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Abstract 15 

Methods to quantify solar insolation in riparian landscapes are needed due to the importance of stream 16 

temperature to aquatic biota. We have tested two approaches developed for other applications of 17 

estimating solar insolation from airborne lidar using field data collected in a heavily forested narrow 18 

stream in western Oregon, USA.  We show that a raster methodology based on the light penetration 19 

index (LPI) and a synthetic hemispherical photograph approach both accurately predict solar insolation, 20 
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explaining more than 73% of the variability observed in pyranometers placed in the stream channel. We 21 

apply the LPI based model to predict solar insolation for an entire riparian system, and demonstrate that 22 

no field-based calibration is necessary to produce unbiased prediction of solar insolation using airborne 23 

lidar alone. 24 

A. Introduction 25 

 26 

Accurately quantifying solar insolation, defined as the amount of solar radiation incident on a specific 27 

point on the Earth’s surface for a given period of time, is essential to a diversity of ecological 28 

applications. In forested ecosystems, trees interact with solar radiation through shading, and thus solar 29 

insolation at fine spatial scales in these systems can vary widely. Understanding the heterogeneous 30 

patterns of insolation below tree canopies has been important for numerous applications, such as 31 

understanding the importance of sunflecks for understory photosynthesis, gaining insight into the 32 

patterns of seedling regeneration in dense forests (Nicotra et al., 1999), and explaining patterns of 33 

snowmelt (Hock, 2003) and soil moisture (Breshears et al., 1997). 34 

The relationship between stream temperature and solar insolation is of particular interest in this study, 35 

as high amounts of solar energy intercepting a stream can cause adverse ecological effects, which can in 36 

turn limit options for forest management near streams. In northwestern North America, a large amount 37 

of research has focused on the relationship between forest practices, stream temperature, and the 38 

corresponding effect on river salmonid fishes (Holtby, 1988;Leinenbach et al., 2013;Moore et al., 39 

2005a;Moore et al., 2005b).  Direct measurement of stream temperature with in-stream thermographs 40 

can be used to quantify thermal diversity (Torgersen et al., 2012;Torgersen et al., 2007), but ground-41 

based measurements are time consuming, expensive, and impractical for large areas. In addition, stream 42 

temperature measurements can only show the effect of forest management practices if taken before 43 
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and after trees are removed. In order to predict the potential effect of forest management practices on 44 

stream temperature, models may be needed to estimate the amount of solar insolation intercepting 45 

streams using remotely sensed data (Forney et al. 2013).  46 

Several different methods have been utilized for measuring or predicting solar insolation on the ground. 47 

Pyranometers are the most direct method for measuring insolation, capturing the solar radiation flux 48 

density above a hemisphere as an electrical signal and cataloguing those signals in a datalogger (Kerr et 49 

al., 1967). Once calibrated, these signals give a measure of the total direct and diffuse solar radiation 50 

intercepting a point for a given period of time (Bode et al., 2014;Forney et al., 2013;Musselman et al., 51 

2015). While pyranometers give direct measurement of solar insolation for a defined period of time, 52 

hemispherical photographs allow indirect estimation of solar insolation for any point in time (Bode et 53 

al., 2014;Breshears et al., 1997;Rich et al., 1994). Plotting the path of the sun in the area of sky captured 54 

by the hemispherical photograph allows for calculation of direct solar radiation through identified 55 

canopy gaps, while gap fraction across the entire hemisphere allows for calculation of diffuse radiation. 56 

Analysis of hemispherical photographs requires assumptions of solar output and sky conditions in order 57 

to produce solar insolation estimates. Understory light conditions can also be modeled by creating a 58 

three-dimensional reconstruction of a forest from field-based biophysical measurements (Ameztegui et 59 

al., 2012) or terrestrial laser scanning (Ni-Meister et al., 2008). All ground-based measurements are 60 

limited by the time and cost required to collect data, and thus solar insolation can only be calculated for 61 

relatively small spatial extents. 62 

Airborne and satellite remote sensing methods provide a means for estimating solar insolation over 63 

large spatial extents. Satellite-based methods utilizing passive remote sensing data can provide coarse-64 

scale estimates of solar radiation absorbed by tree canopies through radiative transfer models based on 65 

spectral indices  (Field et al., 1995;Asrar et al., 1992), but these methods are not suitable for fine-scale 66 
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application such as modeling stream temperature. Airborne lidar is the preferred method for 67 

characterizing three-dimensional structure of forest canopies, and thus is also used to assess the 68 

shading effect of those canopies. Below we discuss three different approaches that have been used in 69 

previous studies to quantify solar insolation at ground level using aerial lidar. 70 

