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Abstract 23 

Oscillatory pumping tests (OPTs) provide an alternative to constant-head and constant-rate 24 

pumping tests for determining aquifer hydraulic parameters when OPT data are analyzed based 25 

on an associated analytical model coupled with an optimization approach. There is a large 26 

number of analytical models presented for the analysis of OPT. The combined effects of 27 

delayed gravity drainage (DGD) and initial condition regarding the hydraulic head are 28 

commonly neglected in the existing models. This study aims to develop a new model for 29 

describing the hydraulic head fluctuation induced by OPT in an unconfined aquifer. The model 30 

contains a groundwater flow equation with the initial condition of static water table, Neumann 31 

boundary condition specified at the rim of a partially screened well, and a free surface equation 32 

describing water table motion with the DGD effect. The solution is derived using the Laplace, 33 

finite-integral, and Weber transforms. Sensitivity analysis is carried out for exploring head 34 

response to the change in each of hydraulic parameters. Results suggest the DGD reduces to 35 

instantaneous gravity drainage in predicting transient head fluctuation when dimensionless 36 

parameter 𝑎1 = 𝜖𝑆𝑦𝑏/𝐾𝑧  exceeds 500 with empirical constant 𝜖 , specific yield Sy, aquifer 37 

thickness b, and vertical hydraulic conductivity Kz. The water table can be regarded as a no-38 

flow boundary when 𝑎1 < 10−2  and 𝑃 < 104  s with P being the period of oscillatory 39 

pumping rate. A pseudo-steady state model without initial condition causes a time shift from 40 

the actual transient model in predicting simple harmonic motion of head fluctuation during a 41 

late pumping period. In addition, the present solution agrees well to head fluctuation data 42 

observed at the Savannah River site. 43 

KEYWORDS: oscillatory pumping test, analytical solution, free surface equation, delayed 44 

gravity drainage, initial condition 45 
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Notation and Abbreviation 46 

a 𝑏𝐷𝑟/(𝐶𝑦𝑟𝑤
2) 

a1, a2 𝑏/(𝜅𝐶𝑦), r𝑤
2 /(𝜅𝐷𝑟) 

b Aquifer thickness 

Cy 𝐾𝑧/𝑆𝑦 

Dr 𝐾𝑟/𝑆𝑠 

DGD Delayed gravity drainage 

h Hydraulic head 

ℎ̅  Dimensionless Hydraulic head, i.e., ℎ̅ = 2𝜋𝑙𝐾𝑟ℎ/𝑄 

IGD Instantaneous gravity drainage 

Kr, Kz Aquifer horizontal and vertical hydraulic conductivities, respectively 

LHS Left-hand side 

l Screen length, i.e., 𝑧𝑢 − 𝑧𝑙 

OPT oscillatory pumping test 

P Period of oscillatory pumping rate 

PSS Pseudo-steady state 

𝑃̅ Dimensionless period, i.e., 𝑃̅ = 𝐷𝑟𝑃/𝑟𝑤
2 

p Laplace parameter 

𝑄  Amplitude of oscillatory pumping rate 

RHS Right-hand side 

r Radial distance from the center of pumping well 

𝑟̅  Dimensionless radial distance, i.e., 𝑟̅ = 𝑟/𝑟𝑤 

rw Radius of pumping well 

SHM Simple harmonic motion  

Ss, Sy Specific storage and specific yield, respectively 

𝑡  Time since pumping 

𝑡̅  Dimensionless pumping time, i.e., 𝑡̅ = 𝐷𝑟𝑡/𝑟𝑤
2 

z Elevation from aquifer bottom 

zl, zu Lower and upper elevations of well screen, respectively 

𝑧̅  Dimensionless elevation, i.e., 𝑧̅ = 𝑧 𝑏⁄  

𝑧𝑙̅, 𝑧𝑢̅ zl/b, zu/b 

𝛼 𝐾𝑧/K𝑟 

𝛽𝑛 Roots of Eq. (15) 

𝜅 1/𝜖 

𝛾  Dimensionless frequency of oscillatory pumping rate, i.e., 𝜔𝑟𝑤
2/𝐷𝑟 

𝜖 Empirical constant associated with delayed gravity drainage 

𝜇  α𝑟𝑤
2/𝑏2 

𝜔  Frequency of oscillatory pumping rate, i.e., 𝜔 = 2𝜋/𝑃 

47 
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1. Introduction 48 

Numerous attempts have been made by researchers to the study of oscillatory pumping test 49 

(OPT) that is an alternative to constant-rate and constant-head pumping tests for determining 50 

aquifer hydraulic parameters (e.g., Vine et al., 2016; Christensen et al., 2017; Watlet et al., 51 

2018). The concept of OPT was first proposed by Kuo (1972) in the petroleum literature. The 52 

process of OPT contains extraction stages and injection stages. The pumping rate, in other 53 

words, varies periodically as a sinusoidal function of time. Compared with traditional constant-54 

rate pumping, OPT in contaminated aquifers has the following advantages: (1) low cost because 55 

of no disposing contaminated water from the well, (2) reduced risk of treating contaminated 56 

fluid, (3) smaller contaminant movement, and (4) stable signal easily distinguished from 57 

background disturbance such as tide effect and varying river stage (e.g., Spane and Mackley, 58 

2011). However, the disadvantages of OPT include the need of an advanced apparatus 59 

producing periodic rate. Oscillatory hydraulic tomography adopts several oscillatory pumping 60 

wells with different frequencies (e.g., Yeh and Liu, 2000; Cardiff et al., 2013; Zhou et al., 2016; 61 

Muthuwatta et al., 2017). Aquifer heterogeneity can be mapped by analyzing multiple data 62 

collected from observation wells. Cardiff and Barrash (2011) reviewed articles associated with 63 

hydraulic tomography and classified them according to nine categories in a table. 64 

Various groups of researchers have worked with analytical and numerical models for OPT; 65 

each group has its own model and investigation. For example, Black and Kipp (1981) assumed 66 

the response of confined flow to OPT as simple harmonic motion (SHM) in the absence of 67 

initial condition. Cardiff and Barrash (2014) built an optimization formulation strategy using 68 

the Black and Kipp analytical solution. Dagan and Rabinovich (2014) also assumed hydraulic 69 

head fluctuation as SHM for OPT at a partially screened well in unconfined aquifers. Cardiff 70 

et al. (2013) characterized aquifer heterogeneity using the finite element-based COMSOL 71 

software that adopts SHM hydraulic head variation for OPT. On the other hand, Rasmussen et 72 

al. (2003) found hydraulic head response tends to SHM at a late period of pumping time when 73 
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considering initial condition prior to OPT. Bakhos et al. (2014) used the Rasmussen et al. (2003) 74 

analytical solution to quantify the time after which hydraulic head fluctuation can be regarded 75 

as SHM since OPT began. As mentioned above, most of the models for OPT assume hydraulic 76 

head fluctuation as SHM without initial condition, and all of them treat the pumping well as a 77 

line source with infinitesimal radius. 78 

Field applications of OPT for determining aquifer parameters have been conducted in 79 

recent years. Rasmussen et al. (2003) estimated aquifer hydraulic parameters based on 1- or 2- 80 

hour period of OPT at the Savannah River site. Maineult et al. (2008) observed spontaneous 81 

potential temporal variation in aquifer diffusivity at a study site in Bochum, Germany. Fokker 82 

et al. (2012; 2013) presented spatial distributions of aquifer transmission and storage 83 

coefficient derived from curve fitting based on a numerical model and field data from 84 

experiments at the southern city-limits of Bochum, Germany. Rabinovich et al. (2015) 85 

estimated aquifer parameters of equivalent hydraulic conductivity, specific storage and specific 86 

yield at the Boise Hydrogeophysical Research Site by curve fitting based on observation data 87 

and the Dagan and Rabinovich (2014) analytical solution. They conclude the equivalent 88 

hydraulic parameters can represent the actual aquifer heterogeneity of the study site. 89 

