Region Hannover 03241001 2299 70.8 

Regionalverband Saarbrücken 10041100 413 103.7 

Remscheid. Stadt 05120000 74 150.4 

Rems-Murr-Kreis 08119001 858 119.4 

Rendsburg-Eckernförde 01058001 2190 104.7 

Reutlingen 08415014 1093 119.8 

Rhein-Erft-Kreis 05362004 705 76.4 

Rheingau-Taunus-Kreis 06439001 814 88.0 

Rhein-Hunsrück-Kreis 07140001 994 84.1 

Rheinisch-Bergischer Kreis 05378004 439 120.3 

Rhein-Kreis Neuss 05162004 579 72.2 

Rhein-Lahn-Kreis 07141001 783 87.8 

Rhein-Neckar-Kreis 08226003 1062 114.3 

Rhein-Pfalz-Kreis 07338001 305 88.5 

Rhein-Sieg-Kreis 05382004 1155 96.8 

Rhön-Grabfeld 09673113 1022 74.7 

Rosenheim 09163000 1477 210.4 

Rostock 13003000 181 68.4 

Rotenburg (Wümme) 03357001 2075 92.6 

Roth 09576111 895 84.9 

Rottal-Inn 09277111 1281 102.6 

Rottweil 08325001 771 115.4 

Saale-Holzland-Kreis 16074001 816 85.5 

Saalekreis 15088020 1440 73.1 

Saale-Orla-Kreis 16075002 1152 84.8 
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Table A1. Mean erosivity (N h−1 yr−1) of all German counties (continued) 

County (Landkreis) Identifier Size (km²) Mean R 

Saalfeld-Rudolstadt 16073001 1036 87.1 

Saarlouis 10044111 461 105.3 

Saarpfalz-Kreis 10045111 420 101.3 

Sächsische Schweiz-Osterzgebirge 14628010 1654 111.7 

Salzgitter. Stadt 03102000 225 73.6 

Salzlandkreis 15089005 1435 61.5 

Schaumburg 03257001 677 81.9 

Schleswig-Flensburg 01059001 2072 106.8 

Schmalkalden-Meiningen 16066001 1211 84.7 

Schwabach 09565000 41 73.6 

Schwäbisch Hall 08127008 1485 94.6 

Schwalm-Eder-Kreis 06634001 1541 70.7 

Schwandorf 09376112 1458 81.5 

Schwarzwald-Baar-Kreis 08326003 1028 135.6 

Schweinfurt 09662000 877 71.0 

Schwerin 13004000 130 64.8 

Segeberg 01060002 1346 92.6 

Siegen-Wittgenstein 05970004 1136 121.3 

Sigmaringen 08437005 1206 118.3 

Soest 05974004 1332 88.1 

Solingen. Klingenstadt 05122000 89 115.1 

Sömmerda 16068001 807 64.6 

Sonneberg 16072001 433 125.5 

Speyer. kreisfreie Stadt 07318000 43 89.0 

Spree-Neiße 12071028 1658 77.5 

St. Wendel 10046111 478 122.4 

Stade 03359001 1268 97.1 

Städteregion Aachen 05334002 707 105.9 

Starnberg 09188113 487 169.0 

Steinburg 01061001 1057 107.7 

Steinfurt 05566004 1800 95.6 

Stendal 15090003 2437 64.5 

Stormarn 01062001 766 87.6 

Straubing 09263000 67 90.5 

Straubing-Bogen 09278112 1201 103.8 

Stuttgart. Stadtkreis 08111000 210 92.0 

Südliche Weinstraße 07337001 641 104.2 

Südwestpfalz 07340001 957 109.7 

Suhl. Stadt 16054000 102 123.8 

Teltow-Fläming 12072002 2104 73.0 

Tirschenreuth 09377112 1085 96.5 

Traunstein 09189111 1533 232.0 

Trier. kreisfreie Stadt 07211000 116 77.3 
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Table A1. Mean erosivity (N h−1 yr−1) of all German counties (continued) 

