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Response to Editor  1 

On top of the comments made by the referees, I also have a suggestion in combination with Fig. 7 which 2 

shows the synthetic and a field acquired hemispherical photograph. Since this figure shows qualitatively 3 

the sensitivity to small errors in the exact location, it would be beneficial to show the daily timeserie of 4 

the pyranometer (as in Fig. 4) with the simulated timeseries of a couple of points surrounding the 5 

pyranometer. This may show that points located 1 or 2 meters away from the pyranometer give 6 

simulated solar radiation similar to the observed one.  7 

WE HAVE ADDED A FIGURE 8 WHICH SHOWS THE PYRANOMETER TIMESERIES FOR FIGURE 7. THE 8 

PREDICTED SOLAR RADIATION IS ACTUALLY VERY SIMILAR TO THE OBSERVED PYRANOMTER DATA (0.58 9 

VS 0.55 VS 0.57 kW/m2.  IT WAS CHOSEN BECAUSE IT WAS PARTICULARY EASY TO OBSERVE HOW SMALL 10 

LOCATION ERRORS COULD POTENTIALLY AFFECT THE SIMULATED SUNPATH. WE DO NOT HAVE A 11 

METHODOLOGY TO SIMULATE A TIMESERIES, BUT WE ARE WILLING TO DO ADDITIONAL ANALYSES IF 12 

YOU THINK THEY WOULD BE HELPFUL. 13 

 14 

In stream temperature models it often does not matter that much if the exact location of solar 15 

insolation is shifted a few meters. 16 

Having said this, I was also wondering if you have taken into account that the pyranometer was located 17 

1 m above the surface. Especially if solar angels are low, this may influence your result.  18 

THE HEMISPHERICAL PHOTOGRAPH AND PYRANOMETER WERE TAKEN AT THE SAME HEIGHT, BUT IT IS 19 

A GOOD POINT THAT THE ADDITIONAL METER IS NOT PROPERLY ACCOUNTED FOR IN COMPARING 20 

LIDRA AND THE FIELD METHODS. WE WILL ADD LANGAUAGE POINTING OUT THIS COULD BE A SOURCE 21 

OF ERROR. 22 

Response to Reviewer 1 23 

 24 

On three substantive issues I have concerns: Model vs predictor. The abstract clearly states this paper is 25 

testing two models with two validation datasets. However, under Model Comparisons, the discussion 26 

changes to four "predictors" without explanation how these relate to the two models or why effective 27 

leaf area index is included, as it is part of neither model. This confusion is compounded under Model 28 

Application, where the predictors are now referred to as Model G and Model E, in reference to graphs in 29 

figure 6. More consistent naming from methods through the discussion would make this easier to 30 

follow.  31 

AGREED THAT THIS IS CONFUSING AND IMPRECISE. THE FINAL VERSION WILL BE EDITED TO CLARIFY THE 32 

EXACT PREDICTORS USED IN THE ABSTRACT, METHODS, RESULTS AND DISCUSSION. 33 
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 Pyranometer validation. The spectral response of silicon-cell photodiodes is calibrated to clear sky 34 

direct sunlight conditions, because it is not sensitive to the full shortwave spectrum and responds to 35 

various wavelengths with different intensities. Leaf shading selectively blocks certain wavelengths, 36 

which causes silicon pyranometers to decalibrate. Apogee estimates that this produces roughly a 19% 37 

error under conifer canopy (https://www.apogeeinstruments.com/content/SP-100-200- specsheet.pdf, 38 

page 15). Black body thermopile pyranometers are recommended for subcanopy light measurements. 39 

They have an even spectral response across the shortwave spectrum even under leaves. I recommend 40 

the authors acknowledge this as a source of uncertainty in their discussion. 41 

 THANK YOU FOR POINTING THIS OUT. WE WILL ADD THIS SOURCE OF UNCERTAINTY TO THE 42 

DISCUSSION.  43 

Conclusions. Line 256 "While both the raster-based LPI approach and the lidar point reprojection 44 

synthetic hemispherical photograph approach achieve satisfactory model performance, the limited 45 

range of solar insolation conditions at the point locations in our study limits some of the conclusions 46 

that an be drawn." While I appreciate this study and the intent behind it, perhaps more validation data 47 

is needed? Was there insufficient information to effectively evaluate the two models? How are both 48 

approaches satisfactory 49 

 50 

 AGREED THAT "SATISFACTORY" IS NOT WELL-DEFINED AND THUS THIS STATEMENT IS NOT VERY 51 

USEFUL. WILL REWORD TO INDICATE THAT THE RESULTS MAY BE SATISFACTORY DEPENDING ON THE 52 

APPLICATION BUT MORE VALIDATION DATA IS NEEDED.  53 

 54 

SPECIFIC COMMENTS 55 

 Line 146: The dates are not given for when the pyranometers were recorded. This makes a significant 56 

difference for the models. On June 20, summer solstice, the shifted LPI and general LPI will look almost 57 

identical, but December 20, winter solstice, will look radically different. Is there a reason this is not 58 

mentioned, while the date for the Lidar is mentioned?  59 

THIS WAS AN OVERSIGHT. PYRANOMETER AND HEMIPHOTO DATA WERE COLLECTED OVER TWO WEEKS 60 

AROUND THE SUMMER SOLSTICE IN 2015. THIS INFORMATION WILL BE ADDED TO THE METHODS. 61 

 Line 251: Table 3 linear regression slope and intercept. I think this can be removed without loss to the 62 

paper.  63 

THIS IS INCLUDED FOR COMPLETENESS SAKE AND BECAUSE CERTAIN SCATTER PLOTS IN FIGURE 6 (eg. G 64 

AND H MIGHT BE DIFFICULT TO INTERPRET WITHOUT THE INCLUSION OF A 1:1 LINE) 65 

 Line 269: Models should agree better in areas without shading. I am not sure how this is a conclusion. 66 

While true, the whole point of these models is to tackle the uncertainty of heavily shaded landscapes.  67 
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THAT SENTENCE WILL BE REMOVED 68 

 Line 271: small registration errors. Recommend identifying which model this is an error for. Relevant for 69 

synthetic photo, but not for raster. 70 

 AGREED. WILL INCLUDE IN REVISED VERSION  71 

Line 281: understory vegetation. This is actually an argument against the directions this paper 72 

recommends on Line 335 regarding ray tracing. Note the raster approach was developed with this issue 73 

as one of the problems it was solving in its design.  74 

GOOD OBSERVATION AND AGREED. WILL REMOVE RAY TRACING FROM THE CONCLUSION EXCEPT TO 75 

NOTE THAT FURTHER RESEARCH IS NEEDED. 76 

 Line 294: "Model G and Model E (figure 6) performed the best..." This statement is unclear. How are 77 

plots models? What criteria states that they performed the best? Their performance and the 78 

performance of the hemispherical photos all seem within error of each other. Is this incorrect?  79 

