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Abstract 21 

Oscillatory pumping test (OPT) is an alternative to constant-head and constant-rate pumping 22 

tests for determining aquifer hydraulic parameters without net water extraction. There is a large 23 

number of analytical models presented for the analysis of OPT. The combined effects of 24 

delayed gravity drainage (DGD) and initial condition regarding the hydraulic head are 25 

commonly neglected in the existing models. This study aims to develop a new model for 26 

describing the hydraulic head fluctuation induced by OPT in an unconfined aquifer. The model 27 

contains a groundwater flow equation with the initial condition of static water table, Neumann 28 

boundary condition specified at the rim of a finite-radius well, and a free surface equation 29 

describing water table motion with the DGD effect. The solution of the model is derived by the 30 

Laplace transform, finite integral transform, and Weber transform. Sensitivity analysis is 31 

carried out for exploring head response to the change in each of hydraulic parameters. Results 32 

suggest the DGD reduces to instantaneous gravity drainage in predicting transient head 33 

fluctuation when dimensionless parameter 𝑎1 = 𝜀𝑆𝑦𝑏/K𝑧  exceeds 500 with empirical 34 

constant 𝜀, specific yield Sy, aquifer thickness b, and vertical hydraulic conductivity Kz. The 35 

water table can be regarded as a no-flow boundary when 𝑎1 < 10−2. A pseudo-steady state 36 

model without initial condition causes a certain time shift from the actual transient model in 37 

predicting simple harmonic motion of head fluctuation during a late pumping period. In 38 

addition, the present solution agrees well to head fluctuation data observed at the Savannah 39 

River site. 40 

KEYWORDS: oscillatory pumping test, analytical solution, free surface equation, delayed 41 

gravity drainage, initial condition 42 
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Notation and Abbreviation 43 

a 𝜎/𝜇 

a1, a2 𝜀𝑆𝑦𝑏/𝐾𝑧, 𝑎1𝜇/𝜎 

b Aquifer thickness 

DGD Delayed gravity drainage 

h Hydraulic head 

ℎ̅  Dimensionless Hydraulic head, i.e., ℎ̅ = (2𝜋𝑙𝐾𝑟ℎ)/|𝑄|   

IGD Instantaneous gravity drainage 

Kr, Kz Aquifer horizontal and vertical hydraulic conductivities, respectively 

LHS Left-hand side 

l Screen length, i.e., 𝑧𝑢 − 𝑧𝑙 

OPT oscillatory pumping test 

P Period of oscillatory pumping rate 

PSS Pseudo-steady state 

�̅� Dimensionless period, i.e., �̅� = (𝐾𝑟𝑃)/(𝑆𝑠𝑟𝑤
2) 

p Laplace parameter 

𝑄  Amplitude of oscillatory pumping rate 

RHS Right-hand side 

r Radial distance from the center of pumping well 

�̅�  Dimensionless radial distance, i.e., �̅� = 𝑟/𝑟𝑤 

rw Radius of pumping well 

SHM Simple harmonic motion  

Ss, Sy Specific storage and specific yield, respectively 

𝑡  Time since pumping 

𝑡̅  Dimensionless pumping time, i.e., 𝑡̅ = (𝐾𝑟𝑡)/(𝑆𝑠𝑟𝑤
2) 

z Elevation from aquifer bottom 

zl, zu Lower and upper elevations of partial well screen, respectively 

𝑧̅  Dimensionless elevation, i.e., 𝑧̅ = 𝑧 𝑏⁄  

𝑧�̅�, 𝑧�̅� zl/b, zu/b 

𝛽𝑛 Roots of Eqs. (19) 

𝛾  Dimensionless frequency of oscillatory pumping rate, i.e., 𝑆𝑠𝑟𝑤
2 𝜔/𝐾𝑟 

𝜀 Empirical constant associated with delayed gravity drainage 

𝜇  𝐾𝑧𝑟𝑤
2/𝐾𝑟𝑏

2 

𝜎  𝑆𝑦/(𝑆𝑠𝑏) 

𝜔  Frequency of oscillatory pumping rate, i.e., 𝜔 = 2𝜋/𝑃 
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1. Introduction 45 

Numerous attempts have been made by researchers to the study of oscillatory pumping test 46 

(OPT) that is an alternative to constant-rate and constant-head pumping tests for determining 47 

aquifer hydraulic parameters (e.g., Vine et al., 2016; Christensen et al., 2017; Watlet et al., 48 

2018). The concept of OPT was first proposed by Kuo (1972) in the petroleum literature. The 49 

process of OPT contains extraction stages and injection stages. The pumping rate, in other 50 

words, varies periodically as a sinusoidal function of time. Compared with traditional constant-51 

rate pumping, OPT in contaminated aquifers has the following advantages: (1) low cost because 52 

of no disposing contaminated water from the well, (2) reduced risk of treating contaminated 53 

fluid, (3) smaller contaminant movement, and (4) stable signal easily distinguished from 54 

background disturbance such as tide effect and varying river stage (e.g., Spane and Mackley, 55 

2011). However, the disadvantages of OPT includes the need of an advanced apparatus 56 

producing periodic rate and the problem of signal attenuation in remote distance from the 57 

pumping well. Oscillatory hydraulic tomography adopts several oscillatory pumping wells with 58 

different frequencies (e.g., Yeh and Liu, 2000; Cardiff et al., 2013; Zhou et al., 2016; 59 

Muthuwatta, et al., 2017). Aquifer heterogeneity can be mapped by analyzing multiple data 60 

collected from observation wells. Cardiff and Barrash (2011) reviewed articles associated with 61 

hydraulic tomography and classified them according to nine categories in a table. 62 

Various groups of researchers have worked with analytical and numerical models for OPT; 63 

each group has its own model and investigation. For example, Black and Kipp (1981) assumed 64 

the response of confined flow to OPT as simple harmonic motion (SHM) in the absence of 65 

initial condition. Cardiff and Barrash (2014) built an optimization formulation strategy using 66 

the Black and Kipp analytical solution. Dagan and Rabinovich (2014) also assumed hydraulic 67 

head fluctuation as SHM for OPT at a partially penetrating well in unconfined aquifers. Cardiff 68 

et al. (2013) characterized aquifer heterogeneity using the finite element-based COMSOL 69 

software that adopts SHM hydraulic head variation for OPT. On the other hand, Rasmussen et 70 
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al. (2003) found hydraulic head response tends to SHM after a certain period of pumping time 71 

when considering initial condition prior to OPT. Bakhos et al. (2014) used the Rasmussen et al. 72 

(2003) analytical solution to quantify the time after which hydraulic head fluctuation can be 73 

regarded as SHM since OPT began. As mentioned above, most of the models for OPT assume 74 

hydraulic head fluctuation as SHM without initial condition, and all of them treat the pumping 75 

well as a line source with infinitesimal radius. 76 

Field applications of OPT for determining aquifer parameters have been conducted in 77 

recent years. Rasmussen et al. (2003) estimated aquifer hydraulic parameters based on 1- or 2- 78 

hour period of OPT at the Savannah River site. Maineult et al. (2008) observed spontaneous 79 

potential temporal variation in aquifer diffusivity at a study site in Bochum, Germany. Fokker 80 

et al. (2012; 2013) presented spatial distributions of aquifer transmission and storage 81 

coefficient derived from curve fitting based on a numerical model and field data from 82 

experiments at the southern city-limits of Bochum, Germany. Rabinovich et al. (2015) 83 

estimated aquifer parameters of equivalent hydraulic conductivity, specific storage and specific 84 

yield at the Boise Hydrogeophysical Research Site by curve fitting based on observation data 85 

and the Dagan and Rabinovich (2014) analytical solution. They conclude the equivalent 86 

hydraulic parameters can represent the actual aquifer heterogeneity of the study site. 87 

Although a large number of studies have been made in developing analytical models for 88 

OPT, little is known about the combined effects of delayed gravity drainage (DGD), finite-89 

radius pumping well, and initial condition prior to OPT. Analytical solution to such a question 90 

will not only have important physical implications but also shed light on OPT model 91 

development. This study builds an improved model describing hydraulic head fluctuation 92 

induced by OPT in an unconfined aquifer. The model is composed of a typical flow equation 93 

with the initial condition of static water table, an inner boundary condition specified at the rim 94 

of the pumping well for incorporating finite-radius effect, and a free surface equation 95 

describing the motion of water table with the DGD effect. The analytical solution of the model 96 
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is derived by the methods of Laplace transform, finite integral transform, and Weber transform. 97 

Based on the present solution, sensitivity analysis is performed to explore the hydraulic head 98 

in response to the change in each of hydraulic parameters. The effects of DGD and 99 

instantaneous gravity drainage (IGD) on the head fluctuations are compared. The quantitative 100 

criterion for treating the well radius as infinitesimal is discussed. The effect of the initial 101 

condition on the phase of head fluctuation is investigated. In addition, curve fitting of the 102 

present solution to head fluctuation data recorded at the Savannah River site is presented. 103 

