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Dear authors, 

 

The two reviewers have a few minor editorial suggestions, which I urge you to take into account 

when preparing the final version of your manuscript. 

 

In addition, one of the reviewers noticed that the wording in Section 2.2 is similar to a section in a 

previous paper by you (hess-22-6505-2018). The section introduces generic concepts and is obviously 

hard to word differently every time, but one sentence is almost word-for-word the same as in the 

previous paper ("that rain events stop and start on average in the middle of the first and the last 

nonzero rain interval"). Please try to rephrase this sentence a bit. 

 

We rephrased this sentence significantly 
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Referee #1: Anton Vrieling, a.vrieling@utwente.nl 

Suggestions for revision or reasons for rejection (will be published if the paper is 

accepted for final publication) 

The authors have thoroughly responded to my concerns and updated the manuscript 

accordingly. I am happy with their responses and with their important and interesting 

contribution. In my opinion, the manuscript can be published pending a few minor 

corrections/edits that may be implemented at the authors’ discretion. 

 

- P1L24: as the statement on winter wheat is not directly related to this study, I suggest 

removing this sentence (or alternatively write as “For example, …”, although my 

preference is removal).  

 

We rephrased the sentence 

 

- P2L28: “and” between “zero” and “erosivity” should be removed. 

 

We deleted the erroneous “and” 

 

- P3L11: I suggest not starting the paragraph with “Also” but rather rephrase to: “Existing R 

maps have also undergone a number of …” 



 

 

Rephrased as suggested 

 

- P3L11: the subsentence “which were rather uncontrolled and of unknown degree” remains 

vague. Probably the authors want to convey something like: “even if this is not 

explicitly stated in the corresponding reports”. 

 

We revised the sentence as suggested 

 

- P3L20 “as geostatistical tools existed not yet”. I think that this will not hold in court! In 

the early 80s we certainly had geostatistics with uses among others in mining. 

Perhaps rather: “as geostatistical tools were not yet commonplace in various 

application fields” 

 

We rephrased the sentence although it was correct. It referred to the last normal-period 

rainfall map (1931 to 1960), which was well before Matheron‘s founding treatise in 1970 

„La theorie des variables regionalisees et ses applications“ 

 

- P3L21-22: I would suggest to combine this sentence with the previous paragraph, and 

delete the rest (P3L23-P3L27) of that paragraph (or maybe integrate in methods). In 

my view it is too much ‘fast-forwarding’ to the methods section, whereas the main 

objective of the paper has not been expressed at that point. 

 

We combined both paragraphs and deleted this part of the paragraph as suggested. 

 

- P5L28: I note that this is just a single station in Belgium and the “not deviate” is perhaps 

in fact a small deviation (not fully clear to which results by van Dijk this relates?). I 

was thinking to replace “in Belgium” here with “for the nearest European station 

used in Belgium” (or perhaps to include also the Italian station, also within 

reasonable vicinity of southern Germany?)  

 

We wouldn’t expect a similarity with an Italian station (even though it might exist) because 

of the Mediterranean climate that cannot be found even in southern Germany. We didn’t 

change the sentence because in the previous sentence we had already pointed out that 

Wilken et al. (a study from Germany) also found no reason to reject the Wischmeier 

equation. 

 

- P15L23-24: I trust that the full links will be added. 

 

We completed the data availability section. The final map and maps of all 17 individual 

years can be downloaded from two locations at the Climate Data Center of the German 

Weather Service. 

 

- P15L25: “until” should probably read “by”? Can anything be said regarding delivering of 

these erosivity maps for years after 2019? 

 

We added: „Annual maps of future years will routinely be produced and published within 

the framework of the annual RADKLIM update after the precipitation data have undergone 

all steps of quality control and refinement.“ 

 

Anton Vrieling 
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Recommendation to the Editor 

 

Suggestions for revision or reasons for rejection (will be published if the paper is 

accepted for final publication) 

I thank the authors for taking the reviewer comments into account and for the improvements 

they have made to the manuscript. With only a couple of technical changes (listed below) 

the manuscript is now ready for publication. It will make a valuable contribution to the 

literature. 

 

Technical corrections: 

 

* Page 14, line 2, Figure 5A should read Figure A5. 

 

We corrected the typo 

 

* Page 15, line 1, "Another implication of this large variability is that 20 yr will still not be 

sufficient" -- is this conclusion drawn from the 17 yr data set and the processing it required? 

Please rephrase to make the basis for the claim more clear. 

 

We explained this conclusion better by referring to an example 

 

* The data availability section is incomplete. 

 

We completed the data availability section (details see above) 
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Abstract. Erosive rainfall varies pronouncedly in time and space. Severe events are often restricted to a few square 

kilometers. Radar rain data with high spatio-temporal resolution enable this pattern of erosivity to be portrayed with high 

detail. We used radar data with a spatial resolution of 1 km² over 452 503 km² to derive a new erosivity map for Germany 

and to analyze the seasonal distribution of erosivity. The expected long-term regional pattern was extracted from the 15 

scattered pattern of events by several steps of smoothing. This included averaging erosivity from 2001 to 2017 and 

smoothing in time and space. The pattern of the resulting map was predominantly shaped by orography. It generally agrees 

well with the erosivity map currently used in Germany (“Sauerborn map”), which is based on regressions using rain gauge 

data (mainly from the 1960s to 1980s). In some regions the pattern of both maps deviate because the regressions of the 

Sauerborn map were weak. Most importantly, the new map shows that erosivity is about 66 % larger than in the Sauerborn 20 

map. This increase in erosivity was confirmed by long-term data from rain gauge stations that were used for the Sauerborn 

map and which are still in operation. The change was thus not caused by using a different methodology but by climate 

change since the 1970s. Furthermore, the seasonal distribution of erosivity shows a slight shift towards the winter period 

when soil cover by plants is usually poor. This shift in addition to the increase of erosivity may have caused an increase of 

erosion for many crops. For examplewinter wheat, predicted soil erosion for winter wheat is therefore now about four times 25 

larger than in the 1970s. These highly resolved topical erosivity data will thus have definite consequences for agricultural 

advisory services, landscape planning and even political decisions. 

1 Introduction 

Soil erosion by heavy rain is regarded as the largest threat to the soil resource. Rain erosivity is a rain’s ability to detach soil 

particles and provide transport by runoff and thereby is one of the factors influencing soil erosion. The most commonly used 30 

measure of rain erosivity is the R factor of the Universal Soil Loss Equation USLE (Wischmeier, 1959; Wischmeier and 
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Smith, 1958, 1978) or the Revised Universal Soil Loss Equation RUSLE (Renard et al., 1991), although other concepts also 

exist (Morgan et al., 1999; Schmidt, 1991; Williams and Berndt, 1977). The R factor is given as the product of a rain event’s 

kinetic energy and its maximum 30 min intensity. Both components are usually derived from hyetographs recorded by rain 

gauges. Such rain gauge data are spatially scarce. For instance, in Germany only one rain gauge per 2571 km² was available 

for the currently used R map (Sauerborn, 1994; this map will be called “Sauerborn map” in the following). Hence, point 5 

information has to be spatially interpolated to derive an R map that enables to estimate R for any location. Different 

interpolation techniques have been applied. Most often correlations (transfer functions) of R with other meteorological data 

available at higher spatial density were used (for an overview see Nearing et al., 2017). The Sauerborn map was based on 

correlations between R and normal-period summer rain depth or normal-period annual rain depth, which differ between 

federal states (Rogler and Schwertmann, 1981; Sauerborn, 1994, and citations therein).  10 