Raster Approaches 71 

Lidar data can be used to create raster datasets by selecting various attributes of lidar points within a 72 

defined spatial neighborhood around a raster cell. One of the most common raster products for 73 

assessing canopy structure is the light penetration index (LPI), the ratio of ground first return points 74 

(typically less than 2 m in elevation above ground) to the total number of lidar first return points within 75 

a given raster cell. This ratio has been shown to be useful for characterizing light extinction in canopies 76 

according to the Beer-Lambert law (Richardson et al., 2009) and thus has been explored as a predictor of 77 

understory light conditions (Musselman et al., 2013;Alexander et al., 2013;Bode et al., 2014). GIS 78 

software solar radiation calculators can also be used to compute solar insolation on a lidar-derived 79 

digital elevation model (DEM). Bode et al. (2014) combined a GRASS r.sun solar insolation estimation 80 

based on a DEM with LPI to produce estimates of ground level solar insolation that showed high 81 

accuracy compared to pyranometer-collected field data in a mixed forest in Northern California, USA.  82 

Lidar Point Reprojection 83 

Lidar point returns can be reprojected from the X,Y,Z Cartesian coordinate system in which they are 84 

most often delivered by a vendor into a spherical coordinate system which centers the point cloud 85 

around a specific location on the ground. This reprojection allows for a circular graph of the lidar point 86 

returns to be created around a point at ground level. Alexander et al. (2013) created a canopy closure 87 

metric from these projected point graphs based on gap fraction, and found that this metric was 88 

correlated to Ellenburg indicator values of understory light availability. Moeser et al. (2014) created 89 
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synthetic hemispherical photographs from reprojected lidar returns, and solar irradiance at ground level 90 

was calculated using traditional hemispherical photograph analysis software.  The processed synthetic 91 

hemispherical photographs showed good correlation to pyranometer measured solar irradiance at three 92 

field sites in eastern Switzerland. 93 

Point Cloud Approaches 94 

Because lidar point clouds are typically represented in a three-dimensional Cartesian coordinate system, 95 

it is possible to model the sun’s position in relation to that three-dimensional space.  The number of 96 

lidar returns that are reflected from a defined volume between the direction of the sun and the ground 97 

can then be calculated. These methods are computationally intensive, but have shown promise for 98 

providing the most direct measure of understory light availability. Lee et al. (2008) calculated the 99 

number of points within a conical field of view directed at the sun’s location and created a model to 100 

relate this to ceptometer measurements of photosynthetically active understory solar radiation at 101 

specific times and locations in a pine forest in northern Florida, USA.  This method is limited by its 102 

reliance on raw lidar point counts specific to the actual and relative point densities within their lidar 103 

acquisition. Raw point counts are affected by both changes in flight characteristics between missions, 104 

and the patterns of flight line overlap within a mission. A different point cloud approach involves a linear 105 

tracing of the sun’s rays along their path to the ground, and Martens et al. (2000) demonstrated how a 106 

ray-tracing algorithm could be used to characterize understory light conditions in a computer simulated 107 

forest. Peng et al. (2014) combined a lidar-based ray tracing algorithm with field-collected canopy base 108 

heights to produce an estimate of understory solar insolation based on the Beer-Lambert law that 109 

compared well to field-collected pyranometer data but is limited in practical application because of its 110 

reliance on field- measured data in its model.  Musselman et al. (2013) used a ray-tracing algorithm to 111 

produce highly detailed estimates of direct beam solar transmittance in 5-minute increments by 112 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-487
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 18 February 2019
c© Author(s) 2019. CC BY 4.0 License.