County (Landkreis) Identifier Size (km²) Mean R 

Trier-Saarburg 07235001 1109 92.8 

Tübingen 08416006 521 114.2 

Tuttlingen 08327002 735 124.3 

Uckermark 12073008 3077 74.2 

Uelzen 03360001 1463 79.2 

Ulm. Stadtkreis 08421000 119 93.7 

Unna 05978004 544 83.6 

Unstrut-Hainich-Kreis 16064001 979 63.2 

Unterallgäu 09778111 1230 161.8 

Vechta 03460001 815 73.2 

Verden 03361001 790 76.5 

Viersen 05166004 566 78.0 

Vogelsbergkreis 06535001 1460 95.3 

Vogtlandkreis 14523010 1412 101.5 

Vorpommern-Greifswald 13075001 3953 72.1 

Vorpommern-Rügen 13073001 3213 66.2 

Vulkaneifel 07233002 915 88.4 

Waldeck-Frankenberg 06635001 1850 72.8 

Waldshut 08337002 1133 166.8 

Warendorf 05570004 1321 75.6 

Wartburgkreis 16063003 1307 75.7 

Weiden i.d.OPf. 09363000 71 91.7 

Weilheim-Schongau 09190111 968 214.4 

Weimar. Stadt 16055000 84 70.6 

Weimarer Land 16071001 804 73.8 

Weißenburg-Gunzenhausen 09577111 971 94.1 

Werra-Meißner-Kreis 06636001 1025 73.9 

Wesel 05170004 1046 92.7 

Wesermarsch 03461001 830 77.9 

Westerwaldkreis 07143001 992 100.5 

Wetteraukreis 06440001 1102 97.0 

Wiesbaden. Landeshauptstadt 06414000 204 79.4 

Wilhelmshaven. Stadt 03405000 108 94.8 

Wittenberg 15091010 1943 77.8 

Wittmund 03462001 661 96.6 

Wolfenbüttel 03158002 724 71.7 

Wolfsburg. Stadt 03103000 205 66.3 

Worms. kreisfreie Stadt 07319000 109 71.7 

Wunsiedel i.Fichtelgebirge 09479111 606 92.9 

Wuppertal. Stadt 05124000 169 128.8 

Würzburg 09663000 1055 85.0 

Zollernalbkreis 08417002 918 118.0 
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Table A1. Mean erosivity (N h−1 yr−1) of all German counties (continued) 

County (Landkreis) Identifier Size (km²) Mean R 

Zweibrücken. kreisfreie Stadt 07320000 71 90.4 

Zwickau 14524010 950 102.4 
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Table A2. Daily erosion index 

Date 

Daily 

erosi-

vity 

(%) 

Erosi-

vity 

since 1 

Jan (%) Date 

Daily 

erosi-

vity 

(%) 

Erosi-

vity 

since 1 

Jan (%) Date 

Daily 

erosi-

vity 

(%) 

Erosi-

vity 

since 1 

Jan (%) Date 

Daily 

erosi-

vity 

(%) 

Erosi-

vity 

since 1 

Jan (%) 