Although a large number of studies have been made in developing analytical models for 90 

OPT, little is known about the combined effects of delayed gravity drainage (DGD), finite-91 

radius pumping well, and initial condition prior to OPT. Analytical solution to such a question 92 

will not only have important physical implications but also shed light on OPT model 93 

development. This study builds an improved model describing hydraulic head fluctuation 94 

induced by OPT in an unconfined aquifer. The model is composed of a typical flow equation 95 

with the initial condition of static water table, an inner boundary condition specified at the rim 96 

of the partially screened well for incorporating finite-radius effect, and a free surface equation 97 

describing the motion of water table with the DGD effect. The analytical solution of the model 98 

is derived by the methods of Laplace transform, finite-integral transform, and Weber transform. 99 
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Based on the present solution, sensitivity analysis is performed to explore the hydraulic head 100 

in response to the change in each of hydraulic parameters. The effects of DGD and 101 

instantaneous gravity drainage (IGD) on the head fluctuations are compared. The quantitative 102 

criterion for treating the well radius as infinitesimal is discussed. The effect of the initial 103 

condition on the phase of head fluctuation is investigated. In addition, curve fitting of the 104 

present solution to head fluctuation data recorded at the Savannah River site is presented. 105 

2. Methodology 106 

2.1. Mathematical model 107 

Consider an OPT in an unconfined aquifer illustrated in Fig. 1. The aquifer is of unbound lateral 108 

extent with a finite thickness 𝑏. The radial distance from the centerline of the well is r; an 109 

elevation from the impermeable bottom of the aquifer is z. The well with outer radius 𝑟𝑤 is 110 

screened from elevation zu to zl. 111 

The flow equation describing spatiotemporal head distribution in aquifers can be written 112 

as:  113 

𝐷𝑟 (
𝜕2ℎ

𝜕𝑟2
+
1

𝑟

𝜕ℎ

𝜕𝑟
+ α

𝜕2ℎ

𝜕𝑧2
) =

𝜕ℎ

𝜕𝑡
   for   𝑟𝑤 ≤ 𝑟 < ∞, 0 ≤ 𝑧 ≤ 𝑏  and  𝑡 ≥ 0   (1) 114 

where 𝐷𝑟 = 𝐾𝑟/𝑆𝑠; 𝛼 = 𝐾𝑧/𝐾𝑟; ℎ(𝑟, 𝑧, 𝑡) is hydraulic head at location (r, z) and time t; 𝐾𝑟 115 

and 𝐾𝑧  are respectively the radial and vertical hydraulic conductivities; Ss is the specific 116 

storage. Consider water table as a reference datum where the elevation head is set to zero; the 117 

initial condition is expressed as: 118 

ℎ = 0 at 𝑡 = 0 (1) 119 

The rim of the wellbore is regarded as an inner boundary under the Neumann condition 120 

expressed as: 121 

2𝜋𝑟𝑤𝐾𝑟𝑙
𝜕ℎ

𝜕𝑟
= {

𝑄sin(𝜔𝑡)  for   𝑧𝑙 ≤ 𝑧 ≤ 𝑧𝑢
0   outside screen interval

   at   𝑟=𝑟𝑤 (2) 122 

where 𝑙 = 𝑧𝑢 − 𝑧𝑙  is screen length; 𝑄  and 𝜔 = 2𝜋/𝑃  are respectively the amplitude and 123 

frequency of oscillatory pumping rate (i.e., 𝑄sin(𝜔𝑡)) with a period P. Water table motion can 124 
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be defined by Eq. (4a) for IGD (Neuman, 1972) and Eq. (4b) for DGD (Moench, 1995). 125 

𝜕ℎ

𝜕𝑧
= −

1

𝐶𝑦

𝜕ℎ

𝜕𝑡
   at    𝑧 = 𝑏 for IGD  (3a) 126 

𝜕ℎ

𝜕𝑧
=

1

𝜅𝐶𝑦
∫

𝜕ℎ

𝜕𝜏

𝑡

0
exp(−(𝑡 − 𝜏)/𝜅) d𝜏   at    𝑧 = 𝑏 for DGD       (4b) 127 

where 𝐶𝑦 = 𝐾𝑧/𝑆𝑦 , 𝜅 = 1/𝜖  with 𝜖  being an empirical constant, and 𝑆𝑦  is the specific 128 

yield. Note that Eq. (4b) reduces to Eq. (4a) when 𝜅 → ∞ or 𝜖 = 0. The impervious aquifer 129 

bottom is under the no-flow condition: 130 

𝜕ℎ

𝜕𝑧
= 0  at   𝑧 = 0  (4) 131 

The hydraulic head far away from the pumping well remains constant, written as 132 

lim
𝑟→∞

ℎ(𝑟, 𝑧, 𝑡) = 0 (5) 133 

Define dimensionless variables and parameters as follows: 134 

ℎ̅ =
2𝜋𝑙𝐾𝑟

𝑄
ℎ, 𝑟̅ =

𝑟

𝑟𝑤
, 𝑧̅ =

𝑧

𝑏
, 𝑧𝑙̅ =

𝑧𝑙

𝑏
, 𝑧𝑢̅ =

𝑧𝑢

𝑏
, 𝑡̅ =

𝐷𝑟

𝑟𝑤
2 𝑡, 𝜏̅ =

𝐷𝑟

𝑟𝑤
2 𝜏, 𝑃̅ =

𝐷𝑟

𝑟𝑤
2 𝑃 135 

 𝛾 =
𝜔𝑟𝑤

2

𝐷𝑟
, 𝜇 =

α𝑟𝑤
2

𝑏2
, 𝑎 =

𝑏𝐷𝑟

𝐶𝑦𝑟𝑤
2 , 𝑎1 =

𝑏

𝜅𝐶𝑦
, 𝑎2 =

𝑟𝑤
2

𝜅𝐷𝑟
 (6) 136 

where the overbar stands for a dimensionless symbol. Note that the magnitude of 𝑎1 is related 137 

to the DGD effect (Moench, 1995) and γ is a dimensionless frequency parameter. With Eq. (7), 138 

the dimensionless forms of Eqs. (1) - (6) become, respectively, 139 

𝜕2ℎ̅

𝜕𝑟̅2
+
1

𝑟̅

𝜕ℎ̅

𝜕𝑟̅
+ 𝜇

𝜕2ℎ̅

𝜕𝑧̅2
=

𝜕ℎ̅

𝜕𝑡̅
  for   1 ≤ 𝑟̅ < ∞, 0 ≤ 𝑧̅ < 1  and  𝑡̅ ≥ 0  (7) 140 

ℎ̅ = 0  at  𝑡̅ = 0 (8) 141 

𝜕ℎ̅

𝜕𝑟̅
= {

sin(𝛾𝑡̅)  for  𝑧𝑙̅ ≤ 𝑧̅ ≤ 𝑧𝑢̅
  0  outside screen interval

  at  𝑟̅ = 1 (9) 142 

𝜕ℎ̅

𝜕𝑧̅
= −𝑎

𝜕ℎ̅

𝜕𝑡̅
  at  𝑧̅ = 1 for IGD (10a) 143 

𝜕ℎ̅

𝜕𝑧̅
= −𝑎1 ∫

𝜕ℎ̅

𝜕𝜏̅
exp(−𝑎2(𝑡̅ − 𝜏̅)) 𝑑𝜏̅

𝑡̅

0
  at  𝑧̅ = 1 for DGD (11b) 144 

𝜕ℎ̅

𝜕𝑧̅
= 0  at  𝑧̅ = 0 (12) 145 

lim
𝑟̅→∞

ℎ̅(𝑟̅, 𝑧̅, 𝑡̅) = 0 (13) 146 
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Eqs. (8) – (13) represent the transient DGD model when excluding (11a) and transient IGD 147 

model when excluding (11b). 148 

2.2. Transient solution for unconfined aquifer 149 

The Laplace transform and finite-integral transform are applied to solve Eqs. (8) - (13) 150 

