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Abstract 11 

Methods to quantify solar insolation in riparian landscapes are needed due to the importance of stream 12 

temperature to aquatic biota. We have tested three lidar predictors using two approaches developed 13 

for other applications of estimating solar insolation from airborne lidar using field data collected in a 14 

heavily forested narrow stream in western Oregon, USA.  We show that a raster methodology based on 15 

the light penetration index (LPI) and a synthetic hemispherical photograph approach both accurately 16 

predict solar insolation, explaining more than 73% or the variability observed in pyranometers placed in 17 

the stream channel. We apply the LPI based model to predict solar insolation for an entire riparian 18 

system, and demonstrate that no field-based calibration is necessary to produce unbiased prediction of 19 

solar insolation using airborne lidar alone. 20 
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A. Introduction 21 

 22 

Accurately quantifying solar insolation, defined as the amount of solar radiation incident on a specific 23 

point on the Earth’s surface for a given period of time, is important to many fields of study such as solar 24 

energy, glacier dynamics, and climate modeling. In this study, we focus on the importance of solar 25 

insolation for ecological applications. In forested ecosystems, trees interact with solar radiation through 26 

shading, and thus solar insolation at fine spatial scales in these systems can vary widely. Understanding 27 

the heterogeneous patterns of insolation below tree canopies has been important for numerous 28 

applications, such as understanding the importance of sunflecks for understory photosynthesis, gaining 29 

insight into the patterns of seedling regeneration in dense forests (Nicotra et al., 1999), and explaining 30 

patterns of snowmelt (Hock, 2003) and soil moisture (Breshears et al., 1997). 31 

The relationship between stream temperature and solar insolation is of particular interest in this study, 32 

as high amounts of solar energy irradiating a stream can cause adverse ecological effects due to directly 33 

increasing the temperature of the streams. . In northwestern North America, a large amount of research 34 

has focused on the relationship between forest practices, stream temperature, and the corresponding 35 

effect on river salmonid fishes (Holtby, 1988;Leinenbach et al., 2013;Moore et al., 2005a;Moore et al., 36 

2005b).  Direct measurement of stream temperature with in-stream thermographs can be used to 37 

quantify thermal diversity (Torgersen et al., 2012;Torgersen et al., 2007), but ground-based 38 

measurements are time consuming, expensive, and impractical for large areas. In addition, stream 39 

temperature measurements can only show the effect of forest management practices if taken before 40 

and after trees are removed. In order to predict the potential effect of forest management practices on 41 

stream temperature, models are often employed to estimate the amount of solar insolation irradiating 42 

streams using remotely sensed data (Forney et al. 2013).  43 
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Several different methods have been utilized for measuring or predicting solar insolation on the ground. 44 

Pyranometers are the most direct method for measuring insolation, capturing the solar radiation flux 45 

density above a hemisphere as an electrical signal and cataloguing those signals in a datalogger (Kerr et 46 

al., 1967). Once calibrated, these signals give a measure of the total direct and diffuse solar radiation 47 

irradiating  a point for a given period of time (Bode et al., 2014;Forney et al., 2013;Musselman et al., 48 

2015). While pyranometers give direct measurement of solar insolation for a defined period of time, 49 

hemipshperical photographs allow indirect estimation of solar insolation for any point in time (Bode et 50 

al., 2014;Breshears et al., 1997;Rich et al., 1994). Plotting the path of the sun in the area of sky captured 51 

by the hemispherical photograph allows for calculation of direct solar radiation through identified 52 

canopy gaps, while gap fraction across the entire hemisphere allows for calculation of diffuse radiation. 53 

Analysis of hemispherical photographs requires assumptions of extra-terrestrial solar radiation and sky 54 

conditions in order to produce solar insolation estimates. Understory light conditions can also be 55 

modeled by creating a three-dimensional reconstruction of a forest from field-based biophysical 56 

measurements (Ameztegui et al., 2012) or terrestrial laser scanning (Ni-Meister et al., 2008). Ground-57 

based measurements are limited by the time and cost required to collect data, and thus solar insolation 58 

can only be calculated for relatively small spatial extents. 59 

Airborne and satellite remote sensing methods provide a means for estimating solar insolation over 60 

large spatial extents. Satellite-based methods utilizing passive remote sensing data can provide coarse-61 

scale estimates of solar radiation absorbed by tree canopies through radiative transfer models based on 62 

spectral indices  (Field et al., 1995;Asrar et al., 1992), but these methods are not suitable for fine-scale 63 

application such as modeling stream temperature. Airborne lidar is the preferred method for 64 

characterizing three-dimensional structure of forest canopies, and thus is also used to assess the 65 

shading effect of those canopies. Below we discuss three different approaches that have been used in 66 

previous studies to quantify solar insolation at ground level using aerial lidar. 67 
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Raster Approaches 68 