1 Jan 0.09 0.1 1 Apr 0.07 6.9 1 Jul 0.58 39.3 1 Oct 0.25 87.8 

2 Jan 0.10 0.2 2 Apr 0.07 7.0 2 Jul 0.58 39.9 2 Oct 0.25 88.0 

3 Jan 0.10 0.3 3 Apr 0.07 7.1 3 Jul 0.59 40.5 3 Oct 0.25 88.3 

4 Jan 0.10 0.4 4 Apr 0.07 7.1 4 Jul 0.59 41.1 4 Oct 0.24 88.5 

5 Jan 0.10 0.5 5 Apr 0.07 7.2 5 Jul 0.60 41.7 5 Oct 0.23 88.8 

6 Jan 0.10 0.6 6 Apr 0.07 7.3 6 Jul 0.60 42.3 6 Oct 0.23 89.0 

7 Jan 0.10 0.7 7 Apr 0.07 7.4 7 Jul 0.61 42.9 7 Oct 0.22 89.2 

8 Jan 0.10 0.8 8 Apr 0.07 7.4 8 Jul 0.61 43.5 8 Oct 0.21 89.4 

9 Jan 0.10 0.9 9 Apr 0.07 7.5 9 Jul 0.62 44.1 9 Oct 0.20 89.6 

10 Jan 0.10 1.0 10 Apr 0.07 7.6 10 Jul 0.63 44.8 10 Oct 0.19 89.8 

11 Jan 0.10 1.1 11 Apr 0.08 7.6 11 Jul 0.64 45.4 11 Oct 0.18 90.0 

12 Jan 0.11 1.2 12 Apr 0.08 7.7 12 Jul 0.65 46.1 12 Oct 0.17 90.2 

13 Jan 0.11 1.3 13 Apr 0.09 7.8 13 Jul 0.67 46.7 13 Oct 0.17 90.3 

14 Jan 0.11 1.4 14 Apr 0.09 7.9 14 Jul 0.68 47.4 14 Oct 0.16 90.5 

15 Jan 0.11 1.5 15 Apr 0.10 8.0 15 Jul 0.70 48.1 15 Oct 0.15 90.6 

16 Jan 0.11 1.6 16 Apr 0.10 8.1 16 Jul 0.71 48.8 16 Oct 0.15 90.8 

17 Jan 0.11 1.7 17 Apr 0.11 8.2 17 Jul 0.73 49.5 17 Oct 0.14 90.9 

18 Jan 0.10 1.8 18 Apr 0.11 8.3 18 Jul 0.75 50.3 18 Oct 0.14 91.1 

19 Jan 0.10 1.9 19 Apr 0.12 8.4 19 Jul 0.76 51.1 19 Oct 0.13 91.2 

20 Jan 0.10 2.0 20 Apr 0.13 8.6 20 Jul 0.78 51.8 20 Oct 0.13 91.3 

21 Jan 0.10 2.1 21 Apr 0.14 8.7 21 Jul 0.79 52.6 21 Oct 0.13 91.5 

22 Jan 0.10 2.2 22 Apr 0.15 8.9 22 Jul 0.80 53.4 22 Oct 0.13 91.6 

23 Jan 0.10 2.3 23 Apr 0.15 9.0 23 Jul 0.80 54.2 23 Oct 0.13 91.7 

24 Jan 0.09 2.4 24 Apr 0.16 9.2 24 Jul 0.80 55.0 24 Oct 0.13 91.9 

25 Jan 0.09 2.5 25 Apr 0.17 9.3 25 Jul 0.80 55.8 25 Oct 0.13 92.0 

26 Jan 0.09 2.6 26 Apr 0.18 9.5 26 Jul 0.79 56.6 26 Oct 0.13 92.1 

27 Jan 0.09 2.7 27 Apr 0.20 9.7 27 Jul 0.79 57.4 27 Oct 0.13 92.2 

28 Jan 0.09 2.8 28 Apr 0.21 9.9 28 Jul 0.77 58.2 28 Oct 0.14 92.4 

29 Jan 0.09 2.9 29 Apr 0.22 10.2 29 Jul 0.76 58.9 29 Oct 0.14 92.5 

30 Jan 0.08 3.0 30 Apr 0.23 10.4 30 Jul 0.74 59.7 30 Oct 0.14 92.7 

31 Jan 0.08 3.0 

   

31 Jul 0.73 60.4 31 Oct 0.14 92.8 
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Table A2. Daily erosion index (continued) 

Date 

Daily 

erosi-

vity 

(%) 

Erosi-

vity 

since 1 

Jan (%) Date 

Daily 

erosi-

vity 

(%) 

Erosi-

vity 

since 1 

Jan (%) Date 

Daily 

erosi-

vity 

(%) 

Erosi-

vity 

since 1 

Jan (%) Date 

Daily 

erosi-

vity 

(%) 

Erosi-

vity 

since 1 

Jan (%) 