THIS CONCLUSION WAS BASED ON THE COEFFICIENT OF DETERMINATION. WE ARE CONSIDERING THE 80 

SIMPLE LINEAR REGRESSION AS THE MODEL. 81 

 Line 337: "The results of this study suggest that refined ray-tracing approaches should not require 82 

calibration." I do not see this statement supported by the paper. Both models used in this study did not 83 

perform point cloud ray tracing. That is their strength. Musselman and Lee (referenced in introduction) 84 

used voxel ray-tracing. Both required calibration.  85 

AGREED. THIS SENTENCE WILL BE REMOVED AND RAY TRACING WILL BE REMOVED FROM CONCLUSION 86 

EXCEPT FOR SHORT STATEMENT ON FURTHER RESEARCH.  87 

 88 

RESPONSE TO REVIEWER 2 89 

I appreciate very much that the authors provide their data and analysis (as is HESS standard now). While 90 

I could easily follow the general setup of the study, I found it difficult to grasp the information residing in 91 

the Lidar data set and how it has been used. Since the latter is not included in the repository: Did I 92 

understand correctly that the Lidar data was commercially acquired and preprocessed to 1m pixels? So 93 

each pixel has values about all point returns, the number of highest hits (canopy) and the number of 94 

lowest hits (ground)?  95 

THE LIDAR WAS PRE-PROCESSED BY THE VENDOR INTO 1 M PIXELS CONTAINING HIGHEST ELEVATION 96 

AND GROUND MODEL. THE AUTHORS CREATED ADDITIONAL RASTERS USING THE RAW LIDAR POINTS IN 97 

ORDER TO DETERMINE NUMBER OF CANOPY HITS AND GROUND HITS PER 1 M PIXEL  98 

Please be more specific about the calculation methods than naming the Software ArcGIS. I suppose this 99 

is an array operation which could be done in R (or any other math software) too. Which approaches did 100 
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you employ? What can be understood about the "10m Buffer around the field points" (L187) and how 101 

does it differ to the "shifted square buffer" (L188f.)?  102 

THESE CALCULATIONS COULD BE PERFORMED IN R OR ANY OTHER SOFTWARE BUT IT IS QUITE SIMPLE 103 

TO DO IN ARCGIS. THE SPECIFIC OPERATIONS INCLUDED USING THE BUFFER TOOL AND SUMMING THE 104 

NUMBER OF CANOPY AND GROUND POINTS QUANTIFIED IN THE VALUE FIELD OF THE RASTER USING 105 

THE ZONAL STATISTICS TOOL. THE SHIFT CALCULATION WAS PERFORMED IN THE SAME WAY AFTER 106 

USING THE EDITOR TOOL AND MOVE COMMAND TO SHIFT THE POINTS SOUTH BY 3.42 M. THE FINAL 107 

VERSION WILL BE EDITED TO INCLUDE THIS SPECIFIC INFORMATION.  108 

Did you average within this area for comparison?  109 

WE SUMMED THE VALUES AS DESCRIBED ABOVE.  110 

What are the effects on the performance of the estimates. Especially with regards to the issue of 111 

"registration errors" L277ff. would this mean that a higher resolution could be more accurate or in other 112 

words that the hemispherical photographs suffer from minor shading effects to become representative 113 

at stand scale?  114 

YES, THIS IS VALID CONCLUSION FROM THESE RESULTS. 115 

 116 

 For a validation of the Lidar-derived solar insolation there is basically the correlation plot in Fig. 8 117 

comparing it to pyranometer measurements. To me this does not appear very convincing to support the 118 

conclusion. By not allowing for an intercept in your linear regression model, you define the bias-term to 119 

be zero. While this is an understandable desire in comparing two measurements which should give the 120 

same results, I do not understand your statement in L298f.  121 

AGREED THAT THIS IS NOT WELL STATED. THE INTENTION WAS TO BE ABLE TO PREDICT INSOLATION 122 

WITH A MODEL THAT WOULD ESTIMATE INSOLATION TO BE ZERO IN AREAS WHERE NO CANOPY POINTS 123 

WERE PRESENT. THIS WILL BE CLARIFIED IN REVISION  124 

 125 

The 16 points appear to overestimate the pyranometer references in most cases. High insolation 126 

references are underestimated. With an R2 of 0.63, I find it rather problematic to speak of accurate: 127 

L329f. "a synthetic hemispherical photograph approach accurately predict solar insolation and light 128 

transmittance". 129 

 130 

WE STRUGGLE WITH DESIGNATING A THRESHOLD FOR ACCURACY, BUT AGREE THAT THIS IS NOT VERY 131 

PRECISE TO DECLARE THIS ACCURATE WITHOUT A THRESHOLD. WILL REWORD TO SUGGEST THAT IT 132 

MAY BE ACCURATE DEPENDING ON APPLICATION. 133 
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 In this respect, I moreover have difficulties to relate this back to the presented indices which leaves me 134 

with a couple of questions about the reason of their introduction in the first place. This confusion might 135 

partially stem from the mannifold usage of the term "model" in the manuscript. I would suggest to allow 136 

for a more precise terminology to differentiate regression analyses from conversion models, from 137 

indices and from spatial map models. From the title I was expecting several modelling approaches using 138 

the Lidar data, which I did not find in the manuscript.  139 

REVIEWER 1 HAD A SIMILAR CRITICISM AND WE WILL REVISE TO INDICATE WHAT WE MEAN BY MODEL.  140 

Coming back to the indices (Fig. 6, Tab. 3) I do not find the focus of the study specifically suitable to 141 

address these correlations.  142 

YOUR CRITICISM IS NOT SUFFICIENTLY DETAILED FOR ME TO RESPOND IN DETAIL. I WILL SIMPLY SAY 143 

THAT THE CORRELATIONS IN MY OPINION ARE SUITABLE AS THE OBJECTIVE OF THE STUDY IS TO 144 

EVALUATE THE DIFFERENT METHODS COMPARED TO FIELD DATA. 145 

 Contrastingly, the comparison of synthetic and actual hemispherical photograph (Fig. 7) is very 146 

compelling but falls in my view a little short in its analysis and evaluation (e.g. applying this for all 16 147 

locations). Since the validation of the "Lidar-based modelling" is rather difficult using the 16 148 

measurements alone, maybe some further reference could be derived from remote sensing products? 149 

This could also provide the link to some of the addressed indices?  150 

I’M NOT SURE WHAT SPECIFICALLY YOU ARE PROPOSING. WE ARE PRESENTING THIS WORK TO STAND 151 

ALONE AND CANNOT AT THIS TIME EXPAND THE SCOPE.  152 

2 Minor comments: L28f.: why only ecological applications?  153 

THE SCOPE OF THIS STUDY IS FOCUSED ON ECOLOGICAL APPLICATIONS.  154 

L29: do trees really interact (so having feedbacks) with solar radiation?  155 

I WOULD ARGUE THAT TREES INTERACT WITH PHOTONS THROUGH REFLECTION, TRANSMITTANCE, AND 156 

ABSORPTION. SHADING IS A COMBINATION OF THESE THREE EFFECTS.  157 

L36: can (solar) energy intercept with something? maybe irradiate a stream?  158 

WILL CHANGE TO IRRADIATE  159 

L37: how does solar irradiation limit options for forest management? I do not understand.  160 

