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Overall Response to Editor 
This document describes our response to the reviewers’ comments and our revision of the manuscript entitled 
‘A virtual hydrological framework for evaluation of stochastic rainfall models’ (HESS 2018-489). We agreed with 
the majority of the issues raised by the reviewers and editor. The revised paper is a significant improvement 
on the original submission. The key modifications we have made in the revised paper include:  

 Clarifying and emphasising the novelty of the virtual hydrological evaluation framework more strongly 
(see Section 1: Introduction). In particular, we have provided better referencing and discussion on 
existing uses of virtual-observed streamflow evaluation and have emphasised the significance of 
formalising virtual-observed streamflow evaluation using a comprehensive and systematic evaluation 
(CASE) framework approach (originally developed in Bennett et al. 2018), as well as the novelty of the 
new unit test. 

 Restructuring and shortening the motivation for the virtual hydrological evaluation approach as well 
as descriptions of the theoretical elements (see Sections 1 and 2). 

 Extending the presented analysis to include additional runoff characteristics (i.e. flow duration curves) 
in the diagnosis of the sources of deficiencies in streamflow (see Section 4.3). This evaluation of flow 
duration curves has been incorporated in to the virtual hydrological evaluation framework as part of 
Step 3 (see Section 2.4.3.). 

 Streamlining the virtual evaluation framework steps (from seven steps down to three), summarising 
this procedure graphically using a flow chart (see Figure 2) and restructuring Section 2 to better 
integrate the framework steps and the specific virtual tests (i.e. integrated and unit tests). Section 4 
(Results) has also been re-structured to follow the streamlined framework procedure. 

 Improving the explanations of the stochastic rainfall model and the hydrological model used in the case 
study, including the providing descriptions of the calibration approaches (see Section 3). 

Please find below our response to specific comments. 

Response to Editor 
Thank you for posting your responses to the three referees’ reports. The referees raised some critical 
comments and suggestions that I urge you to consider. I feel your work, if thoroughly revised, could 
ultimately be accepted for publication in HESS. I invite you to upload a revised manuscript, incorporating 
the proposed changes and additions, and making any other modifications where you see fit. Alongside a 
thoroughly revised version of your manuscript, please provide a detailed response (“item-by-item”) to each 
of the referees’ remarks. 

In addition to the comments from the referees, I kindly ask you to add "Author contribution" and "Data 
availability" sections to the manuscript, as indicated in the guidance for authors (see 
https://www.hydrology-and-earth-system-sciences.net/for_authors/manuscript_preparation.html). 

Response: 

We have thoroughly revised the manuscript in light of the reviewer comments. ‘Author contribution’ and ‘Data 
availability’ sections have been added to the revised manuscript. 

Our item-by-item responses appear below.

https://www.hydrology-and-earth-system-sciences.net/for_authors/manuscript_preparation.html
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Response to Reviewer 1 
Comment 1:  

The manuscript introduces a new framework for the evaluation of generated rainfall time series in terms of 
their ability to reproduce runoff time series characteristics. This is done by two tests, an integrated test and 
a unit test. This topic is of broad interest for the hydrological scientific community and suitable for a 
publication in HESS. 

However, I consider the integrated test not as a novelty, since it has been applied before in different 
studies, but the unit test is useful for rainfall model evaluation. Hence, I suggest to move the focus to the 
unit test and extend the validation by other runoff characteristics. Also, the theoretical elements of the 
paper are very long, the application and validation of the test should be extended and there is a lack of 
some crucial information regarding the applied r-r model and its calibration procedure (for details please 
see my specific comments). Due to the resulting workload I suggest a major revision of the manuscript.  

Response 1: We are pleased that the reviewer found our manuscript suitable for publication and we are 
grateful for the insightful and constructive comments. They have been very helpful. The suggestions provided 
show careful consideration and have led to an improved revision of the manuscript. Regarding the specific 
matters raised:  

 Novelty of the integrated test –  we have reworded objective 21 and provided better referencing and 
discussion on existing uses of virtual-observed streamflow evaluation (calibration, validation, model 
selection and diagnosis) in the Introduction. The revised text is: 

Page 4, Line 21- 25: “To date, ‘virtual experiments’ have been used in a variety of contexts, including 
(i) the evaluation of hydrological model sensitivity (Ball, 1994, Nicótina et al., 2008, Paschalis et al., 
2013, Shah et al., 1996, Wilson et al., 1979) including the identification of rainfall features of interest 
in terms of hydrological behaviour (Sikorska et al., 2018), (ii) for developing new techniques for flood 
frequency analysis (Li et al., 2014, 2016), and (iii) to support SRM selection (Müller and Haberlandt, 
2018) as well as calibration and validation (Kim and Olivera, 2011) through a comparison to virtual 
streamflow.” 

We feel that there are some important aspects of the implementation of our framework that distinguish 
it from existing presentations of virtual-observed streamflow evaluations. In particular, the 
presentation of the integrated test in this paper is the first time, a virtual-observed streamflow 
evaluation has been formalised used using a comprehensive and systematic evaluation (CASE) 
framework approach (Bennett et al. 2018). This has been clarified in the text: 

Page 4, Line 26 – Page 5, Line 3: “The framework presented in this paper is significant advance from 
previously reported virtual experiments because it presents a formal framework to identify key 
deficiencies in the SRM by utilising (1) A comprehensive and systematic evaluation (CASE) 
framework (developed by Bennett et al., 2018 and used by Evin et al., 2018, Khedhaouiria et al., 
2018) that systematically categorises performance at multiple spatial and temporal scales using 
quantitative criteria for each statistic, and (2) two types of virtual experiments that are able to 
identify the source of key deficiencies in SRM at specific locations and time periods.” 

                                                           

 

1 Page 5, Line 6, Objective 2: “To present two different tests which are part of the framework: the integrated test as well as introduce a 
new test, the unit test. Combined use of these tests allows streamflow discrepancies to be attributed to their original source in the SRM 
according to site and season.”  
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This distinguishing feature and others are further discussed in response to comment 2. We have taken 
the reviewer’s advice and emphasized the novelty of the unit test and its diagnostic ability in the revised 
manuscript. 

 Evaluation using other runoff characteristics –  we have included an examination of flow duration curves 
to provide additional insight into the deficiencies of the rainfall model. This evaluation has been 
incorporated in to the virtual hydrological evaluation framework as part of Step 3 (see Section 2.4.3):  

Page 12, Lines 1-8: “Following a side-by-side comparison of integrated test and unit test results in 
terms of the relative errors the sources of poor performance should be classified in terms of in which 
influencing months streamflow deficiencies originate (e.g. poor streamflow arises from rainfall 
deficiencies mostly in the same month, a prior month or a contiguous block of months) … To 
complement this analysis a comparison of the virtual-observed flow duration curve for the evaluated 
time period with the flow duration curves resulting from unit tests for key influencing months is also 
recommended.” 

 Length of theoretical elements – the motivation and description of the theoretical elements (now 
Sections 1 – 2.1) have been shortened by 40 lines  (from 167 lines down to 127 lines). 

 Information on the r-r model – we have improved the explanation of the rainfall-runoff model, including 
adding references of the calibration and validation procedure (see Section 3). The revised text is: 

Page 13, Lines 1-12: “The hydrological model GR4J (Perrin et al., 2003) was used to simulate virtual-
observed streamflow at a daily time step. GR4J is a daily lumped hydrological model that simulates 
daily streamflow in a parsimonious manner using four parameters. The GR4J model was calibrated 
according to the procedure set out in Westra et al. (2014b) for the stationary version of the GR4J 
hydrological model. The details are provided in (Westra et al., 2014a) and a short summary is 
provided here. The multi-site rainfall gauges were Thiessen weighted to calculate the catchment 
average rainfall. The model was calibrated to the streamflow data at Houlgrave Weir (see Figure 4) 
using model calibration period of 15 years (1985-1999). The parameters were estimated using 
maximum likelihood estimation procedure with a weighted least squares likelihood function. The 
model parameters that maximised the likelihood function were found using a multi-start quasi-
Newton optimisation procedure with 100 random starts. Overall, the GR4J model was a good fit to 
the observed streamflow, with a Nash-Sutcliffe efficiency of 0.8. A similar type of hydrological model 
and calibration approach has been used for other virtual evaluation studies (Li et al. 2014; 2016). 
The same set of hydrological model parameters are used for both the unit and integrated tests so 
that the same transformation of rainfall to flow is used.” 

We further elaborate on these items in response to subsequent comments made. 

Comment 2:  

P2l20-23: The so-called "virtual-observed streamflow“-approach and the integrated test is not new and a 
widely used evaluation method, especially in data-sparse regions or research fields. For example in urban 
hydrology, where measured runoff characteristics are not often available, the simulation of a reference 
streamflow is very common (e.g. Müller and Haberlandt, 2018). The authors even mention other studies 
using the integrated test (Li et al., 2014, 2016). However, the unit test is interesting and indeed provides 
useful insights into the rainfall-runoff (r-r) transformation process.  

Response 2:  

Thank you for supplying the references: Müller and Haberlandt, 2018; Sikorska et al. 2018. We have included 
them in the revised introduction text along with additional references (e.g. Kim and Olivera, 2012). 

We agree that the concept of a virtual-observed streamflow evaluation is not new and we have revised the 
introduction, including the presentation of objective 2, to make this clear and discuss that the approach has 
been used in a variety of contexts (e.g. calibration, validation, model selection and as a diagnostic tool). The 
revised text is: 
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Page 4, Line 21- 25: “To date, ‘virtual experiments’ have been used in a variety of contexts, including (i) 
the evaluation of hydrological model sensitivity (Ball, 1994, Nicótina et al., 2008, Paschalis et al., 2013, 
Shah et al., 1996, Wilson et al., 1979) including the identification of rainfall features of interest in terms 
of hydrological behaviour (Sikorska et al., 2018), (ii) for developing new techniques for flood frequency 
analysis (Li et al., 2014, 2016), and (iii) to support SRM selection (Müller and Haberlandt, 2018) as well 
as calibration and validation (Kim and Olivera, 2011) through a comparison to virtual streamflow.”  

However, there are some important aspects of our framework that distinguish it from existing presentations 
of virtual-observed streamflow evaluation, as outlined below.  

1. This is the first time the virtual-observed streamflow evaluation approach has been formalised using a 
Comprehensive and Systematic Evaluation (CASE) framework (pioneered by Bennett et al., 2018 and used 
by Evin et al. 2018, Khedhaouiria et al. 2018) to evaluate stochastic rainfall models in terms of the ability 
to produce key runoff statistics of interest. The integrated tests presented in this paper follow the CASE 
approach because they (i) present a comprehensive range of key statistics of interest, (ii) systematically 
categorise performance at specific spatial and temporal scales using quantitative criteria for each statistic, 
and (iii) systematically categorise aggregate performance over multiple spatial and/or temporal scales. This 
novelty has been clarified in the revised manuscript: 

Page 4, Line 26 – Page 5, Line 3: “The framework presented in this paper is significant advance from 
previously reported virtual experiments because it presents a formal framework to identify key 
deficiencies in the SRM by utilising (1) A comprehensive and systematic evaluation (CASE) framework 
(developed by Bennett et al., 2018 and used by Evin et al., 2018, Khedhaouiria et al., 2018) that 
systematically categorises performance at multiple spatial and temporal scales using quantitative 
criteria for each statistic, and (2) two types of virtual experiments that are able to identify the source 
of key deficiencies in SRM at specific locations and time periods.” 

In contrast, previous papers (Müller and Haberlandt, 2018; Sikorska et al. 2018, Kim and Olivera, 2012) 
have used a virtual-observed streamflow evaluation approach, but have not used a CASE framework to 
evaluate the performance of stochastic rainfall model at multiple rainfall sites in terms of its ability capture 
key streamflow statistics of interest. For example, Müller and Haberlandt (2018) established the need for 
spatial consistency of rainfall generation in modelling sewer networks by comparing rainfall disaggregation 
approaches with or without spatial consistency. This virtual-observed streamflow evaluation is performed 
for identified extreme rainfall events only and therefore does not use a CASE approach that considers 
multiple temporal scales and the longer term effects of the applied rainfall on the translation of subsequent 
rainfall to streamflow. Sikorska et al. (2018) focused on identifying rainfall features of interest in terms of 
resultant hydrological behaviour for the purposes of determining the effective daily precipitation duration 
with a view to selecting a suitable rainfall disaggregation scheme. Their evaluations determined that 
detailed temporal rainfall time series were not needed to reproduce annual or seasonal peaks in their 
modelled catchments. Although the evaluations presented are comprehensive the motivation of the 
Sikorska et al. (2018) paper is different and does not provide a general formalised framework for 
systematically categorising stochastic rainfall model performance at specific and aggregate temporal and 
spatial scales. Kim & Olivera (2012) used virtual-observed streamflow evaluation as part of a larger 
calibration and validation approach in which various weights were trialled to reflect the importance of 
various rainfall statistics within a modified Bartlett-Lewis rectangular pulse (MBLRP) model. However, the 
focus was on the improvement and validation of the MBLRP model rather than the presentation of 
separate framework for model evaluation. Finally, Li et al. (2014, 2016) used a virtual-observed streamflow 
evaluation approach, to evaluate the ability of range of techniques to estimate the derived annual flood 
frequency distribution - they did not use a CASE approach to evaluate stochastic rainfall models.  

2. The formalisation of the integrated test using a comprehensive and systematic evaluation (CASE) approach, 
forms a baseline for subsequent application of the unit test which has greater ability to pinpoint issues with 
respect to the source of the rainfall error on a monthly basis. For example, in Step 3 of the framework the 
following comparison is made: 
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Page 11, Lines 4-6: “Side-by-side comparison of the results of the integrated test and unit tests are given 
in terms of the errors for selected monthly and annual statistics (see illustration in Fig. 3(b)). The 
comparison of errors from the unit test forms the basis of interpretation for hydrological insights and 
their relationship to the rainfall model.” 

3. As identified by the reviewer, we introduce an innovative unit test, which has never been used before in a 
virtual-observed streamflow evaluation approach. The key advantage of this unit test is that by splicing 
together the observed and simulated rainfall in a systematic manner, it is able to develop new insights on 
which months have deficiencies in simulated rainfall that produce poor performance in streamflow. We 
have put greater emphasis on this new innovative unit test in the revised manuscript including extending 
the unit test to evaluate streamflow deficiencies via an examination of daily flow duration curves. 

Comment 3:  

It would be useful to move the focus on this test and proof it with additional runoff characteristics, e.g. flow 
duration curves, not using only the monthly runoff amount. Therefore, no new simulations are necessary, 
only additional analyses of the existing r-r simulation results.  

Response 3: 

We have included an examination of flow duration curves to provide additional insight into the deficiencies of 
the rainfall model in the revised manuscript (see Section 4.3). An evaluation of flow duration curves has been 
incorporated in to the virtual hydrological evaluation framework as part of Step 3 (see Section 2.4.3) to 
augment the unit test evaluations. An example of the examination and discussion of the flow duration curves 
and a flow duration curve figure (Fig. 9) are reproduced below: 

Page 18, Lines 9-15: “This need to improve September in preference to preceding months is also 
illustrated via Fig. 9 (c) where the September daily flow duration curves are shown for the cases where 
August (orange shading) and September (blue shading) are the influencing months compared against 
the virtual-observed September flow duration curve (purple dots). Where August is selected as the 
influencing month, the virtual-observed flow duration curve largely sits inside the 90% limits of the flow 
duration curves resulting from the unit testing procedure. Whereas, the virtual-observed flow duration 
curve sits outside the 90% limits of the unit test flow duration curve when September is taken as the 
influencing month. Thereby providing further evidence that to improve September flows that 
September rainfall should be improved in preference to other months.” 
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Fig. 1 Lobethal, Site 12 (90% limits shown) (a) unit test error in mean monthly flow (September), (b) unit test error in standard 
deviation of monthly flow (September), (c)  Unit test September flow duration curve when August and September are selected as 
influencing months (top 10% of flow days shown). 

Comment 4:  

P2l23-25 The sentence is not clear without the explanations given in section 2. Either here more information 
are provided or the sentence is left out. 

Response 4:  

Thank you. The sentence has been left out in the revised manuscript. 

Comment 5: 

P3l9-14 The idea behind the example provided by the authors is clear. Nevertheless, some of the rainfall 
characteristics mentioned are not clear and, since it is only an example, can be left out or can be replaced by 
other rainfall characteristics: 
- rainfall on wet days - What does this characteristic represent (the daily total rainfall itself is mentioned 
later)?; 
- Extreme value analysis on a monthly basis and autocorrelation on an annual basis are from my 
understanding rather uncommon rainfall characteristics for the evaluation of rainfall time series  

Response 5: 

Due to a restructure of the paper the example does not appear in the revised manuscript.  

Comment 6: P3l20-21 The details provided in brackets can be left out, since without reading the reference 
there are no additional information for the reader. 

Response 6: Due to the shortening of the introduction and motivation of the new evaluation framework (see 
comment 7 below) the sentence no longer appears in the revised manuscript. 
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Comment 7:  
P3l7-P4l20 The motivation for the introduction of the new evaluation strategy is quite long and can be 
shortened by the half. I think the majority of the community is quite aware of the issue with overlapping 
errors. Also Fig. 1 and Fig. 2 are quite clear from the text and could be left out. If kept, a box with "True 
rainfall“ should be added in Fig.1a) to be consistent with Fig. 1b ("True streamflow“) 

Response 7: 

The motivation for the new evaluation strategy has been restructured and shortened by 50 lines (from 167 
lines to 127 lines) while maintaining the key points of the introduction and section 2.1 of the original 
manuscript. We have retained Fig. 1 and 2 but merged them (now Fig. 1 in the revised manuscript) and made 
the amendments suggested above. Based on our experiences explaining this work these figures are helpful to 
avoid misconceptions. For convenience the merged figure is reproduced below. 

 

Fig. 2 Schematic of (a) observed-rainfall evaluation where simulated rainfall is compared against observed rainfall and (b) observed-
streamflow evaluation where simulated streamflow is compared against observed streamflow (c) virtual hydrological evaluation 
framework where simulated streamflow is compared against virtual-observed streamflow. 

Comment 8: 

P5l10 "to match streamflow observations“ -> "to match streamflow observations or statistics“ 

Response 8: The sentence has been modified as suggested.
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Comment 9: 
P6Table1 The authors should include a definition of the applied symbols in the caption, since the difference 
between "x“ and "-“ is not too intuitive (from only the table). Is in the last line, first column something 
missing (virtual hydrological…)? 

Response 9:   

To avoid ambiguity Table 1 has been revised so that text (i.e. ‘Yes’ and ‘No’) is used in place of the original 
symbols and an additional column is now included that indicates whether the analysis is streamflow-based. 
The last line, first column has been amended to read ‘virtual hydrological evaluation’. Table 1 is reproduced 
below for convenience. 

Table 1 Comparison of the sources of error for observed-rainfall, observed-streamflow and virtual hydrological evaluation 
frameworks as well as whether the evaluation is streamflow-based. 

 Source of error Streamflow-
based evaluation Stochastic 

rainfall 
model 

Hydrological 
model 

Observed 
streamflow 

Observed-rainfall evaluation Yes No No No 

Observed-streamflow evaluation Yes Yes Yes Yes 

Virtual hydrological evaluation Yes No No Yes 

Comment 10: 

P6Table 1 From my opinion the results from the virtual-observed streamflow approach can still be biased by 
the applied r-r model. For example, rainfall is generated in space and two rainfall generation methods show 
differences in terms of rainfall characteristics, but not in the simulated streamflow. After what I’ve read in 
the introduction and methods section, the conclusion is that the compared rainfall characteristics are then 
not practicable (“no impact“) und useless (for the study region). But this also depends on i) the model choice 
(including e.g. spatial resolution, model type (fully / semi-distributed), several model approaches) and ii) the 
parameter identification. In a semi-distributed model differences in spatial rainfall could be dampened, while 
they are (maybe) not dampened in a fully-distributed model. The parameters have to be chosen a priori – a 
calibration on one of the rainfall data sets is not possible to avoid biases. Will the parameters be calibrated 
by an additional rainfall data set (the observed data) and if so, how can be avoided that this calibration 
introduces a bias (e.g. maybe the observed rainfall data is more similar to rainfall data set A under 
investigation than to B)? So all of the results depend on the chosen setup for the r-r simulations and drawn 
conclusions are only valid in context with the model setup and parameter set. This is of course always the 
case in hydrology, but it becomes more important if a virtual runoff time series is applied, since the “relation“ 
between the model output and reality gets lost. However, the authors point these issues out later in their 
investigation (p20), but it should be communicated earlier to the reader. 

Response 10: 

The reviewer has raised some excellent discussion points. Although we have discussed some of these points 
later in the investigation (Section 5), we now raise these key issues earlier with the reader (Section 2.1).  

We provide specific responses below to the discussion points raised.  

1. “Virtual-observed streamflow approach can still be biased by the applied r-r model” – Yes, we agree. 
This is a very important matter to consider.  As a result we acknowledge that virtual hydrological 
evaluation should use an appropriate hydrological model in Section 2 : 

Page 5, Lines 29-30: “It is also important that the selected hydrological model is fit for purpose 
so that it can simulate the streamflow characteristics of interest.” 

The need for an appropriate hydrological model is further discussed later in Section 5.3: 
Page 27, Lines 25-30: “Hydrological structural errors may potentially skew interpretation of the 
SRM evaluation if the hydrological model poorly represents the catchment processes. To reduce 
these impacts the steps taken in this study included (a) using a well-tested hydrological model 
that has demonstrated good performance on a wide range of catchments (e.g. the GR4J model 
has been widely tested , see (Perrin et al., 2003, Coron et al., 2012); (b) calibrating and 
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evaluating the hydrological on a catchment close to the observed rainfall sites to ensure it 
provided sufficiently good performance  (e.g. GR4J was calibrated to the Onkaparinga 
catchment - see (Westra et al., 2014a, Westra et al., 2014b).” 

Future research on the application of the VHE will consider multiple hydrological models to avoid the 
reliance on single rainfall-runoff models and/or single calibration schemes. This discussion has been 
added to Section 5.3: 

Page 27. Lines 30-32: “Future research will use multiple, well-tested hydrological models with 
sufficiently good performance to reduce the reliance on a single hydrological model and ensure 
the identification of SRM deficiencies is not dependent on a single hydrological model.” 