2. Methodology 104 

2.1. Mathematical model 105 

Consider an OPT in an unconfined aquifer illustrated in Fig. 1. The aquifer is of unbound lateral 106 

extent with a finite thickness 𝑏. The radial distance from the centerline of the well is r; an 107 

elevation from the impermeable bottom of the aquifer is z. The well with outer radius 𝑟𝑤 is 108 

screened from zu to zl. 109 

The flow equation describing spatiotemporal head distribution in aquifers can be written 110 

as:  111 

𝐾𝑟 (
𝜕2ℎ

𝜕𝑟2
+
1

𝑟

𝜕ℎ

𝜕𝑟
) + 𝐾𝑧

𝜕2ℎ

𝜕𝑧2
= 𝑆𝑠

𝜕ℎ

𝜕𝑡
   for   𝑟𝑤 ≤ 𝑟 < ∞, 0 ≤ 𝑧 ≤ 𝑏  and  𝑡 ≥ 0   (1) 112 

where ℎ(𝑟, 𝑧, 𝑡) is hydraulic head at location (r, z) and time t; 𝐾𝑟 and 𝐾𝑧 are respectively 113 

the radial and vertical hydraulic conductivities; Ss is the specific storage. Consider water table 114 

as a reference datum where the elevation head is set to zero; the initial condition is expressed 115 

as: 116 

ℎ = 0 at 𝑡 = 0 (2) 117 

The rim of the wellbore is regarded as an inner boundary under the Neumann condition 118 

expressed as: 119 

2𝜋𝑟𝑤𝐾𝑟𝑙
𝜕ℎ

𝜕𝑟
= {

𝑄sin(𝜔𝑡)  for   𝑧𝑙 ≤ 𝑧 ≤ 𝑧𝑢
0   outside screen interval

   at   𝑟=𝑟𝑤 (3) 120 

where 𝑙 = 𝑧𝑢 − 𝑧𝑙  is screen length; 𝑄  and 𝜔 = 2𝜋/𝑃  are respectively the amplitude and 121 
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frequency of oscillatory pumping rate (i.e., 𝑄sin(𝜔𝑡)) with a period P. Water table motion can 122 

be defined by Eq. (4a) for IGD (Neuman, 1972) and Eq. (4b) for DGD (Moench, 1995). 123 

𝐾𝑧
𝜕ℎ

𝜕𝑧
= −𝑆𝑦

𝜕ℎ

𝜕𝑡
   at    𝑧 = 𝑏 for IGD  (4a) 124 

𝐾𝑧
𝜕ℎ

𝜕𝑧
= −𝜀 𝑆𝑦 ∫

𝜕ℎ

𝜕𝑡′

𝑡

0
exp(−𝜀(𝑡 − 𝑡′)) d𝑡′   at    𝑧 = 𝑏 for DGD       125 

(4b) 126 

where 𝑆𝑦 is the specific yield; 𝜀 is an empirical constant. The impervious aquifer bottom is 127 

under the no-flow condition: 128 

𝜕ℎ

𝜕𝑧
= 0  at   𝑧 = 0  (5) 129 

The hydraulic head far away from the pumping well remains constant, written as 130 

lim
𝑟→∞

ℎ(𝑟, 𝑧, 𝑡) = 0 (6) 131 

Define dimensionless variables and parameters as follows: 132 

ℎ̅ =
2𝜋𝑙𝐾𝑟

𝑄
ℎ, �̅� =

𝑟

𝑟𝑤
, 𝑧̅ =

𝑧

𝑏
, 𝑧�̅� =

𝑧𝑙

𝑏
, 𝑧�̅� =

𝑧𝑢

𝑏
, 𝑡̅ =

𝐾𝑟

𝑆𝑠𝑟𝑤
2 𝑡, �̅� =

𝐾𝑟

𝑆𝑠𝑟𝑤
2 𝑃 133 

 𝛾 =
𝑆𝑠𝑟𝑤

2

𝐾𝑟
𝜔, 𝜇 =

𝐾𝑧𝑟𝑤
2

𝐾𝑟𝑏2
, 𝜎 =

𝑆𝑦

𝑆𝑠𝑏
 , 𝑎 =

σ

𝜇
, 𝑎1 =

𝜀𝑆𝑦𝑏

𝐾𝑧
, 𝑎2 =

𝑎1𝜇

𝜎
 (7) 134 

where the overbar stands for a dimensionless symbol. Note that the magnitude of 𝑎1 is related 135 

to the DGD effect (Moench, 1995) and γ is a dimensionless frequency parameter. With Eq. (7), 136 

the dimensionless forms of Eqs. (1) - (6) become, respectively, 137 

𝜕2ℎ̅

𝜕�̅�2
+
1

�̅�

𝜕ℎ̅

𝜕�̅�
+ 𝜇

𝜕2ℎ̅

𝜕�̅�2
=

𝜕ℎ̅

𝜕�̅�
  for   1 ≤ �̅� < ∞, 0 ≤ 𝑧̅ < 1  and  𝑡̅ ≥ 0  (8) 138 

ℎ̅ = 0  at  𝑡̅ = 0 (9) 139 

𝜕ℎ̅

𝜕�̅�
= {

sin(𝛾𝑡̅)  for  𝑧�̅� ≤ 𝑧̅ ≤ 𝑧�̅�
  0  outside screen interval

  at  �̅� = 1 (10) 140 

𝜕ℎ̅

𝜕�̅�
= −𝑎

𝜕ℎ̅

𝜕�̅�
  at  𝑧̅ = 1 for IGD (11a) 141 

𝜕ℎ̅

𝜕�̅�
= −𝑎1 ∫

𝜕ℎ̅

𝜕�̅�′
exp(−𝑎2(𝑡̅ − 𝑡̅

′)) 𝑑𝑡̅′
�̅�

0
  at  𝑧̅ = 1 for DGD (12b) 142 

𝜕ℎ̅

𝜕�̅�
= 0  at  𝑧̅ = 0 (13) 143 

lim
�̅�→∞

ℎ̅(�̅�, 𝑧̅, 𝑡̅) = 0 (14) 144 
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Eqs. (8) – (13) represent the transient DGD model when excluding (11a) and transient IGD 145 

model when excluding (11b). 146 

2.2. Transient solution for unconfined aquifer 147 

The Laplace transform and finite integral transform are applied to solve Eqs. (8) - (13) (Liang 148 

et al., 2017). The former converts ℎ̅(�̅�, 𝑧̅, 𝑡̅) into ℎ̂(�̅�, 𝑧̅, 𝑝), 𝜕ℎ̅/𝜕𝑡 ̅ in Eq. (8), (11) into 𝑝ℎ̂, 149 

and  sin(𝛾𝑡̅) in Eq. (10) into 𝛾/(𝑝2 + 𝛾2) with the Laplace parameter p. The result of Eq. 150 

(8) in the Laplace domain can be written as  151 

𝜕2ℎ̂

𝜕�̅�2
+
1

�̅�

𝜕ℎ̂

𝜕�̅�
+ 𝜇

𝜕2ℎ̂

𝜕�̅�2
= 𝑝ℎ̂ (14) 152 

The transformed boundary conditions in r and z directions are expressed as  153 

𝜕ℎ̂

𝜕�̅�
= {

𝛾

𝑝2+𝛾2
 for  𝑧�̅� ≤ 𝑧̅ ≤ 𝑧�̅�

   0  outside screen interval
  at  �̅� = 1 (15) 154 

𝜕ℎ̂

𝜕�̅�
= −𝑎𝑝ℎ̂  at  𝑧̅ = 1 for IGD (16a) 155 

𝜕ℎ̂

𝜕�̅�
= −

𝑎1𝑝ℎ̂

𝑝+𝑎2
  at  𝑧̅ = 1 for DGD (16b) 156 

𝜕ℎ̂

𝜕�̅�
= 0  at  𝑧̅ = 0 (17) 157 

lim
�̅�→∞

ℎ̂(�̅�, 𝑧̅, 𝑝) = 0 (18) 158 

The finite integral transform proposed by Latinopoulos (1985) is applied to Eqs. (14) - 159 

(17). The definition of the transform is given in Appendix A. Using the property of the 160 

transform converts ℎ̂(�̅�, 𝑧̅, 𝑝)  into ℎ̃(�̅�, 𝛽𝑛, 𝑝)  and ∂2ℎ̂/ ∂𝑧̅2  in Eq. (14) into −𝛽𝑛
2ℎ̃  with 161 

𝑛 ∈ (1,2,3, …∞) and 𝛽𝑛 being the positive roots of the equation: 162 

tan𝛽𝑛 = 𝑐/𝛽𝑛 (19) 163 

where 𝑐 = 𝑎𝑝 for IGD and 𝑎1𝑝/(𝑝 + 𝑎2) for DGD. The method to find the roots of 𝛽𝑛 is 164 

discussed in section 2.3. Eq. (14) then becomes an ordinary differential equation (ODE) 165 

denoted as 166 

𝜕2ℎ̃

𝜕�̅�2
+
1

�̅�

𝜕ℎ̃

𝜕�̅�
− 𝜇𝛽𝑛

2ℎ̃ = 𝑝ℎ̃ (20) 167 

with the transformed Eqs. (18) and (15) written, respectively, as  168 
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lim
�̅�→∞

ℎ̃(�̅�, 𝛽𝑛, 𝑝) = 0                 (21a) 169 

𝜕ℎ̃

𝜕�̅�
− 𝛼𝑝ℎ̃ =

𝛾 𝐹𝑡

𝛽𝑛(𝑝2+𝛾2)
(sin(𝑧�̅�𝛽𝑛) − sin(𝑧�̅�𝛽𝑛))  at  �̅� = 1 (21b) 170 

where 𝐹 = √2(𝛽𝑛2 + 𝑐2)/(𝛽𝑛2 + 𝑐2 + 𝑐). Note that the transformation from Eq. (14) to (20) is 171 

applicable only for the no-flow condition specified at 𝑧̅ = 0  (i.e., Eq. (17)) and third-type 172 

condition specified at 𝑧̅ = 1 (i.e., Eq. (16a) or (16b)). Solve Eq. (20) with (21a) and (21b), 173 

and we can obtain: 174 

ℎ̃(�̅�, 𝛽𝑛, 𝑝) = −
𝛾 𝐹𝐾0(𝑟𝜆)(sin(�̅�𝑢𝛽𝑛)−sin(�̅�𝑙𝛽𝑛))