THE REST OF THE PARAGRAPH EXPLAINS THIS, CULMINATING IN THE FINAL SENTENCE WHICH ANSWERS 161 

YOUR QUESTION  162 

L48ff.: is it really necessary to describe the function of a pyranometer (at this broad level of detail)? 163 

 I DON’T THINK IT DETRACTS FROM THE PAPER. SINCE THIS IS A HYDROLOGY JOURNAL I WANT THE 164 

TECHNICAL INFORMATION TO BE WELL EXPLAINED. 165 
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 L53: I do not see the difference between the time references of a direct state measurement and the 166 

photograph  167 

IT IS IN THE DIRECT VS INDIRECT MEASUREMENT. THE DIRECT MEASUREMENT IS DEPENDENT ON THE 168 

ANGLE OF THE SUN WHILE THE INDIRECT MEASUREMENT IS NOT  169 

L56: Depending on the type of pyranometer, diffuse radiation is directly measured too.  170 

THIS IS REFERRING TO HEMISPHERICAL PHOTOGRAPHS 171 

 L67: Start new paragraph with "Airborne lidar..." ?  172 

I SEE HOW IT COULD BE GOOD TO START A NEW PARAGRAPH THERE BUT THAT WOULD LEAD TO TWO 173 

VERY SHORT PARAGRAPHS AND PREFER IT AS IS.  174 

L113f.: very confusing. please rephrase.  175 

I’M NOT SURE WHAT IS CONFUSING. THE CITATION TO THE ORIGINAL PAPER IS ALSO THERE TO HELP 176 

READERS IF THEY ARE CONFUSED.  177 

Fig 1: I would prefer all four Lidar models/maps instead of the grey box, which I assume to be the total 178 

Lidar dataset footprint. If you find my suggestion feasible, maybe a map of a satellite RS derived index 179 

could also be a reference here. A colourbar would be nice.  180 

IT WOULD BE DIFFICULT TO FIT ALL FOUR MAPS IN THIS FIGURE WITHOUT MAKING THEM EXTREMELY 181 

SMALL. THE GREY FOOTPRINT AND EXPLANATION OF THE COLORING IS IN THE CAPTION. 182 

 L200f.: What happened to the longitudinal profiles? Were they processed?  183 

YES, THOSE ARE IN FIGURE 10.  184 

L215: See general comment. Which exactly are THE models? do you refer to the different indices? the 185 

calculus to derive them? a model to generate the synthetic hemispherical what are the assumptions 186 

behind the comparison approach? What is the observation reference deemed as closest to the true 187 

value?  188 

SEE COMMENT ABOVE. WILL REVISE TO MAKE THIS MORE CLEAR.  189 

L257: model performance? in reference to what? Is a R2 to each other really a good measure? 190 

 AGREED. IT IS A POINT THAT REVIEWER 1 ALSO BROUGHT UP AND WILL BE EDITED TO REMOVE 191 

SATISFACTORY AND CLARIFY THAT R2 IS THE METHOD OF EVALUATION AND DISCUSS THE LIMITS OF THE 192 

USE OF THAT STATISTIC.  193 

L277ff.: I do not understand why this should not be desirable... actually, i find the results in fig 7 quite 194 

convincing and the sensitivity ght be quite an interesting feature. Pls. see my general comment on this, 195 

too.  196 
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IT IS UNDESIRABLE BECAUSE IT MAKES IT DIFFICULT TO EVALUATE THE ACCURACY OF THE MODELS. THIS 197 

WILL HOPEFULLY BE MORE CLEAR WHEN THE MODEL LANGUAGE IS REVISED.  198 

 199 

RESPONSE TO REVIEWER 3 200 

The authors present an interesting study that compares two LiDAR based techniques (i.e., a raster-based 201 

method and a synthetic hemispherical photograph approach) for estimating under canopy solar 202 

insolation, which is an important variable for predicting stream temperature dynamics. They conduct 203 

their study for sites on the heavily forested Panther Creek and its tributary located in Oregon, USA While 204 

I am generally supportive of the merits of the study the authors present, I believe they could be more 205 

precise in their language and provide more connecting details about the methods used so that their 206 

work can be replicated and advanced. I also have some specific concerns about the methods in the 207 

models. Additionally, throughout the paper, there is an emphasis on the ecological implications of this 208 

work. However, stream temperature also has important implications for various biogeochemical 209 

processes. The work the authors present may be of interest to other research domains so I would 210 

recommend that the authors broaden their discussion to encompass them. I have provided some 211 

general comments and suggestions that I hope the authors will consider incorporating into their paper 212 

to address the problems I have enumerated.  213 

General Comments 1. While the authors indicate that they used two LiDAR based approaches/models 214 

for estimating solar insolation, midway through the paper, they introduce the new term “predictors” 215 

and then switch back to models (Line 294). This is confusing. I would suggest that the authors select one 216 

term and consistently use it throughout the paper. I would actually recommend sticking to predictor 217 

since they are essentially correlating various shading surrogate indexes with measurements of solar 218 

insolation. I also think it will be good introduce the specific predictors used under each approach (i.e., 219 

raster & synthetic hemispheric photograph approaches) at the beginning of the paper so that their 220 

introduction later in the paper is not so abrupt. Under raster-based predictors they could introduce LPI, 221 

SLPI, and LAI and then introduce %Transmittance for hemispheric photograph approach. They could also 222 

discuss why they are good/suggested predictors for solar insolation citing references.  223 

THIS IS SIMILAR TO COMMENTS MADE BY REVIEWER 1 AND 2. YOUR SPECIFIC RECOMMENDATIONS ARE 224 

WELL RECEIVED AND WILL BE INCORPORATED INTO THE REVISED MANUSCRIPT. 225 

 2. The authors conclude that the limitation of their study was the lack of more monitoring points with 226 

large insolation values and that inclusion of more of these points would have increased the model 227 

accuracy (Line 266), but the point of their study was to derive approaches for estimating solar insolation 228 

for streams with heavily forested riparian zones. This is in practice the areas where insolation estimation 229 

uncertainty is greatest. My recommendation is to make this their focus and perhaps remove the points 230 

with higher insolation values from their regression.  231 

AGREE WITH THE GENERAL SENTIMENT OF THIS COMMENT. THE WORDING WAS INTENDED TO 232 

INDICATE THAT IT WOULD HAVE BEEN EASY FOR US TO CHOOSE LOCATIONS WITH LOW CANOPY COVER 233 
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TO INCREASE THE ACCURACY OF THE MODEL, BUT THAT WOULD HAVE NOT BEEN PARTICULARLY 234 