 
2. “Differences in terms of rainfall characteristics, but not in the simulated streamflow” – Yes, there is 

the potential that a chosen rainfall-runoff model is insensitive to certain important differences in 
modelled rainfall. While we agree with the reviewer that spatial patterns are important, temporal 
differences in rainfall patterns, which are capture by a lumped rainfall-runoff model are potentially 
equally as important.   
 

3. “But this also depends on i) the model choice … and ii) the parameter identification” – Yes, as with the 
comments in (1), all elements of the modelling method can potentially introduce bias. The end-user’s 
impact of interest and associated modelling process can influence an outcome. These observations 
reinforce the need for care when applying the framework. This includes ensuring that (i) the rainfall-
runoff model is ‘fit for purpose’, 

Page 5, Lines 29-30: “It is also important that the selected hydrological model is fit for purpose 
so that it can simulate the streamflow characteristics of interest.” 

(ii) that this rainfall model is well-tested,  

Page 27, Lines 25-30: “Hydrological structural errors may potentially skew interpretation of 
the SRM evaluation if the hydrological model poorly represents the catchment processes. To 
reduce these impacts the steps taken in this study included (a) using a well-tested 
hydrological model that has demonstrated good performance on a wide range of catchments 
(e.g. the GR4J model has been widely tested , see (Perrin et al., 2003, Coron et al., 2012)” 

and (iii) well calibrated. 
Page 27, Lines 25-30: “(b) calibrating and evaluating the hydrological on a catchment close to 
the observed rainfall sites to ensure it provided sufficiently good performance  (e.g. GR4J was 
calibrated to the Onkaparinga catchment - see (Westra et al., 2014a, Westra et al., 2014b).” 

A description of the hydrological model calibration  approach is reproduced below:  
Page 14, Lines 1-17: “The hydrological model GR4J (Perrin et al., 2003) was used to simulate 
virtual-observed streamflow at a daily time step. GR4J is a daily lumped hydrological model 
that simulates daily streamflow in a parsimonious manner using four parameters. The GR4J 
model was calibrated according to the procedure set out in Westra et al. (2014b) for the 
stationary version of the GR4J hydrological model. The details are provided in (Westra et al., 
2014a) and a short summary is provided here. The multi-site rainfall gauges were Thiessen 
weighted to calculate the catchment average rainfall. The model was calibrated to the 
streamflow data at Houlgrave Weir (see Figure 4) using model calibration period of 15 years 
(1985-1999). The parameters were estimated using maximum likelihood estimation procedure 
with a weighted least squares likelihood function. The model parameters that maximised the 
likelihood function were found using a multi-start quasi-Newton optimisation procedure with 
100 random starts. Overall, the GR4J model was a good fit to the observed streamflow, with a 
Nash-Sutcliffe efficiency of 0.8. A similar type of hydrological model and calibration approach 
has been used for other virtual evaluation studies (Li et al. 2014; 2016).” 
 

4. "If so, how can be avoided that this calibration introduces a bias" – This is an excellent question, which 
we will address with further discussion. While best-practice models and methods are important, this 
does not necessarily guard against the possibility that a model poorly represents key processes of 
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interest. A remedy for this limitation would be to use multiple rainfall-runoff models and this is now 
clearly mentioned as the first step of Future research in new Section 5.3, Limitations and future 
research. 

Page 27, Line 22-32: “The formalisation of the virtual hydrological framework for SRM 
evaluation provides the opportunity for further improvements in the future, including:  

(i) Using multiple, well-tested hydrological models - a potential limitation of the virtual 
hydrologic evaluation framework is that it is reliant on the use of a hydrological model. 
Hydrological structural errors may potentially skew interpretation of the SRM evaluation if the 
hydrological model poorly represents the catchment processes. To reduce these impacts the 
steps taken in this study included (a) using a well-tested hydrological model that has 
demonstrated good performance on a wide range of catchments (e.g. the GR4J model has been 
widely tested , see (Perrin et al., 2003, Coron et al., 2012); (b) calibrating and evaluating the 
hydrological on a catchment close to the observed rainfall sites to ensure it provided sufficiently 
good performance  (e.g. GR4J was calibrated to the Onkaparinga catchment - see (Westra et 
al., 2014a, Westra et al., 2014b). Future research will use multiple, well-tested hydrological 
models with sufficiently good performance to reduce the reliance on a single hydrological 
model and ensure the identification of SRM deficiencies is not dependent on a single 
hydrological model.” 

 

Comment 11: 

P9Fig3b Maybe the authors can spend a more detailed explanation of the two different indices k and t. For 
me the difference was not quite clear at the beginning. Also, it is clear that rainfall in June can affect the 
runoff in July (or from April by filling storages and hence affecting runoff in July). But how can rainfall in July 
affect runoff in June, although the months August to January obviously don’t? Is the rainfall information 
transformed into runoff over such a long period in the model? Since there is no rain in the summer half year, 
shouldn’t the storages run empty? 

Response 11: 

We have more clearly indicated the meaning of indices k and t in the descriptive text (see Sections 2.4.1 and 
2.4.2), Figure 3b (Figure 4b in the revised manuscript) and its caption to aid the reader. 

Section 2.4.1, Pages 9 - 11: “The unit test investigates the impact of simulated rainfall in a given 
influencing month on the production of streamflow in an evaluated month of interest. This is achieved 
by splicing observed and simulated rainfall into a single time series which is used to produce simulated 
streamflow.  

Following Fig. 3(a), consider the time series of observed, 𝑅𝑜𝑏𝑠, and simulated, 𝑅𝑠𝑖𝑚,   daily rainfall for 

each year (and replicate) at a given site. Fig. 3(a) illustrates the embedding of simulated rainfall 𝑅𝑘
𝑠𝑖𝑚 

in an influencing month, 𝑘, within observed rainfall 𝑅𝑚
𝑜𝑏𝑠 for all other months 𝑚 ∈ {1, … ,12| 𝑚 ≠ 𝑘}. 

The resulting spliced rainfall time series 𝑅(𝑘)
𝑠𝑝𝑙

 is denoted with respect to the influencing month,  𝑘, and 

has the same length as the corresponding observed 𝑅𝑜𝑏𝑠 and simulated 𝑅𝑠𝑖𝑚 time series. 

𝑅(𝑘)
𝑠𝑝𝑙

= ⋃ {
𝑅𝑚

𝑠𝑖𝑚

𝑅𝑚
𝑜𝑏𝑠

; 𝑚 = 𝑘
; 𝑚 ≠ 𝑘

12
𝑚=1    (3) 

For example, if June (𝑘 = 6) is selected as the influencing month, each year of the spliced time series, 

𝑅(6)
𝑠𝑝𝑙

, would be composed as follows: 

𝑅(6)
𝑠𝑝𝑙

= {𝑅1
𝑜𝑏𝑠, … , 𝑅5

𝑜𝑏𝑠, 𝑅6
𝑠𝑖𝑚, 𝑅7

𝑜𝑏𝑠, … , 𝑅12
𝑜𝑏𝑠}       (4) 

The ensemble of 𝑘 = 1, … ,12 spliced rainfall time series 𝑅(𝑘)
𝑠𝑝𝑙

 for all influencing months and additional 

inputs (e.g. potential evapotranspiration) indicated by ‘…’ are transformed according to a hydrological 
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model 𝑔[ ] to produce an ensemble of simulated streamflow, 𝑄(𝑘)
𝑠𝑝𝑙

. This procedure is repeated for all 

simulated rainfall replicates. 

𝑄(𝑘)
𝑠𝑝𝑙

= 𝑔 [𝑅(𝑘)
𝑠𝑝𝑙

, … ]                    (5) 

By construction, the spliced rainfall is identical to the observed rainfall for all months other than the 
influencing month, so any errors in streamflow statistics can be attributed to the influencing month 
free from other factors. 

The full set of spliced rainfall (e.g. spliced rainfall for each month designated as the influencing month 

𝑅(𝑘)
𝑠𝑝𝑙

; 𝑘 = 1, … ,12) is input to the hydrological model. This step is repeated for all available replicates 

of the spliced time series. The results of the unit test and the integrated test (Steps 1-2) are then 
investigated and compared selecting each month as the evaluated time period in turn as well as other 
key time periods (e.g. annual). ” 

 

Fig. 3 Schematic of (a) the method of constructing a unit test by embedding simulated months in an observation time series, and (b) 
the error profile produced when using the integrated and unit tests for the evaluated time period of June (t=6) (box plot whiskers 
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indicate the 90% limits of the simulated streamflow replicates). For the unit test the errors in the evaluated period (t) are calculated 

as the difference between 𝑸(𝒌)
𝒔𝒑𝒍

 and 𝑸(𝒕)
𝒗𝒐 . For the integrated test the errors are calculated as difference between 𝑸𝒔𝒊𝒎  and 𝑸(𝒕)

𝒗𝒐 .  

Section 2.4.2, Page 11, Lines 11-20: “Using the function ℎ[ ] to denote a calculated statistic of interest 
(e.g. mean or standard deviation), the relative error in an evaluated time period 𝑡 (e.g. annual or 
particular month) is given by  

%𝐸𝑟𝑟(𝑡) =
ℎ [𝑄(𝑡)

𝑒𝑣𝑎𝑙]−ℎ [𝑄(𝑡)
𝑣𝑜]

ℎ [𝑄(𝑡)
𝑣𝑜]

× 100       (6) 

where 𝑄(𝑡)
𝑣𝑜  is the virtual-observed streamflow and 𝑄(𝑡)

𝑒𝑣𝑎𝑙 is the simulated streamflow from the selected 

virtual hydrologic test (i.e. 𝑄𝑠𝑖𝑚 if integrated test or 𝑄(𝑘)
𝑠𝑝𝑙

 if unit test selected) in the evaluated time 

period 𝑡. This procedure is repeated for all replicates of the simulated streamflow such that a range of 
errors is reported for each test for the target time period.  

Following the calculation of this error metric for all replicates of the integrated test and ensemble of 
unit tests (𝑘 = 1, … ,12) it is possible to investigate deficiencies in the simulated streamflow in terms 
of which influencing month(s) contribute more to the deficiencies in streamflow for the target time 
period based on that statistic of interest. Thus, for each site, statistic and evaluated time period there 
are 13 sets of errors to compare.” 

A unit test is undertaken by evaluating the ensemble of simulated streamflows from transforming the spliced 
rainfall from the 12 potential influencing months for an evaluated month, t. We believe it is necessary to 
evaluate all 12 potential influencing months because a priori the impacts of ‘poor’ rainfall can have long-term 
impacts on streamflow statistics due to catchment storage in the rainfall-runoff model. Some catchment 
models have short-term stores to represent features such as depressions, basins, and channels, but other 
catchments models have long-term stores to represent the long-term memory in subsurface catchment 
storages) that can have memory over multiple months. For the case study catchment the storages do not run 
empty each year in summer, so there is potential for persistence at longer timescales due to this ‘memory’ in 
the catchment. Therefore, it is plausible that rainfall from 12 months prior can influence the current state of a 
catchment (especially if that month/season was anomalously wet or dry). An additional figure of monthly 
rainfall and streamflow boxplots is now provided to illustrate the highly seasonal nature of the case study 
catchment in Section 3 (also see response to comment 14). The new figure (Fig. 6) is reproduced below for 
convenience. 

 

Fig. 6 Seasonal variation of catchment average rainfall and flow at Houlgrave Weir. Boxplots show the variation across years. 
Wettest indicates (high rainfall, high flow), direst indicates (low rainfall, low flow) and wetting-up indicates (high rainfall, low 
flow). 
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Comment 12: 

P9Section 2.4 It would be useful for the reader to illustrate the implementation of the framework with a flow 
chart, since the authors use step 1, step 6 and so on throughout the section (and the manuscript). 

Response 12: 

We have incorporated a flow chart to illustrate the framework procedure in Section 2.1 (see Fig. 2 in the revised 
manuscript). For convenience the flow chart is reproduced below. 

 

Fig. 2 - Virtual hydrological evaluation procedure. 

In the revised manuscript the framework steps have been streamlined (from seven steps down to three) to 
further improve the presentation of the framework and Section 2 has been restructured to better integrate 
the framework steps and the specific virtual tests (i.e. integrated and unit tests). The structure of Section 2 is 
now as follows: 

2. Virtual hydrological framework 
2.1 Overview 
2.2 Step 1 – Identify poor performing sites 

2.2.1 Selection of primary streamflow characteristic and relevant hydrological model 
2.2.2 Integrated test procedure 
2.2.3 Identify poor performing sites using CASE framework 

2.3 Step 2 – Identify poor performing time periods 
2.4 Step 3 – Identify sources of poor performance 

2.4.1 Unit test procedure 
2.4.2 Compare unit tests and integrated tests 
2.4.3 Identify types of key deficiencies 

Section 4 (Results) has also been restructured to follow the streamlined framework procedure. The structure 
of Section 4 is now as follows: 

4. Results 
4.1 Step 1 – Identify poor performing sites 
4.2 Step 2 – Identify poor performing time periods 
4.3 Step 3 – Identify sources of poor performance 

4.3.1 Streamflow errors mostly originate from rainfall model deficiencies in the 
evaluated month 
4.3.2 Streamflow errors originate from rainfall model deficiencies over a contiguous 

block of months  
4.3.3 Streamflow errors originate from rainfall model deficiencies in a preceding month 

more so than evaluated month 
4.3.4 Influence of monthly rainfall on annual flow volumes 
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Comment 13: 
P10l14-17 What is the 90 % limit of the simulated statistic? If m=10 mm, everything between 1 mm and 19 
mm is considered as good? Here an additional explanation is required. 

 
Response 13: 
Thank you. We have added additional information to explain the 90% limit test as requested both in text and 
graphically (see Section 2.2.3, Table 2 and Fig. 3).  The text and figures are reproduced below for convinience: 

Page 7, Line 15-22: “ The integrated test results aim to identify the sites that are poor performing for 
the primary streamflow characteristic. Model performance is categorised using a CASE framework 
approach as ‘good’, ‘fair’ or ‘poor’ following Bennett et al. (2018). The quantitative tests for each 
performance category are provided in Table 2 alongside an illustration of each in Fig. 4. The quantitative 
tests proceed by comparing the statistics of the virtual-observed streamflow against those calculated 
from replicates of the simulated streamflow. Performance was categorised as ‘good’ if the selected 
statistic for the virtual-observed streamflow fell within the 90% limits of the statistic calculated from 
the simulated streamflow replicates (Fig. 4, case i), as ‘fair’ if the virtual-observed statistic fell outside 
the 90% limits of the simulated streamflow replicates but within the 99.7% limits (Fig. 4, case ii) and 
otherwise as ‘poor’ (Fig. 4, case iii).”  

Table 2 CASE performance classification criteria. Adapted from Bennett et al. (2018). 

Performance Classification Test Key 

‘good’ Observation lies within the 90% limits (case i) 
 

‘fair’ Observation lies outside the 90% limits but within the 99.7% limits (case ii)  
 

‘poor’ Otherwise (case iii)  
 

 

 

Fig. 4 Illustration of performance classification, case (i) shows ‘good’ performance, case (ii) shows ‘fair’ performance and case (iii) 
shows ‘poor’ performance. Adapted from Bennett et al. (2018). 

 

Comment 14: 
P11l9-10 From Table 2 it cannot be seen, how long the time series used for the calibration of the rainfall 
generator are. It would be useful to the reader to characterize the time series more in detail (wet spell 
durations and amount, dry spell durations and maybe even on a monthly basis, since further investigations 
are carried out on a monthly basis). At least a hint to Fig. 6 and Fig. 7, which include some monthly 
observations, would be useful. 

Response 14: 
We agree with the reviewer and recognise that the high-level summaries need more tangible details on the 
rainfall and streamflow statistics on a monthly basis to help the reader understand the seasonal behaviour of 
the case study catchment. We have revised Table 2 (now Table 3) to characterise the rainfall time series in 
more detail including the addition of columns that present rainfall statistics (total rainfall, no. of wet days, 
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average daily rainfall, average wet day length, average dry spell durations) in different seasons – for brevity in 
this table we show two months: January to represent the dry summer and July to represent the wet winter. 
Further detail on these statistics for all months at each site is also provided as supplementary material. Table 
3 is reproduced below: 

Table 3 Site names, locations and seasonal rainfall characteristic summary. Sites ordered from lowest to highest elevation. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In addition, a new figure that shows seasonal variation of catchment average rainfall and streamflow on a 
monthly basis has been added to Section 3 (Case Study) of the main paper.  

 

Fig. 6 - Seasonal variation of catchment average rainfall and flow at Houlgrave Weir. Boxplots show the variation across years. 
Wettest indicates (high rainfall, high flow), direst indicates (low rainfall, low flow) and wetting-up indicates (high rainfall, low 
flow). 

Comment 15: 
P11l16 For the calibration of the model the reader is referred to Westra et al. (2014), which is a non-
reviewed technical report with 100+ pages, as far as I can see. In context with my former specific comment 
it is necessary to provide information in the actual manuscript, how the model has been calibrated. Which 
rainfall data was used for the calibration? If all 22 stations have been applied, how was the areal rainfall 
estimated as input for the lumped r-r model? 

 
Response 15: 
The calibration of the hydrological model was actually based on the approach used in a water resources 
research paper (Westra et al., 2014a) is now be cited alongside the report. The paper provides a compact peer-
reviewed summary of the model and its calibration – for a neighbouring catchment (Scott Creek). This paper 
was acknowledged with a Research Spotlight Award from American Geophysical Union (top 5% of papers in 

Site 
No Site Name 

Elev 
(m) 

Ann. 
Av. 

Rain 
(mm) 

 January July 

Total 
(mm) 

No. 
Wet 

(days) 

Daily 
Av. 

(mm) 

Wet-
spell 

(days) 

Dry-
spell 

(days) 
Total 
(mm) 

No. 
Wet 

(days) 
Daily Av. 

(mm) 

Wet-
spell 

(days) 
Dry-spell 

(days) 

  

19 Old Noarlunga 7 520 20 4.1 0.6 1.6 9.6 72 17 2.3 3.1 2.8   
16 Morphett Vale 90 560 20 4.1 0.6 1.5 8.9 76 17 2.4 3.3 2.8   
10 Happy Valley 148 640 22 4.8 0.7 1.7 8.2 88 18 2.8 3.6 2.6   
21 Willunga 158 640 23 4 0.7 1.6 10 95 17 3 3.2 2.7   
5 Clarendon 223 820 25 4.7 0.8 1.7 8.9 114 17 3.7 3.4 2.8   
6 Coromandel 

Valley 
234 710 24 4.8 0.8 1.8 9.2 102 18 3.3 3.6 2.8   

13 Macclesfield 302 730 28 5.3 0.9 1.8 7.9 99 17 3.2 3 2.7   
15 Cudlee Creek 311 830 29 5 0.9 1.8 8.4 123 18 3.9 3.8 2.7   
11 Harrogate 335 550 23 3.5 0.7 1.6 12 75 12 2.4 2.2 3.8   
4 Cherry gardens 345 920 30 5.4 1 1.8 7.7 134 18 4.3 3.8 2.6   
8 Gumeracha 346 790 27 5.3 0.9 1.8 7.8 108 18 3.5 3.5 2.6   
9 Hahndorf 347 850 29 5.4 0.9 1.9 8.1 123 18 4 3.4 2.7   

17 Mount Barker 349 770 28 5.9 0.9 1.9 7.2 104 18 3.3 3.3 2.6   
7 Echunga 375 805 28 5 0.9 1.8 8.7 110 17 3.5 3.3 2.6   
3 Bridgewater 376 1050 32 5.2 1 1.9 8.9 154 18 4.9 3.6 2.7   

14 Meadows 384 870 30 4.8 1 1.7 8.5 122 17 3.9 3.2 2.7   
2 Birdwood 385 720 25 4.4 0.8 1.8 9.6 104 17 3.4 3.4 2.8   
1 Belair 386 790 28 4.6 0.9 1.8 9.8 111 16 3.6 3.2 3   

22 Woodside 387 800 27 4.3 0.9 1.6 8.3 121 16 3.9 
 
 

2.9 2.7   
18 Nairne 403 680 28 4.7 0.9 1.6 8 93 16 3 2.8 2.8   
12 Lobethal 470 880 28 4.9 0.9 1.8 8.4 133 18 4.3 3.5 2.6   
20 Uraidla 499 1090 35 4.7 1.1 1.8 9 161 17 5.2 3.4 2.7   
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AGU). The reference to the report, Westra et al. (2014b), is also retained since it gives details specific to the 
Onkaparinga catchment used in this paper and because it is comprehensive. The Scott Creek and Onkaparinga 
catchments were calibrated as part of the same project using consistent models and techniques.  
The relevant aspects of the calibration and model-selection have been added to the manuscript. 
Page 13, Lines 1-12:  

“The hydrological model GR4J (Perrin et al., 2003) was used to simulate virtual-observed streamflow at 
a daily time step. GR4J is a daily lumped hydrological model that simulates daily streamflow in a 
parsimonious manner using four parameters. The GR4J model was calibrated according to the 
procedure set out in Westra et al. (2014b) for the stationary version of the GR4J hydrological model. 
The details are provided in (Westra et al., 2014a) and a short summary is provided here. The multi-site 
rainfall gauges were Thiessen weighted to calculate the catchment average rainfall. The model was 
calibrated to the streamflow data at Houlgrave Weir (see Figure 4) using model calibration period of 
15 years (1985-1999). The parameters were estimated using maximum likelihood estimation procedure 
with a weighted least squares likelihood function. The model parameters that maximised the likelihood 
function were found using a multi-start quasi-Newton optimisation procedure with 100 random starts. 
Overall, the GR4J model was a good fit to the observed streamflow, with a Nash-Sutcliffe efficiency of 
0.8. A similar type of hydrological model and calibration approach has been used for other virtual 
evaluation studies (Li et al. 2014; 2016). The same set of hydrological model parameters are used for 
both the unit and integrated tests so that the same transformation of rainfall to flow is used.” 

 

Comment 16: 
P11Section 3 Although the observed discharge time series is not used in the investigation, it would be 
useful for the reader to provide some runoff characteristics (e.g. mean discharge) to get a feeling for the 
catchment. 