1 Feb 0.08 3.1 1 May 0.24 10.6 1 Aug 0.71 61.1 1 Nov 0.15 93.0 

2 Feb 0.08 3.2 2 May 0.25 10.9 2 Aug 0.70 61.8 2 Nov 0.15 93.1 

3 Feb 0.08 3.3 3 May 0.26 11.1 3 Aug 0.68 62.5 3 Nov 0.15 93.3 

4 Feb 0.08 3.4 4 May 0.26 11.4 4 Aug 0.67 63.2 4 Nov 0.16 93.4 

5 Feb 0.08 3.5 5 May 0.27 11.7 5 Aug 0.66 63.8 5 Nov 0.16 93.6 

6 Feb 0.08 3.5 6 May 0.28 11.9 6 Aug 0.65 64.5 6 Nov 0.16 93.7 

7 Feb 0.08 3.6 7 May 0.28 12.2 7 Aug 0.64 65.1 7 Nov 0.16 93.9 

8 Feb 0.08 3.7 8 May 0.29 12.5 8 Aug 0.63 65.8 8 Nov 0.16 94.1 

9 Feb 0.08 3.8 9 May 0.29 12.8 9 Aug 0.63 66.4 9 Nov 0.16 94.2 

10 Feb 0.08 3.8 10 May 0.30 13.1 10 Aug 0.62 67.0 10 Nov 0.16 94.4 

11 Feb 0.07 3.9 11 May 0.30 13.4 11 Aug 0.62 67.6 11 Nov 0.16 94.5 

12 Feb 0.07 4.0 12 May 0.31 13.7 12 Aug 0.61 68.2 12 Nov 0.16 94.7 

13 Feb 0.07 4.1 13 May 0.32 14.0 13 Aug 0.61 68.9 13 Nov 0.16 94.9 

14 Feb 0.07 4.1 14 May 0.33 14.4 14 Aug 0.60 69.5 14 Nov 0.15 95.0 

15 Feb 0.07 4.2 15 May 0.34 14.7 15 Aug 0.60 70.1 15 Nov 0.15 95.2 

16 Feb 0.07 4.3 16 May 0.35 15.0 16 Aug 0.59 70.6 16 Nov 0.15 95.3 

17 Feb 0.06 4.3 17 May 0.36 15.4 17 Aug 0.59 71.2 17 Nov 0.15 95.5 

18 Feb 0.06 4.4 18 May 0.37 15.8 18 Aug 0.58 71.8 18 Nov 0.14 95.6 

19 Feb 0.06 4.5 19 May 0.39 16.2 19 Aug 0.57 72.4 19 Nov 0.14 95.7 

20 Feb 0.06 4.5 20 May 0.41 16.6 20 Aug 0.56 72.9 20 Nov 0.13 95.9 

21 Feb 0.06 4.6 21 May 0.43 17.0 21 Aug 0.55 73.5 21 Nov 0.13 96.0 

22 Feb 0.06 4.6 22 May 0.45 17.4 22 Aug 0.54 74.0 22 Nov 0.13 96.1 

23 Feb 0.05 4.7 23 May 0.47 17.9 23 Aug 0.52 74.5 23 Nov 0.13 96.3 

24 Feb 0.05 4.7 24 May 0.48 18.4 24 Aug 0.51 75.1 24 Nov 0.12 96.4 

25 Feb 0.05 4.8 25 May 0.50 18.9 25 Aug 0.50 75.6 25 Nov 0.12 96.5 

26 Feb 0.05 4.8 26 May 0.52 19.4 26 Aug 0.48 76.0 26 Nov 0.12 96.6 

27 Feb 0.05 4.9 27 May 0.53 19.9 27 Aug 0.47 76.5 27 Nov 0.12 96.7 

28 Feb 0.05 4.9 28 May 0.55 20.5 28 Aug 0.46 77.0 28 Nov 0.12 96.9 

   

29 May 0.56 21.1 29 Aug 0.44 77.4 29 Nov 0.11 97.0 

   

30 May 0.57 21.6 30 Aug 0.43 77.8 30 Nov 0.11 97.1 

   

31 May 0.58 22.2 31 Aug 0.42 78.3 
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Table A2. Daily erosion index (continued) 

Date 

Daily 

erosi-

vity 

(%) 

Erosi-

vity 

since 1 

Jan (%) Date 

Daily 

erosi-

vity 

(%) 

Erosi-

vity 

since 1 

Jan (%) Date 

Daily 

erosi-

vity 

(%) 

Erosi-

vity 

since 1 

Jan (%) Date 

Daily 

erosi-

vity 

(%) 

Erosi-

vity 

since 1 

Jan (%) 