(Latinopoulos, 1985; Liang et al., 2017; 2018). The transient solution can then be expressed as 151 

ℎ̅(𝑟̅, 𝑧̅, 𝑡̅) = ℎ̅exp(𝑟̅, 𝑧̅, 𝑡̅) + ℎ̅SHM(𝑟̅, 𝑧̅, 𝑡̅) (14a) 152 

with 153 

ℎ̅exp(𝑟̅, 𝑧̅, 𝑡)̅ =
−2𝛾

𝜋
∑ ∫ cos(𝛽𝑛𝑧̅) exp(𝑝0𝑡)̅ Im(𝜀1𝜀2) 𝑑𝜁

∞

0
∞
𝑛=1  (14b) 154 

ℎ̅SHM(𝑟̅, 𝑧̅, 𝑡̅) = 𝐴̅𝑡(𝑟̅, 𝑧̅)cos(𝛾𝑡̅ − 𝜙𝑡(𝑟̅, 𝑧̅)) (14c) 155 

𝐴̅𝑡(𝑟̅, 𝑧̅) = √𝑎𝑡(𝑟̅, 𝑧̅)2 + 𝑏𝑡(𝑟̅, 𝑧̅)2 (14d) 156 

𝑎𝑡(𝑟̅, 𝑧̅) =
2

𝜋
∑ ∫ 𝑝0 cos(𝛽𝑛𝑧̅) Im(𝜀1𝜀2)

∞

0
∞
𝑛=1 𝑑𝜁 (14e) 157 

𝑏𝑡(𝑟̅, 𝑧̅) =
2𝛾

𝜋
∑ ∫ cos(𝛽𝑛𝑧̅) Im(𝜀1𝜀2)

∞

0
∞
𝑛=1 𝑑𝜁 (14f) 158 

𝜙𝑡(𝑟̅, 𝑧̅) = cos−1(𝑏𝑡(𝑟̅, 𝑧̅)/𝐴̅𝑡(𝑟, 𝑧̅)) (14g) 159 

𝜀1 = 𝐾0(𝜆0𝑟̅)(sin(𝑧𝑢̅𝛽𝑛) − sin(𝑧𝑙̅𝛽𝑛))/(𝛽𝑛𝜆0𝐾1(𝜆0)(𝑝0
2 + 𝛾2)) (14h) 160 

𝜀2 = (𝛽𝑛
2 + 𝑐0

2)/(𝛽𝑛
2 + 𝑐0

2 + 𝑐0) (14i) 161 

𝑝0 = −𝜁 − 𝜇𝛽𝑛
2 (14j) 162 

𝜆0 = √𝜁𝑖 (14k) 163 

where 𝑐0 = 𝑎𝑝0 for IGD and 𝑎1𝑝0/(𝑝0 + 𝑎2) for DGD, i is the imaginary unit, Im(-) is the 164 

imaginary part of a complex number, 𝐾0(−) and 𝐾1(−) are the modified Bessel functions 165 

of the second kind of order zero and one, respectively, and 𝛽𝑛 is the positive roots of the 166 

equation: 167 

tan𝛽𝑛 = 𝑐0/𝛽𝑛 (15) 168 

The method to find the roots of 𝛽𝑛 is discussed in Section 2.3. The detailed derivation of 169 

Eqs. (14a) – (14k) is presented in the supporting material. The first term on the right-hand side 170 

(RHS) of Eq. (14a) exhibits exponential decay due to the initial condition since pumping began; 171 
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the second term defines SHM with amplitude 𝐴̅𝑡(𝑟̅, 𝑧̅) and phase shift 𝜙𝑡(𝑟̅, 𝑧̅) at a given 172 

point (𝑟̅, 𝑧̅). The numerical results of the integrals in Eqs. (14b), (14e) and (14f) are obtained 173 

by the Mathematica NIntegrate function. 174 

2.3. Calculation of 𝜷𝒏 175 

The eigenvalues 𝛽1 , …, 𝛽𝑛 , the roots of Eq. (15) can be determined by applying the 176 

Mathematica function FindRoot based on Newton’s method with reasonable initial guesses. 177 

The roots are located at the intersection of the curves plotted by the RHS and left-hand side 178 

(LHS) functions of 𝛽𝑛 in Eq. (15). The roots are very close to the vertical asymptotes of the 179 

periodical tangent function tan 𝛽𝑛 . When 𝑐0 = 𝑎𝑝0 , the initial guess for each 𝛽𝑛  can be 180 

considered as 𝛽0,𝑛 + 𝛿  where 𝛽0,𝑛 = (2𝑛 − 1)𝜋/2 , 𝑛 ∈ (1,2, …∞)  and 𝛿  is a small 181 

positive value set to 10-10. When 𝑐0 = 𝑎1𝑝0/(𝑝0 + 𝑎2), the initial guess is set to 𝛽0,𝑛 − 𝛿 for 182 

𝑎2 − 𝜁 ≤ 0. There is an additional vertical asymptote at 𝛽𝑛 = √(𝑎2 −  𝜁)/𝜇 derived from the 183 

RHS function of Eq. (15) (i.e., 𝑝0 + 𝑎2 = 0) if 𝑎2 −  𝜁 > 0. The initial guess is therefore set 184 

to 𝛽0,𝑛 + 𝛿 for 𝛽0,𝑛 on the LHS of the asymptote and 𝛽0,𝑛 − 𝛿 for 𝛽0,𝑛 on the RHS. 185 

2.4. Transient solution for confined aquifer 186 

When Sy = 0 (i.e., 𝑎 = 0 or 𝑎1 = 0), Eq. (11a) or (11b) reduces to 𝜕ℎ̅/𝜕𝑧̅ = 0 for no-flow 187 

condition at the top of the aquifer, indicating the unconfined aquifer becomes a confined one. 188 

Under this condition, Eq. (15) becomes tan𝛽𝑛 = 0 with roots 𝛽𝑛 = 0, 𝜋, 2𝜋, …, 𝑛𝜋, …, 189 

∞; Eq. (14i) reduces to 𝜀2 = 1; factor 2 in Eqs. (14b), (14e) and (14f) is replaced by unity for 190 