 
Response 16: 
Details of the catchment’s runoff characteristics at the annual and seasonal level have been added to Table 2 
(now Table 3 in the revised manuscript) and a new figure (Fig. 6) showing the catchment’s seasonal runoff and 
rainfall characteristics has also been added (see response to comment 13). Additional descriptions of key 
portions of the catchment cycle (i.e. “wettest”, “driest”, “wetting-up”) have also been added and used 
throughout the manuscript. The new figure is reproduced below for convenience. 

 

Fig. 6 - Seasonal variation of catchment average rainfall and flow at Houlgrave Weir. Boxplots show the variation across years. 
Wettest indicates (high rainfall, high flow), direst indicates (low rainfall, low flow) and wetting-up indicates (high rainfall, low 
flow). 
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Comment 17: 
P11l14-18 On p9l15-17 you mention "The hydrological model should be selected on the basis that it is 
capable of simulating streamflow for the timescales, magnitudes and physical processes of interest to the 
intended application.“ Is the lumped model able to simulate the physical processes of a catchment with a 
few 100 km2 catchment area (I could not find the catchment area in the manuscript). 

 
Response 17: 
Thank you for pointing this out. The catchment area (323 km2) has been included in Section 3 of the revised 
manuscript.  

It is important that the chosen hydrological model is fit for purpose (see also discussion of comment 10). The 
GR4J model used in this paper is for catchment inflows to the Mount Bold reservoir and is appropriate for 
analysis of catchment yield (i.e. focussed on means and variances of annual inflow)2.   

However, if we were examining impacts on instantaneous peak flows impacts, this model would not be suitable 
and if we wanted to look at impacts of distributed rainfall, we would need a distributed rainfall-runoff model. 
However, for the purpose of this paper, which is to demonstrate the virtual hydrological framework (including 
the unit test) for evaluating the ability of a stochastic rainfall model to estimate catchment yield, the model is 
deemed sufficient. 

 Comment 18: 

P12l8-10 Which result is analyzed? Integrated test or unit test? 

Response 18: 

We agree this is not clear, thank you for pointing it out. The result is from the integrated test (step 4). This is 
clarified in the revised text. 

Comment 19: 
 
P19l19 In Fig. 5 the results for rainfall are worse than for runoff (for mean values). 

 
Response 19: 
There are many interesting features of Fig 5 (now Figure 7) like this. The fact that there is not a direct 
correspondence between ‘good’ rainfall and ‘good’ runoff, and/or ‘poor’ rainfall and ‘poor’ runoff is one of the 
motivations for the virtual hydrological evaluation framework in addition to observed rainfall-based evaluation. 
Figure 7 shows that it is possible for seemingly ‘poor’ rainfall to yield ‘good’ runoff (as also ‘good’ rainfall can 
yield ‘poor’ runoff). We note that the discrepancy in Figure 7 is not in terms of mean values, but for the standard 
deviation of monthly aggregates (see Figure 5, sd(total) for rainfall and runoff in Jan, Mar, May, Jun, Oct, Nov, 
Dec). For drier months (Nov-Mar) the lack of correspondence (i.e. ‘poor’ rainfall producing ‘good’ runoff) is due 
to the low amount of runoff. While in wetter months (May-Oct) the relationship is more complicated as shown 
in the unit test demonstrations (Section 4.3).  
The description of this Figure has been revised to better explain these features in Section 4.2 of the revised 
manuscript and is reproduced below. 

Page 15, Line 11 – Page 16, line 12: “The poor performing sites identified in Step 1 were then compared in 
terms of both an observed-rainfall evaluation and virtual hydrological evaluation via an integrated test. Fig. 
7 graphically summarises this comparison, with each row presenting monthly or annual performance of the 
following statistics: 

 simulated daily rainfall statistics (mean (m) daily amounts, standard deviation (sd) of daily 
amounts, mean number of wet days (nwet) and the standard deviation of the number of wet days);  

 aggregate rainfall statistics (mean and standard deviation of total rainfall); and  

                                                           

 

2 The GR4J model has a calibrated Nash Sutcliffe of 0.8 (reported in the original manuscript). This model (and its non-
stationarity variants) were used to project climate change impact on the Onkaparinga catchment (Westra et al. 2014b). 
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 aggregate streamflow statistics (mean and standard deviation of total flow).  

The first to fourth columns of Fig. 7 summarise the observed-rainfall evaluation and the fifth and sixth of 
Fig. 7 summarise the virtual hydrological evaluation. The first column of Fig. 7 indicates that of the poor 
performing sites the SRM exhibited ‘good’ performance in simulating daily rainfall means and standard 
deviations as well as the mean number of wet days for all sites and months and at an annual level according 
to the observed-rainfall evaluation. Whereas the second column indicates that there is mixed performance 
across sites and months in simulating the variability in the number of wet days (sd(nwet)). Likewise, the 
third and fourth columns indicate overall ‘good’ performance in simulating mean monthly totals and mixed 
performance in simulating the monthly or annual total standard deviations (sd(total)). Whereas the virtual 
hydrological evaluation (fifth and sixth) columns show mostly ‘good’ performance in all months other than 
those in the ‘wettest’ or ‘wetting-up’ periods. 

A clear trend, from Fig. 7 is the contrast in performance between the observed-rainfall evaluation and the 
virtual hydrological evaluation. One constrast is that, in the driest months (Dec, Jan, Feb) ‘poor’ 
performance in simulating rainfall (based on observed-rainfall evaluation) did not necessarily translate to 
‘poor’ performance in simulating streamflow (based on virtual hydrological evaluation). For example, 
examining the first row of Fig. 7, the observed-rainfall evaluation shows that in January the SRM’s ability 
to simulate variability in the number of wet days, sd(nwet), was ‘poor’ for all sites. However, in contrast the 
virtual hydrological evaluation shows that most sites had ‘good’ performance in simulating the January 
distribution of monthly total flow (i.e. m(total) and sd(total)).  

A second contrast is that ‘good’ performance in the observed-rainfall evaluation does not necessarily 
translate to ‘good’ performance for the virtual hydrological evaluation, particularly for months in the 
‘wettest’ and ‘wetting-up’ periods. For example, in Fig. 7 the rows summarising June and August show large 
percentages of ‘poor’ sites in the virtual hydrological evaluation of monthly total flow. This deficiency would 
have been difficult to infer using the observed-rainfall evaluation due to the 100% ‘good’ performance of 
m(total) rainfall and ‘good/fair’ performance of sd(total) rainfall in these months.  

Likewise, by examining the bottom row of Fig. 7 that summarises annual performance, it can be seen that 
the observed-rainfall evaluation shows unbiased mean annual total, m(total), rainfall (100% ‘good’) and 
yet the mean annual total flows showed only 10% of sites as ‘good’. Discussion of the unit tests in the 
following section will investigate reasons why apparently ‘good’ rainfall can yield ‘poor’ flow.” 

 

Comment 20: 
P19 Results-section Before it was mentioned that also the influence of spatial rainfall patterns can be 
evaluated. Since this is not done in the manuscript, it can be moved to the outlooks of the manuscript. 
Otherwise a spatial analyses can be implemented in the manuscript (what I would recommend), to show 
further advantages of the unit test. 

 
Response 20: 
This concept has not been demonstrated in the main paper, therefore it has been deferred to the discussion 
on outlooks (Section 5.3). We believe the unit test has sufficient novelty to represent a substantial 
contribution, hence we will the leave spatial rainfall evaluation for future developments. 
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Comment 21: 
 
P20l20-21 With the introduced framework it is still not possible to identify, which rainfall characteristics are 
important for streamflow prediction. Based on the high non-linearity of the rainfall-runoff transformation 
process, a single rainfall characteristic cannot be sufficient to draw conclusions about the impact on the 
resulting runoff. If this would be the case, r-r models wouldn‘t have to be used anymore. However, could 
the authors identify, based on their analysis, which rainfall characteristics are important for the resulting 
runoff behaviour? (of course, the results depend on the study site, model choice and so on, but 
nevertheless…) 

 
Response 21: 
The comment is correct that the proposed method does not identify the impact of specific singular rainfall 
characteristics on the resulting runoff. However, the framework does provide a clear approach to isolate which 
set of components of the rainfall model require further attention. The integrated test focuses attention on 
hydrological properties, and the unit test can isolate deficiencies in rainfall by month. When applied to the case 
study in our paper, the limitations of the model are in the variability of the rainfall and not in the rainfall mean. 
The initial motivation for the approach can be seen in Figure 7 (formerly Figure 5) where the mean of the annual 
rainfall is ‘good’, but the mean of the annual runoff is ‘poor’. Figure 7 also shows that this is mostly attributed 
to ‘poor’ mean runoff in June, July and August. Unit tests were then used to show that the rainfall in the 
catchment ‘wetting-up’ period (May-June) is of key importance. This is greater insight than could have been 
achieved with observed-rainfall evaluation and is greater insight than could be gathered from other virtual-
observed streamflow approaches.  
However, we agree with the reviewer that the framework cannot currently distinguish between particular 
features of the rainfall (e.g. “Is it rainfall correlation, magnitude, or intermittency that causes a low standard 
deviation in monthly streamflow?”). Nonetheless, the framework has significant potential to be extended to 
diagnose which are rainfall characteristics should be improved. This can be done by comparing multiple rainfall 
model variants (parametrically, or via bootstrap techniques) which are designed to have contrasting features 
of a key characteristic (e.g. intermittency, rainfall correlation). Such an approach was undertaken by Evin et al. 
(2018) using an observed-rainfall evaluation approach to compare model variants. In the revised manuscript, 
this is identified as a limitation and this extension is highlighted for further research (Section 5.3). 

Page 27, Line 22 - Page 28, Line 7: “The formalisation of the virtual hydrological framework for SRM 
evaluation provides the opportunity for further improvements in the future, including: … 

(ii) Comparison of SRMs – this framework can be extended to provide more direct guidance on which 
rainfall features (in terms of components of the SRM) should be modified to improve streamflow 
performance. This can be done by comparing multiple rainfall model variants (parametrically, or via 
bootstrap techniques) which are designed to have contrasting features of a key characteristic (e.g. 
intermittency, rainfall correlation). Such an approach was undertaken by Evin et al. (2018) using an 
observed-rainfall evaluation approach. If the SRMs have monthly/seasonal autocorrelation (these were 
not significant for the rainfall in the Onkaparinga catchment) the unit testing approach would need to 
be extended by conditionally sample the simulated rainfall in a manner that preserves monthly 
correlations.” 
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Comment 22: 
P21l32-p22l1 This example is hard to follow, maybe the authors can extend it. From my understanding it 
depends on the calibration of the storage coefficients. If storage coefficients are small, the results from the 
monthly rainfall will be transferred to runoff immediately. This would be possible with the "traditional“ 
approach. 

 
Response 22: 
Thank you for pointing out that the example is hard to follow. The example and paragraph framing the example 
have been revised to better step through the example (i.e. what elements come from the integrated test or 
unit test). We have also added additional information on catchment seasonality in Section 3 to better explain 
the importance of the ‘wetting-up’ months and storage in the catchment (also see responses to comments 14 
and 16). 
 

Comment 23: 
P23 There is a reference of Li et al. (2015b), but no Li et al. (2015a). Also Li et al. (2016) is mentioned before 
Li et al. (2015b) 

 
Response 23: 
Thank you, this has been corrected.
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Response to Reviewer 2 

Major Comments 

Comment 1:  

The authors present a streamflow-based evaluation framework to assess the adequacy of hydrologic 
predictions from stochastic rainfall generators (SRGs). This is a “virtual framework” in that it benchmarks 
these predictions against streamflows produced by historical continuous simulations, rather than observed 
streamflow timeseries. The authors point out that this avoids the complicating issues of model structural 
errors. This is a useful approach to benchmarking SRGs, and could perhaps be applied to other fluxes of 
interest (not just streamflow) for which long-term observation records aren’t just available. 

Response 1:  

We are pleased that the reviewer found the approach useful for evaluating stochastic rainfall models and 
appreciated the wider potential application of the approach for other fluxes of interest. 

Comment 2: 

I agree with the first reviewer, who stated that “the theoretical elements of the paper are very long”. There 
seems to be a fair bit of repetition, or at least over-explanation, of the motivation, and I strongly recommend 
that the authors look closely at how Section 2 can be shortened. 

Response 2:  

We have restructured the Introduction and Section 2 to shorten the presentation (and remove repetition) of 
the theoretical elements by 50 lines while maintaining the key points. Please also see the response to 
Reviewer 1, comment 7. 

Comment 3: 

Generally, I think that the demonstration would be more illuminating if the authors used it to compare two 
or more SRGs and/or hydrologic models. 

Response 3: 

We support this idea. In the future, the framework can be used to compare two or more SRG’s for particular 
hydrological applications. Furthermore, by utilising two or more hydrological models in the virtual evaluation 
framework, it would reduce the dependence on the choice of hydrological model (which was raised by reviewer 
#1 see comment 10), because one could look for patterns of errors for a single SRG across two hydrological 
models.  

However, our preference is not to include this in this paper, for the following reasons: 

1. To include the details of a second SRG and/or a second hydrological model, as well as providing a 
complete explanation of the details of the framework, observed-rainfall evaluation, virtual observed 
streamflow evaluation, two different tests, the integrated and unit tests, would make the paper and/or 
analysis overly long. Reviewer #1 has asked for extra details and additional figures/tables to explain a 
wide range of details – including the hydrological model calibration (see reviewer #1 comment 15), 
extra streamflow analysis (see reviewer #1 comment 3). This is over and above the seven figures 
already included. If we included another SRG and hydrological model, the number of the figures could 
increase dramatically making the paper overly long and lose focus on the presentation of the 
framework.  

2. The framework has not been presented before, in particular the unit test. Therefore, in the manuscript 
we present the evaluation of a single stochastic rainfall model to demonstrate the framework. This 
application to a single model has demonstrated some new insights; that the errors in streamflow for a 
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particular month can be affected by errors in the in rainfall from the previous 2 to 3 months. This 
innovation is something that has not been previously identified in the literature. 

Once the framework has been established and explained in this paper, future work will undertake multiple SRG 
and/or multi-hydrological model comparisons, as suggested by the reviewer. A comment on this has been 
incorporated into the discussion (Section 5). 

Page 27, Line 22 - Page 29, Line 7: “The formalisation of the virtual hydrological framework for SRM 
evaluation provides the opportunity for further improvements in the future, including:  

(i) Using multiple, well-tested hydrological models - a potential limitation of the virtual hydrologic 
evaluation framework is that it is reliant on the use of a hydrological model. Hydrological structural 
errors may potentially skew interpretation of the SRM evaluation if the hydrological model poorly 
represents the catchment processes. To reduce these impacts the steps taken in this study included (a) 
using a well-tested hydrological model that has demonstrated good performance on a wide range of 
catchments (e.g. the GR4J model has been widely tested , see (Perrin et al., 2003, Coron et al., 2012); 
(b) calibrating and evaluating the hydrological on a catchment close to the observed rainfall sites to 
ensure it provided sufficiently good performance  (e.g. GR4J was calibrated to the Onkaparinga 
catchment - see (Westra et al., 2014a, Westra et al., 2014b). Future research will use multiple, well-
tested hydrological models with sufficiently good performance to reduce the reliance on a single 
hydrological model and ensure the identification of SRM deficiencies is not dependent on a single 
hydrological model. 

(ii) Comparison of SRMs – this framework can be extended to provide more direct guidance on which 
rainfall features (in terms of components of the SRM) should be modified to improve streamflow 
performance. This can be done by comparing multiple rainfall model variants (parametrically, or via 
bootstrap techniques) which are designed to have contrasting features of a key characteristic (e.g. 
intermittency, rainfall correlation). Such an approach was undertaken by Evin et al. (2018) using an 
observed-rainfall evaluation approach. If the SRMs have monthly/seasonal autocorrelation (these were 
not significant for the rainfall in the Onkaparinga catchment) the unit testing approach would need to 
be extended by conditionally sample the simulated rainfall in a manner that preserves monthly 
correlations.” 

Comment 4: 

The demonstration of these methods is provided at the monthly timescale. While this timescale might be 
useful for applications of water supply, it is not meaningful for flood processes in all but the very largest 
watersheds. It is easy to picture a hydrologic model that produces adequate performance in terms of monthly 
flows, but not daily or subdaily extremes, while the opposite is also possible. Similarly, it is also probably an 
easier task to create a stochastic rainfall generator that works well for producing monthly means and 
associated variability than fine-scale extremes. Thus, the virtual framework in this manuscript may not be as 
broadly useful for extremes as the authors claim (at least flood extremes, droughts might be a different 
story). I thus recommend that the authors acknowledge this shortcoming, and “tone down” the framework’s 
purported usefulness for flood risk (e.g. page 9 lines 17), since this remains unproven. 

Response 4:  

Thank you. We have toned done the discussion of the framework’s usefulness for flood risk applications as 
this is not demonstrated in the manuscript. For example, we have removed the example that referred to 
flood risk which appeared on page 9 line 17 of the original manuscript so the sentence now reads: 

“For example, the distribution of annual total flow would be a suitable characteristic when investigating 
yield” 

Reviewer 1 (see comment 3) has suggested that we examine additional streamflow characteristics, in particular 
flow duration curves. We have done so and included the flow duration curves to provide supporting evidence 
of the identified deficiencies in the simulated rainfall as part of the framework. This provides a broader 
demonstration of the framework through an application that considers statistics at the finer (daily) scale. 
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 Comment 5: 

It isn’t clear how the boxplots (e.g. figure 3) are constructed. Is it the “13 errors” mentioned in page 8 line 
24? Or is it somehow derived from the 10,000 synthetic rainfall years? Or the 73 years of observed data with 
synthetic rainfall “spliced in”? Either way, it isn’t clear that the authors have avoided the proliferation of 
error metrics that they identify as a limitation of previous measures on page 3. If this method is applied to a 
large number of sites, it still seems like a not-entirely compact evaluation scheme. Perhaps the authors could 
clarify how this compares to other methods in this respect. 

Response 5: 

Thank you for pointing this out. A related response is given to reviewer 1, comment 11.  We have revised the 
example which explains how the unit test figure (those like Figure 4b in the revised manuscript) are constructed 
and used as a diagnostic (see Section 2.4.2 and 2.4.3). The companion figure (4b) and the caption has also been 
improved to step the reader through the figure.  

The revised text clarifies that each boxplot is a summary of the error (the difference between the simulated 
and virtual-observed performance statistic, Eq. 6) across all replicates of the simulated time series. The “13 
errors” relates to the number of boxplots displayed in figures of this type (the unit test for 12 influencing 
months and 1 integrated test). The description is reproduced below.  

Section 2.4.1, Pages 9 - 11: “Following Fig. 3(a), consider the time series of observed, 𝑅𝑜𝑏𝑠, and 

simulated, 𝑅𝑠𝑖𝑚,   daily rainfall for each year (and replicate) at a given site. Fig. 3(a) illustrates the 

embedding of simulated rainfall 𝑅𝑘
𝑠𝑖𝑚 in an influencing month, 𝑘, within observed rainfall 𝑅𝑚

𝑜𝑏𝑠 for all 

other months 𝑚 ∈ {1, … ,12| 𝑚 ≠ 𝑘}. The resulting spliced rainfall time series 𝑅(𝑘)
𝑠𝑝𝑙

 is denoted with 

respect to the influencing month,  𝑘, and has the same length as the corresponding observed 𝑅𝑜𝑏𝑠 and 

simulated 𝑅𝑠𝑖𝑚 time series. 

𝑅(𝑘)
𝑠𝑝𝑙

= ⋃ {
𝑅𝑚

𝑠𝑖𝑚

𝑅𝑚
𝑜𝑏𝑠

; 𝑚 = 𝑘
; 𝑚 ≠ 𝑘

12
𝑚=1    (3) 

For example, if June (𝑘 = 6) is selected as the influencing month, each year of the spliced time series, 

𝑅(6)
𝑠𝑝𝑙

, would be composed as follows: 

𝑅(6)
𝑠𝑝𝑙

= {𝑅1
𝑜𝑏𝑠, … , 𝑅5

𝑜𝑏𝑠, 𝑅6
𝑠𝑖𝑚, 𝑅7

𝑜𝑏𝑠, … , 𝑅12
𝑜𝑏𝑠}       (4) 

The ensemble of 𝑘 = 1, … ,12 spliced rainfall time series 𝑅(𝑘)
𝑠𝑝𝑙

 for all influencing months and additional 

inputs (e.g. potential evapotranspiration) indicated by ‘…’ are transformed according to a hydrological 

model 𝑔[ ] to produce an ensemble of simulated streamflow, 𝑄(𝑘)
𝑠𝑝𝑙

. This procedure is repeated for all 

simulated rainfall replicates. 

𝑄(𝑘)
𝑠𝑝𝑙

= 𝑔 [𝑅(𝑘)
𝑠𝑝𝑙

, … ]          (5) 

By construction, the spliced rainfall is identical to the observed rainfall for all months other than the 
influencing month, so any errors in streamflow statistics can be attributed to the influencing month 
free from other factors. 

The full set of spliced rainfall (e.g. spliced rainfall for each month designated as the influencing month 

𝑅(𝑘)
𝑠𝑝𝑙

; 𝑘 = 1, … ,12) is input to the hydrological model. This step is repeated for all available replicates 

of the spliced time series. The results of the unit test and the integrated test (Steps 1-2) are then 
investigated and compared selecting each month as the evaluated time period in turn as well as other 
key time periods (e.g. annual).” 
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Fig. 5 Schematic of (a) the method of constructing a unit test by embedding simulated months in an observation time series, and (b) 
the error profile produced when using the integrated and unit tests for the evaluated time period of June (t=6) (box plot whiskers 
indicate the 90% limits of the simulated streamflow replicates). For the unit test the errors in the evaluated period (t) are calculated 

as the difference between 𝑸(𝒌)
𝒔𝒑𝒍

 and 𝑸(𝒕)
𝒗𝒐 . For the integrated test the errors are calculated as difference between 𝑸𝒔𝒊𝒎  and 𝑸(𝒕)

𝒗𝒐 .  