1 Mar 0.04 5.0 1 Jun 0.58 22.8 1 Sep 0.41 78.7 1 Dec 0.11 97.2 

2 Mar 0.04 5.0 2 Jun 0.58 23.4 2 Sep 0.40 79.1 2 Dec 0.11 97.3 

3 Mar 0.04 5.1 3 Jun 0.58 24.0 3 Sep 0.39 79.4 3 Dec 0.11 97.4 

4 Mar 0.04 5.1 4 Jun 0.58 24.5 4 Sep 0.38 79.8 4 Dec 0.11 97.5 

5 Mar 0.04 5.1 5 Jun 0.58 25.1 5 Sep 0.37 80.2 5 Dec 0.11 97.6 

6 Mar 0.04 5.2 6 Jun 0.58 25.7 6 Sep 0.36 80.6 6 Dec 0.11 97.7 

7 Mar 0.04 5.2 7 Jun 0.57 26.3 7 Sep 0.35 80.9 7 Dec 0.11 97.9 

8 Mar 0.04 5.3 8 Jun 0.57 26.8 8 Sep 0.35 81.3 8 Dec 0.11 98.0 

9 Mar 0.04 5.3 9 Jun 0.56 27.4 9 Sep 0.34 81.6 9 Dec 0.10 98.1 

10 Mar 0.05 5.4 10 Jun 0.55 27.9 10 Sep 0.33 81.9 10 Dec 0.10 98.2 

11 Mar 0.05 5.4 11 Jun 0.55 28.5 11 Sep 0.33 82.3 11 Dec 0.10 98.3 

12 Mar 0.05 5.5 12 Jun 0.54 29.0 12 Sep 0.32 82.6 12 Dec 0.10 98.4 

13 Mar 0.05 5.5 13 Jun 0.54 29.6 13 Sep 0.31 82.9 13 Dec 0.09 98.5 

14 Mar 0.06 5.6 14 Jun 0.53 30.1 14 Sep 0.31 83.2 14 Dec 0.09 98.6 

15 Mar 0.06 5.6 15 Jun 0.53 30.6 15 Sep 0.30 83.5 15 Dec 0.09 98.6 

16 Mar 0.06 5.7 16 Jun 0.53 31.2 16 Sep 0.29 83.8 16 Dec 0.09 98.7 

17 Mar 0.07 5.8 17 Jun 0.53 31.7 17 Sep 0.29 84.1 17 Dec 0.09 98.8 

18 Mar 0.07 5.8 18 Jun 0.52 32.2 18 Sep 0.28 84.4 18 Dec 0.08 98.9 

19 Mar 0.07 5.9 19 Jun 0.52 32.7 19 Sep 0.28 84.6 19 Dec 0.08 99.0 

20 Mar 0.08 6.0 20 Jun 0.52 33.3 20 Sep 0.27 84.9 20 Dec 0.08 99.1 

21 Mar 0.08 6.1 21 Jun 0.53 33.8 21 Sep 0.27 85.2 21 Dec 0.08 99.1 

22 Mar 0.08 6.1 22 Jun 0.53 34.3 22 Sep 0.27 85.4 22 Dec 0.08 99.2 

23 Mar 0.08 6.2 23 Jun 0.53 34.9 23 Sep 0.26 85.7 23 Dec 0.08 99.3 

24 Mar 0.08 6.3 24 Jun 0.54 35.4 24 Sep 0.26 86.0 24 Dec 0.08 99.4 

25 Mar 0.08 6.4 25 Jun 0.54 35.9 25 Sep 0.26 86.2 25 Dec 0.08 99.5 

26 Mar 0.08 6.5 26 Jun 0.55 36.5 26 Sep 0.26 86.5 26 Dec 0.08 99.6 

27 Mar 0.08 6.6 27 Jun 0.55 37.0 27 Sep 0.26 86.8 27 Dec 0.09 99.6 

28 Mar 0.08 6.6 28 Jun 0.56 37.6 28 Sep 0.26 87.0 28 Dec 0.09 99.7 

29 Mar 0.08 6.7 29 Jun 0.57 38.2 29 Sep 0.26 87.3 29 Dec 0.09 99.8 

30 Mar 0.08 6.8 30 Jun 0.57 38.7 30 Sep 0.26 87.5 30 Dec 0.09 99.9 

31 Mar 0.07 6.9 

      

31 Dec 0.09 100.0 
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