6 
 

voxelizing the lidar data and summing the number of voxels that a ray intercepted between the point of 113 

origin and the sun. The algorithm relied on site specific pyranometer measurements to calibrate and 114 

adjust the beam transmittance, and therefore we were restricted from testing this method in this study. 115 

Our objectives were to test the accuracy and precision of established methods of quantifying solar 116 

insolation from aerial lidar within areas of narrow, heavily forested streams. We utilized the raster 117 

approach and the lidar point reprojection approach, two methodologies that had not been previously 118 

applied and tested using high quality field data collected in heavily forested streams. We evaluated the 119 

two methods by comparing  model results to field-based pyranometer measurements of solar insolation 120 

and hemispherical photograph-based measures of shade in Western Oregon, USA. Further, we sought to 121 

apply this method to quantify solar insolation throughout a small headwater stream network. 122 

 123 

B. Methods 124 

Study Site  125 

All field locations were located within the wetted channel of Panther Creek and a tributary (Figure 1) in 126 

narrow streams (1-6 m in width) located in the east side of the Coast Range of Oregon, USA within a 127 

larger research area in which lidar has been used to quantify forest canopy structure (Flewelling and 128 

McFadden, 2011). All field sites were within a mature Douglas-fir (Pseudotsuga menziesii) forest, with 129 

other dominant trees including red alder (Alnus rubra), Western red-cedar (Thuja plicata), and Western 130 

hemlock (Tsuga heterophylla). The elevation profile and description of the stream can be found in 131 

(Richardson and Moskal, 2014). The center of the channel was manually digitized as a polyline in ArcGIS 132 

using a combination of aerial imagery and the vendor-provided lidar DEM. 133 
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Four transects were installed in late June 2015 using a Leica Builder Total Station and georeferenced 134 

using a Javad Maxor GPS unit. The locations of the transects can be seen in Figure 1, with the 19 point 135 

locations used for capturing field data denoted by black dots surrounded by white circles (A contains 3 136 

points, B and C contain 4 points, and D contains 8 points). Transect locations were chosen manually in 137 

order to maximize variability in forest shade while allowing for safe access by the field crew.  Each point 138 

location was located within the stream channel and marked by driving rebar into the substrate until only 139 

1 m was exposed above the water surface. Point locations were approximately 15 m apart within a 140 

transect in order to allow data from multiple point locations to be collected by a single datalogger.  141 

Two datasets were collected at each point location. A hemispherical photograph was collected using a 142 

Nikon CoolPix 4500 digital camera leveled on a tripod 1 m above the ground under uniform sky 143 

condition (Figure 2) utilizing a method to find the optimum light exposure (Zhang et al., 2005). Each 144 

hemispherical photograph was analyzed using the Gap Light Analyzer (GLA) program (Frazer et al., 1999) 145 

in order to produce estimates of percent transmittance for diffuse and direct sunlight. An Apogee 146 

Instruments SP-110 self-powered pyranometer, leveled and mounted to the rebar pole at 1 m height 147 

(Figure 3) was used to collect a full day’s solar output at each point location using the datalogger. The 148 

raw voltage values collected by the datalogger were calibrated to solar irradiance using the closest 149 

publicly available meteorological data. All pyranometer datasets were collected on cloudless days, 150 

except for transect A, and pyranometer data from transect A was not used in this study. The calibrated 151 

pyranometer data from a point location from transect D is shown in Figure 4.  152 
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 153 

 154 

Figure 1: Study area in northwestern Oregon (USA). The grey polygon is the extent of the 2015 lidar 155 

acquisition. The black circles surrounded by white circles represent the 19 point locations. The letters A, 156 

B, C, and D denote the four transects. The inset shows transect D and the background raster in the inset 157 

is the lidar derived canopy height model with green representing tall trees and purple representing the 158 

lowest heights. The direction of flow is from west to east. 159 

 160 
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 161 

Figure 2: Example of hemispherical photograph acquisition at a plot location in transect D.  162 

 163 

Figure 3: Example of pyranometer installation at transect D (note that pyranometer is mounted on south 164 

side of pole at a height of 1 m). 165 
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 166 

 167 

168 
Figure 4: Daily pyranometer output from sunset to sundown for a plot in Transect D 169 

Lidar Data and Analysis 170 

Airborne discrete-return lidar was acquired in June of 2015 according to the specifications described in 171 