Lidar data can be used to create raster datasets by selecting various attributes of lidar points within a 69 

defined spatial neighborhood around a raster cell. One of the most common raster products for 70 

assessing canopy structure is the light penetration index (LPI), the ratio of ground first return points 71 

(typically less than 2 m in elevation above ground) to the total number of lidar first return points within 72 

a given raster cell. This ratio has been shown to be useful for characterizing light extinction in canopies 73 

according to the Beer-Lambert law (Richardson et al., 2009) and thus has been explored as a predictor of 74 

understory light conditions (Musselman et al., 2013;Alexander et al., 2013;Bode et al., 2014). Solar 75 

radiation calculators in GIS software can also be used to compute solar insolation on a lidar-derived 76 

digital elevation model (DEM). Bode et al. (2014) combined a r.sun solar insolation model for the GRASS 77 

GIS software based on a DEM with LPI to produce estimates of ground level solar insolation that showed 78 

high accuracy compared to pyranometer-collected field data in a mixed forest in Northern California, 79 

USA.  80 

Lidar Point Reprojection 81 

Lidar point returns can be reprojected from the X,Y,Z Cartesian coordinate system in which they are 82 

most often delivered by a vendor into a spherical coordinate system which centers the point cloud 83 

around a specific location on the ground. This reprojection allows for a circular graph of the lidar point 84 

returns to be created around a point at ground level. Alexander et al. (2013) created a canopy closure 85 

metric from these projected point graphs based on gap fraction, and found that this metric was 86 

correlated to Ellenburg indicator values (which relate plants to their ecological niche along an 87 

environmental gradient) of understory light availability. Moeser et al. (2014) created synthetic 88 

hemispherical photographs from reprojected lidar returns, and solar irradiance at ground level was 89 

calculated using traditional hemispherical photograph analysis software.  The processed synthetic 90 
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hemispherical photographs showed good correlation to pyranometer measured solar irradiance at three 91 

field sites in eastern Switzerland. 92 

Point Cloud Approaches 93 

Because lidar point clouds are typically represented in a three-dimensional Cartesian coordinate system, 94 

it is possible to model the sun’s position in relation to that three-dimensional space.  The number of 95 

lidar returns that are reflected from a defined volume between the direction of the sun and the ground 96 

can then be calculated. These methods are computationally intensive, but have shown promise for 97 

providing the most direct measure of understory light availability. Lee et al. (2008) calculated the 98 

number of points within a conical field of view directed at the sun’s location and created a model to 99 

relate this to ceptometer measurements of photosynthetically active understory solar radiation at 100 

specific times and locations in a pine forest in northern Florida, USA.  This method is limited by its 101 

reliance on raw lidar point counts specific to the actual and relative point densities within their lidar 102 

acquisition. Raw point counts are affected by both changes in flight characteristics between missions, 103 

and the patterns of flight line overlap within a mission. A different point cloud approach involves a linear 104 

tracing of the sun’s rays along their path to the ground, and Martens et al. (2000) demonstrated how a 105 

ray-tracing algorithm could be used to characterize understory light conditions in a computer simulated 106 

forest. Peng et al. (2014) combined a lidar-based ray tracing algorithm with field-collected canopy base 107 

heights to produce an estimate of understory solar insolation based on the Beer-Lambert law that 108 

compared well to field-collected pyranometer data but is limited in practical application because of its 109 

reliance on field- measured data in its model.  Musselman et al. (2013) used a ray-tracing algorithm to 110 

produce highly detailed estimates of direct beam solar transmittance in 5-minute increments by 111 

voxelizing the lidar data and summing the number of voxels that a ray intercepted between the point of 112 
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origin and the sun. The algorithm relied on site specific pyranometer measurements to calibrate and 113 

adjust the beam transmittance, and therefore we were restricted from testing this method in this study. 114 