𝛽𝑛 = 0  and remains for the others. The analytical solution of the transient head for the 191 

confined aquifer can be expressed as Eqs. (14a) - (14k) with 192 

ℎ̅exp(𝑟̅, 𝑧̅, 𝑡)̅ =
−𝛾

𝜋
∫ Im(𝜀0) exp(−𝜁𝑡̅) 𝑑𝜁
∞

0

−
2𝛾

𝜋
∑∫ cos(𝑛𝜋𝑧̅) Im(𝜀1) exp(𝑝0𝑡̅) 𝑑𝜁

∞

0

∞

𝑛=1

 193 

 (16a) 194 

𝑎𝑡(𝑟̅, 𝑧̅) = −
1

𝜋
∫ 𝜁Im(𝜀0)
∞

0
𝑑𝜁 +

2

𝜋
∑ ∫ 𝑝0 cos(𝑛𝜋𝑧̅) Im(𝜀1)

∞

0
∞
𝑛=1 𝑑𝜁 (16b) 195 
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𝑏𝑡(𝑟̅, 𝑧̅) =
𝛾

𝜋
∫ Im(𝜀0)
∞

0
𝑑𝜁 +

2𝛾

𝜋
∑ ∫ cos(𝑛𝜋𝑧̅) Im(𝜀1)

∞

0
∞
𝑛=1 𝑑𝜁 (16c) 196 

𝜀0 = (𝑧𝑢̅ − 𝑧𝑙̅)𝐾0(𝜆0𝑟̅)/(𝜆0𝐾1(𝜆0)(𝜁
2 + 𝛾2)) (16d) 197 

Note that Eq. (14h) reduces to Eq. (16d) based on 𝛽𝑛 = 0 and L' Hospital's rule. When 198 

𝑧𝑢̅ = 1 and 𝑧𝑙̅ = 0 for the case of full screen, Eq. (14h) gives 𝜀1 = 0 for 𝛽𝑛 > 0 and the 199 

second RHS terms of Eqs. (16a) – (16c) can therefore be eliminated. This causes the solution 200 

for confined aquifers is independent of dimensionless elevation 𝑧̅, indicating only horizontal 201 

flow in the aquifer. 202 

2.5. Pseudo-steady state solution for unconfined aquifer 203 

A pseudo-steady state (PSS) solution ℎ̅s accounts for SHM of head fluctuation at a late period 204 

of pumping time and satisfies the following form (Dagan and Rabinovich, 2014) 205 

ℎ̅s(𝑟̅, 𝑧̅, 𝑡̅) = Im(𝐻̅(𝑟̅, 𝑧̅) 𝑒𝑖𝛾𝑡̅) (17) 206 

where 𝐻̅(𝑟̅, 𝑧̅) is a space function of 𝑟̅ and 𝑧̅. Define a PSS IGD model as Eqs. (8) - (13) 207 

excluding (9), (11b) and replacing sin(𝛾𝑡)̅  in (10) by 𝑒𝑖𝛾𝑡̅ . Substituting Eq. (17) and 208 

𝜕ℎ̅s/𝜕𝑡̅ = Im(𝑖𝛾𝐻̅(𝑟̅, 𝑧̅) 𝑒𝑖𝛾𝑡̅) into the model results in 209 

𝜕2𝐻̅

𝜕𝑟̅2
+
1

𝑟̅

𝜕𝐻̅

𝜕𝑟̅
+ 𝜇

𝜕2𝐻̅

𝜕𝑧̅2
= 𝑖𝛾𝐻 (18) 210 

𝜕𝐻̅

𝜕𝑟̅
= {

1  for  𝑧𝑙̅ ≤ 𝑧̅ ≤ 𝑧𝑢̅
0  outside screen interval

  at  𝑟̅ = 1 (19) 211 

𝜕𝐻̅

𝜕𝑧̅
= −𝑖𝑎𝛾𝐻̅   at   𝑧̅ = 1 for IGD (20) 212 

𝜕𝐻̅

𝜕𝑧̅
= 0   at   𝑧̅ = 0 (21) 213 

lim
𝑟̅→∞

𝐻̅ = 0 (22) 214 

The resultant model is independent of 𝑡̅, indicating the analytical solution of 𝐻̅(𝑟̅, 𝑧̅) is 215 

tractable. Similarly, consider a PSS DGD model that equals the PSS IGD model but replaces 216 

(11a) by (11b). Substituting Eq. (17) into the result yields a model that depends on 𝑡̅, indicating 217 

the solution ℎ̅s to the PSS DGD model is not tractable. 218 

The Weber transform, defined in Eq. (B.1) of the supporting material, may be considered 219 
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as a Hankel transform with a more general kernel function. It can be applied to diffusion-type 220 

problems with a radial-symmetric region from a finite distance to infinity. For groundwater 221 

flow problems, it can be used to develop the analytical solution for the flow equation with a 222 

Neumann boundary condition specified at the rim of a finite-radius well (e.g., Lin and Yeh, 223 

2017; Povstenko, 2015). Taking the transform and the formula of 𝑒𝑖𝛾𝑡̅ = cos(𝛾𝑡̅) + 𝑖 sin(𝛾𝑡̅) 224 

to solve Eqs. (18) - (22) yields the solution of ℎ̅s expressed as 225 

ℎ̅s(𝑟̅, 𝑧̅, 𝑡̅) = 𝐴̅𝑠(𝑟̅, 𝑧̅) cos(𝛾𝑡 − 𝜙𝑠(𝑟̅, 𝑧̅)) (23a) 226 

𝐴̅𝑠(𝑟̅, 𝑧̅) = √𝑎s(𝑟̅, 𝑧̅)
2 + 𝑏s(𝑟̅, 𝑧̅)

2  (23b) 227 

𝑎𝑠(𝑟̅, 𝑧̅) = Re(𝐻̅(𝑟̅, 𝑧̅)) (23c) 228 

𝑏s(𝑟̅, 𝑧̅) = Im(𝐻̅(𝑟̅, 𝑧̅)) (23d) 229 

𝜙s(𝑟̅, 𝑧̅) = cos
−1(𝑏𝑠(𝑟̅, 𝑧̅)/𝐴𝑠(𝑟̅, 𝑧̅)) (23e) 230 

𝐻̅(𝑟̅, 𝑧̅) =

{
 

 ∫ 𝐻̃𝑢 𝜉 Ω 𝑑𝜉
∞

0
  for  𝑧𝑢̅ < 𝑧̅ ≤ 1

∫ 𝐻̃𝑚 𝜉 Ω 𝑑𝜉
∞

0
  for  𝑧𝑙̅ ≤ 𝑧̅ ≤ 𝑧𝑢̅

∫ 𝐻̃𝑙  𝜉 Ω 𝑑𝜉
∞

0
  for  0 ≤ 𝑧̅ < 𝑧𝑙̅

 (23f) 231 

Ω = (𝐽0(𝜉𝑟̅)𝑌1(𝜉) − 𝑌0(𝜉𝑟̅)𝐽1(𝜉))/(𝐽1
2(𝜉) + 𝑌1

2(𝜉)) (23g) 232 

with the Bessel functions of the first kind of order zero 𝐽0(−) and one 𝐽1(−) as well as the 233 