Table 1. The vendor provided processed discrete lidar point returns as well as a lidar DEM and highest 172 

hit model at a pixel resolution of 1 m. The highest hit model was subtracted from the DEM to create a 173 

canopy height model (CHM) describing the vegetation height normalized to the ground surface. In 174 

addition, FUSION (McGaughey, 2009)  was used to subtract the elevations of the raw lidar points from 175 

the ground elevation in the DEM to produce a normalized point cloud dataset (NPCD).  176 

 177 

Table 1: Lidar Data Specifications 178 
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Acquisition Date June 18, 2015 

Sensor Leica ALS80-HP 

Survey Altitude 1,400 m 

Pulse Mode MPiA (Multiple Pulses in Air) 

Pulse Rate 394.8 kHz 

Field of View 30 degrees 

Mean Pulse Density 25.35 pulses/m2 

Overlap 100% with 65% sidelap 

Relative Accuracy 4 cm 

Vertical Accuracy 5 cm 

 179 

 180 

Effective Leaf Area Index (Le) was computed using the NPCD according to the method in Richardson et 181 

al. (2009) :  182 

𝐿𝑒 = − 
1

𝑘
 ln (𝑅𝑔/𝑅𝑡) 183 

Where k is the extinction coefficient equal to 2, Rg is the number of first ground returns and Rt is the 184 

number of total first returns. LPI was computed as: 185 

𝐿𝑃𝐼 =   (𝑅𝑔/𝑅𝑡) 186 

Le  and LPI  were computed in ArcGIS using a circular buffer with radius 10 m around each field point 187 

location mirroring the radius used in Richardson et al. (2009) . LPI was also computed using a shifted 188 

square buffer modified from the method of Bode et al. (2014) where the buffer side length (s) was 189 

calculated based on:  190 
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𝑠 =
ℎ

tan 𝜃
 

Where h is equal to the modal tree height across all our plots (34 m), and θ is equal to the maximum 191 

lidar scan angle subtracted from 90° (75°), resulting in a buffer side length of 9.12 m. The square buffer 192 

was shifted south to account for the seasonal solar angle in the northern hemisphere according to: 193 

𝑠ℎ𝑖𝑓𝑡 = (
𝑠

1 + cos 𝜎
) − s 

Where 𝜎 is equivalent to the solar angle at noon on the date of interest. A solar angle of 68° was used 194 

in this study, resulting in a southern shift of 3.42 m. We also computed topographically influenced solar 195 

radiation using the lidar DEM and the solar radiation function in ArcGIS, but found that there was no 196 

significant difference across the plot locations and thus did not use these results in subsequent analysis. 197 

Synthetic hemiphotos were created in Matlab using the method of Moeser et al. (2014) and analyzed for 198 

diffuse and direct light transmittance in GLA. All statistical analyses were performed in R (version 3.4). 199 

Longitudinal profiles of stream shading were created in ArcGIS in 1-m increments based on the 200 

intersections of the stream polyline centerline with the raster output of modeled solar insolation.  201 

C. Results and Discussion 202 

Comparison between Pyranometers and Hemispherical Photographs 203 

Figure 5 shows the correlation between field-collected pyranometer data and processed hemispherical 204 

photographs, with data from transect A removed.  These data are highly correlated (r2 = 0.87), but these 205 

data are also not equally distributed across a range of solar insolation. Many more plot locations were at 206 

low levels of solar insolation than in areas of relatively low shade. This is very typical of the heavily 207 
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forested streams in northwestern North America. Note that none of our plot locations contained 208 

transmittance greater than 40%.  209 

 210 

 211 

Figure 5: Comparison between pyranometer-measured solar insolation and daily diffuse and direct radiation 212 

canopy transmittance calculated from hemispherical photographs. 213 

 214 

Model Comparisons  215 

 216 

Pyranometer-based solar insolation and hemispherical photograph percent diffuse and direct radiation 217 

transmittance calculated at all point locations except transect A were compared to a variety of 218 

predictors using simple linear regression. These results are shown in Figure 6. Effective LAI was not 219 

highly correlated to either predictor, showing a non-linear relationship. The LPI calculated using a 10 m 220 

circle centered on the point location explained about 55% of the variability in both response variables, 221 

but the prediction accuracy significantly improved when LPI was calculated using the shifted square 222 

buffer. Shifted LPI explained 74% of the variability in solar insolation and 64% of the variability in 223 

percent transmittance. Synthetic hemispherical photographs explained 77% of the variability in solar 224 
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insolation and 60% of the variability in percent transmittance. Figure 6 shows comparisons between 225 

transects B, C, and D to make interpretation easier, but Table 2 shows the results of linear regressions 226 

between predicted variables and hemispherical photograph transmittance for all plot locations resulting 227 

in small reductions in the amount of variability explained. Table 3 gives model parameters of slope and 228 

intercept resulting from the simple linear regression. 229 

 230 
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 231 

Figure 6: Simple linear regressions between predictor variables and field measured pyranometer solar insolation  232 