Section 2.4.2, Page 11, Lines 11-20: “Using the function ℎ[ ] to denote a calculated statistic of interest 
(e.g. mean or standard deviation), the relative error in an evaluated time period 𝑡 (e.g. annual or 
particular month) is given by  

%𝐸𝑟𝑟(𝑡) =
ℎ [𝑄(𝑡)

𝑒𝑣𝑎𝑙]−ℎ [𝑄(𝑡)
𝑣𝑜]

ℎ [𝑄(𝑡)
𝑣𝑜]

× 100        

  (6) 

where 𝑄(𝑡)
𝑣𝑜  is the virtual-observed streamflow and 𝑄(𝑡)

𝑒𝑣𝑎𝑙 is the simulated streamflow from the selected 

virtual hydrologic test (i.e. 𝑄𝑠𝑖𝑚 if integrated test or 𝑄(𝑘)
𝑠𝑝𝑙

 if unit test selected) in the evaluated time 

period 𝑡. This procedure is repeated for all replicates of the simulated streamflow such that a range of 
errors is reported for each test for the target time period.  

Following the calculation of this error metric for all replicates of the integrated test and ensemble of 
unit tests (𝑘 = 1, … ,12) it is possible to investigate deficiencies in the simulated streamflow in terms 
of which influencing month(s) contribute more to the deficiencies in streamflow for the target time 
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period based on that statistic of interest. Thus, for each site, statistic and evaluated time period there 
are 13 sets of errors to compare.” 

The integrated test is designed to be a compact evaluation that includes multiple sites and statistics. Once the 
integrated test is completed and problems identified in the simulated streamflow, the more detailed unit test 
is applied to sites of interest (Step 3 of the framework in the revised manuscript). Figure  4 (formerly Figure 3) 
describes the unit tests, which are not designed to be undertaken on a large number of sites – they are designed 
to be more probing and are only undertaken on certain sites with problems, such as those identified by the 
integrated test. 

The reviewer is right to point out that the example does make it look like the proliferation of error metrics is 
identified as a limitation. We can see that the accompanying example emphasises the large number of statistics 
rather than our intended key point: that there are difficulties in assessing trade-offs or the relative importance 
of statistics. The introduction has been revised to clarify that the key issue for observed-rainfall evaluation is 
the difficulty in understanding the relative importance of rainfall features in terms of streamflow generation 
and what to do when performance is ‘mixed’. 

Page 2, Lines 3-9: “Observed-rainfall evaluation is the most common method for SRM evaluation 
(Rasmussen, 2013, Wilks, 2008, Baxevani and Lennartsson, 2015, Srikanthan and Pegram, 2009, Evin 
et al., 2018, Bennett et al., 2018). As shown in Fig. 1(a) it involves comparisons between observed and 
simulated rainfall typically using a large number of evaluation statistics. Often, this method shows 
‘mixed’ performance where many statistics are reproduced well, but some are poor.  While these 
assessments are useful, a drawback is that it is difficult to ascertain if the rainfall model’s performance 
is sufficient in terms of predictions of practical interest, which are typically streamflow-based. This 
means it is unclear if it is necessary to invest time and effort to address instances of poor performance, 
when the majority of statistics are well reproduced (Bennett et al., 2018, Evin et al., 2018).”   

Comment 6: 

Relatedly, in Figure 6 and 7, shouldn’t the “obs rain” and “virtual obs. Flow” be a range, rather than a single 
value? There are 73 years of monthly rainfall and simulated flows… this variability would be valuable context 
for evaluating the variability of the stochastic realizations. 

Response 6: 

Yes, the variability of the rainfall and simulated flows is valuable context. 

In Figures 6 and 7 (now Figures 8 and 11) we present a higher-level summary to evaluate the model 
performance considering both mean conditions and their variability (i.e. standard deviations). The statistics 
presented in these figures are the observed rain and the virtual-observed flow means (left column) and 
standard deviations (right column) over the full 73 years, calculated for the 12 months respectively. There are 
12 monthly means and 12 monthly standard deviations per realisation. We are not calculating a separate 
statistic for each year of the timeseries. The boxplots show the range of these monthly statistics for the 10,000 
stochastic rainfall model replicates. This convention is common to other papers in the field (e.g. Bennett et al. 
2018, Khedhaouiria et al. 2018, Evin et al. 2018, Frost et al. 2011, Frost et al. 2004, Srikanthan et al. 2004, etc.) 
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Comment 7: 

It is unclear how other meteorological forcings (temperature, etc.) are handled in this framework. The 
authors focus on stochastic rainfall generators, as opposed to stochastic weather generators, meaning that 
the other forcings must be supplied independently of the rainfall. I would imagine that this could create some 
serious issues in some cases if synthetic rainfall is spliced together with inappropriate series of temperature 
or other forcings; one can imagine getting strange results in terms of precipitation vs. ET balances, with 
unclear consequences for the evaluation results. 

Response 7: 

The reviewer is correct, as the focus is on evaluating stochastic rainfall generators, the other forcings are 
supplied independently. In our case study, the potential evapotranspiration (PET) time series (our only other 
meteorological forcing) is unchanged from the observed values in all hydrological simulations (i.e. the same 
PET time series is used in the simulation of the virtual-observed streamflow, integrated tests and unit tests). 
This is important as the hydrological evaluation is a relative comparison of the observed and simulated rainfall, 
hence all other time series and parameters relating to the hydrological model are kept the same in all tests. 
This approach was also taken in Sikorska et al. (2018), where the impact of using different rainfall 
disaggregation schemes on resultant flow was tested using a hydrological model. For all these tests the 
historical observed temperature time series was used to enable a comparison between the rainfall elements 
only. 

To assess this assumption for the Onkaparinga case study we have evaluated the rainfall-PET correlation in all 
months. There is a negative relationship, which accounts for a small portion of the variance, up to R2= 0.11 in 
drier summer months. shows the rainfall-PET correlations for a drier summer month (January) and a wet winter 
month (June).  

 

Figure 1: Rainfall-PET correlation (left) January and (right) June. 

While there is some non-zero relationship, we do not consider it to undermine the case study (since all other 
statistics of PET are reproduced and the relationship is mild). However, this may not be the case for other 
locations where the model is applied.  

We have included the reviewer’s recommendation to apply the framework more generally to stochastic 
weather generators in Section 5.3. The application would require care to ensure that the PET (or other weather 
variable) generator does not introduce other deficiencies.  

Page 27, Line 22 - Page 28, Line 19: “The formalisation of the virtual hydrological framework for SRM 
evaluation provides the opportunity for further improvements in the future, including: … 

 (iv) Evaluation of spatial performance – there are multiple opportunities to develop tests for spatial 
performance including (a) repeating the integrated test for all sites and for catchment average rainfall 
means it would be possible to diagnose whether specific locations or the spatial dependence causes 
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poor reproduction of streamflow statistics, (b) developing a spatial unit test (which is analogous to the 
temporal unit test but extended to space) where different combinations of sites are ‘spliced’ in the 
construction of catchment average rainfall – to evaluate the impact of  ‘mixed’ performance in the 
SRMs between sites on the catchment average rainfall, and (c) these spatial unit tests could be used to 
evaluate stochastic weather generators (SWG) more generally as well as spatially distributed SRGs – 
though these would require a spatially distributed hydrological model.” 

 

Comment 8: 

I have never developed my own SRG, but I imagine that it might be hard to know exactly how to use the 
results from this analysis to refine that generator, despite the authors’ claim that this is a valuable use of the 
framework. It identifies performance by month, rather than by “rainfall characteristics” (pg. 21 line 9). It is 
useful to know whether the SRG performs well for some months than others, but what next? If the authors 
plan to continue research on this topic, I would suggest that a method that “tracks” the propagation of 
rainfall through the model might be more effective. To me, the most clear way of doing this is to track how 
different rainfall statistical moments translate to different statistical moments in the streamflow, using both 
historical and synthetic rainfall. Such an approach would be amenable to changing the evaluation timescale. 
For these reasons, I recommend that the authors delete the statement that this framework “should be an 
essential step in the development and application of stochastic rainfall models” (page 21 line 22-23). On a 
related note, the authors should comment on how this technique would apply to distributed (i.e. high-
resolution gridded) SRGs and hydrologic models. 

Response 8: 

The reviewer has raised some excellent discussion points. We provide specific responses below to the 
discussion points raised. 

1. “It is useful to know whether the SRG performs well for some months than others, but what next?” –
We agree that it is a useful feature and it provides much more information than observed-rainfall 
evaluation alone. This is a key innovation of the paper. Following an observed-rainfall evaluation the 
focus would have been on the months Jan, Feb, Nov, Dec, May and June (Bennett et al., 2018). 
However, based on the results of the virtual hydrologic framework, we now know that May-July are 
the key months when considering the hydrology and that the problems with modelled rainfall in Jan-
Feb, Nov-Dec are less important. Also, we now know that rainfall in preceding months is important and 
not just the month in which the flow is evaluated, which is more information than before. 

We agree that it does not tell us exactly which rainfall characteristics to focus on. However, it is unlikely 
to be that simple – a single rainfall statistic is unlikely to translate into a single runoff statistic because 
streamflow integrates a range of rainfall processes (see also reviewer #1, comment 21). 

Now that we know in which months deficiencies originate, we can focus on those months and trial 
various alternatives to the rainfall model to address the problem. This is left for future research, as 
mentioned in Section 5.3. 

Page 27, Line 22 - Page 28, Line 7: “The formalisation of the virtual hydrological framework for 
SRM evaluation provides the opportunity for further improvements in the future, including: … 

 (ii) Comparison of SRMs – this framework can be extended to provide more direct guidance on 
which rainfall features (in terms of components of the SRM) should be modified to improve 
streamflow performance. This can be done by comparing multiple rainfall model variants 
(parametrically, or via bootstrap techniques) which are designed to have contrasting features 
of a key characteristic (e.g. intermittency, rainfall correlation). Such an approach was 
undertaken by Evin et al. (2018) using an observed-rainfall evaluation approach. If the SRMs 
have monthly/seasonal autocorrelation (these were not significant for the rainfall in the 
Onkaparinga catchment) the unit testing approach would need to be extended by conditionally 
sample the simulated rainfall in a manner that preserves monthly correlations.” 
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2. “I would suggest that a method that “tracks” the propagation of rainfall through the model might be 
more effective … most clear way of doing this is to track how different rainfall statistical moments 
translate to different statistical moments in the streamflow, using both historical and synthetic rainfall” 
– This idea offers scope to extend the framework, and is something to consider in the future. In this 
paper, we describe the integrated test and then introduce the unit test in terms of ‘splicing’ monthly 
blocks of rainfall. However, the reviewer is right that the approach could be formulated differently to 
use different ‘splicing’ approaches. For example, to examine the percentage changes in resultant 
streamflow as a function of a particular change in the inputted rainfall. To allow for alternative 
approaches that ‘track’ the propagation of error we have softened our concluding remarks. 

3. “I recommend that the authors delete the statement that this framework “should be an essential step 
in the development and application of stochastic rainfall models”” – We have softened the wording of 
this statement.  It now reads: 

Page 29, Lines 2-4: “The virtual hydrologic evaluation framework provides insights not available 
through conventional approaches and provides useful diagnostic ability for the development and 
application of SRMs.” 

4. “On a related note, the authors should comment on how this technique would apply to distributed (i.e. 
high-resolution gridded) SRGs and hydrologic models.” – This is an important topic. We have 
commented that this technique could be extended to distributed rainfall and hydrologic models in 
Section 5.3. 

Comment 9: 

I wonder if this framework should consider the autocorrelation in monthly rainfalls when doing this splicing. 
I don’t know too much about the climate of South Australia, but I can imagine that autocorrelation at least 
in dry periods can be quite important, and this is likely not preserved during the splicing. It’s not clear what 
the implications would be for the resulting evaluation. 

Response 9: 

This is a valid and interesting point. Bennett et al. (2018) demonstrated that the monthly autocorrelations are 
small for the Onkaparinga catchment (from -0.2 in drier summer months to 0.3 in the wetter winter months), 
and as a result this issue was not considered in the presentation of the framework.3 We can appreciate that 
monthly/seasonal autocorrelation is a significant feature of other locations and that could be a limitation when 
applying this method. We briefly suggested in Section 5.3 that the issue of monthly autocorrelation could be 
explored as an extension of the model and have provided further details to explain how this might be achieved 
in the revised manuscript. For example, rather than naïvely splicing rainfall it might be possible to conditionally 
sample the simulated rainfall in a manner that preserves monthly correlations. The efficacy of this technique 
would require some exploration since there may be limitations arising from the conditional sampling. 

Comment 10: 

Figure 3 and elsewhere: I don’t understand what “(90% limits shown)” means. 

Response 10:  

The reference to 90% limits indicates that the boxplot whiskers extend to from the 5th to 95th percentile values 
of the metrics based on the 10,000 replicates. The initial description of these figures (see Section 2.4.2 in the 
revised manuscript) and all figure captions has been revised to clarify that the “(90% limits shown)” indicates 
that the boxplot whiskers extend to the 90% limits of the 10,000 simulations for the presented statistic.

                                                           

 

3 Bennett at al. (2018) also demonstrated that the model sufficiently reproduced these small monthly autocorrelations. 
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Comment 11: 

Section 3: Mention basin size. Also, why are stations outside the watershed used? 

Response 11: 

The basin size is included in the revised manuscript (323 km2). All the sites identified in Figure 2 (now Figure 
5) were used to estimate the catchment average rainfall for the rainfall-runoff modelling calibration. This is 
stated in the revised Section 3 of the manuscript. 

Page 13, Lines 1-12: “The hydrological model GR4J (Perrin et al., 2003) was used to simulate virtual-
observed streamflow at a daily time step. GR4J is a daily lumped hydrological model that simulates 
daily streamflow in a parsimonious manner using four parameters. The GR4J model was calibrated 
according to the procedure set out in Westra et al. (2014b) for the stationary version of the GR4J 
hydrological model. The details are provided in (Westra et al., 2014a) and a short summary is provided 
here. The multi-site rainfall gauges were Thiessen weighted to calculate the catchment average rainfall. 
The model was calibrated to the streamflow data at Houlgrave Weir (see Figure 4) using model 
calibration period of 15 years (1985-1999). The parameters were estimated using maximum likelihood 
estimation procedure with a weighted least squares likelihood function. The model parameters that 
maximised the likelihood function were found using a multi-start quasi-Newton optimisation procedure 
with 100 random starts. Overall, the GR4J model was a good fit to the observed streamflow, with a 
Nash-Sutcliffe efficiency of 0.8. A similar type of hydrological model and calibration approach has been 
used for other virtual evaluation studies (Li et al. 2014; 2016). The same set of hydrological model 
parameters are used for both the unit and integrated tests so that the same transformation of rainfall 
to flow is used.” 

When estimating catchment average rainfall it is fairly common to use sites outside the catchment, to better 
represent the spatial variability and to avoid boundary effects. It is therefore important that a stochastic rainfall 
model is able to reproduce the rainfall statistics at all of the sites outlined in Figure 5. This is why we evaluated 
the stochastic rainfall model at all the sites indicated in Figure 5. There are further reasons why this is valid for 
a virtual approach. Most notably, because there is no comparison made with observed streamflow. The virtual 
hydrological evaluation uses the calibrated hydrological model as a tool to process the observed and simulated 
rainfall for comparison. The virtual-observed streamflow can be thought of as a virtual stream flow gauge. The 
virtual stream gauges have no physical location that they are trying to replicate. Instead the virtual stream 
gauges enable a synthetic test of the simulated rainfall. 

Virtual hydrological evaluation of a single rainfall site is analogous to treating the information at the selected 
rainfall gauge (observed and simulated) as being representative of the catchment rainfall. This ‘catchment 
rainfall’ is then routed through the chosen hydrological model to produce simulated and virtual-observed 
streamflow at the ‘virtual catchment outlet’. This type of virtual approach was used in a different context (the 
development of new techniques for flood frequency estimation) in which a calibrated hydrological model was 
‘moved’ all over Australia (Li et al., 2016).
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Comment 12: 

More importantly, is the rainfall hydroclimate stationary? If not, then it seems as though this whole issue of 
stochastic generation and comparison of resulting streamflows against a nonstationary continuous 
simulation would be more complicated. Please comment on this. 

Response 12: 

We have now commented on this issue in Section 5.3. 

Page 27, Line 22 -  Page 28, Line 12: “The formalisation of the virtual hydrological framework for SRM 
evaluation provides the opportunity for further improvements in the future, including: … 

 (iii) Evaluation of temporal non-stationarity – this framework can be extended to evaluate the impact 
of non-stationarity on SRM model performance by applying it on a selected non-stationary period. Care 
would be needed in the selection of statistics to identify model performance (since the performance in 
different sub-periods could be masked when evaluating an overall period). A related issue is that the 
hydrological model should provide adequate performance across the range of non-stationary climate 
forcings to which it is subjected.” 

The reviewer is right to point out the complicated nature of comparing stochastically generated rainfall against 
a nonstationary continuous simulation. In this paper we took steps to minimise this impact by careful selection 
of the observed rainfall period.4  

Minor Comments  

Comment 13:   

Page 1 line 15: change “months” to “seasons”- that is a more broadly relevant term. Hydrology varies 
seasonally, months are an arbitrary construct (this comment applies elsewhere in the paper, such as page 2 
line 31)  

Response 13: 

Thank you for pointing this out. Where possible the terms ‘seasons’ and ‘time periods’ are used in preferred to 
‘months’. Where ‘months’ form part of the specific analysis (i.e. influencing months) the term has been 
retained. 

Comment 14:   

Throughout paper: I recommend introducing an acronym for stochastic rainfall models and using it 
throughout.  

Response 14: 

Thank you, we have introduced an acronym for stochastic rainfall models (SRMs) and used it throughout the 
revised manuscript. 

                                                           

 

4 The catchment experiences a significant rainfall decline in the early 2000’s (see Westra et al 2014a and 2014b) due to 
the ‘millennium drought’. This is why we choose an earlier rainfall period that finishes in 1986. Although this does not 
mean we have eliminated the impact of non-stationarity it has been reduced by taking this step. 
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Comment 15: Page 1 line 9: change “is” to “has been”  

Comment 16: Page 1 line 10: change “is given” to “has been paid”  

Comment 17: Page 1 line 12: delete “whenever the simulated rainfall are poor”  

 Comment 18: Page 1 line 19: change “catchment cycle” to “annual hydrologic cycle”  

Comment 19: Page 1 line 28: delete comma after “targeted”  

Comment 20: Page 2 line 10: “and/or” is not appropriate in technical writing. Use “or”  

Comment 21: Page 2 line 12: put “virtual experiments” in quotations when mentioned for the first time, for 
emphasis  

Comment 22: Page 3 line 16: add comma after “poor”  

Comment 23: Page 5 line 10: The goal is not to match streamflow observations. It is to match the statistics 
of streamflows  

Comment 24: Page 3 line 12: add “model” before parameters  

Comment 25:  Page 11 line 16: grammar problem “was fit good”  

Comment 26: Page 20 line 18: put “memory” in quotations. 

Comment 27: Page 10 line 15: I think that “observed/virtual” is a strange term. Observations have very little 
usage in this study… 

Comment 28: Page 14 line 14: This sentence is a bit awkward. It isn’t perhaps so “common and obvious” to 
the reader.  

Comment 29: Page 20 line 13: good place to mention that multiple SRGs could be used too, not just multiple 
hydrologic models.  

Response 15 – 29: 

Fixed. 

Comment 30: Page 1 line 24-25: I recommend deleting “risks” after “floods” and “droughts” and changing it 
to “hazards” after “hydrologic”  

Response 30:  

‘Risks’ has been deleted after ‘floods’ and ‘droughts’. ‘Hydrologic risks’ has been retained in preference to 
‘hydrologic hazards’. 

Comment 31: Page 3 line 13: Why would you call ET “extraneous”? It is generally very very important.  

Response 31:  

We agree ET is important it was referred to as extraneous only to evaluations of rainfall. 

Comment 32: Page 19 line 3-4: streamflow arises from more than just rainfall integration over a catchment 
area-what about ET, etc.?  

Response  32: 

Thank you, we agree. The impact of ET and other catchment properties related to the production of streamflow 
are mentioned later in Section 5.1. 

Comment 33: Page 20 line 11-13: I don’t understand this sentence. Certainly model performance depends on 
the chosen model.  

Response 33:  

Due to a revision of the text the sentence no longer appears.  
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Response to Reviewer 3 
Comment 1: 

The manuscript proposes a “virtual hydrological” framework useful for the performance evaluation of 
stochastic rainfall generators (SRGs). Differently from other studies involved on this topic, this work proposes 
1) to evaluate the rainfall performances directly in terms of discharge by considering as benchmark the 
“virtual observed streamflow”, i.e. the streamflow obtained by running the observed rainfall into the 
hydrological model, 2) to use two different tests to highlight discrepancies between observed and simulated 
rainfall for a specific site or month. 

Although the topic is surely of interest for the readership of HESS, a major revision is required before to 
consider the manuscript suitable for the publication. Indeed, throughout the manuscript some important 
information are missing (for details see specific comments below) whereas the section 2 and details about 
the virtual hydrological framework should be shortened. Moreover, the outcomes of this study seem linked 
to the specific case study and the authors should discuss how the results could be generalized for different 
SRGs and hydrological models. 

Response 1: 

Thank you for your comments. We have revised the manuscript to address the matters raised in particular we 
have: 

 Shortened the Section 2 and other sections describing the virtual hydrological evaluation framework.  

 Provided further details on the stochastic rainfall and hydrological models in Section 3. 

 Outlined and discussed aspects of the virtual hydrological framework implementation that need 
further work (Section 5.3).  

 Added better signposting in text to make clear the outcomes that are generic and those that are 
specific to the case study.  

Greater detail is given in response to specific comments below. 

Comment 2: 

Abstract section.  

This section should be made clearer concerning both the explanation of the virtual hydrological framework 
features and the results obtained in the work. Specifically, lines 12-15 and 18-20 in page 1 are not clear 
without reading the paper. 

Response 2: 

The abstract has been revised to provide more detail on the framework as well as improving signposting (within 
the text to better distinguish the framework outcomes and case study specific outcomes. 