Recent research has shown that the erosivity of single events exhibits strong spatial gradients (Fiener and Auerswald, 2009; 

Fischer et al., 2016; Fischer et al., 2018b9; Krajewski et al., 2003; Pedersen et al., 2010; Peleg et al., 2016). This is due to the 

small spatial extent of convective rain cells which is typical for erosive rains. The resulting heterogeneity has two 

consequences. First, interpolation of erosivity between two neighboring rain stations will not be possible for individual rains 

because a rain cell in between may be completely missed. Second, even long records of rain gauge data may miss the largest 15 

events that occurred in close proximity to a rain gauge and thus underestimate rain erosivity. This is illustrated nicely by the 

data of Fischer et al. (2018b2019). They showed that the largest event erosivity, which was recorded by contiguous 

measurements over only two months, was more than twice as large as the largest erosivity recorded by 115 rain gauges over 

16 years and the same area. Furthermore, this single event contributed about 20 times as much erosivity as the expected 

long-term average. Even in a 100-yr record this single event would thus still change the long-term average erosivity. The 20 

large variability of erosivity in space and time then directly translates to soil loss. This may be illustrated by soil loss 

measurements in vineyards in Germany. Emde (1992) found a mean soil loss of 151 t ha
−1

 yr
−1

 averaged over 10 plot years 

while Richter (1991) only measured 0.2 t ha
−1

 yr
−1

, averaged over 144 plot years. The difference is due to the largest event 

during the study by Emde (1992), which obviously had too much influence on the mean compared to the size of his data set. 

Such an event was missing entirely in Richter’s (1991) much larger data set. The inclusion of rare events when measured by 25 

chance by a rain gauge leads to statistical problems due to their extraordinary magnitude. They cause outliers in regression 

analysis and thus strongly affect transfer functions.  To avoid an effect by single events to the transfer function, Rogler and 

Schwertmann (1981) excluded all events for which the estimated return period was more than 30 yr (assuming that event 

erosivities followed a Gumble distribution). In consequence, the largest event was replaced by zero and erosivity and, in 

turn, soil erosion was underestimated. 30 

The demand for contiguous rain data to create R-factor maps was only recently met by satellite data (Vrieling et al., 2010, 

2014) and by radar rain data with considerably larger spatial (presently up to 9-fold) and temporal resolution (presently up to 

36-fold) (Fischer et al., 2016). Put simply, the measurements are based on the principle that radar beams are reflected by 

hydrometeors (Bringi and Chandrasekar, 2001; Meischner et al., 1997). The intensity of the reflection depends on rain 
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intensity and the travel time of the reflected radar beam depends on the distance between the emitting and receiving radar 

tower and the hydrometeors within the measurement volume. Radars usually measure with a resolution of approx. 1° 

azimuth and 125 to 250 m in the direction of beam propagation. The data are then typically transformed to grids of square 

pixels of 1 km² (Bartels et al., 2004; Fairman et al., 2015), 4 km² (Koistinen and Michelson, 2002; Michelson et al., 2010) or 

16 km² (Hardegree et al., 2008) after many refinement steps.  5 

An R factor (map) can serve two purposes with contrasting requirements. First, it can be used in combination with measured 

soil loss or reported damages (e.g., Mutchler and Carter, 1983; Vaezi et al., 2017; Fischer et al., 2018a). In this hindcast case, 

highest possible spatial and temporal resolution is recommendable. The second application of the R factor is for forecasting 

erosion which is required, e.g., for field use planning (Wischmeier and Smith, 1978). In this case, the long-term expectation 

is of interest rather than the true R factor of the (near) past that was influenced by the stochastic location of individual rain 10 

cells. Thus, for future modelling, smoothing of the stochastic noise is necessary.  

Also the eExisting R maps are based onhave also undergone a number of smoothing steps, although this is not explicitly 

stated in the corresponding reportswhich were rather uncontrolled and of unknown degree. Most R maps use regressions 

between long-term averages of erosivity and long-term meteorological parameters, e.g. annual rain depth. For long-term 

averages, periods of more than 20 years are accepted (Chow, 1953; Wischmeier and Smith, 1978) to remove the stochasticity 15 

of individual events and leave the general pattern. In consequence, a temporal smoothing follows from using long-term 

averages and a spatial smoothing follows from the transfer functions and their application to rainfall maps. These rainfall 

maps include a third step of smoothing because the meteorological recommendation is to use normal-period rainfall (30 yr) 

data and point data (meteorological stations) have to be extended to create a map. For example for the R map in Germany 

(Rogler and Schwertmann, 1981), the precipitation map of 1931 to 1960 was used which was the last available normal-20 

period although rain erosivities were derived mainly from measurements in the 1960s and 1970s. This precipitation map was 

mainly based on educated guesses of the best meteorologists at that time as geostatistical tools were only developed later 

(Matheron 1970)existed not yet.  

With the large increase in data availability by radar measurements and the development of (geostatistical) smoothing tools 

this uncontrolled smoothing can be replaced by accepted statistical methods of smoothing. The general recommendation is to 25 

apply smoothing until the pattern can be seen that is intended to be shown (O’Haver, 2018; Simonovff, 1996; Quantitative 

Decisions, 2004) by using several smoothing steps in sequence (O’Haver, 2018; Wedin et al., 2008). The most reliable 

reconstruction seeks the simplest underlying image consistent with the input data (Puetter et al., 2005). We will thus use a set 

of different spatial and temporal smoothing functions in combination and we will quantify how much noise is removed by 

the individual functions and we provide the unsmoothed maps in the Appendix for comparison. 30 

In this study, we used the new RW product from the radar climatology RADKLIM (RADar KLIMatologie) from the German 

Meteorological Service (Deutscher Wetterdienst, DWD). RW data provide gauge-adjusted and further refined precipitation 

for a pixel size of 1 x 1 km² (Winterrath et al., 2017, 2018). RW data of 17 yr (2001 – 2017) were available as a contiguous 

source of rain information. Using these data to establish a new R-factor map for Germany should be a major step forward 
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compared to the Sauerborn map, which was derived from an inconsistent set of data compiled by different researchers (e.g., 

some had winter precipitation data available and used it while others did not; see Sauerborn, 1994) and with equations 

developed independently for 16 federal states. Our data set is much larger (by a factor of 2571 regarding locations) and, 

because of the contiguous data source, it does not require interpolation with transfer functions. Our first hypothesis was that 

there will be considerable changes in the pattern of erosivity due to the removal of transfer-function weaknesses. Our second 5 

hypothesis was that the R-factor map will exhibit larger values than the Sauerborn map, for two reasons. Very large and rare 

events will no longer be missed, as occurred previously due to the large distances between meteorological stations, and there 

is no longer any need to remove these events to arrive at robust transfer functions. The second reason for larger R factors is 

due to global climate change, as Rogler and Schwertmann (1981) and Sauerborn (1994) mostly used data from the 1960s, 

1970s and 1980s. Global climate change is expected to increase rain erosivity (Burt et al., 2016). 10 