Our objectives were to test the accuracy and precision of established methods of quantifying solar 115 

insolation from aerial lidar within areas of narrow, heavily forested streams. We utilized two raster 116 

approaches and one lidar point reprojection approach, three methodologies that had not been 117 

previously applied and tested using high quality field data collected in heavily forested streams. We 118 

evaluated the three methodologies using simple linear regressions that compared lidar derived metrics 119 

to field-based pyranometer measurements of solar insolation and hemispherical photograph-based 120 

measures of shade in Western Oregon, USA. Further, we sought to apply this method to quantify solar 121 

insolation throughout a small headwater stream network. 122 

 123 

B. Methods 124 

Study Site  125 

All field locations were located within the wetted channel of Panther Creek and a tributary (Figure 1) in 126 

narrow streams (1-6 m in width) located in the east side of the Coast Range of Oregon, USA within a 127 

larger research area in which lidar has been used to quantify forest canopy structure (Flewelling and 128 

McFadden, 2011). All field sites were within a mature Douglas-fir (Pseudotsuga menziesii) forest, with 129 

other dominant trees including red alder (Alnus rubra), Western red-cedar (Thuja plicata), and Western 130 

hemlock (Tsuga heterophylla). The elevation profile and description of the stream can be found in 131 

(Richardson and Moskal, 2014). The center of the channel was manually digitized as a polyline in ArcGIS 132 

using a combination of aerial imagery and the vendor-provided lidar DEM. 133 
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Four transects were installed in late June 2015 using a Leica Builder Total Station and georeferenced 134 

using a Javad Maxor GPS unit. The locations of the transects can be seen in Figure 1, with the 19 point 135 

locations used for capturing field data denoted by black dots surrounded by white circles (A contains 3 136 

points, B and C contain 4 points, and D contains 8 points). Transect locations were chosen manually in 137 

order to maximize variability in forest shade while allowing for safe access by the field crew.  Each point 138 

location was located within the stream channel and marked by driving rebar into the substrate until only 139 

1 m was exposed above the water surface. Point locations were approximately 15 m apart within a 140 

transect in order to allow data from multiple point locations to be collected by a single datalogger.  141 

Two datasets were collected at each point location during the last two weeks of June in 2015. A 142 

hemispherical photograph was collected using a Nikon CoolPix 4500 digital camera leveled on a tripod 1 143 

m above the ground under uniform sky condition (Figure 2) utilizing a method to find the optimum light 144 

exposure (Zhang et al., 2005). Each hemispherical photograph was analyzed using the Gap Light Analyzer 145 

(GLA) program (Frazer et al., 1999) in order to produce estimates of percent transmittance for diffuse 146 

and direct sunlight. An Apogee Instruments SP-110 self-powered silicon-cell pyranometer, leveled and 147 

mounted to the rebar pole at 1 m height (Figure 3) was used to collect a full day’s solar output at each 148 

point location using the datalogger. The raw voltage values collected by the datalogger were calibrated 149 

to solar irradiance using the closest publicly available meteorological data. All pyranometer datasets 150 

were collected on cloudless days, except for transect A, and pyranometer data from transect A was not 151 

used in this study. The calibrated pyranometer data from a point location from transect D is shown in 152 

Figure 4. Note that the silicon-cell photodiodes, such as the SP-110 can, produce erroneous readings 153 

under conifer canopies. A black body thermopile pyranometer would have been more appropriate for 154 
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this study but was not available to the authors. 155 

 156 

 157 

Figure 1: Study area in northwestern Oregon (USA). The grey polygon is the extent of the 2015 lidar 158 

acquisition. The black circles surrounded by white circles represent the 19 point locations. The letters A, 159 

B, C, and D denote the four transects. The inset shows transect D and the background raster in the inset 160 

is the lidar derived canopy height model with green representing tall trees and purple representing the 161 

lowest heights. The direction of flow is from west to east. 162 

 163 
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 164 

Figure 2: Example of hemispherical photograph acquisition at a plot location in transect D.  165 

 166 

Figure 3: Example of pyranometer installation at transect D (note that pyranometer is mounted on south 167 

side of pole at a height of 1 m). 168 
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 169 

 170 

Figure 4: Daily pyranometer output from sunset to sundown for a plot in Transect D 171 

Lidar Data and Analysis 172 

Airborne discrete-return lidar was acquired in June of 2015 according to the specifications described in 173 

Table 1. The vendor provided processed discrete lidar point returns as well as a lidar DEM and highest 174 

hit model at a pixel resolution of 1 m. The highest hit model was subtracted from the DEM to create a 175 

canopy height model (CHM) describing the vegetation height normalized to the ground surface. In 176 

addition, Fusion (McGaughey, 2009)  was used to subtract the elevations of the raw lidar points from 177 

the ground elevation in the DEM to produce a normalized point cloud dataset (NPCD). Note that the 178 

perspective of the lidar analyses is in reference to ground height while the field data were collected at 1 179 

m above the ground. While this is a small difference, it could be a source of error in comparisons, 180 

especially at low solar angles. 181 
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 182 