second kind of order zero 𝑌0(−) and one 𝑌1(−), 234 

{

𝐻̃𝑢 = 𝐻̃𝑝(𝑐1 exp(𝜆𝑤𝑧̅) + 𝑐2 exp(−𝜆𝑤𝑧̅))  for  𝑧𝑢̅ < 𝑧̅ ≤ 1

𝐻̃𝑚 = 𝐻̃𝑝(𝑐3 exp(𝜆𝑤𝑧̅) + 𝑐4 exp(−𝜆𝑤𝑧̅) − 1)  for  𝑧𝑙̅ ≤ 𝑧̅ ≤ 𝑧𝑢̅

𝐻̃𝑙 = 𝐻̃𝑝𝑐5(exp(𝜆𝑤𝑧̅) + exp(−𝜆𝑤𝑧̅))  for  0 ≤ 𝑧̅ < 𝑧𝑙̅

  (23h) 235 

𝑐1 = −𝑒−𝜆𝑤(𝜆𝑤 − 𝜎)(sinh(𝑧𝑙̅𝜆𝑤) − sinh(𝑧𝑢̅𝜆𝑤))/𝐷 (23i) 236 

𝑐2 = −𝑒𝜆𝑤(𝜆𝑤 + 𝜎)(sinh(𝑧𝑙̅𝜆𝑤) − sinh(𝑧𝑢̅𝜆𝑤))/𝐷 (23j) 237 

𝑐3 =
𝑒−(1+𝑧̅𝑙+𝑧̅𝑢)𝜆𝑤

2𝐷
(𝜎(𝑒(2+𝑧̅𝑙)𝜆𝑤 + 𝑒 𝑧̅𝑢𝜆𝑤 − 𝑒(2𝑧̅𝑙+𝑧̅𝑢)𝜆𝑤) + (𝜎 − 𝜆𝑤)𝑒

(𝑧̅𝑙+2𝑧̅𝑢)𝜆𝑤 +238 

𝜆𝑤(𝑒
(2+𝑧̅𝑙)𝜆𝑤 − 𝑒 𝑧̅𝑢𝜆𝑤 + 𝑒(2𝑧̅𝑙+𝑧̅𝑢)𝜆𝑤)) (23k) 239 

𝑐4 =
𝑒−(1+𝑧̅𝑙+𝑧̅𝑢)𝜆𝑤

2𝐷
((𝜎 − 𝜆𝑤)𝑒

(𝑧̅𝑙+2𝑧̅𝑢)𝜆𝑤 + (𝜎 + 𝜆𝑤)(𝑒
(2+𝑧̅𝑙)𝜆𝑤 − 𝑒(2+𝑧̅𝑢)𝜆𝑤 +240 
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𝑒(2+2𝑧̅𝑙+𝑧̅𝑢)𝜆𝑤)) (23l) 241 

𝑐5 =
1

2𝐷
𝑒−(1+𝑧̅𝑙+𝑧̅𝑢)𝜆𝑤(𝑒 𝑧̅𝑙𝜆𝑤 − 𝑒 𝑧̅𝑢𝜆𝑤)((𝜆𝑤 − 𝜎)𝑒

(𝑧̅𝑙+𝑧̅𝑢)𝜆𝑤 + (𝜆𝑤 + 𝜎)𝑒
2𝜆𝑤) (23m) 242 

where 𝜆𝑤
2 = (𝜉2 + 𝑖𝛾)/𝜇 , 𝜎 = 𝑖𝛾𝑎 , 𝐻̃𝑝 = 2/(𝜋𝜇𝜉𝜆𝑤

2 )  and 𝐷 = 2(𝜎 cosh 𝜆𝑤 +243 

𝜆𝑤 sinh 𝜆𝑤) , and Re(-) is the real part of a complex number. Again, one can refer to the 244 

supporting material for the derivation of the solution. Eq. (23a) indicates SHM for the response 245 

of the hydraulic head at any point to oscillatory pumping. Note that Eq. (23f) reduces to 246 

𝐻̅(𝑟̅, 𝑧̅) = ∫ 𝐻̃𝑚 𝜉 Ω 𝑑𝜉
∞

0
 for a fully screened well when 𝑧𝑙̅ = 0 and 𝑧𝑢̅ = 1.  247 

2.6. Pseudo-steady state solution for confined aquifers 248 

Applying the finite Fourier cosine transform to the model, Eqs. (18) – (22) with Sy = 0 (i.e., 249 

𝑎 = 0) for the confined condition, leads to an ordinary differential equation with two boundary 250 

conditions. With solving the boundary-value problem, the solution of ℎ̅s for confined aquifers 251 

can be expressed as Eqs. (23a) - (23e) with 𝐻̅(𝑟̅, 𝑧̅) defined as 252 

𝐻̅(𝑟̅, 𝑧̅) = −2∑
𝐾0(𝑟̅𝜆𝑚)

𝜆𝑚𝐾1(𝜆𝑚)
× {

0.5(𝑧𝑢̅ − 𝑧𝑙̅)  for  𝑚 = 0
cos(𝑚𝜋𝑧̅)

𝑚𝜋
(sin(𝑧𝑢̅𝑚𝜋) − sin(𝑧𝑙̅𝑚𝜋))  for  𝑚 > 0

∞
𝑚=0   (24) 253 

where 𝜆𝑚
2 = 𝛾𝑖 + 𝜇(𝑚𝜋)2. The derivation of Eq. (24) is also listed in the supporting material. 254 

For a fully screened well (i.e., 𝑧𝑢̅ = 1, 𝑧𝑙̅ = 0), the first term of the series (i.e., m = 0) remains 255 

and the others equal zero because of sin(𝑧𝑢̅𝑚𝜋) − sin(𝑧𝑙̅𝑚𝜋) = 0. The result is independent 256 

of dimensionless elevation 𝑧̅, indicating the confined flow is only horizontal. 257 

2.7. Special cases of the present solution 258 

Table 1 classifies the present solution (i.e., Solution 1) and its special cases (i.e., Solutions 2 to 259 

6) according to transient or PSS flow, unconfined or confined aquifer, and IGD or DGD. Each 260 

of Solutions 1 to 6 reduces to a special case for fully screened well. Existing analytical solutions 261 

can be regarded as special cases of the present solution as discussed in Section 3.4 (e.g., Black 262 

and Kipp, 1981; Rasmussen et al., 2003; Dagan and Rabinovich, 2014). 263 

2.8. Sensitivity analysis 264 
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Sensitivity analysis evaluates hydraulic head variation in response to the change in each of Kr, 265 

Kz, Ss, Sy, ω, and 𝜀. The normalized sensitivity coefficient can be defined as (Liou and Yeh, 266 

1997) 267 

𝑆𝑖 = 𝑃𝑖
𝜕𝑋

𝜕𝑃𝑖
 (25) 268 

where 𝑆𝑖 is the sensitivity coefficient of ith parameter; 𝑃𝑖 is the magnitude of the ith input 269 

parameter; X represents the present solution in dimensional form. Eq. (25) can be approximated 270 

as 271 

𝑆𝑖 = 𝑃𝑖
𝑋(𝑃𝑖+∆𝑃𝑖)−𝑋(𝑃𝑖)

∆𝑃𝑖
 (26) 272 

where ∆𝑃𝑖, a small increment, is chosen as 10-3𝑃𝑖. 273 

3. Results and Discussion 274 

The following sections demonstrate the response of the hydraulic head to oscillatory pumping 275 

using the present solution. The default values in calculation are r = 0.05 m, z = 5 m, b = 10 m, 276 

Q = 10-3 m3/s, rw = 0.05 m, zu = 5.5 m, zl = 4.5 m, Kr = 10-4 m/s, Kz = 10-5 m/s, Ss = 10-5 m-1, Sy 277 

= 10-4, ω = 2π/30  s-1, and 𝜅 = 100  s. The corresponding dimensionless parameters and 278 

variables are 𝑟̅ = 1 , 𝑧̅ = 0.5 , 𝑧𝑢̅ = 0.55 , 𝑧𝑙̅ = 0.45 , γ = 5.24× 10-5, 𝜇 = 2.5 × 10−6 , 𝑎 =279 