2 Material and methods 

2.1 Radar-derived precipitation data 

DWD runs a Germany-wide network of presently 17 C-band Doppler radar systems (Fig. 1). This network underwent several 

upgrades during the analysis period. At the start of the time period considered, five single-polarization systems (DWSR-88C, 

AeroBase Group Inc., Manassas, USA) were operated without a Doppler filter, the latter being added between 2001 and 15 

2004. Between 2009 and 2017, DWD replaced the network of C-band single-polarization systems of the types METEOR 

360 AC (Gematronik, Neuss, Germany) and DWSR-2501 (Enterprise Electronics Corporation, Enterprise, USA) with 

modern dual-polarization C-band systems of the type DWSR-5001C/SDP-CE (Enterprise Electronics Corporation), all 

equipped with Doppler filters. During this period, a portable interim radar system of the type DWSR-5001C was installed at 

some sites. 20 

The radar systems permanently scan the atmosphere to detect precipitation signals. Every five minutes, the radars perform a 

precipitation scan, each with terrain-following elevation angle to measure precipitation near the ground. The resulting local 

reflectivity information over a range of currently 150 km in real-time and a constant 128 km in the climate approach is 

combined to form a Germany-wide mosaic of about 1100 km in the north-south and 900 km in the west-east direction. The 

reflectivity information is converted to precipitation rates applying a reflectivity–rain rate (ZR) relationship (Bartels et al., 25 

2004). An operational quality control system screens the radar data. To further improve the quantitative precipitation 

estimates, the radar-derived precipitation rates are summed to hourly totals and immediately adjusted to gauge data from 

more than 1000 meteorological stations resulting in RADOLAN (RADar OnLine ANeichung, i.e. online-adjusted, radar-

derived precipitation), which provides precipitation data in real time, mainly for applications in flood forecasting and flood 

protection (Bartels et al., 2004; Winterrath et al., 2012).  30 

Based on RADOLAN, the climate version RADKLIM is derived. Compared to the real-time approach, the data are 

additionally offline-adjusted to daily gauge data, combining a total of more than 4400 rain gauges measuring hourly and 
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daily (equivalent to 1 rain gauge per 80 km²). The data are then reprocessed by new climatological correction methods, e.g. 

for spokes, clutter or short data gaps. Spokes result from permanent obstacles blocking the radar beam, while clutter is 

introduced by non-meteorological targets like windmills or birds. The final product (called RW data) has a temporal 

resolution of 1 h and a spatial resolution of 1 km x 1 km in polarstereographic projection. For more detailed information on 

RADKLIM the reader is referred to Winterrath et al. (2017). The RW data, restricted to the German territory, are freely 5 

available (Winterrath et al., 2018). For the first time, the RADKLIM data set provides contiguous precipitation data with 

high temporal and spatial resolution. It includes local heavy or violent precipitation events (for classification of heavy and 

violent see UK Met Office, 2007) that are partly missed by point measurements alone. Thus, it particularly improves the 

analysis of extreme precipitation events.  

Two additional data sets were used to verify the validity of the approach and to examine effects of methodological details 10 

(see below). These data sets are erosivities derived from radar data at 5 min resolution taken from Fischer et al. (2016) and 

erosivities derived from rain-gauge data of 115 stations in Germany from 2001 to 2016, which were taken from Fischer et al. 

(20198b).  

2.2 Erosivity calculation procedure 

According to Wischmeier (Wischmeier, 1959; Wischmeier and Smith, 1958, 1978), the erosivity of a single rain event (Re in 15 

N h
−1

) is the product of the maximum 30 min rain intensity (Imax30 in mm h
-1

) and the total kinetic energy per unit area (Ekin 

in kJ m
-2

).  

𝑅𝑒 = 𝐼𝑚𝑎𝑥30 ∗  𝐸𝑘𝑖𝑛         (1) 

An erosive rain event is defined to have at least a total precipitation amount (P in mm) of 12.7 mm or an Imax30 of more than 

12.7 mm h
-1

 that is separated from the next rain by at least six hours. In order to scan and fulfil the 6 h criterion, we did not 20 

separate between days but used a continuous 17 yr data stream. Specific kinetic energy ekin,i per mm rain depth (in kJ m
-2

 

mm
-1

) is given for intervals i of constant rain intensity I (in SI units according to Rogler and Schwertmann, 1981): 

For 0.05 mm h
-1 

≤ I < 76.2 mm h
-1

: 

𝑒𝑘𝑖𝑛,𝑖 = (11.89 + 8.73 ∗ 𝑙𝑜𝑔10𝐼) ∗ 10−3       (2.1) 

For I < 0.05 mm h
-1

: 25 

𝑒𝑘𝑖𝑛,𝑖 = 0          (2.2) 

For I ≥ 76.2 mm h
-1

: 

𝑒𝑘𝑖𝑛,𝑖 =  28.33 ∗ 10−3          (2.3) 

We used the equation by Wischmeier and Smith (1978) to calculate specific kinetic energy although several others have also 

been proposed (van Dijk et al., 2002) with none being superior (Wilken et al., 2018). Our choice retained comparability with 30 

the Sauerborn map. Furthermore van Dijk et al. (2002) had shown that kinetic energy as obtained by the Wischmeier-and-

Smith equation did not deviate from measured kinetic energy in Belgium neighboring Germany. 
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For all intervals i, ekin,i is multiplied with the rain amount of this interval and then summed to yield Ekin for the entire event. 

The annual erosivity of a specific year is the sum of Re of all erosive events within this year. The average annual erosivity 

(R) is then the average of all annual erosivities during the study period (17 yr in this case). While in the USA and other 

countries the unit MJ mm ha
−1

 h
−1

 is often used for Re, we use N h
−1

 because it is the unit most often used in Europe and 

because of its simplicity. Both units can be easily converted by multiplying the values in N h
−1

 with a factor of 10 to yield 5 

MJ mm ha
−1

 h
−1

. The unit for R is then N h
−1 

yr
−1

. 

Rain erosivity strongly depends on intensity peaks. Fischer et al. (20198b) have shown that these peaks increasingly 

disappear the lower the spatial and temporal resolution becomes. This can be accounted for by scaling factors but these 

scaling factors can only adjust to an average behavior, while the factors may either be too large or too small for a specific 

event. A high spatio-temporal resolution should be used to determine Re for individual events. This is not required to 10 

determine the long-term average pattern like an R-factor map for planning and prediction purposes. In that case, data with 

lower resolution and the application of appropriate scaling factors is advantageous because this will reduce the noise 

introduced by large events of small spatial extent that would not be leveled out by averaging alone. We will use data in 1 h 

time increments as those are adjusted to rain gauge measurements and the amount of data is reduced by a factor of 12 

compared to 5 min increments. This is especially important when all calculations, including identification of rain breaks > 6 15 

h and periods of Imax30, have to be carried out for many years and many locations. In our case, roughly 7 × 10
10

 1 h 

increments had to be processed. 