Table 1: Lidar Data Specifications 183 

Acquisition Date June 18, 2015 

Sensor Leica ALS80 

Survey Altitude 1,400 m 

Pulse Rate 394.8 kHz 

Field of View 30 degrees 

Mean Pulse Density 25.35 pulses/m2 

Overlap 100% with 65% sidelap 

Relative Accuracy 4 cm 

Vertical Accuracy 5 cm 

 184 

LPI was computed as: 185 

𝐿𝑃𝐼 =   (𝑅𝑔/𝑅𝑡) 186 

LPI  was computed in ArcGIS using a circular buffer with radius 10 m around each field point location 187 

mirroring the radius used in Richardson et al. (2009) . LPI was also computed using a shifted square 188 

buffer modified from the method of Bode et al. (2014) where the buffer side length (s) was calculated 189 

based on:  190 

𝑠 =
ℎ

tan 𝜃
 191 
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Where h is equal to the modal tree height across all our plots (34 m), and θ is equal to the maximum 192 

lidar scan angle subtracted from 90° (75°), resulting in a buffer side length of 9.12 m. The square buffer 193 

was shifted south to account for the seasonal solar angle in the northern hemisphere according to: 194 

𝑠ℎ𝑖𝑓𝑡 = (
𝑠

1 + cos 𝜎
) − s 195 

Where 𝜎 is equivalent to the solar angle at noon on the date of interest. A solar angle of 68° was used 196 

in this study, resulting in a southern shift of 3.42 m.  The buffer tool, zonal statistics tool, and move 197 

command were used to achieve the shift in ArcGIS. We also computed topographically influenced solar 198 

radiation using the lidar DEM and the solar radiation function in ArcGIS, but found that there was no 199 

significant difference across the plot locations and thus did not use these results in subsequent analysis.  200 

Synthetic hemiphotos were created in Matlab using the method of Moeser et al. (2014) and analyzed for 201 

diffuse and direct light transmittance in GLA. All statistical analyses were performed in R (version 3.4).  202 

Longitudinal profiles of stream shading were created in ArcGIS in 1-m increments based on the 203 

intersections of the stream polyline centerline with the raster output of modeled solar insolation.  204 

C. Results and Discussion 205 

Comparison between Pyranometers and Hemispherical Photographs 206 

Figure 5 shows the correlation between field-collected pyranometer data and processed hemispherical 207 

photographs, with data from transect A removed.  These data are highly correlated (r2 = 0.87), but these 208 

data are also not equally distributed across a range of solar insolation. Many more plot locations were at 209 

low levels of solar insolation than in areas of relatively low shade. This is very typical of the heavily 210 

forested streams in northwestern North America. Note that none of our plot locations contained 211 

transmittance greater than 40%.  212 
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 213 

 214 

Figure 5: Comparison between pyranometer-measured solar insolation and daily diffuse and direct radiation 215 

canopy transmittance calculated from hemispherical photographs. 216 

 217 

Linear Regressions 218 

Pyranometer-based solar insolation and hemispherical photograph percent diffuse and direct radiation 219 

transmittance calculated at all point locations except transect A were compared to a three lidar 220 

predictors using simple linear regression. These results are shown in Figure 6. The LPI calculated using a 221 

10 m circle centered on the point location explained about 55% of the variability in both response 222 

variables, but the prediction accuracy improved when LPI was calculated using the shifted square buffer. 223 

Shifted LPI explained 74% of the variability in solar insolation and 64% of the variability in percent 224 

transmittance. Synthetic hemispherical photographs explained 77% of the variability in solar insolation 225 

and 60% of the variability in percent transmittance. Figure 6 shows comparisons between transects B, C, 226 

and D to make interpretation easier, but Table 2 shows the results of linear regressions between 227 

predicted variables and hemispherical photograph transmittance for all plot locations resulting in small 228 

reductions in the amount of variability explained. Table 3 gives parameters of slope and intercept 229 

resulting from the simple linear regression. 230 
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 231 

 232 

Figure 6: Simple linear regressions between lidar predictor variables and field measured pyranometer solar 233 

insolation  234 

(A, C, E) and hemispherical photograph % transmittance (B, D, F) omitting data from transect A 235 

 236 

 237 
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Table 2: Coefficients of determination for the simple linear regression between predictor variables and 238 

hemispherical photograph transmittance using three additional point locations from transect A 239 