4 × 105, 𝑎1 = 1 and 𝑎2 = 2.5 × 10−6. 280 

3.1. Delayed gravity drainage 281 

Previous analytical models for OPT consider either confined flow (e.g., Rasmussen et al., 282 

2003) or unconfined flow with IGD effect (e.g., Dagan and Rabinovich, 2014). Little attention 283 

has been paid to the consideration of the DGD effect. This section addresses the diffrence  284 

among these three models. Figure 2 shows the curve of the dimensionless amplitude 𝐴̅𝑡 at (𝑟̅, 285 

𝑧̅) = (1, 1) of Solution 1 versus the dimensionless parameter 𝑎1 related to the DGD effect. The 286 

transient head fluctuations are plotted based on Solution 1 with 𝑎1 = 10
−2 , 1, 10, 500, 287 

Solution 2 for IGD and Solution 3 for confined flow. Define the relative error as 288 

𝑅𝐸 = |𝐴̅𝑡
′ − 𝐴̅𝑡|/𝐴̅𝑡              (27) 289 
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where 𝐴̅𝑡
′  is the dimensionless amplitude predicted by Solution 2 for the case of 𝑎1 = 500 290 

or Solution 3 for the case of 𝑎1 = 10
−2. The curves of the RE versus the period of oscillatory 291 

pumping rate (i.e., P) for these two cases are displayed. The range of 𝑃 ≤ 105s  (1.16 d) 292 

contains most practical applications of OPT. When 10−2 ≤ 𝑎1 ≤ 500 , the 𝐴̅𝑡  gradually 293 

decreases with 𝑎1 to the trough and then increases to the ultimate value of 𝐴̅𝑡 = 1.79 × 10−2. 294 

The DGD, in other words, causes an effect. When 𝑎1 < 10−2, Solutions 1 and 3 agree on the 295 

predicted heads; the RE is below 1% for 𝑃 < 104s (2.78 h), indicating the unconfined aquifer 296 

with the DGD effect behaves like confined aquifer and the water table can be regarded as a no-297 

flow boundary when 𝑎1 < 10−2  and 𝑃 < 104s . When 𝑎1 > 500 , the head fluctuations 298 

predicted by both Solutions 1 and 2 are identical; the largest RE is about 0.45%, indicating the 299 

DGD effect is ignorable and Eq. (4b) reduces to (4a) for the IGD condition. This conclusion is 300 

applicable for any magnitude of P in spite of 𝑃 > 105s. 301 

3.2. Effect of finite radius of pumping well  302 

Existing analytical models for OPT mostly treated the pumping well as a line source with 303 

infinitesimal radius (e.g., Rasmussen et al., 2003; Dagan and Rabinovich, 2014). The finite 304 

difference scheme for the model also treats the well as a nodal point by neglecting the radius. 305 

These will lead to significant error when a well has the radius ranging from 0.5 m to 2 m (Yeh 306 

and Chang, 2013). This section discusses the relative error in predicted amplitude defined as 307 

𝑅𝐸 = |𝐴̅𝐷&𝑅 − 𝐴̅𝑡|/𝐴̅𝑡             (28) 308 

where 𝐴̅𝑡 and 𝐴̅𝐷&𝑅 are the dimensionless amplitudes at 𝑟̅ = 1 (i.e., r = rw) predicted by IGD 309 

Solution 2 and the Dagan and Rabinovich (2014) solution, respectively. Note that their solution 310 

assumes infinitesimal radius of a pumping well and has a typo that the term 𝑒−𝐷𝑤+1 − 𝑒−𝐷𝑤 311 

should read 𝑒𝛽(−𝐷𝑤+1) − 𝑒−𝛽𝐷𝑤  (see their Eq. (25)). Figure 3 demonstrates the RE for 312 

different values of radius rw. The RE increases with rw as expected. For case 1 of rw = 0.1 m, 313 

both solutions agree well in the entire domain of 1 ≤ 𝑟̅ ≤ ∞, indicating a pumping well with 314 

rw ≤ 0.1 m can be regarded as a line source. For the extreme case 2 of rw = 1 m or case 3 of 315 
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rw = 2 m, the Dagan and Rabinovich solution underestimates the dimensionless amplitude for 316 

1 ≤ 𝑟̅ ≤ 6 and agrees to the present solution for 𝑟̅ > 6. The REs for these two cases exceed 317 

10%. The effect of finite radius should therefore be considered in OPT models especially when 318 

observed hydrulic head data are taken close to the wellbore of a large-diameter well. 319 

3.3. Sensitivity analysis  320 

The temporal distributions of normalized sensitivity coefficient 𝑆𝑖 defined as Eq. (26) with 321 

𝑋 = ℎexp of Solution 1 are displayed in Fig. 4a for the response of exponential decay to the 322 

change in each of six parameters Kr, Kz, Ss, Sy, ω and 𝜀. The exponential decay is very sensitive 323 

to variation in each of Kr, Kz, Ss and ω because of |𝑆𝑖| > 0. Precisely, a positive perturbation 324 

in Ss produces an increase in the magnitude of ℎexp while that in Kr or Kz causes a decrease. 325 

In addition, a positive perturbation in ω yields an increase in ℎexp before t = 1 s and a decrease 326 

after that time. It is worth noting that 𝑆𝑖 for Sy or 𝜀 is very close to zero over the entire period 327 

of time, indicating ℎexp is insensitive to the change in Sy or 𝜀 and the subtle change of gravity 328 

drainage has no influence on the exponential decay. On the other hand, the spatial distributions 329 

of 𝑆𝑖 associated with the amplitude 𝐴𝑡 are shown in Fig. 4b in response to the changes in 330 

those six parameters. The 𝐴𝑡 is again sensitive to the change in each of Kr, Kz, Ss and ω but 331 

insensitive with the change in Sy or 𝜀. The same result of |𝑆𝑖| ≅ 0 for Sy or 𝜀 applies to any 332 

observation point under the water table (i.e., 𝑧̅ < 1), but |𝑆𝑖| > 0 at the water table (i.e., 𝑧̅ =333 

1) shown in Fig. 4c. From those discussed above, we may conclude the changes in the four key 334 

parameters Kr, Kz, Ss and ω significantly affect head prediction in the entire aquifer domain. 335 

The change in Sy or 𝜀 leads to insignificant variation in the predicted head below the water 336 

table and slight variation at the water table. 337 

3.4. Transient head fluctuation affected by the initial condition 338 

Figure 5 demonstrates head fluctuations predicted by DGD Solution 1 and IGD Solution 2 339 

expressed as ℎ̅ = ℎ̅exp + ℎ̅SHM for transient flow and by IGD solution as ℎ̅𝑠 = 𝐴̅𝑠 cos(𝛾𝑡 −340 

𝜙𝑠) for PSS flow. The transient head fluctuation starts from ℎ̅ = 0 at 𝑡̅ = 0 and approaches 341 
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SHM predicted by ℎ̅SHM when ℎ̅exp ≅ 0 m after 𝑡̅ = 0.5𝑃̅ (i.e., 6 × 104). Solutions 1 and 342 

2 agree to the ℎ̅ predictions because the head at 𝑧̅ = 0.5 under the water table is insensitive 343 

to the change in Sy or 𝜀 as discussed in Section 3.3. It is worth noting that the solution of 344 