According to Fischer et al. (20198b), the following modifications in the calculation of Re had to be made to account for the 

temporal resolution of 1 h, the spatial resolution of 1 km² and the method of measuring rain by radar: (i) Imax30 was replaced 

by the maximum 1 h rain intensity and the threshold for Imax30 was lowered to 5.8 mm h
-1

, while the total precipitation 20 

threshold remained at 12.7 mm. (ii) Five or more subsequent 1 h intervals without rain separated events, which . This 

assumed that rain events stop and startbegin on average in the middle of the first non-zero rain interval and end again in the 

middle of the last non-zero rain interval, yielding a total rain break of at least 6 h. (iii) The temporal scaling factor was 1.9 

and the spatial scaling factor was 1.13, to which 0.35 had to be added to account for the radar measurement instead of the 

rain gauge measurement. The total scaling factor [(1.13 + 0.35) × 1.9] was then 2.81. 25 

Gaps in the time series were considered when calculating annual sums of erosivity by scaling the total sum of erosivity over 

the whole time series to 365.25 days. If the effective number of missing values exceeded two months per year, the respective 

year was excluded from the calculation for that pixel. If the effective number of excluded years was larger than one, the 

respective pixel was excluded. This was the case for 0.6 % of all pixels. 

 30 

2.3 Steps to generate an R-factor map 

The reduction of noise by using 1 h increments and a 17 yr mean and 1 h increments was still not sufficient to level out the 

most extreme events. Two further smoothing steps were therefore applied. The first step was to winsorize the annual 
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erosivities of the 17 yr  for each individual pixel by replacing the lowest value with the second-lowest value and the highest 

value with the second-highest value (Dixon and Yuen, 1974). Winsorizing is an appropriate measure for calculating a robust 

estimator of the mean in symmetrically distributed data but it is biased for long-tailed variables like rain erosivity. Thus, the 

country-wide mean of all winsorized data (94 N h
−1 

yr
−1

) was smaller than the mean of the original data (96 N h
−1 

yr
−1

). In 

order to remove this bias, we binned all data in 26 bins of 20 N h
−1

 yr
−1

 width and calculated the mean R before and after 5 

winsorizing. For bins with R < 180 N h
−1

 yr
−1

, comprising 95 % of all pixels, the bias increased linearly with R (r² = 0.92; n = 

8) and amounted to 2.3 % of R. Above 180 N h
−1

 yr
−1

 there was no further increase in the bias (r² = 0.01, n = 18), which was, 

on average, 3.4 N h
−1

 yr
−1

. We removed the bias by adding 2.3 % to all values < 180 N h
−1

 yr
−1

 and 3.4 N h
−1

 yr
−1

 to all 

values above.  

The last smoothing step applied geostatistical methods. A semivariogram (over a range of 50 km) was calculated and 10 

ordinary kriging was applied. Geostatistical analysis was done using the program R (version 3.5.0; R Core Team, 2018) and 

gstat (Gräler et al., 2016). A block size of 10 × 10 km² was chosen to remove noise and to fill the pixels with data gaps, 

while the spatial resolution remained at 1 km. The missing information was obtained from neighboring pixels. The radar data 

outreached German borders. In total, 452 503 pixels were used to ensure small kriging variances near borders or on islands, 

while the final map was restricted to the German land surface (357 779 pixels). 15 

Using 1 h data instead of 5 min data reduced the effect of single extreme events at certain locations. Winsorizing reduced the 

effect of extreme years at a location, in addition to the effect of averaging 17 yr. Finally, kriging used the information from 

neighboring pixels to reduce the effect of the extremes. This smooths among near neighbors (distance <20 km) but does not 

affect the regional pattern (>20 km). To evaluate whether this was the case and to quantify the effect of all smoothing steps, 

we used the data from Fischer et al. (2016). They had calculated rain erosivity from 5 min-resolution radar data for two years 20 

(2011 and 2012) and an area of 14 358 km² (yielding a total of 28 770 pixel years), which is called “test region” in the 

following. Using these data we calculated semivariograms from annual to biennial erosivities based on 5 min and 1 h 

resolution. These semivariograms were compared to those from 17 yr average erosivities, 17 yr winsorized average 

erosivities and 17 yr wisorized and kriged erosivities for the test region and for the entire area of Germany. Smoothing 

should reduce the influence of individual violent thunderstorm cells and reveal the regional pattern. In geostatistical analysis 25 

this decreases the sill of the semivariogram while the range increases as it changes from being dominated by thunderstorm 

cells to being dominated by the regional pattern. The regional trend was calculated as the difference between the square roots 

of semivariances at distances of 40 and 20 km divided by the difference in distance of 20 km to examine whether it was 

influenced by the individual smoothing steps. The effect of violent rain cells was calculated as the square root of the 

semivariance at a distance of 20 km divided by the difference in distance of 20 km minus the regional trend. 30 

2.4 Annual erosivity return periods 

Rain erosivity usually follows long-tailed distributions. This leads to the question of how frequent years of extraordinarily 

large erosivity are. To answer this question, the development of cumulative distribution curves (for basic concepts see 
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Stedinger et al., 1993) is required. Seventeen years are not sufficient to reliably estimate a cumulative distribution curve for 

every pixel. Therefore, we combined all annual erosivities of the total data set (452 503 pixels and 17 yr) after expressing 

each of them relative to the corresponding winsorized and bias-corrected mean of the pixel (in percent). This enabled the 

cumulative distribution curves to be calculated from a large data set (n = 7.7 million). The expected maximum relative 

annual erosivity for a given return period could then be estimated from the complementary cumulative distribution curve 5 

(exceedance). This was also done for the relative annual erosivities of the test region, calculated from 1 h rain data, to 

examine whether the general cumulative distribution curve also applies to smaller regions. 

The erosivities, when calculated from 1 h rain data, are already smoothed and do not adequately reflect the extremes that 

result from data that are better resolved, such as the 5 min rain data. The cumulative distribution curve for the test region was 

also calculated using the 5 min rain data. Given that the cumulative distribution curves of the entire study area and the test 10 

region agree for the relative erosivities calculated from 1 h data, we expect that the relative erosivities calculated from 5 min 

rain data of the test region can serve as a first estimate for the entire study region. The cumulative distribution curve for the 

test region calculated from 5 min data will then be a fair estimate of the return periods anywhere in the entire research area. 

2.5 Seasonal distribution of erosivity 

The seasonal distribution of erosivity, calculated as the relative contribution of each day to total annual erosivity, is called 15 

erosion index distribution or EI distribution (Wischmeier and Smith, 1978). It is required in erosion modelling to determine 

the influence of seasonally varying soil cover due to crop development. The convolution of the seasonal effect of soil cover 

with the seasonal EI distribution results in the so-called crop and cover factor (C factor) of the USLE. The EI distribution 

was calculated for each pixel and averaged over all 452 503 pixels. Seventeen years of data still did not suffice to show 

similar amounts of erosivity on subsequent days, despite the large number of pixels. There was still considerable scatter that 20 

required smoothing to illustrate the seasonal distribution. Smoothing between individual days during the year involved three 

steps (for details of the methods see Tukey, 1977): first a 13-d centered median was calculated for each day. A centered 

median smooths but preserves the common trend signal (Gallagher and Wise, 1981), which is also true for the two 

subsequent steps. A 3-d skip mean (leaving out the second day) was calculated from the results, followed by a 25-d centered 

Hanning mean (weighted mean with linearly decreasing weights). To account for the periodic nature of the EI distribution 25 

and to allow the smoothing methods to be applied at the start and the end of the year, the year was replicated and shifted by 

plus minus one year. 