USEFUL. WE WILL REWORD THIS SECTION TO MAKE IT SEEM LESS LIKE A LIMITATION AND MORE A 235 

RESULT THAT SHOULD STAND ON ITS OWN. NOTE THAT THE POINTS WITH HIGHEST %TRANSMITTANCE 236 

ONLY HAD 35% SO WE DON’T THINK IT’S NECESSARY TO REMOVE THOSE AS THEY AREN’T 237 

PARTICULARLY HIGH. WETHINK THE ISSUE IS MORE THAT WE WERE NOT ABLE TO CAPTURE ENOUGH 238 

POINTS IN THE 15% TO 35% RANGE.  239 

3. Throughout the paper, the authors use the word “significant” to describe differences between values 240 

conjuring up an image of statistical significance. I would recommend that the authors state the actual 241 

numerical differences or use other words.  242 

AGREE AND THIS IS SIMILAR TO FEEDBACK GIVEN BY REVIEWER 1 AND 2.  243 

4.  244 

While the connection between solar insolation is self-apparent. I would recommend making that 245 

connection more explicit in the paper. You could say something along the lines of “Solar radiation is a 246 

major source heat flux into streams providing up to y% of heat fluxes” and the then cite a reference.  247 

AGREE AND WILL ADD IN SIMILAR WORDING. 248 

5. For the synthetic hemispherical photographs, what resolution was used for the hemisphere? Did it 249 

match the field photographs? If different, what are the implications of the differences for the authors 250 

analysis. I think the comparison of these too and the reasons why they might differ is an important 251 

contribution.  252 

IT’S A BIT DIFFICULT TO COMPARE AS THE SYNTHETIC PHOTOGRAPHS ARE CREATED USING POINTS THAT 253 

ARE RENDERED WITH A RELATIVELY LARGE "DOT" SIZE COMPARED TO THE INDIVIDUAL PIXELS OF THE 254 

CAMERA. THE "DOT" SIZE WAS DETERMINED BY THE MOESER ET AL (2014) ALGORITHM. THE INTENTION 255 

IS FOR THE READER TO USE FIGURE 7 TO JUDGE THESE DIFFERENCES. WE ARE NOT SURE HOW 256 

DIFFERENCES IN RESOLUTION WOULD AFFECT THE ANALYSIS.  257 

Specific Comments 1. Line 16 – “due to the importance of temperature to aquatic biota”. This makes it 258 

sound like aquatic biota is the only reason why quantifying solar insolation is important. Consider 259 

revising to broaden its implications.  260 

IT WAS OUR MAIN MOTIVATION FOR EMBARKING ON THIS STUDY, BUT IT DOES LIMIT ITS 261 

IMPLICATIONS. WILL CHANGE TO "USEFUL FOR A VARIETY OF APPLICATIONS, AND A SPECIFIC FOCUS OF 262 

THIS STUDY IS THE IMPORTANCE OF STREAM TEMPERATURE TO AQUATIC BIOTA.  263 

2. Line 17-19: I suggest changing “two approaches. . .” to something like “four predictor indexes 264 

computed using two approaches for estimate shading effects from LiDAR” or something along these 265 

lines. The larger point is that it is important to be precise in describing what was actually done.  266 

AGREED. WE WILL MAKE THIS CHANGE. 267 



9 
 

 3. Line 28 “is essential to a diversity of ecological. . .” Again, I think you can broaden this.  268 

WILL ADD ANOTHER SENTENCE TO BROADEN THE SCOPE BEFORE FOCUSING ON ECOLOGICAL 269 

APPLICATIONS.  270 

4. Line 36 “solar energy intercepting a stream. . .” Consider revising to “solar energy irradiating a 271 

stream”  272 

SAME COMMENT WAS MADE BY REVIEWER 2 AND IT WILL BE CHANGED. 5. 273 

 Line 36-37 “can in turn limit options for forest management”. Could the authors explain how increasing 274 

temperatures limit options for forest management? I am not sure this is true.  275 

A SIMILAR COMMENT WAS MADE BY REVIEWER 2. UPON FURTHER REFLECTION WE SEE HOW THIS 276 

SENTENCE IS CONFUSING AND WILL EDIT IT TO MAKE THE CONNECTION BETWEEN STREAM 277 

TEMPERATURES AND THE REQUIREMENT TO KEEP UNHARVESTABLE BUFFERS NEAR STREAMS  278 

6. Line 45-46 “models may be needed...” I would argue that this is actually often the approach that is 279 

used and is not a new insight so please consider revising to "models are therefore often employed to 280 

estimate temperature"  281 

GOOD POINT. WILL CHANGE TO ADOPT THAT LANGUAGE  282 

7. Line 57: “solar output” consider revising to extra-terrestrial solar radiation.  283 

WILL CHANGE. THANKS!  284 

8. Line 60: “All ground-based. . .” Sounds a little too strong. Consider removing "All".  285 

AGREED. WILL CHANGE  286 

9. Line 78-79. “GIS software solar radiation calculators. . .” Consider revising to “Solar radiation 287 

calculators in GIS software”  288 

GOOD EDIT. WILL CHANGE.  289 

10. Line 80-82. I think you are missing some words somewhere. Please rephrase for clarity. E.g., “r.sun 290 

solar insolation model for the GRASS GIS software. . .” 291 

 AGREED THAT THIS IS PHRASED POORLY. WILL REWORD.  292 

11. Line 89: What are Ellenburg indicator values? While ecologist might be familiar with them, I think it 293 

will be good to explain.  294 

WILL ADD A SHORT DESCRIPTION.  295 

12. Line 169 Figure 4: Does the y axis name need to be solar irradiance for consistency? GOOD CATCH. 296 

WILL CHANGE.  297 
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13. Line 195-197: I am not sure why this sentence is part of the paper. I feel it is unnecessary. Please 298 

consider removing.  299 

THE METHOD THAT WE USED BASED ON BODE ET AL (2014) USED THIS TOPOGRAPHIC CORRECTION 300 

AND WE WANTED TO EXPLAIN WHY WE DID NOT FOLLOW THEIR METHOD COMPLETELY.  301 

14. Line 198-199: Are the authors able to delve more into the details of the creation of these synthetic 302 

photos? 303 

 THE CODE USED TO CREATE THESE WAS SHARED WITH PERMISSION BY DAVE MOESER AND WOULD 304 

REFER YOU TO HIM FOR FURTHER DETAIL.  305 

15. Line 222. “significantly improved” remove significantly for the reasons I raised earlier.  306 

AGREED 307 

 16. Line 278: Please remove the word "significant". for the same reasons as before.  308 

AGREED 309 

 17. Line 298-299: I am not sure I am comfortable removing the intercept and saying the resulting model 310 

has little bias. By removing the intercept, the authors are making the RË ˛E2 value no longer useful.  311 