 240 

Predictor Variable Coefficient of 

Determination (r2) 

Light Penetration Index 0.54 

Shifted Light Penetration Index 0.54 

Synthetic Hemispherical Photograph % 

Transmittance 

0.45 

 241 

 242 

 243 

 244 

 245 

 246 

 247 

 248 

 249 

 250 

 251 

 252 

 253 

 254 

 255 
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Table 3:  Parameters from simple linear regressions. Note that all regressions are significant (p < 0.05). Data from 256 

transect A are excluded. 257 

 258 

Response Variable Predictor Variable Slope Intercept 

Hemispherical 

Photograph % 

Transmittance 

 

Light Penetration Index 

 

124.09 

 

-3.29 

Shifted Light 

Penetration Index 

142.2 -4.49 

Synthetic Hemispherical 

photograph % 

Transmittance 

1.01 -0.32 

Pyranometer 

Insolation 

 

Light Penetration Index 

 

6.73 

 

-0.19 

Shifted Light 

Penetration Index 

8.23 -0.30 

Synthetic Hemispherical 

Photograph % 

Transmittance 

0.07 -0.08 

 259 

 260 

While both the raster-based shifted LPI approach and the lidar point reprojection synthetic 261 

hemispherical photograph approach explained more than 60 % of the variability in the field data, the 262 

limited range of solar insolation conditions at the point locations in our study  may limit some of the 263 

conclusions that can be drawn. Excluding transect A, 14 of the 16 point locations received less than 0.8 264 
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kWHours/m2/day, leading to the other two point locations to exert a large degree of leverage on the 265 

results. Note that these two point locations received less than 35% of the maximum solar insolation. The 266 

three points in transect A all received less than 0.8 kWHours/m2/day and their inclusion in Table 2 did 267 

not improve coefficients of determination, suggesting that all methods are not as effective at predicting 268 

field measured values in areas of high canopy cover. The constraints of the study design requiring point 269 

locations to be located in the stream made it impossible to achieve a greater range in solar insolation. It 270 

is reasonable to expect that including more point locations receiving larger amounts of insolation would 271 

have led to improved accuracy and greater coefficients of determination, as previous studies have 272 

shown that accuracy increases as canopy cover decreases (Moeser et al., 2014;Musselman et al., 273 

2013;Richardson and Moskal, 2014).  274 

 275 

One explanation of the decrease in variability at high canopy cover in regressions E and F shown in 276 

Figure is demonstrated in Figure 7. Here, a synthetic hemispherical photograph from transect D is 277 

compared to a field-captured hemispherical photograph with the GLA modeled sunpath superimposed. 278 

This sunpath is critical for determining the quantity of direct light, but very small differences in the 279 

center location of the two images can produce large differences in the modeled direct light. The sunpath 280 

passes through a modeled canopy gap near solar noon on the synthetic hemispherical photograph, 281 

while it intersects only canopy and misses the gap on the field-collected hemispherical photograph. Very 282 

small registration errors can cause differences in transmittance at low light levels, and we suggest that 283 

these errors are likely to cause the errors observed in the regressions. The daily pyranometer output for 284 

the same point location is shown in Figure 8 to further aid comparison. The pyranometer is only briefly 285 

exposed to full sunlight, highlighting the contribution of small gaps in the canopy. 286 

 287 
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Understory vegetation is another likely cause of observed errors, as airborne lidar is inherently limited in 288 

its ability to fully sample multi-layered canopies (Richardson and Moskal, 2011). We noticed several 289 

points with differences between lidar predictors and field data that contained understory vegetation in 290 

close proximity to the field instruments. The ideal scenario would be for the lidar scan angles to 291 

precisely match the range of potential solar angles at each plot location, but this is currently impractical, 292 

leading to an incomplete sample of the canopy light environment which contributes to the observed 293 

errors.294 

 295 

Figure 7: Sunpath superimposed on a synthetic hemispherical photograph (left) and a field acquired hemispherical 296 

photograph (right) at a point location in Transect D. The letters represent the four cardinal directions. 297 
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 298 

Figure 8: Daily pyranometer output from sunset to sundown for the same plot as Figure 7. 299 

 300 

Modeled Solar Insolation 301 

 302 

The correlations between lidar predictors and field data were strongest in Figure 6 C and Figure 6 E , and 303 

these lidar predictors are both appropriate to use as the basis for estimating solar insolation across the 304 

study area. Implementation of shifted LPI was the simplest and least time-intensive method, and we 305 

chose to model solar radiation by multiplying shifted LPI by the maximum above canopy solar insolation 306 

for June 20, 2015 and then computing a non-intercept linear regression (Figure 9). Removing the 307 

intercept from the model lowered the coefficient of determination but provided a model that did not 308 

estimate negative values of solar insolation. Figure 10 shows the model applied across the study area. 309 