Dagan and Rabinovich (2014) for PSS flow has a time shift from the ℎ̅SHM of Solution 2. This 345 

indicates the phase of their solution (i.e., 1.50 rad) should be replaced by the phase of Solution 346 

2 (i.e., 𝜙𝑡 = 1.64 rad) so that their solution exactly fits the ℎ̅SHM of Solution 2. 347 

    Figure 6 displays head fluctuations predicted by transient Solution 3 expressed as ℎ̅ =348 

ℎ̅exp + ℎ̅SHM  and PSS Solution 6 as ℎ̅𝑠 = 𝐴̅𝑠 cos(𝛾𝑡 − 𝜙𝑠)  for partially screened pumping 349 

well in panel (a) and full screen in panel (b). The Rasmussen et al. (2003) solution for transient 350 

flow predicts the same ℎ̅ as Solution 3. The Black and Kipp (1981) for PPS flow also predicts 351 

close ℎ̅SHM prediction of Solution 3. The phase of Solution 6 (i.e., 𝜙𝑠 = 1.50 rad for panel (a) 352 

and 1.33 rad for (b)) can be replaced by the phase of Solution 3 (i.e., 𝜙𝑡 = 1.64 rad for (a) 353 

and 1.81 rad for (b)) so that the ℎ̅SHM  prediction of Solutions 3 is identical to the ℎ̅𝑠 354 

prediction of Solution 6. As concluded, excluding the initial condition with Eq. (17) for a PSS 355 

model leads to a time shift from the SHM of the head fluctuation predicted by the associated 356 

transient model while the transient and PSS models give the same SHM amplitude. 357 

3.5. Application of the present solution to field experiment 358 

Rasmussen et al. (2003) conducted field OPTs in a three-layered aquifer system containing one 359 

Surficial Aquifer, the Barnwell-McBean Aquifer in between and the deepest Gordon Aquifer 360 

at the Savannah River site. Two clay layers dividing these three aquifers may be regarded as 361 

impervious strata. For the OPT at the Surficial Aquifer, the formation has 6.25 m averaged 362 

thickness near the test site. The fully-screened pumping well has 7.6 cm outer radius. The 363 

pumping rate can be approximated as Qsin(𝜔𝑡) with Q = 4.16×10-4 m3/s and 𝜔 = 2π h-1. The 364 

distance from the pumping well is 6 m to the observation well 101D and 11.5 m to well 102D. 365 

The screen lengths are 3 m from the aquifer bottom for well 101D and from the water table for 366 

well 102D. For the OPT at the Barnwell-McBean Aquifer, the formation mainly consists of 367 
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sand and fine-grained material. The pumping well has outer radius of 7.6 cm and pumping rate 368 

of Qsin(𝜔𝑡) with Q = 1.19×10-3 m3/s and 𝜔 = π h-1. The observation well 201C is at 6 m 369 

from the pumping well. The data of time-varying hydraulic heads at the observation wells (i.e., 370 

101D, 102D, 201C) are plotted in Fig. 7. One can refer to Rasmussen et al. (2003) for detailed 371 

description of the Savannah River site. 372 

The aquifer hydraulic parameters are determined based on Solutions 3 to 6 coupled with 373 

the Levenberg–Marquardt algorithm provided in the Mathematica function FindFit (Wolfram, 374 

1991). Note that a robust Gauss-Newton algorithm provides an alternative for the parameter 375 

estimation (Qin et al., 2018a; 2018b). Solutions 4 and 5 are used to predict depth-averaged 376 

head expressed as (𝑧𝑢
′ − 𝑧𝑙

′)−1 ∫  ℎ𝑠𝑑𝑧
𝑧𝑢
′

𝑧𝑙
′  with the upper elevation 𝑧𝑢

′  and lower one 𝑧𝑙
′ of 377 

the finite screen of the observation well 101D or 102D at the Surficial Aquifer. Note that 378 

Solutions 3 and 6 are independent of elevation because of the fully-screened pumping well. 379 

Define the standard error of estimate (SEE) as SEE = √
1

𝑀
∑ 𝑒𝑗

2𝑀
𝑗=1  and the mean error (ME) 380 

as ME =
1

𝑀
∑ 𝑒𝑗
𝑀
𝑗=1  where ej is the difference between predicted and observed hydraulic heads 381 

and M is the number of observation data (Yeh, 1987). The estimated parameters and associated 382 

SEE and ME are displayed in Table 2. The estimates of T, S and Dr given in Rasmussen et al. 383 

(2003) are also presented. The result shows the estimated Sy is very small, and the estimated T 384 

and S by Solution 3, 6 or the Rasmussen et al. (2003) solution for confined flow are close to 385 

those by Solution 4 or 5 for unconfined flow, indicating that the unconfined flow induced by 386 

the OPT in the Surficial Aquifer is negligibly small. Little gravity drainage due to the DGD 387 

effect appears with a1 = 20 for wells 101D and 102D as discussed in Section 3.1. Rasmussen 388 

et al. (2003) also revealed the confined behaviour of the OPT-induced flow in the Surficial 389 

Aquifer. The estimated Sy is one order less than the lower limit of the typical range of 0.01 ~ 390 

0.3 (Freeze and Cherry, 1979), which accords with the findings of Rasmussen et al. (2003) and 391 

Rabinovich et al. (2015). Such a fact might be attributed to the problem of the moisture 392 
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exchange limited by capillary fringe between the zones below and above the water table. 393 

Several laboratory research outcomes have confirmed an estimate of Sy at short period of OPT 394 

is much smaller than that determined by constant-rate pumping test (e.g., Cartwright et al., 395 

2003; 2005). In addition, the difference in T, S or Dr estimated by Solution 6 and those by the 396 

Rasmussen et al. (2003) solution may be attributed to the fact that their solution assumes 397 

isotropic hydraulic conductivity (i.e., Kr = Kz). On the other hand, transient Solution 3 gives 398 

smaller SEEs than PSS Solution 6 or the Rasmussen et al. (2003) solution for the Barnwell-399 

McBean Aquifer and better fits to the observed data at the early pumping periods as shown in 400 

Fig. 7. From those discussed above, we may conclude the present solution is applicable to real-401 

world OPT. 402 

4. Concluding remarks 403 

A variety of analytical models for OPT have been proposed so far, but little attention is paid to 404 

the joint effects of DGD, initial condition, and finite radius of a pumping well. This study 405 

develops a new model for describing hydraulic head fluctuation due to OPT in unconfined 406 

aquifers. Static hydraulic head prior to OPT is regarded as an initial condition. A Neumann 407 

boundary condition is specified at the rim of a finite-radius pumping well. A free surface 408 

equation accounting for the DGD effect is considered as the top boundary condition. The 409 

solution of the model is derived by the Laplace transform, finite-integral transform and Weber 410 

transform. The sensitivity analysis of the head response to the change in each of hydraulic 411 

parameters is performed. The observation data obtained from the OPT at the Savannah River 412 

site are analyzed by the present solution when coupling the Levenberg–Marquardt algorithm 413 

to estimate aquifer hydraulic parameters. Our findings are summarized below: 414 

1. When 10−2 ≤ 𝑎1 ≤ 500, the effect of DGD on head fluctuations should be considered. 415 

The amplitude of head fluctuation predicted by DGD Solution 1 decreases with increasing 416 

𝑎1 to a trough and then increases to the amplitude predicted by IGD Solution 2. When 417 