𝛽𝑛𝜆𝐾1(𝜆)(𝑝2+𝛾2)
 (22) 175 

with 176 

𝜆 = √𝑝 + 𝜇 𝛽𝑛2 (23) 177 

where 𝐾0(−) and 𝐾1(−) is the modified Bessel function of the second kind of order zero 178 

and one, respectively. Applying the inverse Laplace transform and inverse finite integral 179 

transform to Eq. (22) results in the transient solution expressed as 180 

ℎ̅(�̅�, 𝑧̅, 𝑡̅) = ℎ̅exp(�̅�, 𝑧̅, 𝑡̅) + ℎ̅SHM(�̅�, 𝑧̅, 𝑡̅) (24a) 181 

with 182 

ℎ̅exp(�̅�, 𝑧̅, 𝑡)̅ =
−2𝛾

𝜋
∑ ∫ cos(𝛽𝑛𝑧̅) exp(𝑝0𝑡)̅ Im(𝜀1𝜀2) 𝑑𝜁

∞

0
∞
𝑛=1  (24b) 183 

ℎ̅SHM(�̅�, 𝑧̅, 𝑡̅) = �̅�𝑡(�̅�, 𝑧̅)cos(𝛾𝑡̅ − 𝜙𝑡(�̅�, 𝑧̅)) (24c) 184 

�̅�𝑡(�̅�, 𝑧̅) = √𝑎𝑡(�̅�, 𝑧̅)2 + 𝑏𝑡(�̅�, 𝑧̅)2 (24d) 185 

𝑎𝑡(�̅�, 𝑧̅) =
2

𝜋
∑ ∫ 𝑝0 cos(𝛽𝑛𝑧̅) Im(𝜀1𝜀2)

∞

0
∞
𝑛=1 𝑑𝜁 (24e) 186 

𝑏𝑡(�̅�, 𝑧̅) =
2𝛾

𝜋
∑ ∫ cos(𝛽𝑛𝑧̅) Im(𝜀1𝜀2)

∞

0
∞
𝑛=1 𝑑𝜁 (24f) 187 

𝜙𝑡(�̅�, 𝑧̅) = cos−1(𝑏𝑡(�̅�, 𝑧̅)/�̅�𝑡(𝑟, 𝑧̅)) (24g) 188 

𝜀1 = 𝐾0(𝜆0�̅�)(sin(𝑧�̅�𝛽𝑛) − sin(𝑧�̅�𝛽𝑛))/(𝛽𝑛𝜆0𝐾1(𝜆0)(𝑝0
2 + 𝛾2)) (24h) 189 

𝜀2 = (𝛽𝑛
2 + 𝑐0

2)/(𝛽𝑛
2 + 𝑐0

2 + 𝑐0) (24i) 190 

𝑝0 = −𝜁 − 𝜇𝛽𝑛
2 (24j) 191 

𝜆0 = √𝜁𝑖 (24k) 192 
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where 𝑐0 = 𝑎𝑝0 for IGD and 𝑎1𝑝0/(𝑝0 + 𝑎2) for DGD, i is the imaginary unit, and Im(-) is 193 

the imaginary part of a complex number. The detailed derivation of Eqs. (24a) – (24k) is 194 

presented in Appendix B. The first term on the right-hand side (RHS) of Eq. (24a) exhibits 195 

exponential decay due to the initial condition since pumping began; the second term defines 196 

SHM with amplitude �̅�𝑡(�̅�, 𝑧̅) and phase shift 𝜙𝑡(�̅�, 𝑧̅) at a given point (�̅�, 𝑧̅). The numerical 197 

results of the integrals in Eqs. (24b), (24e) and (24f) are obtained by the Mathematica 198 

NIntegrate function. 199 

2.3. Calculation of 𝜷𝒏 200 

The eigenvalues 𝛽1, …, 𝛽𝑛, the roots of Eq. (19) with c = c0 can be determined by applying 201 

the Mathematica function FindRoot based on Newton’s method with reasonable initial guesses. 202 

The roots are located at the intersection of the curves plotted by the RHS and left-hand side 203 

(LHS) functions of 𝛽𝑛 in Eq. (19). The roots are very close to the vertical asymptotes of the 204 

periodical tangent function tan 𝛽𝑛 . When 𝑐0 = 𝑎𝑝0 , the initial guess for each 𝛽𝑛  can be 205 

considered as 𝛽0,𝑛 + 𝛿  where 𝛽0,𝑛 = (2𝑛 − 1)𝜋/2 , 𝑛 ∈ (1,2, …∞)  and 𝛿  is a small 206 

positive value set to 10-10 to prevent the denominator in Eq. (19) from zero. When 𝑐0 =207 

𝑎1𝑝0/(𝑝0 + 𝑎2), the initial guess is set to 𝛽0,𝑛 − 𝛿 for 𝑎2 −  𝜁 ≤ 0. There is an additional 208 

vertical asymptote at 𝛽𝑛 = √(𝑎2 −  𝜁)/𝜇 derived from the RHS function of Eq. (19) if 𝑎2 −209 

 𝜁 > 0. The initial guess is therefore set to 𝛽0,𝑛 + 𝛿 for 𝛽0,𝑛 on the LHS of the asymptote 210 

and 𝛽0,𝑛 − 𝛿 for 𝛽0,𝑛 on the RHS. 211 

2.4. Transient solution for confined aquifer 212 

When Sy = 0 (i.e., 𝑎 = 0 or 𝑎1 = 0), Eq. (11a) or (11b) reduces to 𝜕ℎ̅/𝜕𝑧̅ = 0 for no-flow 213 

condition at the top of the aquifer, indicating the unconfined aquifer becomes a confined one. 214 

Under this condition, Eq. (19) becomes tan𝛽𝑛 = 0 with roots 𝛽𝑛 = 0, 𝜋, 2𝜋, …, 𝑛𝜋, …, 215 

∞; Eq. (24i) reduces to 𝜀2 = 1; factor 2 in Eqs. (24b), (24e) and (24f) is replaced by unity for 216 

𝛽𝑛 = 0  and remains for the others. The analytical solution of the transient head for the 217 

confined aquifer can be expressed as Eqs. (24a) - (24k) with 218 
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ℎ̅exp(�̅�, 𝑧̅, 𝑡)̅ =
−𝛾

𝜋
∫ Im(𝜀0) exp(−𝜁𝑡̅) 𝑑𝜁
∞

0

−
2𝛾

𝜋
∑∫ cos(𝑛𝜋𝑧̅) Im(𝜀1) exp(𝑝0𝑡̅)  𝑑𝜁

∞

0

∞

𝑛=1

 219 

 (25a) 220 

𝑎𝑡(�̅�, 𝑧̅) = −
1

𝜋
∫ 𝜁Im(𝜀0)
∞

0
𝑑𝜁 +

2

𝜋
∑ ∫ 𝑝0 cos(𝑛𝜋𝑧̅) Im(𝜀1)

∞

0
∞
𝑛=1 𝑑𝜁 (25b) 221 

𝑏𝑡(�̅�, 𝑧̅) =
𝛾

𝜋
∫ Im(𝜀0)
∞

0
𝑑𝜁 +

2𝛾

𝜋
∑ ∫ cos(𝑛𝜋𝑧̅) Im(𝜀1)

∞

0
∞
𝑛=1 𝑑𝜁 (25c) 222 

𝜀0 = (𝑧�̅� − 𝑧�̅�)𝐾0(𝜆0�̅�)/(𝜆0𝐾1(𝜆0)(𝜁
2 + 𝛾2)) (25d) 223 

Note that Eq. (24h) reduces to Eq. (25d) based on 𝛽𝑛 = 0 and L' Hospital's rule. When 𝑧�̅� =224 

1 and 𝑧�̅� = 0 for the case of full screen, Eq. (24) gives 𝜀1 = 0 for 𝛽𝑛 > 0 and the second 225 

RHS terms of Eqs. (25a) – (25c) can therefore be eliminated. This causes the solution for 226 

confined aquifers is independent of dimensionless elevation 𝑧̅, indicating only horizontal flow 227 

in the aquifer. 228 

2.5. Pseudo-steady state solution for unconfined aquifer 229 

A pseudo-steady state (PSS) solution ℎ̅s accounts for SHM of head fluctuation after a certain 230 

period of pumping time and satisfies the following form (Dagan and Rabinovich, 2014) 231 

ℎ̅s(�̅�, 𝑧̅, 𝑡̅) = Im(�̅�(�̅�, 𝑧̅) 𝑒𝑖𝛾�̅�) (26) 232 

where �̅�(�̅�, 𝑧̅) is a space function of �̅� and 𝑧̅. Define a PSS IGD model as Eqs. (8) - (13) 233 

excluding (9), (11b) and replacing sin(𝛾𝑡)̅  in (10) by 𝑒𝑖𝛾�̅� . Substituting Eq. (26) and 234 