The graphs show the pattern of solar insolation across the two reaches in the study, highlighting the 310 

utility of these methods for predicting solar insolation in heavily forested streams across wide spatial 311 



20 
 

extents. Figure 11 shows the relative frequency of binned solar insolation values, highlighting the 312 

dominance of heavily shaded areas (note that a dammed reservoir, point D on the map, contributes the 313 

majority of the points in full sun). 314 

 315 

 316 

Figure 9: Model used for generation of landscape scale solar insolation estimates 317 

 318 

 319 

 320 
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 321 

 322 

Figure 10: Map of model derived solar insolation for Panther Creek (top) and graph of model derived 323 

solar insolation for reach A-C (middle) and reach B-D (bottom). Point E is a dammed reservoir. Note the 324 

direction of flow is toward point C 325 

 326 

 327 

Figure 11: Histogram of solar insolation pixel values along reach A-C from Figure 9 328 
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 329 

The relatively unbiased results shown in Figure 9 show that field calibration is not required to produce 330 

accurate estimates of solar insolation. However, information is still needed on local above-canopy 331 

meteorological conditions, which can either be modeled from known solar outputs or collected from a 332 

nearby meteorological station.  Little bias was observed in comparisons between synthetic 333 

hemispherical photograph transmittance and field-based hemispherical photograph transmittance 334 

(Table 3). Therefore, both approaches tested in this study should not require field calibration.  335 

 336 

D. Conclusions 337 

We tested two approaches for estimating solar insolation from airborne lidar using field data collected 338 

in a heavily forested narrow stream, showing that an LPI-based raster approach and a synthetic 339 

hemispherical photograph approach can predict solar insolation and light transmittance. These results 340 

should be interpreted with the caveat that our point locations contained few areas with high insolation. 341 

We showed that the LPI-based model can be applied across the landscape, and we demonstrated that 342 

no field-based calibration was necessary to produce unbiased prediction of solar insolation. 343 

This study lays the groundwork for additional research on remote sensing methods for quantifying light 344 

conditions in riparian areas over heavily forested streams. One method that we were unable to test is 345 

ray-tracing and future research should continue to develop this approach. Second, research should focus 346 

on exploring the limit of matching ground-based measurements to lidar-predicted solar insolation. 347 

Lastly, the limitation of aerial lidar to quantify understory light conditions in multi-layered canopies 348 

should be explored in more detail to better understand when and if airborne sensors are inappropriate 349 

for these particular applications. In these circumstances, other sensors such as terrestrial lidar or 350 
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ground-based digital photographs utilizing structure from motion may provide additional useful 351 

information.  352 

E. Data availability 353 

The GPS data, pyranometer data, processed hemispherical photograph data, spreadsheets used for data 354 

analysis, and access to the LiDAR data can be found at https://doi.org/10.17632/vwmxw4hcj7.1 355 

F. Acknowledgements 356 

We are grateful to Dave Moeser for sharing his MATLAB code for creating synthetic hemispherical 357 

photographs and to Keith Musselman for advising on the applicability of ray-tracing methods. Guang 358 

Zheng also assisted with research into ray-tracing methods. Caileigh Shoot and Natalie Gray coordinated 359 

field data collection. This work was supported by the Precision Forestry Cooperative, the Bureau of Land 360 

Management, and the U.S. Geological Survey. Any use of trade, product or firm names is for descriptive 361 

purposes only and does not imply endorsement by the U.S. government. 362 

G. References 363 

Alexander, C., Moeslund, J. E., Bocher, P. K., Arge, L., and Svenning, J. C.: Airborne laser scanner (LiDAR) 364 

proxies for understory light conditions, Remote Sensing of Environment, 134, 152-161, 365 

10.1016/j.rse.2013.02.028, 2013. 366 

Ameztegui, A., Coll, L., Benavides, R., Valladares, F., and Paquette, A.: Understory light predictions in 367 

mixed conifer mountain forests: Role of aspect-induced variation in crown geometry and openness, 368 

Forest Ecology and Management, 276, 52-61, http://dx.doi.org/10.1016/j.foreco.2012.03.021, 2012. 369 