The revised abstract text is reproduced below: 

Page 1, Lines 8-24: “Stochastic rainfall modelling is a commonly used technique for evaluating the 
impact of flooding, drought or climate change in a catchment. While considerable attention has been 
given to the development of stochastic rainfall models (SRMs), significantly less attention has been paid 
to performance evaluation methods. Typical evaluation methods employ a wide range of rainfall 
statistics. However, they give limited understanding about which rainfall statistical characteristics are 
most important for reliable streamflow prediction. To address this issue a formal evaluation framework 
is introduced, with three key features: (i) streamflow-based — to give a direct evaluation of modelled 
streamflow performance, (ii) virtual — to avoid the issue of confounding errors in hydrological models 
or data, and (iii) targeted — to isolate the source of errors according to specific sites and seasons. The 
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virtual hydrologic evaluation framework uses two types of tests, integrated tests and unit tests, to 
attribute deficiencies that impact on streamflow to their original source in the SRM according to site 
and season. The framework is applied to a case study of 22 sites in South Australia with a strong 
seasonal cycle. In this case study, the framework demonstrated the surprising result that apparently 
‘good’ modelled rainfall can produce ‘poor’ streamflow predictions, whilst ‘poor’ modelled rainfall may 
lead to ‘good’ streamflow predictions. This is due to the representation of highly seasonally catchment 
processes within the hydrological model that can dampen or amplify rainfall errors when converted to 
streamflow. The framework identified the importance of rainfall in the ‘wetting-up’ months (months 
where the rainfall is higher but streamflow lower) of the annual hydrologic cycle (May and June in this 
case study) for providing reliable predictions of streamflow over the entire year despite their low 
monthly flow volume. This insight would not have been found using existing methods and highlights 
the importance of the virtual hydrological evaluation framework for SRM evaluation.” 

 

Comment 3: 

Section 2.  

This section should be shortened deleting multiple repetitions about the framework description in sub-
sections 2.2 and 2.3. Moreover, Figure 1 and 2 could be merged into one figure. Conversely, the section 2.4 
should be improved (also adding a flowchart) to allow the readers to easily follow the section “results”. 

Response 3: 

This comment aligns with feedback from other reviewers. We have shortened the introduction and Section 2 
(from 167 lines down to 127 lines) and merged Figures 1 and 2 as suggested. 

Please also see the response to Reviewer 1 comment 12. We have significantly improved the explanation of 
the virtual hydrological framework procedure. The procedure has been simplified from seven steps down to 
three steps and the presentation of the framework in Section 2 has been restructured to better integrate the 
steps and specific virtual tests (i.e. integrated and unit tests). The structure of Section 2 is now as follows: 

2. Virtual hydrological framework 
2.1 Overview 
2.2 Step 1 – Identify poor performing sites 

2.2.1 Selection of primary streamflow characteristic and relevant hydrological model 
2.2.2 Integrated test procedure 
2.2.3 Identify poor performing sites using CASE framework 

2.3 Step 2 – Identify poor performing time periods 
2.4 Step 3 – Identify sources of poor performance 

2.4.1 Unit test procedure 
2.4.2 Compare unit tests and integrated tests 
2.4.3 Identify types of key deficiencies 

A flow chart (figure 2) has been added to graphically summarise the process to make it easier to follow in terms 
of the method and results. The figure is reproduced below. 

 

Fig. 2 - Virtual hydrological evaluation procedure. 
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Comment 4: 

Section 3. Some important details are missing in this section. In addition to the area of the catchment and 
the temporal resolution of the simulated rainfall, the authors should specify how the GR4J model is forced 
by observed rainfall and how it is calibrated. Is the observed catchment average rainfall used to force and 
calibrate the hydrological model? How many years of observed discharge data are used for calibration? Is 
this set of parameters used to simulate streamflow within the unit and integrated test?  

Response 4: 

Other reviewers have made similar comments (reviewer #1 comments 14-17, reviewer # 2 comments 7 and 
11). The following details have been included in the revised Section 3: 

 Catchment area (323 km2) 

 Rainfall model resolution (daily) 

 Hydrological model resolution (daily) 

 Hydrological model calibration details such as the number of observed years (model calibration and 
selection: 1985-1999, model evaluation: 2000-2009), Thiessen weighting of rainfall gauges was used 
to calculate catchment average rainfall, and the impact of rainfall errors was considered in detail (see 
Westra et al. 2014a, Westra et al. 2014b). 

 The same set of hydrological model parameters are used for the unit and integrated tests so that the 
same transformation of rainfall to flow is used. 

Section 3 is reproduced below for convenience. 

Page 12, Line 10 – Page 13, Line 12: “The Onkaparinga catchment in South Australia is used as a 
case study (Fig. 6). The 323 km2 catchment lies 25 km south of the Adelaide metropolitan area and 
contains the largest reservoir in the Adelaide Hills supplying the region (Mount Bold Reservoir). The 
catchment has a strong seasonal cycle (shown in Fig. 6) where the driest months (December, January 
and February) exhibit low rainfall and low streamflow, the wettest months (July, August and 
September) have high rainfall and high streamflow and the ‘wetting-up’ period (April, May and June) 
has high rainfall and lower streamflow.  

There is a strong rainfall gradient (Table 3), with average annual rainfall ranging from approximately 
500 mm on the coast (Site No. 19) to over 1000 mm in the region of highest elevations (Site No. 20). A 
breakdown of the rainfall characteristics (annual total, number of wet days, daily average amounts, 
wet-spell and dry spell durations) at each site on a monthly basis is provided in Supplementary Material 
A. 

The simulated daily rainfall was determined from the latent variable autoregressive daily rainfall model 
of Bennett et al. (2018) using at-site calibrated parameters. This rainfall model uses a latent variable 
concept, which relies on sampling from a normally distributed ‘hidden’ variable. The latent variable can 
then be transformed to a rainfall amount by truncating values below zero and by rescaling values above 
zero to match the observed rainfall’s distribution. Here, the rainfall is rescaled using a power 
transformation. 

To calibrate the model the rainfall data at a given site is partitioned on a monthly basis and separate 
parameters are fit for each month. The mean and standard deviation of rainfall amounts, as well as the 
proportion of dry days is calculated. These statistics are matched to the corresponding properties of the 
truncated power transformed normal distribution. The at-site lag-1 temporal correlation is then 
calculated based on the observed wet day periods for a given month. This statistic is transformed to the 
equivalent correlation of the underlying latent variable by accounting for the effects of truncation to 
determine the autocorrelation parameter. Full details of the calibration procedure are provided in 
Bennett et al. (2018). 
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In this study the daily rainfall model was calibrated and simulated at 22 locations throughout the 
catchment that have long, high-quality records (Table 3). 10,000 replicates of simulated rainfall 
covering a 73 year period (1914-1986) were used. 

The hydrological model GR4J (Perrin et al., 2003) was used to simulate virtual-observed streamflow at 
a daily time step. GR4J is a daily lumped hydrological model that simulates daily streamflow in a 
parsimonious manner using four parameters. The GR4J model was calibrated according to the 
procedure set out in Westra et al. (2014b) for the stationary version of the GR4J hydrological model. 
The details are provided in (Westra et al., 2014a) and a short summary is provided here. The multi-site 
rainfall gauges were Thiessen weighted to calculate the catchment average rainfall. The model was 
calibrated to the streamflow data at Houlgrave Weir (see Figure 4) using model calibration period of 
15 years (1985-1999). The parameters were estimated using maximum likelihood estimation procedure 
with a weighted least squares likelihood function. The model parameters that maximised the likelihood 
function were found using a multi-start quasi-Newton optimisation procedure with 100 random starts. 
Overall, the GR4J model was a good fit to the observed streamflow, with a Nash-Sutcliffe efficiency of 
0.8. A similar type of hydrological model and calibration approach has been used for other virtual 
evaluation studies (Li et al. 2014; 2016). The same set of hydrological model parameters are used for 
both the unit and integrated tests so that the same transformation of rainfall to flow is used.” 

Comment 5: 

Finally, major details should be added to this section about the rainfall statistics used for the calibration of 
the SRG of Bennett et. al. (2018). 

Response 5: 

In the revised manuscript a summary is provided of the calibration approach for the rainfall model (see Section 
3) so that it is easier for the reader to understand the model without needing to also read Bennett et al (2018). 

Page 12, Lines 19-32: “The simulated daily rainfall was determined from the latent variable 
autoregressive daily rainfall model of Bennett et al. (2018) using at-site calibrated parameters. This 
rainfall model uses a latent variable concept, which relies on sampling from a normally distributed 
‘hidden’ variable. The latent variable can then be transformed to a rainfall amount by truncating values 
below zero and by rescaling values above zero to match the observed rainfall’s distribution. Here, the 
rainfall is rescaled using a power transformation. 

To calibrate the model the rainfall data at a given site is partitioned on a monthly basis and separate 
parameters are fit for each month. The mean and standard deviation of rainfall amounts, as well as the 
proportion of dry days is calculated. These statistics are matched to the corresponding properties of the 
truncated power transformed normal distribution. The at-site lag-1 temporal correlation is then 
calculated based on the observed wet day periods for a given month. This statistic is transformed to the 
equivalent correlation of the underlying latent variable by accounting for the effects of truncation to 
determine the autocorrelation parameter. Full details of the calibration procedure are provided in 
Bennett et al. (2018). 

In this study the daily rainfall model was calibrated and simulated at 22 locations throughout the 
catchment that have long, high-quality records (Table 3). 10,000 replicates of simulated rainfall 
covering a 73 year period (1914-1986) were used.” 
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Comment 6.1: 

Section 4. In this section the authors should address the following points: 

1) as the authors know, the rainfall simulated by the SRG are function of the rainfall statistic properties used 
to estimate the model parameters. According to the authors, in which way the rainfall statistical properties 
and the results obtained by the unit and integrated test are linked? If different rainfall statistical properties 
are used for the SRG calibration, are the results different? For instance, is the identification of the 10 “poor” 
sites sensitive a variation of rainfall statistics? If different statistics are used for SRG calibration, is it possible 
to reduce the streamflow errors? These aspects should be demonstrated/discussed by the authors in order 
to provide to the readers a general framework not tailored for a specific case study. 

Response 6.1: 

It is important to clarify, that the goal of this paper is introduce a generic virtual-observed streamflow 
framework, and two tests (integrated and unit) that provide greater insight than traditional observed-rainfall 
evaluation approaches. This evaluation framework was demonstrated using a case study that included the 
rainfall model of Bennett et al. (2018) and a hydrological model for the Onkaparinga catchment. We 
demonstrated new insights/outcomes that are necessarily case study specific – but, they could not be derived, 
using traditional observed-rainfall evaluation techniques, and hence are a demonstration of the framework. As 
requested by the reviewer, we have more clearly signposted the generic components of the framework and 
the case study specific outcomes in the revised paper.  

The selection of a rainfall model and its calibration approach, are independent of the generic evaluation 
framework. We agree with the reviewer, that if a different calibration approach (i.e. different rainfall statistics) 
were used, then the results may change, and the streamflow errors may reduce. Indeed, evaluating how 
different calibration approaches can influence the streamflow would be an excellent future use of this 
evaluation framework. As the paper has increased substantially to address the issues raised by the reviewers 
(13 figures, ~10,000 words), examining this issue is outside of scope. We have briefly touched on this idea in 
the revised discussion section (Section 5.3) as a future research application of the framework. 

Comment 6.2: 

2) as the streamflow generation is a results of the mean areal (rather than single-site) rainfall over the basin, 
before to apply the integrated test to identify sites for which the rainfall simulation is not good, it could be 
interesting to estimate the streamflow errors coming from the mean areal rainfall, evaluated as average 
over the 22 sites. How good are these streamflow time series with respect to the “virtual-observed” ones 
(obtained by the rainfall observed over the 22 sites and averaged over the catchment)? More interesting, the 
authors should highlight the benefits deriving from the use of integrated test. For instance, they should show 
what are the streamflow errors if only the 12 “good” sites are retained to evaluate the mean areal rainfall. 
Is it better than using all 22 sites? 

Response 6.2: 

The reviewer is right – in a ‘real-world’ catchment, streamflow is the result of rainfall over a basin rather than 
a single site. Our framework does enable spatial characteristics to be tested and in this respect we agree with 
the reviewer about the potential utility of the proposed test. By using the framework it would be possible to 
undertake evaluations with catchment average rainfall. 

In this paper we have not evaluated how the observed and simulated catchment average rainfall compare in 
terms of the resultant streamflow. This is because, as a matter of first priority, our approach focuses on 
identifying issues with rainfall at each site and getting this right before moving on to assess deficiencies in 
spatial properties. We therefore prefer to assess the at-site performance prior to the catchment average 
performance. Future work will demonstrate and apply the framework to catchment average rainfall. 

The reviewer makes an excellent suggestion regarding future investigations into the impact of ‘mixed’ 
performance in the rainfall model between sites. We have added a discussion on how this could be explored 
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in future work and indicated that the proposed investigation of resultant streamflow (where different 
combinations of sites are ‘spliced’ in the construction of catchment average rainfall) is analogous to our 
temporal unit test but extended to space. 

Page 27, Line 22 – Page 28, Line 19: “The formalisation of the virtual hydrological framework for SRM 
evaluation provides the opportunity for further improvements in the future, including: … 

(iv) Evaluation of spatial performance – there are multiple opportunities to develop tests for spatial 
performance including (a) repeating the integrated test for all sites and for catchment average rainfall 
means it would be possible to diagnose whether specific locations or the spatial dependence causes 
poor reproduction of streamflow statistics, (b) developing a spatial unit test (which is analogous to the 
temporal unit test but extended to space) where different combinations of sites are ‘spliced’ in the 
construction of catchment average rainfall – to evaluate the impact of  ‘mixed’ performance in the 
SRMs between sites on the catchment average rainfall, and (c) these spatial unit tests could be used to 
evaluate stochastic weather generators (SWG) more generally as well as spatially distributed SRGs – 
though these would require a spatially distributed hydrological model.”  

Comment 7: 

Page 2, lines 19-21: the example of Bennet et al. (2018) is not clear without reading the paper. 

Response 7:  

Thank you for pointing this out. Due to a restructure of the introduction this example no longer appears. 

Comment 8: 

Page 7, lines 14-15: This sentence is not clear. Please rephrase it. 

Response 8:  
Due to a restructure the sentence no longer appears. 

Comment 9: 

Page 8, line 24: Why the authors write “13 errors to compare”? Are the authors considering also the 
integrated test? It is not clear. 

Response 9:  

Yes, the 13 errors compared arise from unit tests conducted for each of the 12 influencing months as well as 
an integrated test. We have restructured the presentation of methodology and revised the text explaining the 
calculation and comparison or errors to clarify this point. Please also see the response to reviewer 2, comment 
5. 

 Comment 10: 

Page 8, lines 27-28. This example related to the integrated test is difficult to understand in this section. The 
reason is that in the previous section, where the authors describe the test there is no mention to the fact that 
the evaluation of the integrated test is carried out also at the monthly scale. 

Response 10:  

We have improved the explanation of the framework to make clear that at Step 2 of the framework the 
integrated test results are evaluated at the monthly scale to allow a comparison with observed-rainfall 
evaluation and the unit test (see Section 2.3). 



November 2018  HESS 2018-489 

  Page 38 of 40 

Comment 11: 

Figure 4: the position of the streamflow gauging station should be added in the figure. 

Response 11:  

The streamflow gauge position has been added to the revised figure. It is indicated by the purple square. 

 

Fig. 6 Onkaparinga catchment, South Australia. Sites indicated by blue triangles are explored in greater detail in this paper due to 
the relatively poorer ability of simulated rainfall to reproduce annual streamflow totals at these sites. 

Comment 12: 

Page 15, lines 19-20: the conclusion about the transitional months should be drawn carefully. Indeed, moving 
from dry to wet conditions the process of formation of flood is very sensitive to the antecedent soil moisture 
conditions. Is the hydrological model able to reproduce observed streamflow in the transition period? 

Response 12: 

Thank you, this is a fair point. Our application has focused on streamflow characteristics relevant to yield. In 
the framework we stress the importance of choosing a ‘fit for purpose’ hydrological model in terms of 
reproducing the streamflow characteristic of interest (Step 2). In our investigation we have chosen a widely 
applied model (GR4J) that has been calibrated using a rigorous approach (see Westra et al 2014a and 2014b). 

The focus on rainfall in the wetting-up period was identified after we applied the new virtual framework. This 
key period would not have been identified using an observed-rainfall evaluation approach. Therefore, it was 
not possible to set hydrological model performance throughout this period as a criterion for hydrological model 
selection at the outset. 

We agree with the reviewer that this is an important period of simulation to get right, and as a result of this 
analysis, we will examine hydrological models that have the potential to better simulate this period.5 The 
                                                           

 

5 Such models may include non-stationary variants of GR4J (Westra et al. 2014a and 2014b) or SUPERFLEX (Fenicia et al. 
2011, Kavetski and Fenicia, 2011). 
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evaluation using different models is unlikely to change the conclusion that the rainfall in the wetting-up months 
are important, as the GR4J model already performs reasonably well. However, it may change the magnitude of 
the rainfall’s impact on the hydrological performance – especially for future comparisons to observed 
streamflow. Further research will investigate this issue and has been added to the discussion Section. 

Page 28, Lines 22-302: “The formalisation of the virtual hydrological framework for SRM evaluation 
provides the opportunity for further improvements in the future, including:  

(i) Using multiple, well-tested hydrological models - a potential limitation of the virtual hydrologic 
evaluation framework is that it is reliant on the use of a hydrological model. Hydrological structural 
errors may potentially skew interpretation of the SRM evaluation if the hydrological model poorly 
represents the catchment processes. To reduce these impacts the steps taken in this study included (a) 
using a well-tested hydrological model that has demonstrated good performance on a wide range of 
catchments (e.g. the GR4J model has been widely tested , see (Perrin et al., 2003, Coron et al., 2012); 
(b) calibrating and evaluating the hydrological on a catchment close to the observed rainfall sites to 
ensure it provided sufficiently good performance  (e.g. GR4J was calibrated to the Onkaparinga 
catchment - see (Westra et al., 2014a, Westra et al., 2014b). Future research will use multiple, well-
tested hydrological models with sufficiently good performance to reduce the reliance on a single 
hydrological model and ensure the identification of SRM deficiencies is not dependent on a single 
hydrological model.” 
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Abstract. Stochastic rainfall modelling is a commonly used technique for evaluating the impact of flooding, drought or climate 

change in a catchment. While considerable attention ishas been given to the development of stochastic rainfall models, (SRMs), 

significantly less attention is givenhas been paid to performance evaluation methods. Typical evaluation methods employ a 10 

varietywide range of rainfall statistics. However, they give limited understanding about which rainfall statistical characteristics 

are most important for reliable streamflow prediction whenever the simulated rainfall are poor.. To address this issue a 

newformal evaluation method for rainfall modelsframework is introduced, with three key features: (i) streamflow-based — to 

give a direct evaluation of modelled streamflow performance, (ii) virtual — to avoid the issue of confounding errors in 

hydrological models or data, and (iii) targeted — to isolate the source of errors according to specific sites and monthsseasons. 15 

The virtual hydrologic evaluation framework uses two types of tests, integrated tests and unit tests, to attribute deficiencies 

that impact on streamflow to their original source in the SRM according to site and season. The framework is applied to a case 

study of 22 sites in South Australia. with a strong seasonal cycle. In this case study, the framework demonstrated the surprising 

result that apparently ‘good’ modelled rainfall can produce ‘poor’ streamflow predictions, whilst ‘poor’ modelled rainfall may 

lead to ‘good’ streamflow predictions, as. This is due to the representation of highly seasonally catchment processes within 20 

the hydrological model that can dampen or amplify rainfall errors when converted to streamflow. The framework identified 

the importance of rainfall in the ‘wetting-up’ months of the catchment(months where the rainfall is higher but streamflow 

lower) of the annual hydrologic cycle (May and June in this case study) for providing reliable predictions of streamflow over 

the entire year despite their low monthly flow volume. This insight would not have been found using existing methods and 

highlights the importance of the virtual hydrological evaluation framework for stochastic rainfall modelSRM evaluation. 25 

1 Introduction 

Stochastic rainfall model (SRM) simulations are primarily used as inputs to a hydrological model, for simulating realisations 

of streamflow. Streamflow simulations are then used to assess hydrological risks, such as flood risksfloods (e.g. Camici et al., 

2011, Li et al., 2016) or drought risksdroughts (e.g. Henley et al., 2013, Paton et al., 2013, Mortazavi-Naeini et al., 2015). 

When evaluating the efficacy of stochastic rainfall modelsSRM’s, current approaches, which that make comparisons to 30 
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observed rainfall and/or streamflow, are limited. This is because They are unable to make a targeted evaluation of the stochastic 

rainfall model’sSRM’s ability to reproduce streamflow characteristics of practical interest. This paper introduces a new virtual 

framework that enables targeted, hydrological evaluation of stochastic rainfall modelsSRMs. 

Observed-rainfall evaluation is the most common method offor SRM evaluation (Rasmussen, 2013, Wilks, 2008, Baxevani 

and Lennartsson, 2015, Srikanthan and Pegram, 2009, Evin et al., 2018, Bennett et al., 2018). As shown in Fig. 1and relies 5 

on(a) it involves comparisons between observed and simulated rainfall typically using a large number of evaluation statistics. 

Typically. Often, this method shows ‘mixed’ performance where many statistics are reproduced well, but some are poor and 

the implications for improving streamflow simulations are not clear. To overcome.  While these limitations, an alternative is 

to evaluate the rainfall model’s performance in terms of streamflow, hereafter referred to as ‘observed-streamflow evaluation’ 

. A challenge with observed-streamflow evaluationassessments are useful, a drawback is that when there is poor predictive 10 

performance, it is difficult to ascertain if the poor performance was caused by the hydrological model or the stochastic rainfall 

model. This is because hydrological model performance can vary substantially, with the possibility of significant data errors , 

and/or model structural errors . 

There is the possibility of a different approach to evaluation, involving the use of virtual experiments, which has not previously 

been developed for the evaluation of stochastic rainfall models. To date, virtual experiments have been used in a variety of 15 

contexts, including (i) the evaluation of hydrological model sensitivity , (ii) evaluating how well simpler conceptual 

hydrological models characterise complex processes , and (iii) for developing new techniques for flood frequency analysis . 

Stochastic rainfall models can be a significant source of error in streamflow simulation, yet virtual experiments have not been 

designed to identify these deficiencies. An evaluation technique is needed that can identify deficiencies in simulated rainfall 

while retaining a focus on streamflow.  20 

This paper introduces a virtual hydrological framework for evaluating stochastic rainfall models. The key difference between 

this framework and conventional frameworks is the introduction of a new baseline. Rather than use observed streamflow, the 

hydrological model can be used to translate observed rainfall to corresponding streamflow (conditioned on that hydrological 

model), referred to here as ‘virtual-observed streamflow’. The framework overcomes the limitations of observed-rainfall 

evaluation because it evaluates the performance of the stochastic rainfall model in terms of the key streamflow characteristics 25 

of interest. Likewise, the framework overcomes the limitations of observed-streamflow evaluation because it can separate out 

the sources of error in the comparison of streamflows.  