(A, C, E, G) and hemispherical photograph % transmittance (B, D, F, H) omitting data from transect A 233 
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 234 

 235 

Table 2: Coefficients of determination for the simple linear regression between predictor variables and 236 

hemispherical photograph transmittance using three additional point locations from transect A 237 

 238 

Predictor Variable Coefficient of 

Determination (r2) 

Effective Leaf Area Index 0.32 

Light Penetration Index 0.54 

Shifted Light Penetration Index 0.54 

Synthetic Hemispherical Photograph % 

Transmittance 

0.45 

 239 

 240 

 241 

 242 

 243 

 244 

 245 

 246 

 247 

 248 

 249 

 250 
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Table 3: Model parameters from simple linear regressions. Note that all regressions are significant (p < 0.05). Data 251 

from transect A are excluded. 252 

 253 

Response Variable Predictor Variable Slope Intercept 

Hemispherical 

Photograph % 

Transmittance 

Effective Leaf Area Index -3.40 25.26 

Light Penetration Index 124.09 -3.29 

Shifted Light 

Penetration Index 

142.2 -4.49 

Synthetic Hemispherical 

photograph % 

Transmittance 

1.01 -0.32 

Pyranometer 

Insolation 

Effective Leaf Area Index -0.19 1.37 

Light Penetration Index 6.73 -0.19 

Shifted Light 

Penetration Index 

8.23 -0.30 

Synthetic Hemispherical 

Photograph % 

Transmittance 

0.07 -0.08 

 254 

 255 

While both the raster-based shifted LPI approach and the lidar point reprojection synthetic 256 

hemispherical photograph approach achieved satisfactory model performance, the limited range of 257 

solar insolation conditions at the point locations in our study limits some of the conclusions that can be 258 

drawn. Excluding transect A, 14 of the 16 point locations received less than 0.8 kWHours/m2/day, 259 
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leading to the other two point locations to exert a large degree of leverage on the model results. The 260 

three points in transect A all received less than 0.8 kWHours/m2/day and their inclusion in the model 261 

results (Table 2) did not improve model results, suggesting that all models are not as effective at 262 

predicting field measured values in areas of high canopy cover. The constraints of the study design 263 

requiring point locations to be located in the stream made it impossible to achieve a greater range in 264 

solar insolation. It is reasonable to expect that including more point locations receiving larger amounts 265 

of insolation would have led to improved model accuracy and greater coefficients of determination, as 266 

previous studies have shown that accuracy increases as canopy cover decreases (Moeser et al., 267 

2014;Musselman et al., 2013;Richardson and Moskal, 2014). In areas with no canopy and thus no lidar 268 

point returns above the ground, the models should show better agreement with field measurements.  269 

 270 

One explanation of the decrease in variability explained by the models at high canopy cover is 271 

demonstrated in Figure 7. Here, a synthetic hemispherical photograph from transect D is compared to a 272 

field-captured hemispherical photograph with the GLA modeled sunpath superimposed. This sunpath is 273 

critical for determining the quantity of direct light, but very small differences in the center location of 274 

the two images can produce large differences in the modeled direct light. The sunpath passes through a 275 

modeled canopy gap near solar noon on the synthetic hemispherical photograph, while it intersects only 276 

canopy and misses the gap on the field-collected hemispherical photograph. Very small registration 277 

errors can cause significant differences in transmittance at low light levels, and we suggest that these 278 

errors are likely to cause the errors observed in the models.  279 

 280 

Understory vegetation is another likely cause of observed errors, as airborne lidar is inherently limited in 281 

its ability to fully sample multi-layered canopies (Richardson and Moskal, 2011). We noticed several 282 

points with significant differences to the model results that contained understory vegetation in close 283 
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proximity to the field instruments. The ideal scenario would be for the lidar scan angles to precisely 284 

match the range of potential solar angles at each plot location, but this is currently impractical, leading 285 

to an incomplete sample of the canopy light environment which contributes to the errors observed in 286 

the models. 287 

 288 

Figure 7: Sunpath superimposed on a synthetic hemispherical photograph (left) and a field acquired hemispherical 289 

photograph (right) at a point location in Transect D. The letters represent the four cardinal directions. 290 