Radar measurements tend to have larger errors during wintertime with snowfall. The reduced reflectivity of snow particles 

may lead to an underestimation of the precipitation rate, while the increased reflectivity of melting particles in the bright 

band may cause an overestimation. Moreover, the lower boundary layer promotes a potential overshooting of the radar beam 30 

with regard to the precipitating cloud (Holleman et al., 2008; Wagner et al., 2012). Such measurement problems, if relevant, 

should especially influence EI distribution during winter months and cause a deviation from measurements at meteorological 

stations. Therefore, we also calculated the EI distribution using data from 115 rain gauges distributed throughout Germany 



9 

 

and covering 2001 to 2016. These data were taken from Fischer et al. (20198b). This data set will also be used in the 

discussion for comparison of recent radar-derived erosivities with recent raingauge-derived erosivities and with historic 

raingauge-derived erosivities taken from literature. 

3 Results 

3.1 The effects of smoothing 5 

The effects of smoothing on the appearance of the maps were negligible (compare Fig. 2 with Fig. A3 and A4 in the 

Appendix) because smoothing had only removed the extraordinarily large variability that exists on small temporal and 

spatial scales. However, the high data density revealed that even long-term averages were insufficient to remove all influence 

of erratic cells of violent rain and further attenuating steps had to follow. Annual sums of rain erosivity from 5 min data for 

the test region varied most due the dominance of individual cells of violent rain that did not overlap or fill the entire area 10 

(semivariogam I in Fig. 3a). This was indicated by the short range (20 km) and high semivariance for that range (2749 N
2
 h

-2
 

yr
-2

) (Table 1). The standard deviation of two pixels separated by 20 km thus was 52 N h
-1

 yr
-1

 (square root of 2749 N
2
 h

-2
 

yr
-2

), which is more than half of the average annual erosivity in Germany. After averaging both years (2011 and 2012), the 

semivariance for a distance of 20 km was only reduced to 1569 N
2
 h

-2
 yr

-2
 and the range stayed the same at approximately 20 

km (semivariogam III in Fig. 3a). Both findings indicated that even after averaging two years, the individual cells of violent 15 

rain were still fully detectable and had not merged to form a larger pattern. In consequence, the regional trend, albeit 

detectable, appeared minor (Table 1). 

The effect when using data with a resolution of 1 h was almost as strong as when two years were averaged. Semivariance at 

a distance of 20 km was only 1667 N
2
 h

-2
 yr

-2
 for annual values (semivariogam II in Fig. 3a) and 953 N

2
 h

-2
 yr

-2
 for biennial 

averages (semivariogam IV in Fig. 3a). Even more important, the regional trend became better visible due to smoothing of 20 

the extreme events by using 1 h instead of 5 min data. This regional trend is evident from the gradual increase in 

semivariance over the entire distance of 50 km shown in Fig. 3. Importantly, smoothing by using 1 h data did not change 

average erosivity because the difference was adequately compensated by the temporal scaling factor. The biennial average 

for the test region was 115 N h
-1

 yr
-1

 when calculated from 5 min data and 114 N h
-1

 yr
-1

 when calculated from 1 h data.  

Averaging annual erosivities of the test region over 17 yr further reduced variability (semivariogram V in Fig 3a). 25 

Semivariance strongly decreased to 197 N
2
 h

-2
 yr

-2
 and the influence of individual cells of violent rain became small relative 

to the regional trend. This led to an almost linear increase in semivariance over distance. The influence of extreme years in 

individual pixels was further reduced by winsorizing, which slightly reduced semivariance at 20 km distance to 190 N
2
 h

-2
 

yr
-2

 (semivariogram VIII in Fig 3b). For entire Germany, winsorizing reduced the standard deviation (SD) of a pixel over 

time from, on average, 49 N h
−1 

yr
−1

 to 39 N h
−1 

yr
−1

, while bias correction left the mean of erosivity over all pixels 30 

unchanged at 96 N h
−1 

yr
−1

. The effect on the appearance of the map was small (compare Fig. A3 and A4 in the Appendix) 

because only small erratic patches of extraordinarily high or low erosivity disappeared. 
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Finally, kriging reduced semivariance at 20 km distance to 121 N
2
 h

-2
 yr

-2
, leaving mainly the regional trend (semivariogram 

VI in Fig. 3a). Thus, the step from 5 min to 1 h resolution reduced semivariance at 20 km distance by a factor of 1.6 while 

averaging 17 yr reduced semivariance by a factor of 8.5. Winsorizing contributed a factor of 1.04 and kriging a factor of 1.6. 

In total, semivariance was reduced by a factor of 23, indicating a pronounced patchiness of erosive rains on the annual scale 

that could not be leveled out by averaging 17 years alone. The effect of each smoothing step decreased with increasing 5 

distance. For a distance of 10 km, the combined factor was 32 while it was only 13 for a distance of 30 km. This was due to 

the decreasing importance of thunderstorm cells relative to the regional trend. Independent of the degree of smoothing, the 

regional trend, extracted from the change in semivariance between distances of 20 km and 40 km, remained practically 

unchanged at 0.2 N h
-1

 yr
-1

 km
-1

 (Table 1). In contrast, the effect of violent rain cells decreased greatly by the smoothing 

steps from 2.4 N h
-1

 yr
-1

 km
-1

 to 0.3 N h
-1

 yr
-1

 km
-1

. The effect on the appearance of the map was again small (compare Fig. 10 

A4 in the Appendix and Fig. 2) because only large contrasts between close neighbors disappeared that are hardly visible due 

to the small pixel size. The main visible effect was the filling of the few gaps.  

After winsorizing and kriging, the semivariances for the test region followed a linear regression through the origin almost 

perfectly (r² = 0.9889, n = 50; line through semivariogram VI in Fig. 3a). This indicated that the variation in erosivity over a 

distance of 50 km followed linear trends without any noise (nugget) or short-range structures that could be attributed to 15 

individual cells of violent rain. The semivariances, when calculated for the whole of Germany, were considerably larger 

(twice as large at a distance of 50 km; Fig. 3b, semivariogam VII) and close to a linear trend only for short distances (e.g. a 

linear regression through the origin for the first 15 km yielded r² = 0.9905). For longer distances, the semivariogram 

followed an exponential model (nugget 4 N
2
 h

-2
 yr

-2
, partial sill 970 N

2
 h

-2
 yr

-2
, effective range 123 km). The larger 

semivariance and the exponential model were both caused by the inclusion of mountain areas with large erosivities and steep 20 

erosivity gradients that were missing in the test region.  