The key objectives of this paper are: 

1. To introduce a framework for virtual hydrological evaluation of stochastic rainfall models.  

2. To introduce two different tests which are part of the framework: an integrated test and a unit test. Combined use 30 

of these tests allows streamflow discrepancies to be attributed to their original source in the rainfall model according 

to site and month. 
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3. To demonstrate the framework evaluation on a stochastic rainfall model and contrast the outcomes with 

conventional evaluation methods. 

The framework of virtual hydrologic evaluation is explained in Section  with the procedures for the integrated test and unit 

test outlined in Section . Stochastic rainfall models have been developed for 22 sites in the Onkaparinga catchment, South 

Australia (Section 3) and are used to illustrate the procedure (Section 4). Discussion and conclusions emphasize the features 5 

of the framework and the different recommendations it can identify for improving the rainfall model (Sections 5 and 6).  

21 Virtual hydrological evaluation framework 

2.1 Limitations of existing evaluation techniques 

Observed-rainfall evaluation involves comparisons between observed and simulated rainfall statistics, as shown in (a). This 

method involves a large number of evaluation statistics and it is often unclear which are the most important and how trade-10 

offs in respective performance between them might be evaluated. For the example of a daily stochastic rainfall model, these 

statistics might include the mean and standard deviation of: rainfall on wet days, wet-spell and dry-spell durations, wet-day 

proportions, extreme values, and daily total rainfall. This basic list would involve 12 daily-scale statistics per site per month. 

Aggregated statistics might include the mean, standard deviation and autocorrelation at aggregated monthly and annual time 

scales, producing another 39 statistics per site. For a multi-site rainfall model having 10 gauges, the evaluation would involve 15 

1830 temporal statistics before considering the statistics of spatial aggregates. 

Typically, observed-rainfall evaluation shows ‘mixed’ performance where many statistics are reproduced well but some are 

poor which presents a number of challenges for evaluating predictive performance. Firstly, it is difficult to ascertain if the 

rainfall model’s performance is sufficient in terms of predictions of practical interest, which are typically streamflow-based. 

Secondly,This means it is unclear if it is necessary to invest time and effort to address instances of poor performance, when 20 

the majority of statistics are well reproduced (Bennett et al., 2018, Evin et al., 2018). For example,  found that the standard 

deviation of the number of wet days varied monthly and by site (monthly performance varied between January approximately 

100% ‘poor’ and July 100% ‘good’). As another example,  showed good reproduction of a wide range of daily scale statistics 

but that model variants differed in terms of their ability to reproduce 3-day extremal totals. While these assessments are useful, 

they are nonetheless a step removed from their ability to reproduce streamflow characteristics..   25 

To overcome limitations in observed-rainfall evaluation methods, athe conventional alternative is to evaluate the rainfall 

model’s performance in terms of streamflow (e.g. Camici et al., 2011, Blazkova and Beven, 2002, 2009, McMillan and 

Brasington, 2008). This method is indicated in  (b) and is referred to as ‘observed-streamflow evaluation’. Rainfall modelling 

is not an end in itself, therefore hydrological statistics of interest (such as properties of the flow duration curve as well as 

annual and monthly total flows), can give better perspective on the suitability of the rainfall model for its intended application 30 

. For example, observed-streamflow evaluation has been used to predict the annual flood frequency distribution .  
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A challenge with observed-streamflow evaluation is that when there is poor predictive performance (i.e. a significant 

discrepancy between the observed and predicted streamflow) it is difficult to ascertain if the poor performance was caused by 

the hydrological model or the stochastic rainfall model. From Fig. 1 ((b), observed-streamflow evaluation typically involves 

(1) a stochastic modelSRM that produces simulations of rainfall, that are (2) input to a hydrological model to produce simulated 

streamflow, which is (3) converted to the predictions of interest (e.g. the flood frequency distribution), and (4) compared 5 

against the observed streamflow predictions of interest. A challenge with observed-streamflow evaluation is that when there 

is poor predictive performance (i.e. a significant discrepancy between the observed and predicted streamflow) it is difficult to 

ascertain if the poor performance was caused by the hydrological model or the SRM. Hydrological model predictive 

performance can vary substantially from catchment to catchment due to data errors (rainfall or streamflow) and model 

structural errors (Evin et al., 2014, Coxon et al., 2015, Andreassian et al., 2001, Kuczera and Williams, 1992, Renard et al., 10 

2011, McInerney et al., 2017)For example,  used this technique to show that observed discharge peaks were matched by 

synthetic design storm simulations. However, hydrological model performance can vary substantially. One reason is due to 

data errors, for example, in their analysis of streamflow data errors,  found that for mean and high flows, over 80% of gauging 

stations had a 95% uncertainty interval of 40% of the flow. Another reason is model structural errors, as even hydrological 

models with ‘good’ performance can have predictive errors with a standard deviation at 25% of the predicted streamflow . In 15 

some ephemeral catchments, the predictive uncertainty has a precision (standard deviation) of 40% of mean observed 

streamflow . These predictive errors can be substantially worse where there are significant rainfall errors .  which makes it 

difficult to evaluate the performance of the SRM and identify opportunities for improvement. 

With predictive errors of this magnitude it is difficult to evaluate the ability of a stochastic rainfall model to produce the key 

streamflow predictions of interest using observed-streamflow evaluation. This is because when the simulated streamflow 20 

produced by the combination of a stochastic rainfall model and a hydrological model is in error, it is difficult to determine if 

the error is due to a deficiency in the stochastic rainfall model or predictive errors within the hydrological model. This means 

it is unclear whether or not the stochastic rainfall model should be improved, or how to do so to improve key streamflow 

predictions of interest.  
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Fig. 1 Schematic of (a) observed-rainfall evaluation where simulated rainfall is compared against observed rainfall and (b) observed-

streamflow evaluation where simulated streamflow is compared against observed streamflow. (c) virtual hydrological evaluation 

framework where simulated streamflow is compared against virtual-observed streamflow. 
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2.2 The focusOverview of thethis paper is the development and application of a virtual hydrological evaluation 

framework for streamflow-based evaluation of SRMs. As shown in Fig. 1 

The  (c), a virtual hydrological evaluation involves the comparison of simulated streamflow statistics (produced by the 

hydrological model by inputting simulated rainfall from a SRM) against virtual-observed streamflow statistics (produced by 5 

the hydrological model by inputting observed rainfall). This framework is designed to focus on streamflow predictions of 

interest, similar to observed-streamflow evaluation, but to reduce the sources of error to only those introduced by the stochastic 

rainfall model.SRM. To illustrate this, Table 1 gives an overview of the sources of error for the three evaluation frameworks. 

and indicates whether the evaluations are streamflow-based. The observed-rainfall evaluation framework is used to identify 

errors in the rainfall modelSRM, but is not able to determine their implications for streamflow. The observed-streamflow 10 

framework provides an absolute measure of performance, since ultimately the goal is to match streamflow observations. or 

statistics. However, with this approach it is not possible to readily identify whether discrepancies in the simulated streamflow 

are attributed to the rainfall modelSRM, the streamflow observations or poor process representation within the hydrological 

model. In contrast, the virtual hydrological evaluation framework is a relative measure of performance, where the hydrological 

model is a common factor in the production of simulated streamflow and virtual-observed streamflow (elaborated on below) 15 

that is used as a baseline for comparison. By using a virtual baseline, observed streamflow is not directly required in the 

evaluation as both simulated and observed rainfall undergo transformation by the same process representation (i.e. the 

hydrological model). This enables discrepancies in the streamflow to be identified in terms of features of the stochastic rainfall 

model. SRM. 

Table 1 Comparison of the sources of error for observed-rainfall, observed-streamflow and virtual hydrological based evaluation 20 
frameworks as well as whether the evaluation is streamflow-based. 

 Source of error 

Streamflow-

based evaluation  

Evaluation framework Stochastic 

rainfall 

model 

Hydrological 

model 

Observed 

streamflow 

Observed-rainfall evaluation Yes No No No 

Observed-streamflow evaluation Yes Yes Yes Yes 

Virtual hydrological evaluation Yes -No -No Yes 

 

To date, ‘virtual experiments’ have been used in a variety of contexts, including (i) the evaluation of hydrological model 

sensitivity (Ball, 1994, Nicótina et al., 2008, Paschalis et al., 2013, Shah et al., 1996, Wilson et al., 1979) including the 

identification of rainfall features of interest in terms of hydrological behaviour (Sikorska et al., 2018), (ii) for developing new 25 

techniques for flood frequency analysis (Li et al., 2014, 2016), and (iii) to support SRM selection (Müller and Haberlandt, 

2018) as well as calibration and validation (Kim and Olivera, 2011) through a comparison to virtual streamflow.  

Merged Cells
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The framework presented in this paper is significant advance from previously reported virtual experiments because it presents 

a formal framework to identify key deficiencies in the SRM by utilising (1) A comprehensive and systematic evaluation 

(CASE) framework (developed by Bennett et al., 2018 and used by Evin et al., 2018, Khedhaouiria et al., 2018) that 

systematically categorises performance at multiple spatial and temporal scales using quantitative criteria for each statistic, and 

(2) two types of virtual experiments that are able to identify the source of key deficiencies in SRM at specific locations and 5 

time periods.  

The key objectives of this paper are: 

1. To introduce a formalised framework for the virtual hydrological evaluation of SRMs.  

2. To present two different tests which are part of the framework: the integrated test as well as introduce a new test, the 

unit test. Combined use of these tests allows streamflow discrepancies to be attributed to their original source in the 10 

SRM according to site and season. 

3. To demonstrate the framework evaluation on a SRM and contrast the outcomes with conventional evaluation methods. 

The virtual hydrologic evaluation framework is explained in Section 2 with the procedures for the integrated test and unit test 

outlined in Sections 2.2.2 and 2.4.1. SRMs have been developed for 22 sites in the Onkaparinga catchment, South Australia 

(Section 3) and are used to illustrate the procedure (Section 4). Discussion and conclusions emphasize the features of the 15 

framework and the different recommendations it can identify for improving the rainfall model (Sections 5 and 6).  

2 Virtual hydrological evaluation framework 

2.32.1 Overview  

As shown in , A virtual hydrological evaluation involves the comparison of simulated streamflow statistics to virtual-observed 

streamflow statistics (Fig. 1,(c)), defined as: 20 

 Simulated streamflow — is streamflow produced by the hydrological model by inputting simulated rainfall at a given 

site. 

 Virtual-observed streamflow — is streamflow produced by the hydrological model by inputting observed rainfall at 

the same given site. 

The virtual framework undertakes a relative assessment of the simulated and observed rainfall after its transformation by the 25 

same hydrological model to provide insight into the performance of the stochastic rainfall model.SRM.  Because the 

hydrological evaluation is a relative comparison of the observed and simulated rainfall, it is important that all other model 

parameters and extraneous variables (e.g. potential evapotranspiration) relating to the hydrological model are kept the same in 

all instances. This is because for the ultimate goalsimulation of the modelling process remains the same: to match both virtual-
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observed and simulated streamflow for a catchment. It is also important that the selected hydrological model is fit for purpose 

so that it can simulate the streamflow characteristics of interest.  

Therefore, The virtual hydrological evaluation framework is best used to augment and complement existing evaluation 

methods, rather than act as a replacement. The three evaluation frameworks could work together as follows, where: (i) 

observed-rainfall evaluation identifies any deficiencies in the stochastic rainfall modelSRM prior to any hydrological 5 

considerations; (ii) the virtual hydrological framework identifies which of these rainfall deficiencies impact on the key 

predictions of interest, that is, simulated streamflow; and (iii) observed-streamflow evaluation provides a final validation. 

Therefore, together they enable a more focused approach to identify opportunities for improvement of a stochastic rainfall 

modelSRM. This is because the ultimate goal of the SRM modelling process remains the same: to match observed streamflow 

for a catchment of interest. 10 

 

The formal implementationFig.  Schematic of the virtual hydrologichydrological evaluation framework where simulated streamflow 

is summarised in Fig. 2compared against virtual-. It uses a series of steps to identify poor performing sites, then poor performing 

time periods and then the key deficiencies in the SRM for those sites and time periods. It compares both observed streamflow.  

2.4 Diagnostic tests enabled byrainfall-evaluation and virtual hydrological evaluation. The virtual hydrological 15 

framework 

The virtual framework enables several techniques for isolating the deficiencies in simulated rainfall on the key streamflow 

predictions of interests, includingevaluation includes two different types of tests, an ‘integrated test’ that isolates issues for a 

given site, and ‘unit tests’ that isolate issues for specific time periods. This enables the diagnosis of the key deficiencies in the 

simulated rainfall. The following sections explain the three steps in turn.  20 

2.4.1 Integrated tests  

The integrated test acts as an overall test of the stochastic rainfall model’s performance. The integrated test proceeds for a 

single location of interest by transforming the time series of observed and simulated rainfall, via the hydrological model (). 
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The hydrological model evaluates the effects of rainfall over longer timescales due to the integrating property of its conceptual 

catchment stores. If there is a discrepancy in the distribution of the simulated streamflow and the virtual-observed streamflow, 

this indicates that the simulated rainfall at that site is deficient.   

Due to the virtual nature of this evaluation, it is not bound by a comparison to observed streamflow sites and avoids the 

requirement to construct estimates of catchment rainfall. Without a virtual approach, the framework would be unable to 5 

evaluate each rainfall site separately, as necessary for isolating rainfall model deficiencies. The application of an integrated 

test at individual sites is the conceptual equivalent of saying that single site rainfall represents the average rainfall for that 

catchment, which is a situation not unlike many hydrological studies that rely on one or two rain gauges.  

As a further integrated test, it is possible to use the catchment average rainfall. If all individual sites show minimal 

discrepancies, but the catchment average test shows a discrepancy, this indicates an issue in the spatial dependence structure 10 

of the rainfall model rather than the at-site statistics. Repeating an integrated test for all sites and for catchment average(s), it 

is possible to diagnose whether specific locations or the spatial dependence causes poor reproduction of streamflow statistics.  

2.4.2 Unit tests 

While an integrated test is able to isolate deficiencies in stochastic rainfall for an individual site, it is unable to identify which 

specific time period(s) the issues are related to, due to storage properties of the hydrological model. For this reason, an 15 

additional test is introduced to isolate time periods and is referred to as a ‘unit test’. The unit test investigates the impact of 

simulated rainfall in a given influencing month on the production of streamflow in an evaluated month of interest. This is 

achieved by splicing observed and simulated rainfall into a single time series which is used to produce simulated streamflow.  

Following , consider the time series of observed, 𝑅𝑜𝑏𝑠, and simulated, 𝑅𝑠𝑖𝑚 ,   daily rainfall for each year (and replicate) at a 

given site. (a) illustrates the embedding of simulated rainfall 𝑅𝑘
𝑠𝑖𝑚 in an influencing month, 𝑘, within observed rainfall 𝑅𝑚

𝑜𝑏𝑠 20 

for all other months 𝑚 ∈ {1, … ,12| 𝑚 ≠ 𝑘}. The resulting spliced rainfall time series 𝑅(𝑘)
𝑠𝑝𝑙

 is denoted with respect to the 

influencing month, and has the same length as the corresponding observed 𝑅𝑜𝑏𝑠   and simulated 𝑅𝑠𝑖𝑚 time series. 

𝑅(𝑘)
𝑠𝑝𝑙

= ⋃ {
𝑅𝑚

𝑠𝑖𝑚

𝑅𝑚
𝑜𝑏𝑠

; 𝑚 = 𝑘
; 𝑚 ≠ 𝑘

12
𝑚=1    (1) 

For example, if June (𝑘 = 6) is selected as the influencing month, each year of the spliced time series, 𝑅(6)
𝑠𝑝𝑙

, would be composed 

as follows: 25 

𝑅(6)
𝑠𝑝𝑙

= {𝑅1
𝑜𝑏𝑠 , … , 𝑅5

𝑜𝑏𝑠 , 𝑅6
𝑠𝑖𝑚, 𝑅7

𝑜𝑏𝑠 , … , 𝑅12
𝑜𝑏𝑠}         (2) 
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The ensemble of 𝑘 = 1, … ,12  spliced rainfall time series 𝑅(𝑘)
𝑠𝑝𝑙

 

 

Fig. 2for all influencing months is transformed according to a hydrological model 𝑔[ ] to produce an ensemble of simulated 

streamflows. However, the hydrological evaluation centres on a specific subset of flows 𝑄(𝑡,𝑘)
𝑠𝑖𝑚  relating to the evaluated month, 

𝑡, 5 

𝑄(𝑡,𝑘)
𝑠𝑖𝑚 ⊂

t
𝑔[𝑅(𝑘)

𝑠𝑝𝑙
]            (3) 

The ensemble of simulated streamflows corresponding to influencing month 𝒌 and evaluated month 𝒕 are used to determine errors 

with respect to the virtual-observed streamflow in the evaluated month.  Virtual hydrological evaluation procedure.   

2.2 Step 1 – Identify poor performing sites  

The first step focuses on using integrated tests to identify poor performing sites for further evaluation. Following the selection 10 

of a primary streamflow characteristic of interest and a fit for purpose hydrological model, integrated tests are conducted for 

each rainfall site. The results of the integrated tests are then used to identify sites that are poor performing, according to the 

CASE framework, for the primary streamflow characteristic. 

2.2.1 Selection of primary streamflow characteristic and relevant hydrological model 

In order to undertake an integrated test Using the function ℎ[ ] to denote a calculated statistic of interest, the relative error in 15 

an evaluated month is given by  

%𝐸𝑟𝑟(𝑡) =
ℎ [𝑄(𝑡)

𝑠𝑖𝑚]−ℎ [𝑄(𝑡)
𝑣𝑜]

ℎ [𝑄(𝑡)
𝑣𝑜]

× 100          (4) 

where 𝑄(𝑡)
𝑣𝑜  is the virtual-observed streamflow and 𝑄(𝑡)

𝑠𝑖𝑚 is the simulated streamflow in the evaluated month (whether from the 

integrated test or any of the 12 unit tests). Thus, for each site, statistic and evaluated month there are 13 errors to compare. 

By construction, spliced rainfall is identical to the observed rainfall for all months other than the influencing month, so any 20 

errors in streamflow statistics can be attributed to the influencing month free from other factors. (b) illustrates for the evaluated 

month of June (𝑡 =  6), a typical error profile from a unit test of the mean monthly flow. (b) shows the integrated test produced 

a median error of 27% (blue shaded boxplot), when the influencing month is June (𝑘 = 6) the median error is 20%, when the 
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influencing month is May (𝑘 = 5) the median error is 10%, and when the influencing month is April (𝑘 = 4) the median error 

is negligible. Therefore, the bias in mean June streamflow is primarily due to rainfall model deficiencies in June and May 

respectively. 

 

 5 

Fig.  Schematic of (a) the method of constructing a unit test by embedding simulated months in an observation time series, and (b) 

the error profile produced when using the integrated and unit tests for the evaluated month of June (90% limits shown). 

 

2.5 Implementation of Framework 

The procedure for virtual hydrologic evaluation is implemented in a stepwise manner. The first step is to select a streamflow 10 

characteristic of interest, herein termed the ‘primary streamflow characteristic’. The reason for specifying a primary 

streamflow characteristic is to enable a method (carried out in Step 4) for filtering sites and concentrating the investigation of 

the rainfall model on sites that perform poorly in terms of its intended application. For example, a flood frequency distribution 

would be a suitable characteristic for a flood risk study, or the distribution of annual total flow when investigating yield. 

The second step is to select an appropriate hydrological model is required to simulate the streamflow. The hydrological model 15 

should be selected on the basis that it is capable of simulating streamflow for the timescales, magnitudes and physical processes 

of interest to the intended application. For example, a capability for simulating peak flows is important for flood risk studies. 

flow volumes is important for yield.  A streamflow characteristic of interest, herein termed the ‘primary streamflow 

characteristic’, is then selected to enable a method for filtering sites and concentrating the investigation of the rainfall model 

on sites that perform poorly in terms of its intended application. For example, the distribution of annual total flow would be a 20 
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suitable characteristic when investigating yield. Following the identification of the hydrological model and primary streamflow 

characteristic an integrated test is conducted for each rainfall site, which serves as an overall test of the SRM’s performance. 

2.2.2 Integrated test procedure  

The third step is to conduct an integrated test proceeds for each rainfalla single site, which serves as an overall test of by 

transforming the rainfall model’s performance. The test uses the time series of observed and simulated rainfall, via the 5 

hydrological model (Fig. 1(c)). Consider the time series of observed, 𝑅𝑜𝑏𝑠 daily rainfall for each year at a given site. This 

rainfall time series and is transformed according to a hydrological model 𝑔[ ] to produce the virtual-observed streamflow, 

denoted as 𝑄𝑣𝑜 and ‘…’ are additional inputs (e.g. potential evapotranspiration). 

𝑄𝑣𝑜 = 𝑔[𝑅𝑜𝑏𝑠 , … ]           (1) 

Likewise, all replicates of the simulated, 𝑅𝑠𝑖𝑚 daily rainfall time series as inputs to for each year at a given site are transformed 10 

according the hydrological model (). 𝑔[ ] to produce simulated streamflow replicates, 𝑄𝑠𝑖𝑚. 

The fourth step𝑄𝑠𝑖𝑚 = 𝑔[𝑅𝑠𝑖𝑚 , … ]          

 (2) 

 If there is to reduce the set of investigateda discrepancy between the simulated streamflow, 𝑄𝑠𝑖𝑚 , and the virtual-observed 

streamflow, 𝑄𝑣𝑜, distributions, this indicates that there is a deficiency in the simulated rainfall for that site.  15 

2.2.3 Identify poor performing sites using CASE framework 

The integrated test results aim to a smaller subset that poorly simulatedidentify the sites that are poor performing for the 

primary streamflow characteristic. Model performance is categorised using a CASE framework approach as ‘good’, ‘fair’ or 

‘poor’ following Bennett et al. (2018). The quantitative tests for each performance category are provided in Table 2 alongside 

an illustration of each in Fig. 3. The quantitative tests proceed by comparing the statistics of the virtual-observed streamflow 20 

against those calculated from replicates of the simulated streamflow. Performance was categorised as ‘good’ if the selected 

statistic for the virtual-observed streamflow fell within the 90% limits of the statistic calculated from the simulated streamflow 

replicates (Fig. 3, case i), as ‘fair’ if the virtual-observed statistic fell outside the 90% limits of the simulated streamflow 

replicates but within the 99.7% limits (Fig. 3, case ii) and otherwise as ‘poor’ (Fig. 3 during the integrated test in step three. 