𝜕ℎ̅s/𝜕𝑡̅ = Im(𝑖𝛾�̅�(�̅�, 𝑧̅) 𝑒𝑖𝛾�̅�) into the model results in 235 

𝜕2�̅�

𝜕�̅�2
+
1

�̅�

𝜕�̅�

𝜕�̅�
+ 𝜇

𝜕2�̅�

𝜕�̅�2
= 𝑖𝛾�̅� (27) 236 

𝜕�̅�

𝜕�̅�
= {

1  for  𝑧�̅� ≤ 𝑧̅ ≤ 𝑧�̅�
0  outside screen interval

  at  �̅� = 1 (28) 237 

𝜕�̅�

𝜕�̅�
= −𝑖𝑎𝛾�̅�   at   𝑧̅ = 1 for IGD (29) 238 

𝜕�̅�

𝜕�̅�
= 0   at   𝑧̅ = 0 (30) 239 

lim
�̅�→∞

�̅� = 0 (31) 240 

The resultant model is independent of 𝑡̅ , indicating the analytical solution of �̅�(�̅�, 𝑧̅)  is 241 
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tractable. Similarly, consider a PSS DGD model that equals the PSS IGD model but replaces 242 

(11a) by (11b). Substituting Eq. (26) into the result yields a model that depends on 𝑡̅, indicating 243 

the solution ℎ̅s to the PSS DGD model is not tractable. 244 

    Taking the Weber transform to Eqs. (27) - (31) converts �̅�  into �̃�  and 𝜕2�̅�/𝜕𝑟2 +245 

𝑟−1𝜕�̅�/𝜕𝑟 into −𝜉2�̃� − 2/(𝜋𝜉)𝜕�̅�/𝜕𝑟|𝑟=1. The result is expressed as 246 

𝜕2�̃�

𝜕�̅�2
− 𝜆𝑤

2 �̃� = {

0  for  𝑧�̅� < 𝑧̅ ≤ 1
2

𝜋𝜇𝜉
  for  𝑧�̅� ≤ 𝑧̅ ≤ 𝑧�̅�

0  for  0 ≤ 𝑧̅ < 𝑧�̅�

 (32) 247 

𝜕�̃�

𝜕�̅�
= −𝑖𝑎𝛾�̃�   at   𝑧̅ = 1 (33) 248 

𝜕�̃�

𝜕�̅�
= 0   at   𝑧̅ = 0 (34) 249 

where 𝜆𝑤
2 = (𝜉2 + 𝑖𝛾)/𝜇 and 𝜉 is the Weber parameter. One can refer to Appendix C for the 250 

definition of the transform. Eq. (32) can be separated as 251 

{

𝜕2�̃�𝑢/𝜕𝑧̅
2 − 𝜆𝑤

2 �̃�𝑢 = 0  for  𝑧�̅� < 𝑧̅ ≤ 1

𝜕2�̃�𝑚/𝜕𝑧̅
2 − 𝜆𝑤

2 �̃�𝑚 = 2/(𝜋𝜇𝜉)  for  𝑧�̅� ≤ 𝑧̅ ≤ 𝑧�̅�
𝜕2�̃�𝑙/𝜕𝑧̅

2 − 𝜆𝑤
2 �̃�𝑙 = 0  for  0 ≤ 𝑧̅ < 𝑧�̅�

 (35) 252 

with the continuity requirements: 253 

{
�̃�𝑚 = �̃�𝑢

𝜕�̃�𝑚/𝜕𝑧̅ = 𝜕�̃�𝑢/𝜕𝑧̅
  at  𝑧̅ = 𝑧�̅� (36) 254 

{
�̃�𝑙 = �̃�𝑚

𝜕�̃�𝑙/𝜕𝑧̅ = 𝜕�̃�𝑚/𝜕𝑧̅
  at  𝑧̅ = 𝑧�̅� (37) 255 

Solving Eq. (35) with (33), (34), (36), and (37) results in 256 

{

�̃�𝑢 = �̃�𝑝(𝑐1 exp(𝜆𝑤𝑧̅) + 𝑐2 exp(−𝜆𝑤𝑧̅))  for  𝑧�̅� < 𝑧̅ ≤ 1

�̃�𝑚 = �̃�𝑝(𝑐3 exp(𝜆𝑤𝑧̅) + 𝑐4 exp(−𝜆𝑤𝑧̅) − 1)  for  𝑧�̅� ≤ 𝑧̅ ≤ 𝑧�̅�

�̃�𝑙 = �̃�𝑝𝑐5(exp(𝜆𝑤𝑧̅) + exp(−𝜆𝑤𝑧̅))  for  0 ≤ 𝑧̅ < 𝑧�̅�

  (38a) 257 

with 258 

𝑐1 = −𝑒−𝜆𝑤(𝜆𝑤 − 𝛼)(sinh(𝑧�̅�𝜆𝑤) − sinh(𝑧�̅�𝜆𝑤))/𝐷 (38b) 259 

𝑐2 = −𝑒𝜆𝑤(𝜆𝑤 + 𝛼)(sinh(𝑧�̅�𝜆𝑤) − sinh(𝑧�̅�𝜆𝑤))/𝐷 (38c) 260 

𝑐3 =
𝑒−(1+�̅�𝑙+�̅�𝑢)𝜆𝑤

2𝐷
(𝛼(𝑒(2+�̅�𝑙)𝜆𝑤 + 𝑒 �̅�𝑢𝜆𝑤 − 𝑒(2�̅�𝑙+�̅�𝑢)𝜆𝑤) + (𝛼 − 𝜆𝑤)𝑒

(�̅�𝑙+2�̅�𝑢)𝜆𝑤 +261 
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𝜆𝑤(𝑒
(2+�̅�𝑙)𝜆𝑤 − 𝑒 �̅�𝑢𝜆𝑤 + 𝑒(2�̅�𝑙+�̅�𝑢)𝜆𝑤)) (38d) 262 

𝑐4 =
𝑒−(1+�̅�𝑙+�̅�𝑢)𝜆𝑤

2𝐷
((𝛼 − 𝜆𝑤)𝑒

(�̅�𝑙+2�̅�𝑢)𝜆𝑤 + (𝛼 + 𝜆𝑤)(𝑒
(2+�̅�𝑙)𝜆𝑤 − 𝑒(2+�̅�𝑢)𝜆𝑤 +263 

𝑒(2+2�̅�𝑙+�̅�𝑢)𝜆𝑤)) (38e) 264 

𝑐5 =
1

2
𝑒−(1+�̅�𝑙+�̅�𝑢)𝜆𝑤(𝑒 �̅�𝑙𝜆𝑤 − 𝑒 �̅�𝑢𝜆𝑤)((𝜆𝑤 − 𝛼)𝑒

(�̅�𝑙+�̅�𝑢)𝜆𝑤 + (𝜆𝑤 + 𝛼)𝑒
2𝜆𝑤) (38f) 265 

where 𝛼 = 𝑖𝛾𝑎, �̃�𝑝 = 2/(𝜋𝜇𝜉𝜆𝑤
2 ) and 𝐷 = 2(𝛼 cosh 𝜆𝑤 + 𝜆𝑤 sinh 𝜆𝑤). The solution of �̅� 266 

given below can be obtained by the formula for the inverse Weber transform shown in 267 

Appendix C. 268 

�̅�(�̅�, 𝑧̅) =

{
 

 ∫
�̃�𝑢 𝜉 Ω 𝑑𝜉

∞

0
  for  𝑧�̅� < 𝑧̅ ≤ 1

∫ �̃�𝑚 𝜉 Ω 𝑑𝜉
∞

0
  for  𝑧�̅� ≤ 𝑧̅ ≤ 𝑧�̅�

∫ �̃�𝑙  𝜉 Ω 𝑑𝜉
∞

0
  for  0 ≤ 𝑧̅ < 𝑧�̅�

 (39a) 269 

Ω = (𝐽0(𝜉�̅�)𝑌1(𝜉) − 𝑌0(𝜉�̅�)𝐽1(𝜉))/(𝐽1
2(𝜉) + 𝑌1

2(𝜉)) (39b) 270 

with the Bessel functions of the first kind of order zero 𝐽0(−) and one 𝐽1(−) as well as the 271 

second kind of order zero 𝑌0(−)  and 𝑌1(−) . Note that the solution reduces to �̅�(�̅�, 𝑧̅) =272 

∫ �̃�𝑚 𝜉 Ω 𝑑𝜉
∞

0
 for a fully screened well when  𝑧�̅� = 0 and 𝑧�̅� = 1. With Eq. (26) and the 273 

formula of 𝑒𝑖𝛾�̅� = cos(𝛾𝑡̅) + 𝑖 sin(𝛾𝑡̅), the solution of ℎ̅s is expressed as 274 

ℎ̅s(�̅�, 𝑧̅, 𝑡̅) = �̅�𝑠(�̅�, 𝑧̅) cos(𝛾𝑡 − 𝜙𝑠(�̅�, 𝑧̅)) (40a) 275 

�̅�𝑠(�̅�, 𝑧̅) = √𝑎s(�̅�, 𝑧̅)2 + 𝑏s(�̅�, 𝑧̅)2  (40b) 276 

𝑎𝑠(�̅�, 𝑧̅) = Re(�̅�(�̅�, 𝑧̅)) (40c) 277 

𝑏s(�̅�, 𝑧̅) = Im(�̅�(�̅�, 𝑧̅)) (40d) 278 

𝜙s(�̅�, 𝑧̅) = cos
−1(𝑏𝑠(�̅�, 𝑧̅)/𝐴𝑠(�̅�, 𝑧̅)) (40e) 279 

where Re(-) is the real part of a complex number. Eq. (40a) indicates SHM for the response of 280 

the hydraulic head at any point to oscillatory pumping. 281 

2.6. Pseudo-steady state solution for confined aquifers 282 

Applying the finite Fourier cosine transform to the model, Eqs. (27) – (31) with Sy = 0 (i.e., 283 