 291 

Model Application 292 

 293 

Model G and Model E (Figure 6) performed the best and are both appropriate to use as the basis for 294 

estimating solar insolation across the study area. Implementation of Model G was the simplest and least 295 

time-intensive method, and we chose to modify Model G by multiplying LPI by the maximum above 296 

canopy solar insolation for June 20, 2015 and then computing a non-intercept linear regression (Figure 297 

8). Removing the intercept from the model lowered the coefficient of determination but provided a 298 

model with very little bias, only slightly underestimating model insolation. Figure 9 shows the model 299 

applied across the study area. The graphs show the pattern of solar insolation across the two reaches in 300 
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the study, highlighting the utility of these methods for predicting solar insolation in heavily forested 301 

streams across wide spatial extents. Figure 10 shows the relative frequency of binned solar insolation 302 

values, highlighting the dominance of heavily shaded areas (note that a dammed reservoir, point D on 303 

the map, contributes the majority of the points in full sun). 304 

 305 

 306 

Figure 8: Model used for generation of landscape scale solar insolation estimates 307 

 308 

 309 

 310 
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 311 

 312 

Figure 9: Map of model derived solar insolation for Panther Creek (top) and graph of model derived solar 313 

insolation for reach A-C (middle) and reach B-D (bottom). Point E is a dammed reservoir. Note the 314 

direction of flow is toward point C 315 

 316 

 317 

Figure 10: Histogram of solar insolation pixel values along reach A-C from Figure 9 318 
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 319 

The relatively unbiased results shown in Figure 8 show that field calibration is not required to produce 320 

accurate estimates of solar insolation. However, information is still needed on local above-canopy 321 

meteorological conditions, which can either be modeled from known solar outputs or collected from a 322 

nearby meteorological station.  Little bias was observed in comparisons between synthetic 323 

hemispherical photograph transmittance and field-based hemispherical photograph transmittance 324 

(Table 3). Therefore, both approaches tested in this study should not require field calibration.  325 

 326 

D. Conclusions 327 

We tested two approaches for estimating solar insolation from airborne lidar using field data collected 328 

in a heavily forested narrow stream, showing that an LPI-based raster approach and a synthetic 329 

hemispherical photograph approach accurately predict solar insolation and light transmittance. These 330 

results should be interpreted with the caveat that our point locations contained few areas with high 331 

insolation. We showed that the LPI-based model can be applied across the landscape, and we 332 

demonstrated that no field-based calibration was necessary to produce unbiased prediction of solar 333 

insolation. 334 

This study lays the groundwork for additional research on remote sensing methods for quantifying light 335 

conditions in riparian areas over heavily forested streams. First, point-cloud based approaches utilizing 336 

ray-tracing need to be further developed. The results of this study suggest that refined ray-tracing 337 

approaches should not require calibration. Ray-tracing is perhaps the most elegant method for 338 

accurately modeling the relationship between lidar points and the sun, but this method requires a large 339 

amount of computational power to model multiple sun angles for each lidar point. Second, research 340 

should focus on exploring the limit of matching ground-based measurements to lidar-predicted solar 341 
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insolation. Lastly, the limitation of aerial lidar to quantify understory light conditions in multi-layered 342 

canopies should be explored in more detail to better understand when and if airborne sensors are 343 

inappropriate for these particular applications. In these circumstances, other sensors such as terrestrial 344 

lidar or ground-based digital photographs utilizing structure from motion may provide additional useful 345 

information.  346 

E. Data availability 347 

The GPS data, pyranometer data, processed hemispherical photograph data, spreadsheets used for data 348 

analysis, and access to the LiDAR data can be found at https://doi.org/10.17632/vwmxw4hcj7.1 349 
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