This step assumes a multi-site evaluation and is optional if only a single site is evaluated, case iii).  25 

Table 2 CASE performance classification criteria. Adapted from Bennett et al. (2018). 

Performance Classification Test Key 

‘good’ Observation lies within the 90% limits (case i) 
 

‘fair’ Observation lies outside the 90% limits but within the 99.7% limits (case ii)  
 

‘poor’ Otherwise (case iii)  
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Fig. 3 Illustration of performance classification, case (i) shows ‘good’ performance, case (ii) shows ‘fair’ performance and case (iii) 

shows ‘poor’ performance. Adapted from Bennett et al. (2018). 

2.3 Step 2 – Identify poor performing time periods  5 

The fifthsecond framework step is to conductidentify poor performing time periods by conducting a detailed analysis of the 

integrated test results and comparing these results with an observed-rainfall evaluation at the monthly scale for the remaining 

subset of sites. . 

Evaluating monthly total flows is a valuable test of rainfall model performance as the production of monthly total flow volumes 

relies on the integration of many daily rainfall characteristics (amount, duration, persistence). For each of the poor performing 10 

sites, each of these statistics for each month are categorized into ‘good’, ‘fair’ and ‘poor’ using the CASE framework. See 

Section 2.2.3Errors in reproducing virtual-observed streamflow are contrasted against the observed-rainfall evaluation so that 

specific sites and months can be identified for further investigation in steps six and seven. The comparison between the 

observed-rainfall evaluation and the integrated test can be summarised graphically (e.g. see Fig. 5, Section ) for the subset of 

sites showing: for further explanation of the categorization procedure. This enables the identification of poor-performing time 15 

periods from the perspective of the virtual hydrological evaluation.   

Poor performance in reproducing virtual-observed streamflow is then contrasted against an observed-rainfall evaluation so that 

specific poor-performing time periods can be identified for further investigation in Step 3. By contrasting CASE performance 

categories (‘good’, ‘fair’ and ‘poor’) for observed-rainfall evaluation against virtual-observation streamflow evaluation, poor 

performing time periods from both rainfall and streamflow perspective can be identified. This comparison between the 20 

observed-rainfall evaluation and the virtual hydrological evaluation (integrated test) can be summarised graphically (e.g. see 

Fig. 7, Section 4.2).  

2.4 Step 3 – Identify sources of poor performance  



15 

 

The third step of the framework is to identify sources of poor performance in streamflow according to deficiencies in the 

simulated rainfall. Step 2 identifies the poor performing time periods from a streamflow perspective. However, due to 

catchment ‘memory’, the poor performance in streamflow could be due to deficiencies in the simulated rainfall from a range 

of potential influencing months during or prior to the poor performing time period. For example poor streamflow performance 

in an evaluated month maybe due to the influence of: (i) rainfall deficiencies mostly in the same month (i.e. concurrent 5 

influencing months), (ii) rainfall deficiencies over a contiguous block of months including and preceding the evaluated month 

(i.e. prior and concurrent influencing months), or (iii) rainfall model deficiencies in a preceding month more so than in the 

evaluated month (i.e. prior influencing months). The integrated test cannot isolate which influencing months produce these 

deficiencies. Therefore, the unit test is designed to enable the identification of sources of poor performance in streamflow. The 

sources of poor performance are described in terms of which influencing months exhibit key deficiencies in simulated rainfall 10 

and therefore which SRM components should be improved. 

2.4.1 Unit test procedure 

The unit test investigates the impact of simulated rainfall in a given influencing month on the production of streamflow in an 

evaluated month of interest. This is achieved by splicing observed and simulated rainfall into a single time series which is used 

to produce simulated streamflow.  15 

Following Fig. 4(a), consider the time series of observed, 𝑅𝑜𝑏𝑠, and simulated, 𝑅𝑠𝑖𝑚,   daily rainfall for each year (and replicate) 

at a given site. Fig. 4(a) illustrates the embedding of simulated rainfall 𝑅𝑘
𝑠𝑖𝑚 in an influencing month, 𝑘, within observed 

rainfall 𝑅𝑚
𝑜𝑏𝑠 for all other months 𝑚 ∈ {1, … ,12| 𝑚 ≠ 𝑘}. The resulting spliced rainfall time series 𝑅(𝑘)

𝑠𝑝𝑙
 is denoted with respect 

to the influencing month,  𝑘, and has the same length as the corresponding observed 𝑅𝑜𝑏𝑠 and simulated 𝑅𝑠𝑖𝑚  time series. 

𝑅(𝑘)
𝑠𝑝𝑙

= ⋃ {
𝑅𝑚

𝑠𝑖𝑚

𝑅𝑚
𝑜𝑏𝑠

; 𝑚 = 𝑘
; 𝑚 ≠ 𝑘

12
𝑚=1    (3) 20 

For example, if June (𝑘 = 6) is selected as the influencing month, each year of the spliced time series, 𝑅(6)
𝑠𝑝𝑙

, would be composed 

as follows: 

𝑅(6)
𝑠𝑝𝑙

= {𝑅1
𝑜𝑏𝑠 , … , 𝑅5

𝑜𝑏𝑠 , 𝑅6
𝑠𝑖𝑚, 𝑅7

𝑜𝑏𝑠 , … , 𝑅12
𝑜𝑏𝑠}         (4) 

The ensemble of 𝑘 = 1, … ,12 spliced rainfall time series 𝑅(𝑘)
𝑠𝑝𝑙

 for all influencing months and additional inputs (e.g. potential 

evapotranspiration) indicated by ‘…’ are transformed according to a hydrological model 𝑔[ ] to produce an ensemble of 25 

simulated streamflow, 𝑄(𝑘)
𝑠𝑝𝑙

. This procedure is repeated for all simulated rainfall replicates. 

𝑄(𝑘)
𝑠𝑝𝑙

= 𝑔[𝑅(𝑘)
𝑠𝑝𝑙

, … ]           (5) 

By construction, the spliced rainfall is identical to the observed rainfall for all months other than the influencing month, so any 

errors in streamflow statistics can be attributed to the influencing month free from other factors. 
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Fig. 4 Schematic of (a) the method of constructing a unit test by embedding simulated months in an observation time series, and (b) 

the error profile produced when using the integrated and unit tests for the evaluated time period of June (t=6) (box plot whiskers 

indicate the 90% limits of the simulated streamflow replicates). For the unit test the errors in the evaluated period (t) are calculated 

as the difference between 𝑸(𝒌)
𝒔𝒑𝒍

 and 𝑸(𝒕)
𝒗𝒐 . For the integrated test the errors are calculated as difference between 𝑸𝒔𝒊𝒎  and 𝑸(𝒕)

𝒗𝒐 .  5 

 simulated daily rainfall statistics (mean (m) daily amounts, standard deviation (sd) of daily amounts, mean number of 

wet days (nwet) and the standard deviation of the number of wet days);  
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 aggregate rainfall statistics (mean and standard deviation of total rainfall); and  

 aggregate streamflow statistics (mean and standard deviation of total flow).  

For convenience, model performance is categorised following  as ‘good’, ‘fair’ or ‘poor’. Performance was categorised as 

‘good’ if the observed/virtual statistic fell within the 90% limits of the simulated statistic, as ‘fair’ if the observed/virtual 

statistics fell outside the 90% limits of the simulated statistic but within the 99.7% limits and otherwise as ‘poor’. 5 

The sixth step is to implement the unit test for each site of interest. The full set of spliced rainfall (e.g. spliced rainfall for each 

month designated as the influencing month 𝑅(𝑘)
𝑠𝑝𝑙

; 𝑘 = 1, … ,12) is input to the hydrological model. This step is repeated for all 

available replicates of the spliced time series. The results of the unit test and the integrated test (Steps 1-2) are then investigated 

and compared selecting each month as the evaluated time period in turn as well as other key time periods (e.g. annual).  

2.4.2 The seventh step is to investigate and compare the results of theCompare unit test (Step 6)tests and the 10 

integrated test (Step 5) selecting each month as the evaluated month in turn. tests 

Side-by-side comparison of the results of the integrated test and the unit test istests are given in terms of the errors for selected 

monthly and annual statistics (see illustration in Fig. 4(b)). The comparison of errors from the unit test forms the basis of 

interpretation for hydrological insights and their relationship to the rainfall model.  

ComparingA relative error metric, %𝐸𝑟𝑟, is used enable a comparison between the virtual-observed streamflow and the 15 

evaluated streamflow replicates from the integrated or unit tests (𝑄𝑠𝑖𝑚 or 𝑄(𝑘)
𝑠𝑝𝑙

) for time periods of interest (e.g. annual level 

or particular season or month). In this way the targeted hydrological evaluation centres on a specific subset of 

streamflows relating to the evaluated time period, 𝑡. In this paper, examples are provided for evaluated time periods at the 

monthly and annual scales. 

Using the function ℎ[ ] to denote a calculated statistic of interest (e.g. mean or standard deviation), the relative error in an 20 

evaluated time period 𝑡 (e.g. annual or particular month) is given by  

%𝐸𝑟𝑟(𝑡) =
ℎ [𝑄(𝑡)

𝑒𝑣𝑎𝑙]−ℎ [𝑄(𝑡)
𝑣𝑜]

ℎ [𝑄(𝑡)
𝑣𝑜]

× 100          (6) 

where 𝑄(𝑡)
𝑣𝑜  is the virtual-observed streamflow and 𝑄(𝑡)

𝑒𝑣𝑎𝑙  is the simulated streamflow from the selected virtual hydrologic test 

across(i.e. 𝑄𝑠𝑖𝑚 if integrated test or 𝑄(𝑘)
𝑠𝑝𝑙

 if unit test selected) in the evaluated time period 𝑡. This procedure is repeated for all 

replicates of the simulated streamflow such that a range of errors is reported for each test for the target time period.  25 

Following the calculation of this error metric for all replicates of the integrated test and ensemble of unit tests (𝑘 = 1, … ,12) 

it is possible to investigate deficiencies in the simulated streamflow in terms of which influencing month(s) contribute more 

to the deficiencies in streamflow for the target time period based on that statistic of interest. Thus, for each site, statistic and 

evaluated time period there are 13 sets of errors to compare. 
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A typical error profile from integrated and unit tests is shown in Fig. 4(b) where mean monthly flow is selected as the statistic 

of interest for the evaluated time period of June (𝑡 =  6). In this figure the sets of errors from the integrated and unit tests are 

summarised as boxplots with the boxplot whiskers indicating the 90% limits of the errors from the evaluated streamflow 

replicates. Fig. 412(b) shows the integrated test produced a median error of 27% (blue shaded boxplot) from all simulated 

rainfall replicates indicating a deficiency in the simulated streamflow for June.  Examination of the unit tests (yellow and blue 5 

striped boxplots) for the target time period (June) shows that the median error is 20% when the influencing month is June (𝑘 =

6), the median error is 10% when the influencing month is May (𝑘 = 5) and when the influencing month is April (𝑘 = 4) the 

median error is negligible. Therefore, the bias in mean June streamflow is primarily due to SRM deficiencies in June and May 

respectively. 

2.4.3 Identify types of key deficiencies 10 

Following a side-by-side comparison of integrated test and unit test results in terms of the relative errors the sources of poor 

performance should be classified in terms of in which influencing months with the integrated test can lead to several possible 

interpretations of where streamflow errors in the evaluation monthstreamflow deficiencies originate. (e.g. poor streamflow 

arises from rainfall deficiencies mostly in the same month, a prior month or a contiguous block of months). Differentiating 

thebetween cases allows for rainfall modelSRM improvements to be targeted in terms of their ultimate impact on streamflow 15 

statistics. For example, streamflow errors might originate from (i) rainfall model deficiencies mostly in the evaluated month, 

(ii) rainfall model deficiencies over a contiguous block of months including and preceding the evaluated month, or (iii) rainfall 

model deficiencies in a preceding month more so than in the evaluated month.To complement this analysis a comparison of 

the virtual-observed flow duration curve for the evaluated time period with the flow duration curves resulting from unit tests 

for key influencing months is also recommended. Examples for each of case are presented in Section 4. 20 

3 Case Study 

The Onkaparinga catchment in South Australia is used as a case study (Fig. 5). The 323 km2 catchment lies 25 km to the south 

of the Adelaide metropolitan area and contains the largest reservoir in the Adelaide Hills supplying the region (Mount Bold 

Reservoir). The catchment rainfall has a strong seasonal cycle (shown in Fig. 6with) where the majority of rainfall occurring 

in winter and spring (June to November) and with a predominantly dry summer seasondriest months (December to , January 25 

and February). ) exhibit low rainfall and low streamflow, the wettest months (July, August and September) have high rainfall 

and high streamflow and the ‘wetting-up’ period (April, May and June) has high rainfall and lower streamflow.  

There is a strong rainfall gradient (Table 3), with average annual rainfall ranging from approximately 500 mm on the coast 

(Site No. 19) to over 1000 mm in the region of highest elevations (Site No. 20). A breakdown of the rainfall characteristics 

(annual total, number of wet days, daily average amounts, wet-spell and dry spell durations) at each site on a monthly basis is 30 

provided in Supplementary Material A. 
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The simulated daily rainfall was determined from the latent variable autoregressive daily rainfall model of Bennett et al. (2018) 

using at-site calibrated parameters. This rainfall model uses a latent variable concept, which relies on sampling from a normally 

distributed ‘hidden’ variable. The latent variable can then be transformed to a rainfall amount by truncating values below zero 

and by rescaling values above zero to match the observed rainfall’s distribution. Here, the rainfall is rescaled using a power 

transformation. 5 

To calibrate the model the rainfall data at a given site is partitioned on a monthly basis and separate parameters are fit for each 

month. The mean and standard deviation of rainfall amounts, as well as the proportion of dry days is calculated. These statistics 

are matched to the corresponding properties of the truncated power transformed normal distribution. The at-site lag-1 temporal 

correlation is then calculated based on the observed wet day periods for a given month. This statistic is transformed to the 

equivalent correlation of the underlying latent variable by accounting for the effects of truncation to determine the 10 

autocorrelation parameter. Full details of the calibration procedure are provided in Bennett et al. (2018)The. 

In this study the daily rainfall model was calibrated and simulated at 22 locations throughout the catchment that have long, 

high-quality records (Table 3). 10,000 replicates of simulated rainfall covering a 73 year period (1914-1986) were used. 

In this paper annual total flow volumes were designated as the primary streamflow characteristic to narrow the number of sites 

investigated (Step 1).  15 

The hydrological model, GR4J (Perrin et al., 2003) was used to simulate virtual-observed streamflow (Step 2).at a daily time 

step. GR4J is a daily lumped hydrological model that simulates daily streamflow in a parsimonious manner using four 

parameters. The GR4J model was calibrated according to the procedure set out in Westra et al. (2014b)to simulate streamflow 

for the Onkaparinga catchment for the stationary version of the GR4J hydrological model. The details are provided in (Westra 

et al., 2014a) and wasa short summary is provided here. The multi-site rainfall gauges were Thiessen weighted to calculate the 20 

catchment average rainfall. The model was calibrated to the streamflow data at Houlgrave Weir (see Figure 4) using model 

calibration period of 15 years (1985-1999). The parameters were estimated using maximum likelihood estimation procedure 

with a weighted least squares likelihood function. The model parameters that maximised the likelihood function were found 

using a multi-start quasi-Newton optimisation procedure with 100 random starts. Overall, the GR4J model was a good fit to 

the observed streamflow, with a Nash-Sutcliffe efficiency of 0.8. TheA similar type of hydrological model and calibration 25 

approach has also been used for other virtual evaluation studies (Li et al. 2014; 2016). The same set of hydrological model 

parameters are used for both the unit and integrated tests so that the same transformation of rainfall to flow is used. 
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Fig. 5 Onkaparinga catchment, South Australia. Sites indicated by blue triangles are explored in greater detail in this paper due to 

the relatively poorer ability of simulated rainfall to reproduce annual streamflow totals at these sites. 

 

Table 3 Site names and, locations and seasonal rainfall characteristic summary. Sites ordered from lowest to highest elevation. 5 
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Fig. 6 Seasonal variation of catchment average rainfall and flow at Houlgrave Weir. Boxplots show the variation across years. 

Wettest indicates (high rainfall, high flow), direst indicates (low rainfall, low flow) and wetting-up indicates (high rainfall, low 

flow). 

4 Results 5 

4.1 Following the selection of Step 1 – Identify poor performing sites 

To undertake Step1, annual total flow volumes were designated as the primary streamflow characteristic (Step 1)to narrow the 

number of sites investigated. Following the selection of the primary streamflow characteristic and selection of the hydrological 

model (Step 2), Step 3 was, GR4J, integrated tests were undertaken to evaluate the simulated rainfall at the 22 sites. The annual 

total flow distribution was used to give a broad indication of performance (see Step 4).. This step categorised 1210 of the 22 10 

sites as ‘poor’ and 12 as ‘good’, which is in strong contrast to earlier evaluation efforts using observed-rainfall evaluation 

(Bennett et al., 2018) that categorised the majority of sites and statistics as ‘good’ (see Section 2.2.3 for category definitions). 

Following Step 4, the 10 sites categorised ‘poor’ are the focus of subsequent steps in the hydrologic evaluation framework. 

The chosen subset of ‘poor’ sites is indicated by the blue triangles in . for category definitions).  

4.1 Integrated test 15 

 compares the rainfall model’s performance for the The 10 sites categorised ‘poor’ as ‘poor’ are the focus of subsequent 

hydrologic evaluation framework steps. These ‘poor’ performing sites are indicated by the blue triangles in Fig. 5.  

4.2 Step 42 – Identify poor performing time periods 

The poor performing sites identified in Step 1 were then compared in terms of both an observed-rainfall evaluation and virtual 

hydrological evaluation via an integrated test. Fig. 7 (Step 5), graphically summarises this comparison, with each row 20 

summarisingpresenting monthly or annual performance.  

Although of the following statistics: 
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 simulated daily rainfall statistics (mean (m) daily amounts, standard deviation (sd) of daily amounts, mean number of 

wet days (nwet) and the standard deviation of the number of wet days);  

 aggregate rainfall statistics (mean and standard deviation of total rainfall); and  

 aggregate streamflow statistics (mean and standard deviation of total flow).  

The first to fourth columns of Fig. 7 summarise the observed-rainfall evaluation and the fifth and sixth of Fig. 7 summarise 5 

the virtual hydrological evaluation. The first column of Fig. 7rainfall model performed well in simulating the total indicates 

that of the poor performing sites the SRM exhibited ‘good’ performance in simulating daily rainfall means and standard 

deviations for the majority ofas well as the mean number of wet days for all sites and months and sites, itat an annual level 

according to the observed-rainfall evaluation. Whereas the second column indicates that there is clear from  that ‘poor’ mixed 

performance across sites and months in simulating the variability in the number of wet days (sd(nwet)). Likewise, the third 10 

and fourth columns indicate overall ‘good’ performance in simulating mean monthly totals and mixed performance in 

simulating the monthly or annual total standard deviations (sd(total)). Whereas the virtual hydrological evaluation (fifth and 

sixth) columns show mostly ‘good’ performance in all months other than those in the ‘wettest’ or ‘wetting-up’ periods. 

A clear trend, from Fig. 7in rainfall  is the contrast in performance between the observed-rainfall evaluation and the virtual 

hydrological evaluation. One constrast is that, in the driest months (Dec, Jan, Feb) ‘poor’ performance in simulating rainfall 15 

(based on observed-rainfall evaluation) did not necessarily translate to ‘poor’ performance isin simulating streamflow. (based 

on virtual hydrological evaluation). For example, examining the first row of Fig. 7, it can be seen that , the observed-rainfall 

evaluation shows that in January the rainfall model’sSRM’s ability to simulate variability in the number of wet days, sd(nwet), 

was ‘poor’ for all sites. However, in contrast the virtual hydrological evaluation shows that despite this, most sites had ‘good’ 

performance in simulating the January distribution of monthly total flow (i.e. m(total) and sd(total)). Similar results were seen 20 

in months February, May and November. 

Conversely,A second contrast is that ‘good’ performance in the observed-rainfall evaluation does not necessarily translate to 

‘good’ performance for the virtual hydrological evaluation, particularly for months in the simulation of monthly total 

flows.‘wettest’ and ‘wetting-up’ periods. For example, in Fig. 7 the rows summarising June and August () haveshow large 

percentages of ‘poor’ sites for simulatingin the virtual hydrological evaluation of monthly total flow. This deficiency would 25 

have been difficult to infer using the observed-rainfall evaluation due to the 100% ‘good’ performance of m(total) rainfall and 

‘good/fair’ performance of sd(total) rainfall in these months.  

Likewise, by examining the bottom row of Fig. 7Fig. 5 that summarises annual performance, it can be seen that the observed-

rainfall evaluation shows unbiased mean annual total, m(total), rainfall (100% ‘good’) and yet the mean annual total flows 

showed only 10% of sites as ‘good’. Discussion of the unit tests in the following section will investigate reasons why apparently 30 

‘good’ rainfall can yield ‘poor’ flow. 
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Fig. 7 Integrated test, comparing observed-rainfall evaluation (left) with the virtual hydrologic evaluation (right). Comparison of 

daily and aggregate (‘Agg.’) rainfall statistics against aggregate flow statistics for individual months and years. Daily rainfall 

statistics presented include the means and standard deviations of amounts (m(amounts), sd(amounts)), means and standard 5 
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deviations of the number of wet days (m(nwet), sd(nwet)). The aggregate rainfall statistics presented include the means and standard 

deviations of total rainfall volumes (m(total), sd(total)). The aggregate streamflow statistics presented are the means and standard 

deviations of total flow volumes (m(total), sd(total)). 

4.2 Unit test – influence of individual monthly rainfall isolated  

4.3 The unit test was run for the subset of 10 sites (Step 6) and the results of the integrated and 3 – Identify sources 5 

of poor performance 

To undertake Step 3, unit tests were run to evaluate the source of deficiencies in poor performing time periods. The results of 

these test were compared (Step 7). The unit test results and against integrated tests in terms of their relative errors. From this 

comparison with integrated test resultsthe source and type of key deficiency in the simulated rainfall that lead to poor 

performance in simulated streamflow were identified. A comparison of the virtual-observed flow duration curve for the poor 10 

performing time periods and the flow duration curves resulting from unit tests for key influencing months was also undertaken 

to illustrate the impact of these key deficiencies on the daily flow duration curve. 