𝑎 = 0) for the confined condition converts �̅� into �́� and 𝜕2�̅�/𝜕𝑧̅2 into (𝑚𝜋)2�́� with m 284 
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being an integer from 0, 1, 2, … ∞. The result is written as 285 

𝜕2�́�

𝜕�̅�2
+
1

�̅�

𝜕�́�

𝜕�̅�
− 𝜆𝑚

2 �́� = 0 (41) 286 

𝜕�́�

𝜕�̅�
= {

𝑧�̅� − 𝑧�̅�   for  𝑚 = 0
1

𝑚𝜋
(sin(𝑧�̅�𝑚𝜋) − sin(𝑧�̅�𝑚𝜋))  for  𝑚 > 0

  at   �̅� = 1 (42) 287 

lim
�̅�→∞

�́� = 0 (43) 288 

where 𝜆𝑚
2 = 𝛾𝑖 + 𝜇(𝑚𝜋)2; the result for 𝑚 = 0 is derived by L' Hospital's. Solve Eq. (41) 289 

with (42) and (43), and we can have 290 

�́�(�̅�) =
−𝐾0(�̅�𝜆𝑚)

𝜆𝑚𝐾1(𝜆𝑚)
× {

𝑧�̅� − 𝑧�̅�   for  𝑚 = 0
1

𝑚𝜋
(sin(𝑧�̅�𝑚𝜋) − sin(𝑧�̅�𝑚𝜋))  for  𝑚 > 0

 (44) 291 

After applying the inversion to Eq. (44) and the formula of 𝑒𝑖𝛾�̅� = cos(𝛾𝑡̅) + 𝑖 sin(𝛾𝑡)̅, the 292 

solution of ℎ̅s  for confined aquifers can be expressed as Eqs. (40a) - (40e) with �̅�(�̅�, 𝑧̅) 293 

replaced by  294 

�̅�(�̅�, 𝑧̅) = −2∑
𝐾0(�̅�𝜆𝑚)

𝜆𝑚𝐾1(𝜆𝑚)
× {

0.5(𝑧�̅� − 𝑧�̅�)  for  𝑚 = 0
cos(𝑚𝜋�̅�)

𝑚𝜋
(sin(𝑧�̅�𝑚𝜋) − sin(𝑧�̅�𝑚𝜋))  for  𝑚 > 0

∞
𝑚=0   (45)  295 

For a fully screened well (i.e., 𝑧�̅� = 1, 𝑧�̅� = 0), the first term of the series (i.e., m = 0) remains 296 

and the others equal zero because of sin(𝑧�̅�𝑚𝜋) − sin(𝑧�̅�𝑚𝜋) = 0. The result is independent 297 

of dimensionless elevation 𝑧̅, indicating the confined flow is only horizontal. 298 

2.7. Special cases of the present solution 299 

Table 1 classifies the present solution (i.e., solution 1) and its special cases (i.e., solutions 2 to 300 

6) according to transient or PSS flow, unconfined or confined aquifer, and IGD or DGD. Each 301 

of solutions 1 to 6 reduces to a special case for fully screened well. Existing analytical solutions 302 

can be regarded as special cases of the present solution as discussed in section 3.4 (e.g., Black 303 

and Kipp, 1981; Rasmussen et al., 2003; Dagan and Rabinovich, 2014). 304 

2.8. Sensitivity analysis 305 

Sensitivity analysis evaluates hydraulic head variation in response to the change in each of Kr, 306 

Kz, Ss, Sy, ω, and 𝜀. The normalized sensitivity coefficient can be defined as (Liou and Yeh, 307 
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1997) 308 

𝑆𝑖 = 𝑃𝑖
𝜕𝑋

𝜕𝑃𝑖
 (46) 309 

where 𝑆𝑖 is the sensitivity coefficient of ith parameter; 𝑃𝑖 is the magnitude of the ith input 310 

parameter; X represents the present solution in dimensional form. Eq. (46) can be approximated 311 

as 312 

𝑆𝑖 = 𝑃𝑖
𝑋(𝑃𝑖+∆𝑃𝑖)−𝑋(𝑃𝑖)

∆𝑃𝑖
 (47) 313 

where ∆𝑃𝑖, a small increment, is chosen as 10-3𝑃𝑖. 314 

3. Results and Discussion 315 

The following sections demonstrate the response of the hydraulic head to oscillatory pumping 316 

using the present solution. The default values in calculation are r = 0.05 m, z = 5 m, t = 0, b = 317 

10 m, Q = 10-3 m3/s, rw = 0.05 m, zu = 5.5 m, zl = 4.5 m, Kr = 10-4 m/s, Kz = 10-5 m/s, Ss = 10-5 318 

m-1, Sy = 10-4, ω = 2π/30 s-1, and 𝜀 = 10−2 s-1. The corresponding dimensionless parameters 319 

and variables are �̅� = 1, 𝑧̅ = 0.5, 𝑡̅ = 0, 𝑧�̅� = 0.55, 𝑧�̅� = 0.45, γ = 5.24×10-5, 𝜇 = 2.5 ×320 

10−6, 𝑎 = 4 × 105, 𝑎1 = 1 and 𝑎2 = 2.5 × 10−6. 321 

3.1. Delayed gravity drainage 322 

Previous analytical models for OPT consider either confined flow (e.g., Rasmussen et al., 2003) 323 

or unconfined flow with IGD effect (e.g., Dagan and Rabinovich, 2014). Little attention has 324 

been given to the DGD effect. This section examines the relation between these three kinds of 325 

models. Figure 2 shows the curve of the dimensionless amplitude �̅�𝑡 at (�̅�, 𝑧̅) = (1, 1) of 326 

solution 1 versus the dimensionless parameter 𝑎1  related to the effect. The transient head 327 

fluctuations are plotted by solution 1 with 𝑎1 = 10−2 , 1, 10, 500, solution 2 for IGD and 328 

solution 3 for confined flow. When 10−2 ≤ 𝑎1 ≤ 500, the �̅�𝑡 gradually decreases with 𝑎1 329 

to the trough and then increases to the ultimate value of �̅�𝑡 = 1.79 × 10
−2. The DGD, in other 330 

words, causes an effect. When 𝑎1 ≤ 10
−2, solutions 1 and 3 agree on the predicted heads, 331 

indicating the unconfined aquifer with the DGD effect behaves like confined aquifer and the 332 
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water table can be regarded as a no-flow boundary. When 𝑎1 ≥ 500, the head fluctuations 333 

predicted by solutions 1 and 2 are identical, indicating the DGD effect can be ignored and Eq. 334 

(4b) reduces to (4a) for the IGD condition. 335 

3.2. Effect of finite radius of pumping well  336 

Existing analytical models for OPT mostly treated the pumping well as a line source with 337 

infinitesimal radius (e.g., Rasmussen et al., 2003; Dagan and Rabinovich, 2014). The finite 338 

difference scheme for the model also treats the well as a nodal point by neglecting the radius. 339 

These will lead to significant error when a well has the radius ranging from 0.5 m to 2 m (Yeh 340 

and Chang, 2013). This section discusses the relative error in predicted amplitude defined as 341 

𝑅𝐸 = |�̅�𝐷&𝑅 − �̅�𝑡|/�̅�𝑡             (48) 342 

where �̅�𝐷&𝑅 and �̅�𝑡 are the dimensionless amplitudes at �̅� = 1 (i.e., r = rw) predicted by the 343 

Dagan and Rabinovich (2014) solution and the IGD solution 2. Note that their solution assumes 344 

infinitesimal radius of a pumping well and has a typo that the term 𝑒−𝐷𝑤+1 − 𝑒−𝐷𝑤 should 345 

read 𝑒𝛽(−𝐷𝑤+1) − 𝑒−𝛽𝐷𝑤  (see their Eq. (25)). Figure 3 demonstrates the RE for different 346 

values of radius rw. The RE increases with rw as expected. For case 1 of rw = 0.1 m, both 347 

solutions agree well in the entire domain of 1 ≤ �̅� ≤ ∞, indicating a pumping well with rw ≤ 348 

0.1 m can be regarded as a line source. For the extreme case 2 of rw = 1 m or case 3 of rw = 2 349 

m, the Dagan and Rabinovich solution underestimates the dimensionless amplitude for 1 ≤350 

�̅� ≤ 6 and agrees to the present solution for �̅� > 6. The REs for these two cases exceed 10%. 351 

The effect of finite radius should therefore be considered in OPT models especially when 352 

observed hydrulic head data are taken close to the wellbore of a large-diameter well. 353 

3.3. Sensitivity analysis  354 

The temporal distributions of normalized sensitivity coefficient 𝑆𝑖 defined as Eq. (47) with 355 

𝑋 = ℎexp of solution 1 are displayed in Fig. 4a for the response of exponential decay to the 356 

change in each of six parameters Kr, Kz, Ss, Sy, ω and 𝜀. The exponential decay is very sensitive 357 

to variation in each of Kr, Kz, Ss and ω because of |𝑆𝑖| > 0. Precisely, a positive perturbation 358 
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in Ss produces an increase in the magnitude of ℎexp while that in Kr or Kz causes a decrease. 359 