3.2 R-factor map 

Erosivity was on average 96 N h
-1

 yr
-1

 but varied between 46 N h
-1

 yr
-1

 and 454 N h
-1

 yr
-1

. The regional pattern of erosivity 

(Fig. 2) was mainly determined by orography (for a detailed topographic map see Fig. A1 in the Appendix). Largest values 

(above 185 N h
−1 

yr
−1

) were found in the very south where the northern chain of the Alps reaches altitudes of almost 3000 m 25 

above sea level (a.s.l.). Lower mountain ranges are also characterized by larger mean annual erosivities than in their 

surrounding area (compare Fig. 1 or Fig. A1 in the Appendix with Fig. 2). For instance, the Bavarian Forest with elevations 

of up to 1450 m a.s.l. exhibited annual erosivities of above 155 N h
−1 

yr
−1

. The Ore Mountains with elevations of up to 1244 

m a.s.l., had erosivities mostly between 125 and 155 N h
−1 

yr
−1

. Also mountain ranges like the Black Forest or the Harz 

Mountains clearly shape the erosivity map. Additionally, upwind-downwind effects were detectable. For example, the areas 30 

west-north-west (upwind) of the Harz Mountains had erosivities of between 70 and 80 N h
−1 

yr
−1

, while the areas east-south-

east (downwind) received less than 65 N h
−1 

yr
−1

.  
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3.3 Annual erosivity return periods 

The cumulative distribution of the relative annual erosivities followed a straight line in a probability plot fairly well when the 

logarithm was used (Fig. 4). This indicated a log-normal distribution (log mean 1.96; log SD 0.19). A very similar 

cumulative distribution was found for annual erosivities derived from the 1 h data of the test region (log mean 1.97; log SD 

0.18). The distribution based on the less-smoothed 5 min data was considerably wider (log mean 1.94; log SD 0.22). The 5 

annual expected erosivity was 88 %, 216 % and 273 % of the respective long-term mean for return periods of 2 yr, 30 yr, and 

100 yr when the 5 min data were used (Fig. 4). It is important to note that these values apply for averages of 1 km² pixels and 

include the smoothing that results from the radar measurement, the radar reprocessing, and from using 5 min rain 

increments. Even more extreme years are expected to occur in reality.   

3.4 Seasonal distribution of erosivity 10 

There was a pronounced peak in the seasonal distribution of relative erosivity during summer months (Fig. 5). The daily 

erosion index increased rapidly from mid-April to mid-May and was 0.61 % d
-1

 on average in June, July and August. From 

mid-August to September the daily erosion index declined rapidly. In winter months the daily erosion index was small (mean 

of December, January, February, and March: 0.08 % d
-1

). There was no detectable difference in the seasonal variation 

between different regions in Germany (see Fig. A5 in the Appendix). The cumulative distribution functions of different 15 

regions correlated with at least r² = 0.998 (n = 365).  

Even more striking was the fact that this pattern required considerable smoothing to yield a continuous seasonal time course. 

The difference between subsequent days in the unsmoothed data was enormous (e.g., 1.5 % d
-1

, 0.4 % d
-1

 and 0.4 % d
-1

 on 

July 29, 30 and 31). This was despite the large number of measurements (17 yr and 455 309 pixels) that were averaged for 

each day. It highlights the exceptional strength of some violent rains. Despite the rather small extent of individual erosivity 20 

cells, many of them occurred at the same day making a large relative contribution to total erosivity for this day. While 

particular days of the year are were influenced by heavy precipitation, during other days no erosive rain feall occurred 

anywhere within the research area. Seventeen years were not sufficient to level out the contrast between subsequent days. 

The results of the smoothing procedure show that even 221 yr (17 yr multiplied by a moving-average window of 13 d) were 

not sufficient to level out these differences. Two additional smoothing steps had to be applied to arrive at a smooth time 25 

course. Despite the strong smoothing that was necessary for the probability density function, the smoothing did not change 

the cumulative distribution function (which is used for calculating C factors). The cumulative distribution functions of the 

original data and of the smoothed data correlated with r²=0.9998 (n=365; both functions are shown in Fig. A5 in the 

Appendix).  

The distribution of the daily erosion index calculated from rain gauge data (1840 station years) was very similar to the 30 

distribution calculated from the much larger radar data set (compare solid and dashed lines in Fig. 5). This was especially 
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true during winter months, when values derived from both measurement methods were considerably larger than expected 

from previous analysis in the 1980s. 

4 Discussion 

4.1 Increase in erosivity 

The most striking difference between the Sauerborn map based on data from the 1960s to 1980s and the radar-derived map is 5 

a pronounced increase in erosivity. A German average of 58 N h
−1 

yr
−1

 was derived from the Sauerborn map (Auerswald et 

al., 2009), while the radar-derived map suggests an average of 96 N h
−1 

yr
−1

. This increase will come along with an equal 

increase of predicted soil losses by 69 %. An almost identical increase resulted when the erosivity of meteorological stations, 

as reported by Sauerborn (1994), was compared with the erosivity derived from radar data at the same locations. This 

resulted in an increase of 63 % (open symbols in Fig. 6). Thus, the increase in erosivity is not an effect of the regression 10 

approach that was previously used or due to better capturing of extreme events by the contiguous radar data. 

Fischer et al. (20198b) calculated erosivity for 33 of the Sauerborn stations from recent (2001 to 2016) rain gauge data. A 

comparison of these data with the Sauerborn data (1994) also showed a similar increase of 52 % (closed symbols in Fig. 6). 

The increase in erosivity between the Sauerborn map and the new radar-derived map is thus also not an artefact of using 

radar data but the result of a true change in erosivity over time. This is further corroborated by Fiener et al. (2013), who 15 

analyzed long-term records from ten meteorological stations in western Germany. They found an increase in erosivity of 63 

% between 1973 and 2007. Both independent findings leave little doubt that the pronouncedly higher values in the new 

erosivity map are a result of a change in weather properties and not a result of the difference in the applied methodologies, 

although we did expect the mean to increase due to the contiguous data set, which is better at recording rare extremes. 

A time series of 17 yr is regarded to be too short in meteorology for calculating temporal trends. The data in Sauerborn 20 

(1994) were derived from different periods for different states. If we calculate the state-wide mean R factors from her 

transfer functions relative to the state-wide mean R factors of the radar-derived map and plot this relative R factor against the 

mean year from which the state-specific data originated, a 23-yr long period can be covered by the means (Fig. 7; years < 

1990; the total time period of individual years covers an even wider range, mostly about  5 yr around the mean year). 

During this period there was a slight but insignificant increase in erosivity with time. This increase smoothly leads over to 25 

the steeper increase in radar-derived Germany-wide annual R factors if we express them again relative to the 17 yr mean 

(Fig. 7; years > 2000). Both data sets combined cover more than 60 years and yield a very highly significant regression (r² = 

0.63887340, n = 287) that indicates an accelerating increase in erosivity likely due to climate change. Furthermore, Fig. 7 

indicates that at the end of the radar time series (2017) the R factor likely is already 20 % higher than the values depicted in 

Fig. 2.  30 
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4.2 Change in the regional pattern of erosivity 

The regional patterns of the Sauerborn map and of the radar-derived map, generally agree well, but with two exceptions. 

First, the radar-derived map shows distinctly larger values south-east of the German Bight of the North Sea where the air 

masses coming from the North Sea are channeled by the Elbe river estuary and its Pleistocene meltwater valley and then hit 

the higher areas of the North German moraines. A large frequency of large rains is not unlikely in this situation. The reason 5 

that this was missed by Sauerborn (1994) using the data obtained by Hirche (1990) for Lower Saxony might be mainly due 

to the small data density and the regression with long-term rainfall. Only 18 stations were available for the whole of Lower 

Saxony and only five of them were in the area of large erosivity. Using the 18 stations in the state of Lower Saxony only, 

and ignoring the difference between landscapes, resulted in a rather poor regression with long-term annual rainfall (r² was 

only 0.32 for n=18), and therefore a large prediction error and considerable smoothing of the true erosivity pattern can be 10 

expected. For comparison: in Bavaria the regression with long-term rainfall yielded r² of 0.92 (for n=18; Rogler and 

Schwertmann, 1981). 