THE INTERCEPT WAS REMOVED SO THAT PIXELS WITH NO CANOPY POINTS WOULD YIELD A PREDICTED 312 

VALUE OF 0. WILL MAKE THIS REASONING EXPLICIT IN THE REVISED VERSION.  313 

18. Line 311 & Figure 9: Please consider adding an inset that zooms to one of the monitoring points.  314 

WE ARE NOT SURE WHAT YOU MEAN BY MONITORING POINTS. ARE YOU SUGGESTING AN INSET 315 

SIMILAR TO FIGURE 1? IF SO, WE DON’T THINK A SIMILAR INSET WOULD BE PARTICULARLY USEFUL FOR 316 

INTERPRETATION OF FIGURE  317 

9. 19. Line 337-340: The authors pivots to ray tracing. However, the methods they use does not include 318 

any ray tracing. 319 

 THIS POINT WAS BROUGHT UP BY REVIEWER 1 AND WE AGREE THAT IT DOES NOT BELONG. IT WILL BE 320 

EDITED TO INCLUDE ONLY A SHORT REFERENCE TO RAY TRACING AS A POTENTIAL AVENUE OF FUTURE 321 

RESEARCH  322 

 323 

 324 

  325 Formatted: Left
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Abstract 340 

Methods to quantify solar insolation in riparian landscapes are needed due to the importance of stream 341 

temperature to aquatic biota. We have tested two three lidar predictors using approachestwo 342 

approaches developed for other applications of estimating solar insolation from airborne lidar using 343 

field data collected in a heavily forested narrow stream in western Oregon, USA.  We show that a raster 344 

methodology based on the light penetration index (LPI) and a synthetic hemispherical photograph 345 
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approach both accurately predict solar insolation, explaining more than 73% or the variability observed 346 

in pyranometers placed in the stream channel. We apply the LPI based model to predict solar insolation 347 

for an entire riparian system, and demonstrate that no field-based calibration is necessary to produce 348 

unbiased prediction of solar insolation using airborne lidar alone. 349 

A. Introduction 350 

 351 

Accurately quantifying solar insolation, defined as the amount of solar radiation incident on a specific 352 

point on the Earth’s surface for a given period of time, is important to many fields of study such as solar 353 

energy, glacier dynamics, and climate modeling. In this study, we focus on the importance of solar 354 

insolation for is essential to a diversity of ecological applications. In forested ecosystems, trees interact 355 

with solar radiation through shading, and thus solar insolation at fine spatial scales in these systems can 356 

vary widely. Understanding the heterogeneous patterns of insolation below tree canopies has been 357 

important for numerous applications, such as understanding the importance of sunflecks for understory 358 

photosynthesis, gaining insight into the patterns of seedling regeneration in dense forests (Nicotra et al., 359 

1999), and explaining patterns of snowmelt (Hock, 2003) and soil moisture (Breshears et al., 1997). 360 

The relationship between stream temperature and solar insolation is of particular interest in this study, 361 

as high amounts of solar energy intercepting irradiating a stream can cause adverse ecological effects 362 

due to directly increasing the temperature of the streams. , which can in turn limit options for forest 363 

management near streams. In northwestern North America, a large amount of research has focused on 364 

the relationship between forest practices, stream temperature, and the corresponding effect on river 365 

salmonid fishes (Holtby, 1988;Leinenbach et al., 2013;Moore et al., 2005a;Moore et al., 2005b).  Direct 366 

measurement of stream temperature with in-stream thermographs can be used to quantify thermal 367 

diversity (Torgersen et al., 2012;Torgersen et al., 2007), but ground-based measurements are time 368 
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consuming, expensive, and impractical for large areas. In addition, stream temperature measurements 369 

can only show the effect of forest management practices if taken before and after trees are removed. In 370 

order to predict the potential effect of forest management practices on stream temperature, models 371 

may are often employed to be needed to estimate the amount of solar insolation  372 

interceptingirradiating streams using remotely sensed data (Forney et al. 2013).  373 

Several different methods have been utilized for measuring or predicting solar insolation on the ground. 374 

Pyranometers are the most direct method for measuring insolation, capturing the solar radiation flux 375 

density above a hemisphere as an electrical signal and cataloguing those signals in a datalogger (Kerr et 376 

al., 1967). Once calibrated, these signals give a measure of the total direct and diffuse solar radiation 377 

intercepting irradiating  a point for a given period of time (Bode et al., 2014;Forney et al., 378 

2013;Musselman et al., 2015). While pyranometers give direct measurement of solar insolation for a 379 

defined period of time, hemipshperical photographs allow indirect estimation of solar insolation for any 380 

point in time (Bode et al., 2014;Breshears et al., 1997;Rich et al., 1994). Plotting the path of the sun in 381 

the area of sky captured by the hemispherical photograph allows for calculation of direct solar radiation 382 

through identified canopy gaps, while gap fraction across the entire hemisphere allows for calculation of 383 

diffuse radiation. Analysis of hemispherical photographs requires assumptions of solar outputextra-384 

terrestrial solar radiation and sky conditions in order to produce solar insolation estimates. Understory 385 

light conditions can also be modeled by creating a three-dimensional reconstruction of a forest from 386 

field-based biophysical measurements (Ameztegui et al., 2012) or terrestrial laser scanning (Ni-Meister 387 

et al., 2008). All gGround-based measurements are limited by the time and cost required to collect data, 388 

and thus solar insolation can only be calculated for relatively small spatial extents. 389 

Airborne and satellite remote sensing methods provide a means for estimating solar insolation over 390 

large spatial extents. Satellite-based methods utilizing passive remote sensing data can provide coarse-391 
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scale estimates of solar radiation absorbed by tree canopies through radiative transfer models based on 392 

spectral indices  (Field et al., 1995;Asrar et al., 1992), but these methods are not suitable for fine-scale 393 

application such as modeling stream temperature. Airborne lidar is the preferred method for 394 

characterizing three-dimensional structure of forest canopies, and thus is also used to assess the 395 

shading effect of those canopies. Below we discuss three different approaches that have been used in 396 

previous studies to quantify solar insolation at ground level using aerial lidar. 397 

Raster Approaches 398 

Lidar data can be used to create raster datasets by selecting various attributes of lidar points within a 399 

defined spatial neighborhood around a raster cell. One of the most common raster products for 400 

assessing canopy structure is the light penetration index (LPI), the ratio of ground first return points 401 

(typically less than 2 m in elevation above ground) to the total number of lidar first return points within 402 

a given raster cell. This ratio has been shown to be useful for characterizing light extinction in canopies 403 

according to the Beer-Lambert law (Richardson et al., 2009) and thus has been explored as a predictor of 404 

understory light conditions (Musselman et al., 2013;Alexander et al., 2013;Bode et al., 2014). Solar 405 

radiation calculators in GIS software GIS software solar radiation calculators can also be used to 406 

compute solar insolation on a lidar-derived digital elevation model (DEM). Bode et al. (2014) combined a 407 

GRASS r.sun solar insolation estimation r.sun solar insolation model for the GRASS GIS software based 408 

on a DEM with LPI to produce estimates of ground level solar insolation that showed high accuracy 409 

compared to pyranometer-collected field data in a mixed forest in Northern California, USA.  410 