In addition, a positive perturbation in ω yields an increase in ℎexp before t = 1 s and a decrease 360 

after that time. It is worth noting that 𝑆𝑖 for Sy or 𝜀 is very close to zero over the entire period 361 

of time, indicating ℎexp is insensitive to the change in Sy or 𝜀 and the subtle change of gravity 362 

drainage has no influence on the exponential decay. On the other hand, the spatial distributions 363 

of 𝑆𝑖 associated with the amplitude 𝐴𝑡 are shown in Fig. 4b in response to the changes in 364 

those six parameters. The 𝐴𝑡 is again sensitive to the change in each of Kr, Kz, Ss and ω but 365 

insensitive to the change in Sy or 𝜀. The same result of |𝑆𝑖| ≅ 0 for Sy or 𝜀 applies to any 366 

observation point under the water table (i.e., 𝑧̅ < 1), but |𝑆𝑖| > 0 at the water table (i.e., 𝑧̅ =367 

1) shown in Fig. 4c. From those discussed above, we may conclude the changes in the four key 368 

parameters Kr, Kz, Ss and ω significantly affect head prediction in the entire aquifer domain. 369 

The change in Sy or 𝜀 leads to insignificant variation in the predicted head below the water 370 

table and slight variation at the water table. 371 

3.4. Transient head fluctuation affected by the initial condition 372 

Figure 5 demonstrates head fluctuations predicted by DGD solution 1 and IGD solution 2 373 

expressed as ℎ̅ = ℎ̅exp + ℎ̅SHM for transient flow and by IGD solution as ℎ̅𝑠 = �̅�𝑠 cos(𝛾𝑡 −374 

𝜙𝑠) for PSS flow. The transient head fluctuation starts from ℎ̅ = 0 at 𝑡̅ = 0 and approaches 375 

SHM predicted by ℎ̅SHM when ℎ̅exp ≅ 0 m after 𝑡̅ = 0.5�̅� (i.e., 6 × 104). Solutions 1 and 376 

2 agree to the ℎ̅ predictions because the head at 𝑧̅ = 0.5 under the water table is insensitive 377 

to the change in Sy or 𝜀 as discussed in section 3.3. It is worth noting that the solution of Dagan 378 

and Rabinovich (2014) for PSS flow has a certain time shift from the ℎ̅SHM of solution 2. This 379 

indicates the phase of their solution (i.e., 1.50 rad) should be replaced by the phase of solution 380 

2 (i.e., 𝜙𝑡 = 1.64 rad) so that their solution exactly fits the ℎ̅SHM of solution 2. 381 

    Figure 6 displays head fluctuations predicted by transient solution 3 expressed as ℎ̅ =382 

ℎ̅exp + ℎ̅SHM  and PSS solution 6 as ℎ̅𝑠 = �̅�𝑠 cos(𝛾𝑡 − 𝜙𝑠)  for partially-screened pumping 383 
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well in panel (a) and full screen in panel (b). The Rasmussen et al. (2003) solution for transient 384 

flow predicts the same ℎ̅ as solution 3. The Black and Kipp (1981) for PPS flow also predict 385 

close ℎ̅SHM predictions of solution 3. The phase of solution 6 (i.e., 𝜙𝑠 = 1.50 rad for panel 386 

(a) and 1.33 rad for (b)) should also be replaced by the phase of solution 3 (i.e., 𝜙𝑡 = 1.64 387 

rad for (a) and 1.81 rad for (b)) so that both solutions 3 and 6 agree to the SHM of head 388 

fluctuation. As concluded, excluding the initial condition with Eq. (26) for a PSS model leads 389 

to a certain time shift from the SHM of the head fluctuation predicted by the associated transient 390 

model while the transient and PSS models give the same SHM amplitude. 391 

3.5. Application of the present solution to field experiment 392 

Rasmussen et al. (2003) conducted field OPTs in a three-layered aquifer system containing one 393 

Surficial Aquifer, the Barnwell-McBean Aquifer in between and the deepest Gordon Aquifer 394 

at the Savannah River site. Two clay layers dividing these three aquifers may be regarded as 395 

impervious strata. For the OPT at the Surficial Aquifer, the formation has 6.25 m averaged 396 

thickness near the test site. The fully-screened pumping well has 7.6 cm outer radius. The 397 

pumping rate can be approximated as Qsin(𝜔𝑡) with Q = 4.16×10-4 m3/s and 𝜔 = 2π h-1. The 398 

distance from the pumping well is 6 m to the observation well 101D and 11.5 m to well 102D. 399 

The screen lengths are 3 m from the aquifer bottom for well 101D and from the water table for 400 

well 102D. For the OPT at the Barnwell-McBean Aquifer, the formation mainly consists of 401 

sand and fine-grained material. The pumping well has outer radius of 7.6 cm and pumping rate 402 

of Qsin(𝜔𝑡) with Q = 1.19×10-3 m3/s and 𝜔 = π h-1. The observation well 201C is at 6 m 403 

from the pumping well. The data of time-varying hydraulic heads at the observation wells (i.e., 404 

101D, 102D, 201C) are plotted in Fig. 7. One can refer to Rasmussen et al. (2003) for detailed 405 

description of the Savannah River site. 406 

The aquifer hydraulic parameters are determined based on solutions 3 to 6 coupled with 407 

the Levenberg–Marquardt algorithm provided in the Mathematica function FindFit (Wolfram, 408 

1991). Solutions 4 and 5 are used to predict depth-averaged head expressed as 409 
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(𝑧𝑢
′ − 𝑧𝑙

′)−1 ∫  ℎ𝑠𝑑𝑧
𝑧𝑢
′

𝑧𝑙
′  with the upper elevation 𝑧𝑢

′  and lower one 𝑧𝑙
′ of the finite screen of 410 

the observation well 101D or 102D at the Surficial Aquifer. Note that solutions 3 and 6 are 411 

independent of elevation because of the fully-screened pumping well. Define the standard error 412 

of estimate (SEE) as SEE = √
1

𝑀
∑ 𝑒𝑗

2𝑀
𝑗=1  and the mean error (ME) as ME =

1

𝑀
∑ 𝑒𝑗
𝑀
𝑗=1  where 413 

ej is the difference between predicted and observed hydraulic heads and M is the number of 414 

observation data (Yeh, 1987). The estimated parameters and associated SEE and ME are 415 

displayed in Table 2. The result shows the estimated Sy is very small, and the estimated T and 416 

S by solution 3 or 6 for confined flow are close to those by solution 4 or 5 for unconfined flow, 417 

indicating that the unconfined flow induced by the OPT in the Surficial Aquifer is negligibly 418 

small. Little gravity drainage due to the DGD effect appears with a1 = 20 for wells 101D and 419 

102D as discussed in section 3.1. Rasmussen et al. (2003) also revealed the confined behaviour 420 

of the OPT-induced flow in the Surficial Aquifer. The estimated Sy is one order less than the 421 

lower limit of the typical range of 0.01 ~ 0.3 (Freeze and Cherry, 1979), which accords with 422 

the findings of Rasmussen et al. (2003) and Rabinovich et al. (2015). Such a fact might be 423 

attributed to the problem of the moisture exchange limited by capillary fringe between the 424 

zones below and upper the water table. Several laboratory researches have confirmed an 425 

estimate of Sy at short period of OPT is much smaller than that determined by constant-rate 426 

pumping test (e.g., Cartwright et al., 2003; 2005). On the other hand, transient solution 3 gives 427 

smaller SEEs than PSS solution 6 for the Barnwell-McBean Aquifer and better fits to the 428 

observed data at the early pumping periods as shown in Fig. 7. From those discussed above, 429 

we may conclude the present solution is applicable to real-world OPT. 430 

4. Concluding remarks 431 

A variety of analytical models for OPT have been proposed so far, but little attention is paid to 432 

the joint effects of DGD, initial condition, and finite radius of a pumping well. This study 433 

develops a new model for describing hydraulic head fluctuation due to OPT in unconfined 434 
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aquifers. Static hydraulic head prior to OPT is regarded as an initial condition. A Neumann 435 

boundary condition is specified at the rim of a finite-radius pumping well. A free surface 436 

equation accounting for the DGD effect is considered as the top boundary condition. The 437 

solution of the model is derived by the Laplace transform, finite integral transform and Weber 438 

transform. The sensitivity analysis of the head response to the change in each of hydraulic 439 

parameters is performed. The observation data obtained from the OPT at the Savannah River 440 

site are analyzed by the present solution when coupling the Levenberg–Marquardt algorithm 441 

to estimate aquifer hydraulic parameters. Our findings are summarized below: 442 

1. When 10−2 ≤ 𝑎1 ≤ 500, the effect of DGD on the head fluctuation should be considered. 443 

The amplitude of head fluctuation predicted by DGD solution 1 decreases with increasing 444 

𝑎1 to a certain trough and then increases to the amplitude predicted by IGD solution 2. 445 

When 𝑎1 > 500, the DGD becomes IGD. Both solutions 1 and 2 predict the same head 446 

fluctuation. When 𝑎1 < 10−2, the DGD results in the water table under no-flow condition. 447 

Solution 1 for unconfined flow gives an identical head prediction to solution 3 for confined 448 

flow.  449 

2. Assuming a large-diameter well as a line source with infinitesimal radius underestimates 450 

the amplitude of head fluctuation in the domain of 1 ≤ �̅� ≤ 6 when the radius exceeds 80 451 

cm, leading to relative error RE > 10% shown in Fig. 3. In contrast, the assumption is valid 452 

in predicting the amplitude in the domain of �̅� > 6 in spite of adopting a large-diameter 453 

well. When 𝑟𝑤 ≤ 10  cm (i.e., RE < 0.45%), the well radius can be regarded as 454 

infinitesimal. The result is applicable to existing analytical solutions assuming infinitesimal 455 

radius and finite difference solutions treating the pumping well as a nodal point. 456 