Asrar, G., Myneni, R. B., and Choudhury, B. J.: Spatial heterogeneity in vegetation canopies and remote 370 

sensing of absorbed photosynthetically active radiation: A modeling study, Remote Sensing of 371 

Environment, 41, 85-103, http://dx.doi.org/10.1016/0034-4257(92)90070-Z, 1992. 372 

https://doi.org/10.17632/vwmxw4hcj7.1
http://dx.doi.org/10.1016/j.foreco.2012.03.021
http://dx.doi.org/10.1016/0034-4257(92)90070-Z


24 
 

Bode, C. A., Limm, M. P., Power, M. E., and Finlay, J. C.: Subcanopy Solar Radiation model: Predicting 373 

solar radiation across a heavily vegetated landscape using LiDAR and GIS solar radiation models, Remote 374 

Sensing of Environment, 154, 387-397, http://dx.doi.org/10.1016/j.rse.2014.01.028, 2014. 375 

Breshears, D. D., Rich, P. M., Barnes, F. J., and Campbell, K.: Overstory-imposed heterogeneity in solar 376 

radiation and soil moisture in a semiarid woodland, Ecol. Appl., 7, 1201-1215, 10.1890/1051-377 

0761(1997)007[1201:OIHISR]2.0.CO;2, 1997. 378 

Field, C. B., Randerson, J. T., and Malmström, C. M.: Global net primary production: Combining ecology 379 

and remote sensing, Remote Sensing of Environment, 51, 74-88, http://dx.doi.org/10.1016/0034-380 

4257(94)00066-V, 1995. 381 

Flewelling, J. W., and McFadden, G.: LiDAR data and cooperative research at Panther Creek, Oregon, 382 

SilviLaser, Hobart, Australia, October 16-20, 2011, 2011. 383 

Forney, W. M., Soulard, C. E., and Chickadel, C. C.: Salmonids, stream temperatures, and solar loading—384 

modeling the shade provided to the Klamath River by vegetation and geomorphology, 25, 2013. 385 

Frazer, G. W., Canham, C. D., and Lertzman, K. P.: Gap Light Analyzer (GLA), Version 2.0, in, Simon Fraser 386 

University, Burnaby, British Columbia, 1999. 387 

Hock, R.: Temperature index melt modelling in mountain areas, Journal of Hydrology, 282, 104-115, 388 

http://dx.doi.org/10.1016/S0022-1694(03)00257-9, 2003. 389 

Holtby, L. B.: Effects of logging on stream temperatures in Carnation Creek British Columbia, and 390 

associated impacts on the coho salmon (Oncorhynchus kisutch), Canadian Journal of Fisheries and 391 

Aquatic Sciences, 45, 502-515, 10.1139/f88-060, 1988. 392 

Kerr, J. P., Thurtell, G. W., and Tanner, C. B.: An integrating pyranometer for climatological observer 393 

stations and mesoscale networks, Journal of Applied Meteorology, 6, 688-694, 10.1175/1520-394 

0450(1967)006<0688:AIPFCO>2.0.CO;2, 1967. 395 

http://dx.doi.org/10.1016/j.rse.2014.01.028
http://dx.doi.org/10.1016/0034-4257(94)00066-V
http://dx.doi.org/10.1016/0034-4257(94)00066-V
http://dx.doi.org/10.1016/S0022-1694(03)00257-9


25 
 

Lee, H., Slatton, K. C., Roth, B. E., and Cropper, W. P.: Prediction of forest canopy light interception using 396 

three‐dimensional airborne LiDAR data, International Journal of Remote Sensing, 30, 189-207, 397 

10.1080/01431160802261171, 2008. 398 

Leinenbach, P., McFadden, G., and Torgersen, C. E.: Effects of riparian management strategies on stream 399 

temperature, 22, 2013. 400 

Martens, S. N., Breshears, D. D., and Meyer, C. W.: Spatial distributions of understory light along the 401 

grassland/forest continuum: effects of cover, height, and spatial pattern of tree canopies, Ecological 402 

Modelling, 126, 79-93, http://dx.doi.org/10.1016/S0304-3800(99)00188-X, 2000. 403 

McGaughey, R. J.: FUSION/LDV: software for LIDAR data analysis and visualization, 2.51 ed., United 404 

States Department of Agriculture, Forest Service, Pacific Northwest Research Station, 2009. 405 

Moeser, D., Roubinek, J., Schleppi, P., Morsdorf, F., and Jonas, T.: Canopy closure, LAI and radiation 406 

transfer from airborne LiDAR synthetic images, Agricultural and Forest Meteorology, 197, 158-168, 407 