Lidar Point Reprojection 411 

Lidar point returns can be reprojected from the X,Y,Z Cartesian coordinate system in which they are 412 

most often delivered by a vendor into a spherical coordinate system which centers the point cloud 413 

around a specific location on the ground. This reprojection allows for a circular graph of the lidar point 414 
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returns to be created around a point at ground level. Alexander et al. (2013) created a canopy closure 415 

metric from these projected point graphs based on gap fraction, and found that this metric was 416 

correlated to Ellenburg indicator values (which relate plants to their ecological niche along an 417 

environmental gradient) of understory light availability. Moeser et al. (2014) created synthetic 418 

hemispherical photographs from reprojected lidar returns, and solar irradiance at ground level was 419 

calculated using traditional hemispherical photograph analysis software.  The processed synthetic 420 

hemispherical photographs showed good correlation to pyranometer measured solar irradiance at three 421 

field sites in eastern Switzerland. 422 

Point Cloud Approaches 423 

Because lidar point clouds are typically represented in a three-dimensional Cartesian coordinate system, 424 

it is possible to model the sun’s position in relation to that three-dimensional space.  The number of 425 

lidar returns that are reflected from a defined volume between the direction of the sun and the ground 426 

can then be calculated. These methods are computationally intensive, but have shown promise for 427 

providing the most direct measure of understory light availability. Lee et al. (2008) calculated the 428 

number of points within a conical field of view directed at the sun’s location and created a model to 429 

relate this to ceptometer measurements of photosynthetically active understory solar radiation at 430 

specific times and locations in a pine forest in northern Florida, USA.  This method is limited by its 431 

reliance on raw lidar point counts specific to the actual and relative point densities within their lidar 432 

acquisition. Raw point counts are affected by both changes in flight characteristics between missions, 433 

and the patterns of flight line overlap within a mission. A different point cloud approach involves a linear 434 

tracing of the sun’s rays along their path to the ground, and Martens et al. (2000) demonstrated how a 435 

ray-tracing algorithm could be used to characterize understory light conditions in a computer simulated 436 

forest. Peng et al. (2014) combined a lidar-based ray tracing algorithm with field-collected canopy base 437 



16 
 

heights to produce an estimate of understory solar insolation based on the Beer-Lambert law that 438 

compared well to field-collected pyranometer data but is limited in practical application because of its 439 

reliance on field- measured data in its model.  Musselman et al. (2013) used a ray-tracing algorithm to 440 

produce highly detailed estimates of direct beam solar transmittance in 5-minute increments by 441 

voxelizing the lidar data and summing the number of voxels that a ray intercepted between the point of 442 

origin and the sun. The algorithm relied on site specific pyranometer measurements to calibrate and 443 

adjust the beam transmittance, and therefore we were restricted from testing this method in this study. 444 

Our objectives were to test the accuracy and precision of established methods of quantifying solar 445 

insolation from aerial lidar within areas of narrow, heavily forested streams. We utilized the two raster 446 

approaches and the one lidar point reprojection approach, two three methodologies that had not been 447 

previously applied and tested using high quality field data collected in heavily forested streams. We 448 

evaluated the two three methods methodologies using simple linear regressions that compared lidar 449 

derived metrics tousing simple linear regressions that compared lidar derived metrics to field-based 450 

pyranometer measurements of solar insolation and hemispherical photograph-based measures of shade 451 

in Western Oregon, USA. Further, we sought to apply this method to quantify solar insolation 452 

throughout a small headwater stream network. 453 

 454 

B. Methods 455 

Study Site  456 

All field locations were located within the wetted channel of Panther Creek and a tributary (Figure 1) in 457 

narrow streams (1-6 m in width) located in the east side of the Coast Range of Oregon, USA within a 458 

larger research area in which lidar has been used to quantify forest canopy structure (Flewelling and 459 

McFadden, 2011). All field sites were within a mature Douglas-fir (Pseudotsuga menziesii) forest, with 460 
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other dominant trees including red alder (Alnus rubra), Western red-cedar (Thuja plicata), and Western 461 

hemlock (Tsuga heterophylla). The elevation profile and description of the stream can be found in 462 

(Richardson and Moskal, 2014). The center of the channel was manually digitized as a polyline in ArcGIS 463 

using a combination of aerial imagery and the vendor-provided lidar DEM. 464 

Four transects were installed in late June 2015 using a Leica Builder Total Station and georeferenced 465 

using a Javad Maxor GPS unit. The locations of the transects can be seen in Figure 1, with the 19 point 466 

locations used for capturing field data denoted by black dots surrounded by white circles (A contains 3 467 

points, B and C contain 4 points, and D contains 8 points). Transect locations were chosen manually in 468 

order to maximize variability in forest shade while allowing for safe access by the field crew.  Each point 469 

location was located within the stream channel and marked by driving rebar into the substrate until only 470 

1 m was exposed above the water surface. Point locations were approximately 15 m apart within a 471 

transect in order to allow data from multiple point locations to be collected by a single datalogger.  472 

Two datasets were collected at each point location during the last two weeks of June in 2015. A 473 

hemispherical photograph was collected using a Nikon CoolPix 4500 digital camera leveled on a tripod 1 474 

m above the ground under uniform sky condition (Figure 2) utilizing a method to find the optimum light 475 

exposure (Zhang et al., 2005). Each hemispherical photograph was analyzed using the Gap Light Analyzer 476 

(GLA) program (Frazer et al., 1999) in order to produce estimates of percent transmittance for diffuse 477 

and direct sunlight. An Apogee Instruments SP-110 self-powered silicon-cell pyranometer, leveled and 478 

mounted to the rebar pole at 1 m height (Figure 3) was used to collect a full day’s solar output at each 479 

point location using the datalogger. The raw voltage values collected by the datalogger were calibrated 480 

to solar irradiance using the closest publicly available meteorological data. All pyranometer datasets 481 

were collected on cloudless days, except for transect A, and pyranometer data from transect A was not 482 

used in this study. The calibrated pyranometer data from a point location from transect D is shown in 483 
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Figure 4. Note that the silicon-cell photodiodes, such as the SP-110 can, produce erroneous readings 484 

under conifer canopies. A black body thermopile pyranometer would have been more appropriate for 485 

this study but was not available to the authors.  486 

 487 

 488 

Figure 1: Study area in northwestern Oregon (USA). The grey polygon is the extent of the 2015 lidar 489 

acquisition. The black circles surrounded by white circles represent the 19 point locations. The letters A, 490 

B, C, and D denote the four transects. The inset shows transect D and the background raster in the inset 491 

is the lidar derived canopy height model with green representing tall trees and purple representing the 492 

lowest heights. The direction of flow is from west to east. 493 
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 494 

 495 

Figure 2: Example of hemispherical photograph acquisition at a plot location in transect D.  496 

 497 



20 
 

Figure 3: Example of pyranometer installation at transect D (note that pyranometer is mounted on south 498 

side of pole at a height of 1 m). 499 

 500 

 501 
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502 

Figure 4: Daily pyranometer output from sunset to sundown for a plot in Transect D 503 