3. The sensitivity analysis suggests the changes in four parameters Kr, Kz, Ss and ω 457 

significantly affect head prediction in the entire aquifer domain. The change in Sy or 𝜀 458 

causes insignificant variation in the head under water table but slight variation at the water 459 

table. 460 
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4. Analytical solutions for OPT are generally expressed as the sum of the exponential and 461 

harmonic functions of time (i.e., ℎ̅ = ℎ̅exp + �̅�𝑡 cos(𝛾𝑡 − 𝜙𝑡)) for transient solutions (e.g., 462 

solution 3) and harmonic function (i.e., ℎ̅s = �̅�𝑠 cos(𝛾𝑡 − 𝜙𝑠) ) for PSS solutions (e.g., 463 

solution 6). The latter assuming Eq. (26) without the initial condition produces a certain 464 

time shift from the SHM predicted by the ℎ̅SHM. The phase 𝜙𝑠 should be replaced by 𝜙𝑡 465 

so that ℎ̅s and ℎ̅SHM are exactly the same. 466 

 467 
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Appendix A: Finite integral transform 542 

Applying the finite integral transform to ℎ̂  of the model, Eqs. (14) – (18), results in 543 

(Latinopoulos, 1985) 544 

ℎ̃(𝛽𝑛) = ℑ{ℎ̂(𝑧̅)} = ∫ ℎ̂(𝑧̅) 𝐹
1

0
cos(𝛽𝑛𝑧̅) 𝑑𝑧̅ (A.1) 545 

𝐹 = √
2(𝛽𝑛

2+𝑐2)

𝛽𝑛
2+𝑐2+𝑐

 (A.2) 546 

where 𝛽𝑛 is the root of Eq. (19). On the basis of integration by parts, one can write 547 

ℑ {
𝜕2ℎ̂

𝜕�̅�2
} = ∫ (

𝜕2ℎ̂

𝜕�̅�2
 ) 𝐹 cos(𝛽𝑛𝑧) 𝑑𝑧̅

1

0
= −𝛽𝑛

2ℎ̃ (A.3) 548 

Note that Eq. (A.3) is applicable only for the no-flow condition specified at 𝑧̅ = 0 (i.e., Eq. 549 

(17)) and third-type condition specified at 𝑧̅ = 1 (i.e., Eq. 16a or 16b). The formula for the 550 

inverse finite integral transform is defined as 551 

ℎ̂(𝑧̅) = ℑ−1{ℎ̃(𝛽𝑛)} = ∑ ℎ̃(𝛽𝑛)𝐹
∞
𝑛=1 cos(𝛽𝑛𝑧̅) (A.4) 552 

Appendix B: Derivation of Eqs. (24a) – (24k) 553 

On the basis of Eq. (A.4) and taking the inverse finite integral transform to Eq. (22), the 554 

Laplace-domain solution is obtained as  555 

ℎ̂(�̅�, 𝑧̅, 𝑝) = 2∑ ℎ̃(�̅�, 𝛽𝑛, 𝑝) cos(𝛽𝑛𝑧̅)
∞
𝑛=1             (B.1) 556 

with 557 

ℎ̃(�̅�, 𝛽𝑛, 𝑝) = ℎ̃1(𝑝) ∙ ℎ̃2(𝑝) (B.2) 558 

ℎ̃1(𝑝) =
𝛾

(𝑝2+𝛾2)
 (B.3) 559 

ℎ̃2(𝑝) = −𝜑1𝜑2 (B.4) 560 

𝜑1 = 𝐾0(�̅�𝜆)(sin(𝑧�̅�𝛽𝑛) − sin(𝑧�̅�𝛽𝑛))/(𝛽𝑛𝜆𝐾1(𝜆)) (B.5) 561 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-482
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 1 November 2018
c© Author(s) 2018. CC BY 4.0 License.



 

25 

 

𝜑2 = (𝛽𝑛
2 + 𝑐2)/(𝛽𝑛

2 + 𝑐2 + 𝑐) (B.6) 562 

where 𝜆 is defined in Eq. (23). Using the Mathematica function InverseLaplaceTransform, the 563 

inverse Laplace transform for ℎ̃1(𝑝) in Eq. (B.3) is obtained as 564 

ℎ̅1(𝑡̅) = sin(𝛾𝑡̅) (B.7) 565 

The inverse Laplace transform for ℎ̃2(𝑝) in Eq. (B.4) is written as 566 

ℎ̃2(𝑡)̅ =
1

2𝜋𝑖
∫ ℎ̃2(𝑝) 𝑒

𝑝�̅�𝑑𝑝
𝜌+𝑖∞

𝜌−𝑖∞
 (B.8) 567 

where 𝜌 is a real number being large enough so that all singularities are on the LHS of the 568 

straight line from (𝜌, −𝑖∞)  to (𝜌, 𝑖∞)  in the complex plane. The integrand ℎ̃2(𝑝)  is a 569 

multiple-value function with a branch point at 𝑝 = −𝜇𝛽𝑛
2 and a branch cut from the point 570 

along the negative real axis. In order to reduce ℎ̃2(𝑝) to a single-value function, we consider 571 

a modified Bromwich contour that contains a straight line AB̅̅ ̅̅ , CD̅̅ ̅̅  right above the branch cut 572 

and EF̅̅̅̅  right below the branch cut, a semicircle with radius R, and a circle 
⌒
DE with radius 573 

𝑟′ in Fig. A1. According to the residual theory, Eq. (B.8) may be expressed as 574 

ℎ̃2(𝑡)̅ + lim
𝑟′→0
𝑅→∞

1

2𝜋𝑖
[∫ ℎ̃2(𝑝) 𝑒

𝑝�̅�𝑑𝑝
𝐶

𝐵
+ ∫ ℎ̃2(𝑝) 𝑒

𝑝�̅�𝑑𝑝
𝐷

𝐶
+ ∫ ℎ̃2(𝑝) 𝑒

𝑝�̅�𝑑𝑝
𝐸

𝐷
+575 

                ∫ ℎ̃2(𝑝) 𝑒
𝑝�̅�𝑑𝑝

𝐹

𝐸
+ ∫ ℎ̃2(𝑝) 𝑒

𝑝�̅�𝑑𝑝
𝐴

𝐹
] = 0 (B.10) 576 

where zero on the RHS is due to no pole in the complex plane. The integrations for paths 
⌒
BA 577 

(i.e. ∫ ℎ̃2(𝑝) 𝑒
𝑝�̅�𝑑𝑝

𝐶

𝐵
+ ∫ ℎ̃2(𝑝) 𝑒

𝑝�̅�𝑑𝑝
𝐴

𝐹
) with 𝑅 → ∞ and 

⌒
DE (i.e. ∫ ℎ̃2(𝑝) 𝑒

𝑝�̅�𝑑𝑝
𝐸

𝐷
) with 578 

𝑟′ → 0  equal zero. The path CD̅̅ ̅̅   starts from 𝑝 = −∞  to 𝑝 = −𝜇𝛽𝑛
2  and EF̅̅̅̅   starts from 579 

𝑝 = −𝜇𝛽𝑛
2 to 𝑝 = −∞. Eq. (B.10) therefore reduces to 580 

ℎ̃2(𝑡)̅ = −
1

2𝜋𝑖
(∫ ℎ̃2(𝑝

+)𝑒𝑝
+�̅�𝑑𝑝

−𝜇𝛽𝑛
2

−∞
+ ∫ ℎ̃2(𝑝

−)𝑒𝑝
−�̅�𝑑𝑝

−∞

−𝜇𝛽𝑛
2 ) (B.11) 581 

where 𝑝+ and 𝑝− are complex numbers right above and below the real axis, respectively. 582 

Consider 𝑝+ = 𝜁𝑒𝑖𝜋 − 𝜇𝛽𝑛
2 and 𝑝− = 𝜁𝑒−𝑖𝜋 − 𝜇𝛽𝑛

2 in the polar coordinate system with the 583 

origin at (−𝜇𝛽𝑛
2, 0) in the complex plane. Eq. (B.11) then becomes 584 
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ℎ̃2(𝑡)̅ =
−1

2𝜋𝑖
∫ ℎ̃2(𝑝

+)𝑒𝑝
+�̅�𝑑𝑝 − ℎ̃2(𝑝

−)𝑒𝑝
−�̅�𝑑𝜁

∞

0
          (B12) 585 

where 𝑝+ and 𝑝− lead to the same result of 𝑝0 = −𝜁 − 𝜇𝛽𝑛
2 for a given 𝜁; 𝜆 = √𝑝 + 𝜇𝛽𝑛2 586 

equals 𝜆0 = √𝜁𝑖  for 𝑝 = 𝑝+  and −𝜆0  for 𝑝 = 𝑝− . Note that ℎ̃2(𝑝
+) 𝑒𝑝

+�̅�  and 587 

ℎ̃2(𝑝
−) 𝑒𝑝

−�̅� are in terms of complex numbers. The numerical result of the integrand in Eq. 588 

(B.12) must be a pure imaginary number that is exactly twice of the imaginary part of a complex 589 

number from ℎ̃2(𝑝
+) 𝑒𝑝

+𝑡  with 𝑝+ = 𝑝0  and 𝜆 = 𝜆0 . The inverse Laplace transform for 590 

ℎ̃2(𝑝) can be written as 591 

ℎ̃2(𝑡)̅ =
−1

𝜋
∫ Im(𝜑1𝜀2 𝑒

𝑝0�̅�)
∞

0
𝑑𝜁 (B.13) 592 

where 𝑝 = 𝑝0 ; 𝜆 = 𝜆0 ; 𝜑1  and 𝜀2  are respectively defined in Eqs. (B.5) and (24i). 593 