The second difference in the pattern is that the radar-derived map reveals more detail than the regression-based map by 

Sauerborn (1994). This is especially evident in southern Germany where southwest-northeast oriented structures seem to 

follow tracks of thunderstorm movement. In the north-east quarter of Germany, where the pattern is not shaped by mountain 15 

ranges, a rather patchy pattern resulted. Although Sauerborn (1994) had already found a patchy pattern in this area it appears 

to be patchier now. At present, it is difficult to decide whether this pattern is random due to large multi-cell clusters of 

rainstorms that will level out on the long term, or whether landscape properties, e.g. the existence of large forests, cause a 

stable pattern in an area where other factors affecting the pattern are missing. More detailed variation may also be expected 

in mountainous areas but radar measurements cannot adequately show this variation. In the future, using data obtained by 20 

commercial microwave links as an additional source for retrieving precipitation (Chwala et al., 2012, 2016; Overeem et al., 

2013) may improve high-resolution estimates, particularly in these areas. 

4.3 Change in the seasonal distribution of erosivity 

The third pronounced difference between past and recent erosivities was found for the erosion index distribution. This 

distribution is needed for C factor calculations (Wischmeier and Smith, 1978). A change in the seasonality of erosivity was 25 

already suggested by Fiener et al. (2013) analyzing an 80-yr time series. However, Fiener et al. (2013) used data from April 

to October only, and their results therefore cannot be compared directly with our results that show the most pronounced 

changes for the period from December to March. 

At present, the C factors for entire Germany (DIN, 2017) are based on the erosion index distribution developed for Bavaria 

by Rogler and Schwertmann (1981), although unpublished erosion indices are also available for other federal states (e.g., 30 

Hirche, 1990). The index distribution by Rogler and Schwertmann (1981) is characterized by very low values during winter 

months, which in turn causes a sharp increase during summer months. In contrast, the radar-based index, although still 
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having a pronounced summer maximum, predicts a higher percentage of erosivity during winter. Rogler and Schwertmann 

(1981) found that only 1.5 % of the annual erosivity fell from January to March, while Fig. 5 indicates that these months 

contributed 6.9 % to annual erosivity. This deviation may be caused by a regional variation in the erosion index because the 

unpublished indices for other federal states also suggested a larger contribution by winter months (e.g., January to March 

contributed 7.5 % in Lower Saxony according to Hirche, 1990). However, restricting our data set to Bavaria led to a very 5 

similar index during winter months (e.g., 6.2 % for January to March) to the index for the whole of Germany and the 

discrepancy with Rogler and Schwertmann (1981) remained. Furthermore we could not find significant differences when 

calculating the index distribution separately for different regions (Fig. 5A A5 in the Appendix).  

A second explanation might be that the Rogler and Schwertmann data (1981) were too limited to capture enough erosive 

rains during periods of infrequent erosive events. This explanation is corroborated by the large scatter between individual 10 

days that still existsed in our data set (Fig. 5), although our data set was more than 50 000 times larger than the data set used 

by Rogler and Schwertmann (1981).  

A third explanation could again be climate change. In Germany the number of extreme rainfall events wet months hasve 

increased in winter by 463 % during from the first to the second half of the last century with the trend greatest during the last 

few decades, while summer and autumn remained unchanged (Schönwiese et al., 2003). 15 

The change in erosion index distribution may be regarded as being rather unimportant at first glance because erosivity is still 

dominated by precipitation in summer. This small increase in erosivity during the winter months, however, could have 

important consequences for the C factor of crops that provide only small soil coverage during the winter. As there is 

practically no growth during winter, these crops are stay susceptible to erosion over a long period. Thus they experience a 

considerable amount of erosivity, even though erosivity per day is small.  For example, the C factor for continuous winter 20 

wheat increases from 0.04 to 0.10 when using the soil loss ratios taken from Auerswald et al. (1986) that entered DIN (2017) 

and the new erosion indices instead of those from Rogler and Schwertmann (1981).  

4.4 Stochasticity 

Soil erosion is characterized by a large temporal variability at a small spatial scale due to the stochastic character of erosive 

rains. About 20 yr are necessary, according to Wischmeier and Smith (1978), until this variability levels out and average soil 25 

loss approaches values predicted with the (R)USLE. Our data set covered 17 yr but significant additional smoothing was still 

necessary. One of the smoothing steps was to use hourly data, although 5 min data would have been available. In one or two 

decades the data series may be long enough to remove some of the smoothing steps. In particular, it would be desirable to 

use data of 30 min or even 5 min resolution. 

This pronounced stochasticity is due to the small size of convective rain cells. Just recently it has been shown by analyzing 30 

radar-derived rain pattern of the largest rainfall events that on average the rain amount is halved within a distance of only 2 

km around the central point of a rain cell (Lochbihler et al., 2017). Given that rain amount is squared in the calculation of 

rain erosivity, the R factor decreases to one fourth within this distance. Larger areas are only covered if there is movement of 
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the rain cells. This small size of rain cells questions the use of sparsely distributed rain gauges to derive rain erosivity. The 

inconsistent transfer functions among German states to derive erosivity from rainfall maps likely originated in the high 

stochasticity of rain gauge measurements under such conditions. It was only the unintended but unavoidable smoothing that 

was inherent in previous approaches that allowed deriving such maps. Radar technology enables us to replace this 

unintended smoothing by clearly defined statistical protocols and to quantify the effect of smoothing. 5 

Another implication of this large variability is that 20 yr will still not be sufficient to level out extraordinary events. The 

largest event erosivity that Fischer et al. (2016) found in two years on ~15 000 km² was 622 N h
-1

. Even for a 20 yr period, 

this event will add 31 N h
-1

 yr
-1

 to the average annual erosivity at the small location of only a few km² where it occurred. 

Most studies measuring soil erosion under natural rain use much shorter intervals that usually cover only a few years and 

rarely exceed ten years (see Auerswald et al., 2009, for a meta-analysis of German studies and Cerdan et al., 2010, for 10 

European studies). The interpretation of such short-term studies and the applicability of the results are limited due to the 

pronounced variability of natural rains.  

In addition, the erosion index distribution required considerable smoothing to improve representation of the seasonal 

variation. Without smoothing, the shift of a certain crop stage by only one day can cause large discrepancies in the resulting 

C factor, depending on whether a day of large erosivity in the past is included or excluded at the bounds of the crop stage 15 

period. Smoothing can prevent this. This is especially important for short crop stage periods, while the effect becomes small 

for longer periods. For instance, the monthly sums of the smoothed data correlated closely with the sums of the unsmoothed 

data (coefficient of determination: 0.995; Nash-Sutcliffe efficiency: 0.994). 