Lidar Data and Analysis 504 

Airborne discrete-return lidar was acquired in June of 2015 according to the specifications described in 505 

Table 1. The vendor provided processed discrete lidar point returns as well as a lidar DEM and highest 506 

hit model at a pixel resolution of 1 m. The highest hit model was subtracted from the DEM to create a 507 

canopy height model (CHM) describing the vegetation height normalized to the ground surface. In 508 

addition, Fusion (McGaughey, 2009)  was used to subtract the elevations of the raw lidar points from 509 

the ground elevation in the DEM to produce a normalized point cloud dataset (NPCD). Note that the 510 

perspective of the lidar analyses is in reference to ground height while the field data were collected at 1 511 

m above the ground. While this is a small difference, it could be a source of error in comparisons, 512 

especially at low solar angles. 513 

 514 
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Table 1: Lidar Data Specifications 515 

Acquisition Date June 18, 2015 

Sensor Leica ALS80 

Survey Altitude 1,400 m 

Pulse Rate 394.8 kHz 

Field of View 30 degrees 

Mean Pulse Density 25.35 pulses/m2 

Overlap 100% with 65% sidelap 

Relative Accuracy 4 cm 

Vertical Accuracy 5 cm 

 516 

 517 

Effective Leaf Area Index (Le) was computed using the NPCD according to the method in Richardson et 518 

al. (2009) :  519 

𝐿𝑒 = − 
1

𝑘
 ln (𝑅𝑔/𝑅𝑡 ) 520 

Where k is the extinction coefficient equal to 2, Rg is the number of first ground returns and Rt is the 521 

number of total first returns. LPI was computed as: 522 

𝐿𝑃𝐼 =   (𝑅𝑔/𝑅𝑡) 523 

LPI  was computed in ArcGIS using a circular buffer with radius 10 m around each field point location 524 

mirroring the radius used in Richardson et al. (2009) . LPI was also computed using a shifted square 525 

buffer modified from the method of Bode et al. (2014) where the buffer side length (s) was calculated 526 

based on:  527 
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𝑠 =
ℎ

tan 𝜃
 528 

Where h is equal to the modal tree height across all our plots (34 m), and θ is equal to the maximum 529 

lidar scan angle subtracted from 90° (75°), resulting in a buffer side length of 9.12 m. The square buffer 530 

was shifted south to account for the seasonal solar angle in the northern hemisphere according to: 531 

𝑠ℎ𝑖𝑓𝑡 = (
𝑠

1 + cos 𝜎
) − s 532 

Where 𝜎 is equivalent to the solar angle at noon on the date of interest. A solar angle of 68° was used 533 

in this study, resulting in a southern shift of 3.42 m.  The buffer tool, zonal statistics tool, and move 534 

command were used to achieve the shift in ArcGIS.  We also computed topographically influenced solar 535 

radiation using the lidar DEM and the solar radiation function in ArcGIS, but found that there was no 536 

significant difference across the plot locations and thus did not use these results in subsequent analysis. 537 

LPI and shifted LPI 538 

Synthetic hemiphotos were created in Matlab using the method of Moeser et al. (2014) and analyzed for 539 

diffuse and direct light transmittance in GLA. All statistical analyses were performed in R (version 3.4).  540 

Longitudinal profiles of stream shading were created in ArcGIS in 1-m increments based on the 541 

intersections of the stream polyline centerline with the raster output of modeled solar insolation.  542 

C. Results and Discussion 543 

Comparison between Pyranometers and Hemispherical Photographs 544 

Figure 5 shows the correlation between field-collected pyranometer data and processed hemispherical 545 

photographs, with data from transect A removed.  These data are highly correlated (r2 = 0.87), but these 546 

data are also not equally distributed across a range of solar insolation. Many more plot locations were at 547 
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low levels of solar insolation than in areas of relatively low shade. This is very typical of the heavily 548 

forested streams in northwestern North America. Note that none of our plot locations contained 549 

transmittance greater than 40%.  550 

 551 

 552 

Figure 5: Comparison between pyranometer-measured solar insolation and daily diffuse and direct radiation 553 

canopy transmittance calculated from hemispherical photographs. 554 

 555 

Model Comparisons Linear Regressions 556 

Pyranometer-based solar insolation and hemispherical photograph percent diffuse and direct radiation 557 

transmittance calculated at all point locations except transect A were compared to a variety three of 558 

lidar predictors using simple linear regression. These results are shown in Figure 6. The LPI calculated 559 

using a 10 m circle centered on the point location explained about 55% of the variability in both 560 

response variables, but the prediction accuracy significantly improved when LPI was calculated using the 561 

shifted square buffer. Shifted LPI explained 74% of the variability in solar insolation and 64% of the 562 

variability in percent transmittance. Synthetic hemispherical photographs explained 77% of the 563 

variability in solar insolation and 60% of the variability in percent transmittance. Figure 6 shows 564 
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comparisons between transects B, C, and D to make interpretation easier, but Table 2 shows the results 565 

of linear regressions between predicted variables and hemispherical photograph transmittance for all 566 

plot locations resulting in small reductions in the amount of variability explained. Table 3 gives model 567 

parameters of slope and intercept resulting from the simple linear regression. 568 

 569 
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570 
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 571 

Figure 6: Simple linear regressions between between lidar predictor variables and field measured pyranometer 572 

solar insolation  573 

(A, C, E) and hemispherical photograph % transmittance (B, D, F) omitting data from transect A 574 
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 575 

 576 

Table 2: Coefficients of determination for the simple linear regression between predictor variables and 577 

hemispherical photograph transmittance using three additional point locations from transect A 578 

 579 

Predictor Variable Coefficient of 

Determination (r2) 

Light Penetration Index 0.54 

Shifted Light Penetration Index 0.54 

Synthetic Hemispherical Photograph % 

Transmittance 

0.45 

 580 

 581 

 582 

 583 

 584 

 585 

 586 

 587 

 588 

 589 

 590 

 591 

Table 3: Model pParameters from simple linear regressions. Note that all regressions are significant (p < 0.05). Data 592 

from transect A are excluded. 593 
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 594 

Response Variable Predictor Variable Slope Intercept 

Hemispherical 

Photograph % 

Transmittance 

Effective Leaf Area Index 

Light Penetration Index 

-3.40 

124.09 

25.26 

-3.29 

Shifted Light 

Penetration Index 

142.2 -4.49 

Synthetic Hemispherical 

photograph % 

Transmittance 

1.01 -0.32 

Pyranometer 

Insolation 

Effective Leaf Area Index 

Light Penetration Index 

-0.19 

6.73 

1.37 

-0.19 

Shifted Light 

Penetration Index 

8.23 -0.30 

Synthetic Hemispherical 

Photograph % 

Transmittance 

0.07 -0.08 

 595 

 596 

While both the raster-based shifted LPI approach and the lidar point reprojection synthetic 597 

hemispherical photograph approach explained more than 60 % of the variability in the field 598 

dataachieved satisfactory model performance, the limited range of solar insolation conditions at the 599 

point locations in our study  may limits some of the conclusions that can be drawn. Excluding transect A, 600 