According to the convolution theory, the inverse Laplace transform for ℎ̃(�̅�, 𝛽𝑛, 𝑝) is 594 

ℎ̃(�̅�, 𝛽𝑛, 𝑡̅) = ∫ ℎ̃2(𝜏)
𝑡

0
ℎ̅1(𝑡̅ − 𝜏)𝑑𝜏 (B.14) 595 

where ℎ̅1(𝑡̅ − 𝜏) = sin(𝛾(𝑡̅ − 𝜏)) based on Eq. (B.7); ℎ̃2(𝜏) is defined in Eq. (B.13) with 596 

𝑡̅ = 𝜏. Eq. (B.14) can reduce to 597 

ℎ̃(�̅�, 𝛽𝑛, 𝑡̅) =
−1

𝜋
∫ Im (

𝜑1𝜀2(𝛾𝑒
𝑝0�̅�−𝛾 cos(𝛾�̅�)−𝑝0 sin(𝛾�̅�))

𝑝0
2+𝛾2

)
∞

0
𝑑𝜁 (B.15) 598 

Substituting ℎ̃(�̅�, 𝛽𝑛, 𝑝) = ℎ̃(�̅�, 𝛽𝑛, 𝑡̅)  and ℎ̂(�̅�, 𝑧̅, 𝑝) = ℎ̅(�̅�, 𝑧̅, 𝑡̅)  into Eq. (B.1) and 599 

rearranging the result leads to 600 

ℎ̅(�̅�, 𝑧̅, 𝑡̅) =
−2

𝜋
∑ ∫ cos(𝛽𝑛𝑧̅) Im(𝜀1𝜀2𝛾𝑒

𝑝0�̅�)
∞

0
𝑑𝜁∞

𝑛=1 +601 

                      
2

𝜋
∑ ∫ cos(𝛽𝑛𝑧̅) Im(𝜀1𝜀2(𝛾 cos(𝛾𝑡̅) + 𝑝0 sin(𝛾𝑡̅)))

∞

0
𝑑𝜁∞

𝑛=1  (B.16) 602 

where 𝜀1 and 𝜀2 are defined in Eqs. (24h) and (24i); the first RHS term equals ℎ̅exp(�̅�, 𝑧̅, 𝑡̅) 603 

defined in Eq. (24b); the second term is denoted as ℎ̅SHM(�̅�, 𝑧̅, 𝑡̅) defined in Eq. (24c). Finally, 604 

the complete solution is expressed as Eqs. (24a) – (24k). 605 

Appendix C: Weber transform 606 

Applying the Weber transform to �̅� of the model, Eqs. (27) – (31), yields 607 
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�̃�(𝜉) = 𝒲{�̅�} = ∫ �̅� �̅� Ω 𝑑𝑟
∞

1
 (C1) 608 

where Ω is defined in Eq. (39b). With the integration by parts, the transform has the property 609 

that 610 

𝒲{
𝜕2�̅�

𝜕�̅�2
+
1

�̅�

𝜕�̅�

𝜕�̅�
} = −𝜉2�̃� −

2

𝜋𝜉

𝑑�̅�

𝑑�̅�
|
�̅�=1

 (C2) 611 

where the second RHS term represents the Neumann boundary condition Eq. (28). The formula 612 

for the inversion can be written as 613 

�̅� = 𝒲−1{�̃�} = ∫ �̃� 𝜉 Ω 𝑑𝜉
∞

0
 (C3) 614 

 615 
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Table 1. The present solution and its special cases 616 

Well 

screen 

Transient flow Pseudo-steady state flow 

 Unconfined aquifer Confined aquifer  Unconfined aquifer Confined aquifer 

Partial  Solutions 1 and 2 Solution 3  Solutions 4 and 5 Solution 6 

Full  Solutions 1 and 2a Solution 3a,b  Solutions 4 and 5a Solution 6a,b 

Solution 1 consists of Eqs. (24a) – (24k) with the roots of Eq. (19) and 𝑐0 = 𝑎1𝑝0/(𝑝0 + 𝑎2) for DGD. 617 

Solution 2 is the same as solution 1 but has 𝑐0 = 𝑎𝑝0 for IGD. 618 

Solution 3 equals solution 1 with Eqs. (25a) – (25d) and 𝛽𝑛 = 0, 𝜋, 2𝜋, …, 𝑛𝜋. 619 

Solution 4 is the component ℎ̅SHM of solution 1 for DGD. 620 

Solution 5 consists of Eqs. (40a) – (40e) for IGD. 621 

Solution 6 consists of Eqs. (40a) – (40e) with 𝐻(�̅�, 𝑧̅) defined by Eq. (45). 622 

a 𝑧�̅� = 1 and 𝑧�̅� = 0 for fully screened well 623 

b The solution is independent of elevation due to fully screened well. 624 

 625 
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Table 2. Hydraulic parameters estimated by the present solution for OPT data from the Savannah River site 626 

Observation 

well 

Present 

solution 
T (m2/s) S Kz (m/s) Sy 𝜀 (s-1) SEE ME 

Surficial Aquifer 

101D Solution 3a 9.27 × 10−4 2.44 × 10−3 - - - 0.018 −5.56 × 10−3 

 Solution 6b 9.18 × 10−4 2.33 × 10−3 - - - 0.018 −2.20 × 10−4 

 Solution 4c 4.61 × 10−4 3.95 × 10−3 7.38 × 10−6 2.23 × 10−3 1.06 × 10−2 0.018 −2.20 × 10−4 

 Solution 5c 5.25 × 10−4 1.09 × 10−3 2.61 × 10−5 5.49 × 10−3 - 0.019 −2.30 × 10−4 

102D Solution 3a 9.13 × 10−4 1.76 × 10−3 - - - 0.010 −4.38 × 10−3 

 Solution 6b 9.17 × 10−4 1.67 × 10−3 - - - 0.011 9.57 × 10−4 

 Solution 4c 9.57 × 10−5 7.85 × 10−4 3.68 × 10−6 4.95 × 10−3 2.38 × 10−3 0.011 9.57 × 10−4 

 Solution 5c 9.49 × 10−5 3.25 × 10−4 4.67 × 10−6 4.68 × 10−3 - 0.011 9.50 × 10−4 

Barnwell-McBean Aquifer 

201C Solution 3a 5.86 × 10−5 7.07 × 10−4 - - - 0.232 0.046 

 Solution 6b 6.03 × 10−5 6.54 × 10−4 - - - 0.363 0.281 

a transient confined flow 627 

b PSS confined flow 628 

c PSS unconfined flow 629 
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Figures 630 

 631 

Figure 1. Schematic diagram for oscillatory pumping test at a partially screened well of finite 632 

radius in an unconfined aquifer.  633 
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 634 

Figure 2. Influence of delayed gravity drainage on the dimensionless amplitude �̅�𝑡  and 635 

transient head ℎ̅  at �̅� = 1 , 𝑧̅ = 1  predicted by solution 1 for different magnitudes of 𝑎1 636 

related to the influence. 637 

 638 
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 639 

Figure 3. Relative error (RE) on the dimensionless amplitudes �̅�𝑡 at the rim of the pumping 640 

well (i.e., r = rw) predicted by the Dagan and Rabinovich (2014) solution and the IGD solution 641 

2. The well radius is assumed infinitesimal in the Dagan and Rabinovich (2014) solution and 642 

finite in our solution.    643 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-482
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 1 November 2018
c© Author(s) 2018. CC BY 4.0 License.



 

33 

 

 644 

Figure 4. The normalized sensitivity coefficient Si associated with (a) the exponential 645 

component hexp of solution 1 and (b) the SHM amplitude At for parameters Kr, Kz, Ss, Sy, ω and 646 

𝜀. The observation locations for panels (a) and (b) are under water table (i.e., 𝑧̅ = 0.5). Panel 647 

(c) displays the curves of Si of hexp and At at water table (i.e., 𝑧̅ = 1) versus Sy and 𝜀. 648 

 649 
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 650 

Figure 5. Heads fluctuations at �̅� = 6 predicted by (a) DGD solution 1 and (b) IGD solution 651 

2. Solutions 1 and 2 are expressed as ℎ̅ = ℎ̅exp + ℎ̅SHM for transient flow. IGD solution 5 652 

expressed as ℎ̅𝑠 = �̅�𝑠 cos(𝛾𝑡 − 𝜙𝑠) accounts for PSS flow. 653 

  654 
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 655 

Figure 6. Heads fluctuations at �̅� = 6 predicted by solutions 3 and 6 for (a) partially-screend 656 

pumping well and (b) fully-screened pumping well. Solution 3 is expressed as ℎ̅ = ℎ̅exp +657 

ℎ̅SHM  for transient flow. Solution 6 expressed as ℎ̅𝑠 = �̅�𝑠 cos(𝛾𝑡 − 𝜙𝑠)  accounts for PSS 658 

flow. 659 

 660 
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 661 

Figure 7. Comparision of field observation data with head fluctuations predicted by the present 662 

solution. Solutions 3 and 6 represent transient and PSS confined flows, respectively. PSS 663 

solutions 4 and 5 stand for DGD and IGD conditions, respectively.  664 
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 665 

Figure A1. Modified Bromwich contour for the inverse Laplace transform to a multiple-value 666 

function with a branch point and a branch cut 667 
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