5. Conclusions 

Radar-derived rainfall data enable to derive highly resolved and contiguous maps of erosivity with high spatial detail. This 20 

avoids errors in landscapes with insufficient rain gauge density. The analysis showed that present (2001 to 2017) rain 

erosivity is considerably higher than erosivity in the past (1960s to 1980s). Furthermore, the seasonal distribution of rain 

erosivity also deviates from that of the past period. Winter months contribute more to total erosivity than previously 

recorded. Considerably more erosion can be expected for crops that are at a highly susceptible stage of development in 

winter. In consequence, the predicted soil loss will change pronouncedly by using recent erosivity and the ranking of crops 25 

regarding their erosion potential will change. This will have definite consequences for agricultural extension and advisory 

services, landscape planning and even political decisions.  

 

Data availability 

Data can be obtained from two sources: 30 

https://doi.org/10.5676/DWD/RADKLIM_Rfct_V2017.002. 

https://opendata.dwd.de/climate_environment/CDC/grids_germany/annual/erosivity/precip_radklim/2017_002/. 

https://doi.org/10.5676/DWD/RADKLIM_Rfct_V2017.002
https://opendata.dwd.de/climate_environment/CDC/grids_germany/annual/erosivity/precip_radklim/2017_002/


16 

 

The first source provides a shape file containing The R factors of the 16 German states, the 401 German counties, and the 

112566 German communities as well as the entire map as raster data with a resolution of 1 km² in GeoTiff format. The 

second sources provides can be obtained from https://doi.org/.... 

A shape file containing the entire map with a resolution of 1 km² can be obtained from https://doi.org/.... 

a shape file containing the R factors of the 16 German states, the 401 German counties, and the 11256 German communities 5 

based on the Uunsmoothed maps of all individual years since 2001 will become available at .www.dwd.de/... until the end of 

2019. Further information on the data is given in the corresponding README files. 

Earlier requests may be directed to Tanja.Winterrath@dwd.de. Annual maps of future years will routinely be produced and 

published within the framework of the annual RADKLIM update after the precipitation data have undergone all steps of 

quality control and refinement. Be aware that the aannual maps based on 1 h rain data cannot be used to quantify high-10 

resolution site specific erosion in a certain year because of the potential smoothing of extreme rain intensities. These maps 

are only designed for calculating long-term averages. 
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Figure 1: Coverage (blue circles) of the 17 German weather radars for a range (utilized radius) of 128 km and the tower locations 

in 2017 (locations of some radar towers have changed over time). Black lines denote federal states; the federal states of Bavaria 

(cross-hatched), Lower Saxony (hatched) and selected mountain ranges (light brown) are mentioned in the text. Axis ticks 

represent distances of 100 km. A detailed topographic map can be found in Fig. A1 in the Appendix. 5 
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Figure 2: Annual average R factor (N h-1 yr-1) map of Germany from 17 yr of radar rain data. Axes ticks represent distances of 100 

km. Color classes from yellow to dark blue comprise approximately 10 %, 20 %, 20 %, 25 %, 15 %, 4 %, 3 %, and 3 % of the 

area, respectively. For a comparison with the Sauerborn (1994) map see Fig. A2 in the Appendix. For comparison with the map 

before winsorizing and before kriging see Figs. A3 and A4. Average R factors for the 294 401 local authority areas (average area 5 
1214 893 km²) are given in Table A1 in the Appendix. Average values for the 11 254 communities (average area 32 km²) can be 

obtained at https://www.lfl.bayern.de/iab/index.php. 
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Figure 3: a) Experimental semivariograms of annual erosivity of the test region for different temporal resolutions of rain data (5 

min and 1 h), different averaging (1 yr [2011 + 2012], 2 yr [mean of 2011 +and 2012], 17 yr [2001 to 2017]), winsorizing and 

kriging (for selected distance classes see Table 1). The line through semivariogram VIis a linear regression through the origin (r² = 

0.9889).   5 
b) Comparison of semivariances for the 1 h, 17 yr and winsorized data before kriging for the test region and for the whole of 

Germany. 
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Figure 4: Cumulative distribution curve of the annual R factor relative to the long-term mean R factor of a pixel. Dashed black 

line applies for erosivities derived from 1 h data for the whole of Germany and 17 yr (n = 7.7 million). Solid green line applies for 

erosivities derived from 5 min data for the test region and 2 yr (n = 24 770). Straight vertical and horizontal lines indicate return 5 
periods between 2 yr and 100 yr. The y axis is probability scaled, the x axis is log scaled.  
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Figure 5: Measured (circles) and smoothed (solid blue line) daily erosion index derived from radar data. The daily erosion index 

calculated from measurements between 2001 and 2016 at 115 rain gauges distributed throughout Germany is given for 

comparison (orange dashed line). For C-factor calculations the smoothed values can be taken from Table A2 in the Appendix. 5 
Comparison of measured daily erosion indices separated for different regions in Germany and the respective cumulative 

distribution curves are depicted in Fig. A5 in the Appendix. 
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Figure 6: Comparison of past mean erosivities derived from rain gauge data of the 1960s to 1980s as reported by Sauerborn (1994) 

with recent mean erosivities of the 2000s to 2010s. Recent erosivities were either determined from rain gauge data at the same 

meteorological stations (mean of 2001 to 2016; taken from Fischer et al., 20198b; n = 33; filled circles) or from radar data (mean of 5 
2001 to 2017 and all radar pixels at a distance of <1.5 km from the meteorological stations; n = 101, open circles). Both axes are 

square-root scaled to improve resolution at low erosivities. Dashed line denotes 1:1. Solid lines are regressions through the origin.  
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Fig. 7: Average R factor relative to the 17 yr mean radar-derived R factor depending on the mean year of data origin. Data below 

year 1990 are calculated from state-wide averages determined from meteorological station records; year is the mean year of 

station records. Data above year 2000 are radar-derived R factors of entire Germany for individual years. The closed circle 

denotes the reference point (present map). 
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Table 1: Influence of temporal resolution of rain data (5 min and 1 h), averaging (1 yr, 2 yr, and 17 yr), winsorizing and kriging on 

the semivariance (gamma) at three distances h. For complete semivariograms see Fig. 3a.  

Variable (Number in Fig. 3) 

gamma 

at h = 10 km 

(N
2
 h

-2
 yr

-2
) 

gamma 

at h = 20 km 

(N
2
 h

-2
 yr

-2
) 

gamma 

at h = 40 km 

(N
2
 h

-2
 yr

-2
) 

Regional trend 

① 
(N h

-1
 yr

-1
 km

-1
) 

Effect of violent 

rain cells② 

(N h
-1

 yr
-1

 km
-1

) 

5-min annual erosivity (I) 1925 2749 3136 0.2 2.4 

5-min biennial erosivity (II) 1111 1569 1755 0.1 1.9 

1-h annual erosivity (III) 1413 1667 2147 0.3 1.8 

1-h biennial erosivity (IV) 782 953 1259 0.2 1.3 

1-h 17-yr mean erosivity (V) 144 197 315 0.2 0.5 

1-h winsorized 17-yr mean erosivity 

(VIII) 139 190 309 0.2 0.5 

1-h kriged 17-yr erosivity (VI) 60 121 239 0.2 0.3 

① The regional trend was calculated as the difference between the square roots of gamma at distances of 40 and 20 km 10 

divided by the difference in distance of 20 km.  

② The effect of violent rain cells was calculated as the square root of gamma at a distance of 20 km divided by the 

difference in distance of 20 km minus the regional trend.  

 