14 of the 16 point locations received less than 0.8 kWHours/m2/day, leading to the other two point 601 

locations to exert a large degree of leverage on the model results. Note that these two point locations 602 
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received less than 35% of the maximum solar insolation. The three points in transect A all received less 603 

than 0.8 kWHours/m2/day and their inclusion in Table 2 the model results (Table 2) did not improve 604 

model resultscoefficients of determination, suggesting that all models methods are not as effective at 605 

predicting field measured values in areas of high canopy cover. The constraints of the study design 606 

requiring point locations to be located in the stream made it impossible to achieve a greater range in 607 

solar insolation. It is reasonable to expect that including more point locations receiving larger amounts 608 

of insolation would have led to improved model accuracy and greater coefficients of determination, as 609 

previous studies have shown that accuracy increases as canopy cover decreases (Moeser et al., 610 

2014;Musselman et al., 2013;Richardson and Moskal, 2014). In areas with no canopy and thus no lidar 611 

point returns above the ground, the models should show better agreement with field measurements.  612 

 613 

One explanation of the decrease in variability explained by the models at at high canopy cover in 614 

regressions E and F shown in Figure is is demonstrated in Figure 7. Here, a synthetic hemispherical 615 

photograph from transect D is compared to a field-captured hemispherical photograph with the GLA 616 

modeled sunpath superimposed. This sunpath is critical for determining the quantity of direct light, but 617 

very small differences in the center location of the two images can produce large differences in the 618 

modeled direct light. The sunpath passes through a modeled canopy gap near solar noon on the 619 

synthetic hemispherical photograph, while it intersects only canopy and misses the gap on the field-620 

collected hemispherical photograph. Very small registration errors can cause significant differences in 621 

transmittance at low light levels, and we suggest that these errors are likely to cause the errors 622 

observed in the modelsregressions. The daily pyranometer output for the same point location is shown 623 

in Figure 8 to further aid comparison. The pyranometer is only briefly exposed to full sunlight, 624 

highlighting the contribution of small gaps in the canopy. 625 

 626 
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Understory vegetation is another likely cause of observed errors, as airborne lidar is inherently limited in 627 

its ability to fully sample multi-layered canopies (Richardson and Moskal, 2011). We noticed several 628 

points with significant differences to the model results between lidar predictors and field data that 629 

contained understory vegetation in close proximity to the field instruments. The ideal scenario would be 630 

for the lidar scan angles to precisely match the range of potential solar angles at each plot location, but 631 

this is currently impractical, leading to an incomplete sample of the canopy light environment which 632 

contributes to the observed errors.errors observed in the models. 633 

 634 

Figure 7: Sunpath superimposed on a synthetic hemispherical photograph (left) and a field acquired hemispherical 635 

photograph (right) at a point location in Transect D. The letters represent the four cardinal directions. 636 
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 637 

Figure 8: Daily pyranometer output from sunset to sundown for the same plot as Figure 7. 638 

 639 

Modeled ApplicationSolar Insolation 640 

 641 

Model G and Model EThe correlations between lidar predictors and field data were strongest in  (Figure 642 

6 C and Figure 6 E) performed the best and, and these lidar predictors are  are both appropriate to use 643 

as the basis for estimating solar insolation across the study area. Implementation of Model G shifted LPI 644 

was the simplest and least time-intensive method, and we chose to model solar radiation  modify Model 645 

G by multiplying shifted LPI by the maximum above canopy solar insolation for June 20, 2015 and then 646 

computing a non-intercept linear regression ((Figure (98). Removing the intercept from the model 647 

lowered the coefficient of determination but provided a model with very little bias, only slightly 648 

underestimating model insolationthat did not estimate negative values of solar insolation. Figure 109 649 

shows the model applied across the study area. The graphs show the pattern of solar insolation across 650 
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the two reaches in the study, highlighting the utility of these methods for predicting solar insolation in 651 

heavily forested streams across wide spatial extents. Figure 110 shows the relative frequency of binned 652 

solar insolation values, highlighting the dominance of heavily shaded areas (note that a dammed 653 

reservoir, point D on the map, contributes the majority of the points in full sun). 654 

 655 

 656 

Figure 89: Model used for generation of landscape scale solar insolation estimates 657 

 658 

 659 

 660 
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 661 

 662 

Figure 109: Map of model derived solar insolation for Panther Creek (top) and graph of model derived 663 

solar insolation for reach A-C (middle) and reach B-D (bottom). Point E is a dammed reservoir. Note the 664 

direction of flow is toward point C 665 

 666 

 667 

Figure 1110: Histogram of solar insolation pixel values along reach A-C from Figure 9 668 
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 669 

The relatively unbiased results shown in Figure 98 show that field calibration is not required to produce 670 

accurate estimates of solar insolation. However, information is still needed on local above-canopy 671 

meteorological conditions, which can either be modeled from known solar outputs or collected from a 672 

nearby meteorological station.  Little bias was observed in comparisons between synthetic 673 

hemispherical photograph transmittance and field-based hemispherical photograph transmittance 674 

(Table 3). Therefore, both approaches tested in this study should not require field calibration.  675 

 676 

D. Conclusions 677 

We tested two approaches for estimating solar insolation from airborne lidar using field data collected 678 

in a heavily forested narrow stream, showing that an LPI-based raster approach and a synthetic 679 

hemispherical photograph approach canaccurately predict solar insolation and light transmittance. 680 

These results should be interpreted with the caveat that our point locations contained few areas with 681 

high insolation. We showed that the LPI-based model can be applied across the landscape, and we 682 

demonstrated that no field-based calibration was necessary to produce unbiased prediction of solar 683 

insolation. 684 

This study lays the groundwork for additional research on remote sensing methods for quantifying light 685 

conditions in riparian areas over heavily forested streams. First, point-cloud based approaches utilizing 686 

ray-tracing need to be further developed. The results of this study suggest that refined ray-tracing 687 

approaches should not require calibration. Ray-tracing is perhaps the most elegant method for 688 

accurately modeling the relationship between lidar points and the sun, but this method requires a large 689 

amount of computational power to model multiple sun angles for each lidar pointOne method that we 690 

were unable to test is ray-tracing and future research should continue to develop this approach. Second, 691 
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research should focus on exploring the limit of matching ground-based measurements to lidar-predicted 692 

solar insolation. Lastly, the limitation of aerial lidar to quantify understory light conditions in multi-693 

layered canopies should be explored in more detail to better understand when and if airborne sensors 694 

are inappropriate for these particular applications. In these circumstances, other sensors such as 695 

terrestrial lidar or ground-based digital photographs utilizing structure from motion may provide 696 

additional useful information.  697 

E. Data availability 698 

The GPS data, pyranometer data, processed hemispherical photograph data, spreadsheets used for data 699 
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