10.1016/j.agrformet.2014.06.008, 2014. 408 

Moore, R. D., Spittlehouse, D. L., and Story, A.: Riparian microclimate and stream temperature response 409 

to forest harvesting: a review, JAWRA Journal of the American Water Resources Association, 41, 813-410 

834, 10.1111/j.1752-1688.2005.tb03772.x, 2005a. 411 

Moore, R. D., Sutherland, P., Gomi, T., and Dhakal, A.: Thermal regime of a headwater stream within a 412 

clear-cut, coastal British Columbia, Canada, Hydrol. Process., 19, 2591-2608, 10.1002/hyp.5733, 2005b. 413 

Musselman, K. N., Margulis, S. A., and Molotch, N. P.: Estimation of solar direct beam transmittance of 414 

conifer canopies from airborne LiDAR, Remote Sensing of Environment, 136, 402-415, 415 

http://dx.doi.org/10.1016/j.rse.2013.05.021, 2013. 416 

Musselman, K. N., Pomeroy, J. W., and Link, T. E.: Variability in shortwave irradiance caused by forest 417 

gaps: measurements, modelling, and implications for snow energetics, Agricultural and Forest 418 

Meteorology, 207, 69-82, 10.1016/j.agrformet.2015.03.014, 2015. 419 

http://dx.doi.org/10.1016/S0304-3800(99)00188-X
http://dx.doi.org/10.1016/j.rse.2013.05.021


26 
 

Ni-Meister, W., Strahler, A. H., Woodcock, C. E., Schaaf, C. B., Jupp, D. L. B., Yao, T., Zhao, F., and Yang, 420 

X.: Modeling the hemispherical scanning, below-canopy lidar and vegetation structure characteristics 421 

with a geometric-optical and radiative-transfer model, Canadian Journal of Remote Sensing, 34, S385-422 

S397, 10.5589/m08-047, 2008. 423 

Nicotra, A. B., Chazdon, R. L., and Iriarte, S. V. B.: Spatial heterogeneity of light and woody seedling 424 

regneration in tropical wet forests, Ecology, 80, 1908-1926, 10.1890/0012-425 

9658(1999)080[1908:SHOLAW]2.0.CO;2, 1999. 426 

Peng, S. Z., Zhao, C. Y., and Xu, Z. L.: Modeling spatiotemporal patterns of understory light intensity 427 

using airborne laser scanner (LiDAR), ISPRS-J. Photogramm. Remote Sens., 97, 195-203, 428 

10.1016/j.isprsjprs.2014.09.003, 2014. 429 

Rich, P., Dubayah, R., Hetrick, W., and Saving, S.: Using viewshed models to calculate intercepted solar 430 

radiation: applications in ecology. American Society for Photogrammetry and Remote Sensing Technical 431 

Papers, American Society of Photogrammetry and Remote Sensing, 1994, 524-529,  432 

Richardson, J. J., Moskal, L. M., and Kim, S.-H.: Modeling approaches to estimate effective leaf area 433 

index from aerial discrete-return LIDAR, Agricultural and Forest Meteorology, 149, 1152-1160, 434 

10.1016/j.agrformet.2009.02.007, 2009. 435 

Richardson, J. J., and Moskal, L. M.: Strengths and limitations of assessing forest density and spatial 436 

configuration with aerial LiDAR, Remote Sensing of Environment, 115, 2640-2651, 437 

10.1016/j.rse.2011.05.020, 2011. 438 

Richardson, J. J., and Moskal, L. M.: Assessing the utility of green LiDAR for characterizing bathymetry of 439 

heavily forested narrow streams, Remote Sensing Letters, 5, 352-357, 10.1080/2150704X.2014.902545, 440 

2014. 441 



27 
 

Torgersen, C. E., Hockman-Wert, D. P., Bateman, D. S., Leer, D. W., and Gresswell, R. E.: Longitudinal 442 

patterns of fish assemblages, aquatic habitat, and water temperature in the Lower Crooked River, 443 

Oregon, 37, 2007. 444 

Torgersen, C. E., Ebersole, J. L., and Keenan, D. M.: Primer for identifying cold-water refuges to protect 445 

and restore thermal diversity in riverine landscapes, Seattle, WA, 91, 2012. 446 

Zhang, Y. Q., Chen, J. M., and Miller, J. R.: Determining digital hemispherical photograph exposure for 447 

leaf area index estimation, Agricultural and Forest Meteorology, 133, 166-181, 2005. 448 

 449 