Here, four examples of the different types of key deficiencies are illustrated forusing two locations, Site 12 and Site 10 (see 

Fig. 8 and to Fig. 13). For completeness these results are presented alongsidetogether with the results of the observed-rainfall 

evaluation (panels (a) and (b) of Fig. 8 and Fig. 11).).  15 

4.2.14.3.1 Streamflow errors mostly originate from rainfall model deficiencies in the evaluated month 

A common and obvious case for streamflow errors is that they originate from rainfall in the same month. This case can be 

illustrated using Site 12 in Fig. 8 where left-side panels show results for the mean and right-side panels show the standard 

deviation and where panels (a) and (b) summarise the observed-rainfall evaluation, (c) and (d) summarise the integrated test. 

From panels (a) and (b), the simulated monthly rainfall is generally unbiased, but from (c) and (d) the mean and standard 20 

deviation of the simulated streamflow is lower than the virtual-observed flow from June to September. Here, September is 

selected as an illustrative case for an application of the unit test in Fig. 9 since it shows biased flow.  
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Fig. 8 Lobethal, Site 12 (a) observed-rainfall evaluation mean monthly total rainfall, (b) observed-rainfall evaluation standard 

deviation of monthly total rainfall, (c) virtual hydrological evaluation (integrated test) mean monthly total streamflow, (d) virtual 

hydrological evaluation (integrated test) standard deviation of monthly total streamflow. Boxplot whiskers indicate the 90% limits 

of the simulated streamflow or rainfall replicates. 5 

Taking September as the evaluated month, (t=9), Fig. 9 (e(a) and (fb) compare the unit tests for all 12 influencing months 

(yellow and blue striped boxplots) with the integrated test (blue shaded boxplot) in terms of the error in the simulated flow. 

When the influencing month is September (i.e. the September rainfall is ‘spliced’ into the observed record, k=9) the resultant 

error is greatest and closest to the error for the integrated test for both the mean monthly total flow (Fig. 9(e (a)) and standard 

deviation of monthly total flow (Fig. 9(f (c)). For the example of the standard deviation, when the influencing month is July 10 

(i.e. July rainfall is spliced into the observed record) the median error is less than 2%, whereas when September is taken as the 

influencing month the median error is approximately 16% (Fig. 9(f (b)). Therefore, to improve September flows, September 

rainfall should be improved in preference to all other months.  

This need to improve September in preference to preceding months is also illustrated via Fig. 9 (c) where the September daily 

flow duration curves are shown for the cases where August (orange shading) and September (blue shading) are the influencing 15 

months compared against the virtual-observed September flow duration curve (purple dots). Where August is selected as the 

influencing month, the virtual-observed flow duration curve largely sits inside the 90% limits of the flow duration curves 

resulting from the unit testing procedure. Whereas, the virtual-observed flow duration curve sits outside the 90% limits of the 

unit test flow duration curve when September is taken as the influencing month. Thereby providing further evidence that to 

improve September flows that September rainfall should be improved in preference to other months. 20 
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Analysing other sites and months suggests that over 50% of the evaluations correspond to this case, and they typically occur 

in spring and summer months when the catchment is drying out. Examination of the simulated flow duration curves instead of 

monthly totals (not shown) yields a similar conclusion.  

 

Fig. 9 Lobethal, Site 12 (a) unit test error in mean monthly flow (September), (b) unit test error in standard deviation of monthly 5 
flow (September), (c)  Unit test September flow duration curve when August and September are selected as influencing months (top 

10% of flow days shown). Boxplot whiskers indicate the 90% limits of the simulated streamflow replicates. 
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4.2.24.3.2 Streamflow errors originate from rainfall model deficiencies over a contiguous block of months  

An illustration of the case where streamflow errors originate from rainfall model deficiencies over a contiguous block of 

months is provided by Site 12, where July is selected as the evaluated month. Comparison of the July performance in the 

integrated and unit tests (Fig. 10 (g (a) and (hb)) demonstrates that the errors in July streamflow do not originate in the July 

rainfall alone (unlike the case for September – see Section 4.3.1). Although the largest percentage error in flow is attributable 5 

to July (a median error of 8% in mean monthly total flow and 25% in the standard deviation of monthly total flow when the 

influencing month is July) a significant proportion of the error for July streamflow originates in prior months. June and May 

rainfall have a significant influence on the July flow with percentage errors of up to 15% in July flow when June or May are 

the influencing month. Therefore, to improve July flows, it is not just the July rainfall that should be improved but also the 

preceding two months.  10 

This need to improve July and preceding months is also illustrated via Fig. 10Typically, autumn (transitional) and winter 

months (May to August)(c) where the July daily flow duration curves are shown for the cases where June (orange shading) 

and July (blue shading) are the influencing months compared against the virtual-observed July flow duration curve (purple 

dots). For both cases the virtual-observed flow duration curve sits outside the 90% limits of the flow duration curves resulting 

from the unit testing procedure. 15 

Typically, ‘wetting-up’ and ‘wettest’ months fall in this case where streamflow errors originate from rainfall model 

deficiencies over a contiguous block of months, approximately 40% of the site/month combinations. 
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Fig. 10 Lobethal, Site 12 (90% limits shown) (a) observed-rainfall evaluation mean monthly total rainfall, (b) observed-rainfall 

evaluation standard deviation of monthly total rainfall, (c) integrated test mean monthly total rainfall, (d) integrated test standard 

deviation of monthly total rainfall (e) unit test error in mean monthly flow (September), (f) unit test error in standard deviation of 

monthly flow (September), (ga) unit test error in mean monthly total flow (July), and (hb) unit test error in standard deviation of 5 
monthly total flow (July).), (c) July flow duration curve when June and  July are selected as influencing months in unit test (top 10% 

of flow days shown). Boxplot whiskers indicate the 90% limits of the simulated streamflow replicates. 
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4.2.34.3.3 Streamflow errors originate from rainfall model deficiencies in a preceding month more so than 

evaluated month 

An example of the case where the largest contribution to streamflow errors arises from rainfall deficiencies in a preceding 

month is provided by Site 10, where July is selected as the evaluated month. July is selected as an illustrative case for 

application of the unit test since it shows biased flow (see Fig. 11 ((c) and (d)), but did not show any bias in the simulated 5 

rainfall (see Fig. 11 ((a) and (b)).  

 

Fig. 11 Happy Valley (Site 10) (a) observed-rainfall evaluation mean monthly total rainfall, (b) observed-rainfall evaluation standard 

deviation of monthly total rainfall, (c) virtual hydrological evaluation (integrated test) mean monthly total streamflow (d) virtual 

hydrological evaluation (integrated test) standard deviation of monthly total streamflow. Boxplot whiskers indicate the 90% limits 10 
of the simulated streamflow or rainfall replicates. 

The largest contributor to error in July flow is not July rainfall but June rainfall (Fig. 12 (e(a) and (fb)). That is, the largest 

errors occur when there is observed rainfall for July spliced with simulated rainfall for June. In contrast, simulated July rainfall 

spliced with observed rainfall in other months, yields a smaller median error. This deficiency in June rainfall can also be seen 

in an examination of the July flow duration curves (Fig. 12(c)) where the virtual-observed streamflow sits within the 90% 15 

limits of the simulated flow duration curve where July is designated as the influencing month, whereas when June is designated 

as the influencing month the virtual-observed streamflow sits outside the 90% limits for a number of the higher flow days. 

While improving the July rainfall will improve the simulation of July flow, a more significant improvement will be obtained 

by focusing on improving the June rainfall. The category where streamflow errors originate from rainfall model deficiencies 

in a preceding month represents about 10% of the site/month combinations for this case study. 20 
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Fig. 12 Happy Valley (Site 10) (a) unit test error in mean monthly flow (July), (b) unit test error in standard deviation of monthly 

flow, and (c) July flow duration curve when June and July are selected as influencing months in unit test (top 10% of flow days 

shown). Boxplot whiskers indicate the 90% limits of the simulated streamflow replicates. 



33 

 

4.2.44.3.4 Influence of monthly rainfall on annual flow volumes  

While annual simulated rainfall was unbiased, annual simulated streamflow was biased. An illustration of how errors in annual 

total streamflow arise from rainfall is shown for Site 10. Fig. 13 (g(a) and (hb) show that when the months of May to August 

are assessed as the influencing month they produce the largest errors in distribution of annual total flow for Site 10. Splices of 

other months do not significantly degrade the simulation of total annual flow. This deficiency can also be seen via an 5 

examination of the flow duration curve (Fig. 13(c)) in which the virtual-observed flow duration curve sits outside portions of 

the simulated flow duration curves where May or June are designated as the influencing month. Improvements to the simulation 

of annual total flow will therefore come from improving the rainfall model in the ‘wetting-up’ and wettest months of the 

seasonal catchment cycle (May to August in late-autumn and winter.). This insight from the use of unit testing would be 

difficult to obtain using other evaluation strategies (further discussed in Section 5.2). 10 Field Code Changed
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Fig. 13 Happy Valley (Site 10) (90% limits shown) (a) observed-rainfall evaluation mean monthly total rainfall, (b) observed-rainfall 

evaluation standard deviation of monthly total rainfall, (c) integrated test mean monthly total rainfall, (d) integrated test standard 

deviation of monthly total rainfall (e) unit test error in mean monthly flow (July), (f) unit test error in standard deviation of monthly 

flow, (ga) unit test error in mean annual total flow, and (hb) unit test error in standard deviation of annual total flow., and (c) annual 5 
flow duration curve when May and June are selected as influencing months in unit test (top 10% of flow days shown). Boxplot 

whiskers indicate the 90% limits of the simulated streamflow replicates. 
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5 Discussion  

5.1 The importance of streamflow-based evaluation 

Streamflow arises from the integration of rainfall processes (e.g. rainfall amounts, occurrences and wet-dry patterns) over a 

catchment. Features of the catchment, such as catchment storage, thresholds and nonlinearities in the rainfall-streamflow 5 

response function, can either act to amplify or dampen the rainfall errors at different times of the year. These behaviours were 

clearly identified and demonstrated in Step 2 of the virtual hydrological evaluation framework which compares observed-

rainfall evaluation and virtual hydrological evaluation (see Section 4.2). 

In terms of amplification, the elasticity of the rainfall-streamflow response (Chiew, 2006) suggests that catchments can have 

strong sensitivities to discrepancies in rainfall. Given that the rainfall elasticity of streamflow to rainfall is a factor of 2 to 3.5, 10 

using the principles of error propagation of linear functions (Ang and Tang, 2007) it follows that a 10% error in mean/standard 

deviation of rainfall could be amplified to 20-35% error in the mean/standard of streamflow. This indicates that streamflow-

based evaluation of rainfall models provides a stronger test than observed-rainfall evaluation in terms of the sensitivity of the 

statistics. For example, Fig. 7 shows that July rainfall statistics were classified as ‘good’, yet despite this, the streamflow 

response was ‘poor’ (see Section 4.2 for further discussion). It could be argued that the rainfall results presented in Fig. 7 were 15 

classified as ‘good’ because the observed-rainfall evaluation was limited, but the evaluation was methodical and used a 

comprehensive range of daily and monthly statistics (Bennett et al., 2018). While many rainfall statistics were preserved 

(means, standard deviation, extremes, marginal distributions of daily rainfall) the rainfall-streamflow response of the 

catchment exposes that there are deficiencies in the rainfall model not clearly identified by the observed-rainfall evaluation 

(Bennett et al., 2018). 20 

In terms of dampened influence, catchment storages and high evapotranspiration can also act to suppress errors in the rainfall 

simulations. For example, Fig. 7 showed that the variability in the number of wet days, sd(nwet), was ‘poor’ for all sites in 

January, yet this did not result in ‘poor’ streamflow. The high potential evapotranspiration in January indicates that the majority 

of rainfall in January is converted into actual evapotranspiration yielding little streamflow. Hence, any errors in rainfall do not 

noticeably impact on January streamflow. 25 

It is clear that streamflow-based evaluation is beneficial in addition to conventional observed-rainfall evaluation. However, a 

hydrological framework is not without its own challenges (see Sections 5.2 and 5.3 below). 

5.2 The importancebenefits of the virtual evaluation framework  

A benefit of virtual hydrologic evaluation is the ability to undertake streamflow-based evaluation at any site where rainfall is 

observed and simulated. In contrast, observed-streamflow evaluation relies on having measurements of streamflow – which is 30 

only undertaken at limited number of locations (e.g. across Australia there are over 8, 000 observed daily rainfall sites, typically 
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greater than 50 years length, compared to approximately 3,300 observed streamflow sites, typically 20 years length). Virtual 

evaluation can be undertaken at a much wider number of locations. For example, annual total flow volume was compared at 

22 virtual-observed streamflow sites and identified that only 10 sites showed ‘poor’ performance (). While there are several 

streamflow gauges in the Onkaparinga catchment, their records are shorter and complicated by inter-catchment pipeline 

transfers () and nonstationarities (Westra et al, 2014) making observed-streamflow evaluation difficult. Furthermore, the 5 

process of comparing to observed streamflow requires estimates of the catchment rainfall, which is constructed from multiple 

rainfall sites and obscures the ability to evaluate rainfall at individual sites.  

A potential limitation of the virtual hydrologic evaluation framework is that it is reliant on the use of a hydrological model – 

which is common to both the observed and simulated rainfall. There is the potential for hydrological structural errors to skew 

interpretation of the rainfall model evaluation if the hydrological model poorly represents the catchment processes. To reduce 10 

these impacts it is recommended to use a well-tested hydrological model that has demonstrated good performance on a wide 

range of catchments.  In this study GR4J was used, which has been tested on hundreds of catchment in Europe and Australia . 

It is further recommended to use a hydrological model that has been calibrated and evaluated using observed data located close 

to the observed rainfall sites. For example, in this study the GR4J model was calibrated to the Onkaparinga catchment  – see . 

Even where a well-tested hydrological model is calibrated, there is the remaining question of whether or not the conclusion of 15 

a virtual evaluation is dependent on the choice of the hydrological model. To address this limitation, multiple hydrological 

models could be used as part of the virtual framework. As this is the first proof-of-concept study that has introduced the virtual 

hydrologic evaluation framework, the use of multiple hydrological models is outside the scope of this paper and is left for 

future research.  

5.3 Virtual hydrological evaluation and unit testing – a unique opportunity for targeted evaluation of rainfall 20 

model performance  

Previous discussion has highlighted the benefits of the streamflow-based and virtual elements of an evaluation framework of 

rainfall models when compared to existing evaluation methods (observed-rainfall evaluation and observed-streamflow 

evaluation). However, these innovations alone lack the ability to target which periods of the rainfall model produce poor 

streamflow simulations. For example, it would be possible to identify a discrepancy in July for Site 12, but it would be 25 

impossible to determine whether this was due to a deficiency in rainfall in July, or a prior month such as May or June ((g) and 

(h)).A benefit of virtual hydrological evaluation is that it is a relative measure of performance, where the hydrological model 

is a common factor in the construction of virtual-observed and simulated streamflow. This enables discrepancies in the 

streamflow to be identified in terms of SRM features. In contrast, observed-streamflow evaluation is typically hampered by 

difficulties in separating the impact of data errors, hydrological model predictive performance from the errors in the SRM. A 30 

further benefit is the ability to undertake streamflow-based evaluation at any site where rainfall is observed and simulated. 

This enables insights into the SRM performance for simulating streamflow on a site-by-site basis.  
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The use of a virtual hydrological framework for evaluation provides the unique opportunity to develop innovative tests that 

can target specific aspects of the stochastic rainfall model. ASRM. This paper introduces an innovative unit test was introduced 

as a method for isolating the influence of rainfall in a month (i.e. the influencing month) on streamflow in an evaluated month 

while excluding the possibility of deficiencies from other rainfall months. The test enables a procedure for targeting months 

that are influential in terms of streamflow production rather than interpret model performance based on blunt evaluation of 5 

rainfall or streamflow.  

Without theThis unit test, provides added value over and above the integrated test because it identifying which are the 

influencing months which have deficiencies in the modelled rainfall that produce poor streamflow predictions. For example, 

Section 4.3.2 illustrated that while the integrated test identified that were was poor streamflow in July for Site 12, the unit test 

was able to identify that the simulated rainfall in the prior influencing months of both May and June (Fig. 10) made significant 10 

contributions (10-15%) errors to July’s poor streamflow. A second example is shown in the influence of monthly rainfall on 

the errors in annual flow volumes in Section 4.3.4 would not have been possible.. If the modeller, had focussed on improving 

the rainfall model by focusing on months with the highest contribution to annual total flow, July to September would have 

been identified as important, whereas the unit test identifies a different focus (May-August). For exampleThe unit in Section 

4.3.4 show, May and June combined contributemake up 13% inof the total annual total flow volume (Fig. 11 ((c)), compared 15 

)). However, they contribute to 11% of the error in the mean annual total flow (Fig. 13 (g(a)) and 24% error in the standard 

deviation (Fig. 13 (h(b)). By contrast, September is a high flow month contributing 21% of the annual total flow, but only 2% 

error in the mean and 6% error in the standard deviation. Without the unit test, it would have been less clear that the ‘wetting-

up’ months such as May and June were a more important focus for rainfall modelSRM improvement than a high-flow month 

such as September.  20 

5.3 Limitations and future research  

The formalisation of the virtual hydrological framework for SRM evaluation provides the opportunity for further 

improvements in the future, including:  

(i) Using multiple, well-tested hydrological models - a potential limitation of the virtual hydrologic evaluation framework is 

that it is reliant on the use of a hydrological model. Hydrological structural errors may potentially skew interpretation of the 25 

SRM evaluation if the hydrological model poorly represents the catchment processes. To reduce these impacts the steps taken 

in this study included (a) using a well-tested hydrological model that has demonstrated good performance on a wide range of 

catchments (e.g. the GR4J model has been widely tested , see (Perrin et al., 2003, Coron et al., 2012); (b) calibrating and 

evaluating the hydrological on a catchment close to the observed rainfall sites to ensure it provided sufficiently good 

performance  (e.g. GR4J was calibrated to the Onkaparinga catchment - see (Westra et al., 2014a, Westra et al., 30 

2014b)Although it is possible to isolate which months were the main contributors to errors in the annual total flow volume, 

questions remain surrounding the influence of longer term wet-dry patterns, month-to-month correlations, and inter-annual 

correlations on annual flow. It is possible to extend the framework to address these questions. 
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. Future research will use multiple, well-tested hydrological models with sufficiently good performance to reduce the reliance 

on a single hydrological model and ensure the identification of SRM deficiencies is not dependent on a single hydrological 

model.  

(ii) Comparison of SRMs – this framework can be extended to provide more direct guidance on which rainfall features (in 

terms of components of the SRM) should be modified to improve streamflow performance. This can be done by comparing 5 

multiple rainfall model variants (parametrically, or via bootstrap techniques) which are designed to have contrasting features 

of a key characteristic (e.g. intermittency, rainfall correlation). Such an approach was undertaken by Evin et al. (2018) using 

an observed-rainfall evaluation approach. If the SRMs have monthly/seasonal autocorrelation (these were not significant for 

the rainfall in the Onkaparinga catchment) the unit testing approach would need to be extended by conditionally sample the 

simulated rainfall in a manner that preserves monthly correlations.  10 

(iii) Evaluation of temporal non-stationarity – this framework can be extended to evaluate the impact of non-stationarity on 

SRM model performance by applying it on a selected non-stationary period. Care would be needed in the selection of statistics 

to identify model performance (since the performance in different sub-periods could be masked when evaluating an overall 

period). A related issue is that the hydrological model should provide adequate performance across the range of non-stationary 

climate forcings to which it is subjected. 15 

(iv) Evaluation of spatial performance – there are multiple opportunities to develop tests for spatial performance including (a) 

repeating the integrated test for all sites and for catchment average rainfall means it would be possible to diagnose whether 

specific locations or the spatial dependence causes poor reproduction of streamflow statistics, (b) developing a spatial unit test 

(which is analogous to the temporal unit test but extended to space) where different combinations of sites are ‘spliced’ in the 

construction of catchment average rainfall – to evaluate the impact of  ‘mixed’ performance in the SRMs between sites on the 20 

catchment average rainfall, and (c) these spatial unit tests could be used to evaluate stochastic weather generators (SWG) more 

generally as well as spatially distributed SRGs – though these would require a spatially distributed hydrological model.  

6 Conclusions 

This paper has introduced thea formal virtual hydrologic evaluation framework to overcome the problems of existing 

evaluation methods which are not able to identify which rainfall characteristics are important for streamflow prediction. The 25 

framework enablesformalises virtual streamflow investigations by (1) using a comprehensive and systematic evaluation 

(CASE) approach to evaluate performance (2) introducing two key innovations, an integrated test and a unit test, by using a 

hydrological model to convert rainfall observations to corresponding ‘virtual-observed’ streamflow. The integrated test 

compares simulated streamflow and virtual-observed streamflow to detect overall deficiencies in the ability of at-site stochastic 

rainfall to reproduce streamflow statistics. The unit test enables the attribution of detected streamflow errors to specific months 30 

of stochastic rainfall. The integrated and unit tests enabled different conclusions to be reached in terms of priorities for 

improving the rainfall model. These conclusions would not otherwise have been possible with conventional evaluation methods 
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that focus either on rainfall statistics, or on high streamflow months. The integrated test demonstrated that while large 

discrepancies were identified in low rainfall months these did not translate to deficiencies in streamflow due to the dry state of 

the catchment. The test also indicated instances where modelled rainfall categorised as ‘good’ translated to ‘poor’ flow due to 

the influence of catchment memory‘memory’ and rainfall from prior months. The unit test identified the importance of 

transition months May and June (late autumn/early winter) in the ‘wetting-up’ phase of the catchment cycle. By contrast, a 5 

conventional approach focusing on high flows would have emphasised the importance of correctly simulating rainfall in high 

flow months. The virtual hydrologic evaluation framework provides insights not available through conventional approaches 

and should be an essential step inprovides useful diagnostic ability for the development and application of stochastic rainfall 

modelsSRMs. 
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