𝑎1 > 500 , the DGD becomes IGD. Both Solutions 1 and 2 predict the same head 418 
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fluctuation. When 𝑎1 < 10−2 and 𝑃 < 104s, the DGD results in the water table under 419 

no-flow condition. Solution 1 for unconfined flow gives an identical head prediction to 420 

Solution 3 for confined flow.  421 

2. Assuming a large-diameter well as a line source with infinitesimal radius underestimates 422 

the amplitude of head fluctuation in the domain of 1 ≤ 𝑟̅ ≤ 6 when the radius exceeds 80 423 

cm, leading to relative error RE > 10% shown in Fig. 3. In contrast, the assumption is valid 424 

in predicting the amplitude in the domain of 𝑟̅ > 6 in spite of adopting a large-diameter 425 

well. When 𝑟𝑤 ≤ 10  cm (i.e., RE < 0.45%), the well radius can be regarded as 426 

infinitesimal. The result is applicable to existing analytical solutions assuming infinitesimal 427 

radius and finite difference solutions treating the pumping well as a nodal point. 428 

3. The sensitivity analysis suggests the changes in four parameters Kr, Kz, Ss and ω 429 

significantly affect head prediction in the entire aquifer domain. The change in Sy or 𝜀 430 

causes insignificant variation in the head under water table but slight variation at the water 431 

table. 432 

4. Analytical solutions for OPT are generally expressed as the sum of the exponential and 433 

harmonic functions of time (i.e., ℎ̅ = ℎ̅exp + 𝐴̅𝑡 cos(𝛾𝑡 − 𝜙𝑡)) for transient solutions (e.g., 434 

Solution 3) and harmonic function (i.e., ℎ̅s = 𝐴̅𝑠 cos(𝛾𝑡 − 𝜙𝑠)) for PSS solutions (e.g., 435 

Solution 6). The latter assuming Eq. (17) without the initial condition produces a time shift 436 

from the SHM predicted by the ℎ̅SHM. The phase 𝜙𝑠 should be replaced by 𝜙𝑡 so that 437 

ℎ̅s and ℎ̅SHM are exactly the same. 438 

 439 
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Table 1. The present solution and its special cases 529 

Well 

screen 

Transient flow Pseudo-steady state flow 

 Unconfined aquifer Confined aquifer  Unconfined aquifer Confined aquifer 

Partial  Solutions 1 and 2 Solution 3  Solutions 4 and 5 Solution 6 

Full  Solutions 1 and 2a Solution 3a,b  Solutions 4 and 5a Solution 6a,b 

Solution 1 consists of Eqs. (14a) – (14k) with the roots of Eq. (15) and 𝑐0 = 𝑎1𝑝0/(𝑝0 + 𝑎2) for DGD. 530 

Solution 2 is the same as Solution 1 but has 𝑐0 = 𝑎𝑝0 for IGD. 531 

Solution 3 equals Solution 1 with Eqs. (16a) – (16d) and 𝛽𝑛 = 0, 𝜋, 2𝜋, …, 𝑛𝜋. 532 

Solution 4 is the component ℎ̅SHM of Solution 1 for DGD. 533 

Solution 5 consists of Eqs. (23a) – (23m) for IGD. 534 

Solution 6 consists of Eqs. (23a) – (23e) with 𝐻(𝑟̅, 𝑧̅) defined by Eq. (24). 535 

a 𝑧𝑢̅ = 1 and 𝑧𝑙̅ = 0 for fully screened well 536 

b The solution is independent of elevation. 537 

 538 
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Table 2. Hydraulic parameters estimated by the present solution and the Rasmussen et al. (2003) solution for OPT data from the Savannah River site 539 

Observation 

well 
Solution T (m2/s) S Dr (m2/s) Kz (m/s) Sy Cy (m/s) 𝛼 𝜅 (s) SEE ME 

Surficial Aquifer 

101D Solution 3a 9.27 × 10−4 2.44 × 10−3 0.380 - - - - - 0.018 −5.56 × 10−3 

 Solution 6b 9.18 × 10−4 2.33 × 10−3 0.393 - - - - - 0.018 −2.20 × 10−4 

 Solution 4c 4.61 × 10−4 3.95 × 10−3 0.117 7.38 × 10−6 2.23 × 10−3 3.31 × 10−3 0.10 94.34 0.018 −2.20 × 10−4 

 Solution 5c 5.25 × 10−4 1.09 × 10−3 0.482 2.61 × 10−5 5.49 × 10−3 4.75 × 10−3 0.31 - 0.019 −2.30 × 10−4 

 
Rasmussen et 

al. (2003)b 
2.17 × 10−3 1.35 × 10−4 16.074 - - - - - 0.018 −2.20 × 10−4 

102D Solution 3a 9.13 × 10−4 1.76 × 10−3 0.519 - - - - - 0.010 −4.38 × 10−3 

 Solution 6b 9.17 × 10−4 1.67 × 10−3 0.549 - - - - - 0.011 9.57 × 10−4 

 Solution 4c 9.57 × 10−5 7.85 × 10−4 0.122 3.68 × 10−6 4.95 × 10−3 7.43 × 10−4 0.24 420.17 0.011 9.57 × 10−4 

 Solution 5c 9.49 × 10−5 3.25 × 10−4 0.292 4.67 × 10−6 4.68 × 10−3 9.98 × 10−4 0.31 - 0.011 9.50 × 10−4 

 
Rasmussen et 

al. (2003)b 
2.27 × 10−3 2.28 × 10−4 9.956 - - - - - 0.011 9.57 × 10−4 

Barnwell-McBean Aquifer 

201C Solution 3a 5.86 × 10−5 7.07 × 10−4 0.083 - - - - - 0.232 0.046 

 Solution 6b 6.03 × 10−5 6.54 × 10−4 0.092 - - - - - 0.363 0.281 

 
Rasmussen et 

al. (2003)b 
6.90 × 10−5 4.74 × 10−4 0.150 - - - - - 0.363 0.281 

a transient confined flow 540 

b PSS confined flow 541 

c PSS unconfined flow 542 
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Figures 543 

 544 

Figure 1. Schematic diagram for oscillatory pumping test at a partially screened well of finite 545 

radius in an unconfined aquifer.  546 
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 547 

Figure 2. Influence of delayed gravity drainage on the dimensionless amplitude 𝐴̅𝑡  and 548 

transient head ℎ̅  at 𝑟̅ = 1 , 𝑧̅ = 1  predicted by Solution 1 for different magnitudes of 𝑎1 549 

related to the influence. 550 

 551 
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 552 

Figure 3. Relative error (RE) on the dimensionless amplitudes 𝐴̅𝑡 at the rim of the pumping 553 

well (i.e., r = rw) predicted by IGD Solution 2 and the Dagan and Rabinovich (2014) solution. 554 

The well radius is assumed infinitesimal in the Dagan and Rabinovich (2014) solution and 555 

finite in our solution.    556 
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 557 

Figure 4. The normalized sensitivity coefficient Si associated with (a) the exponential 558 

component hexp of Solution 1 and (b) the SHM amplitude At for parameters Kr, Kz, Ss, Sy, ω and 559 

𝜀. The observation locations for panels (a) and (b) are under water table (i.e., 𝑧̅ = 0.5). Panel 560 

(c) displays the curves of Si of hexp and At at water table (i.e., 𝑧̅ = 1) versus Sy and 𝜀. 561 

 562 
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 563 

Figure 5. Heads fluctuations at 𝑟̅ = 6 predicted by (a) DGD Solution 1 and (b) IGD Solution 564 

2. Solutions 1 and 2 are expressed as ℎ̅ = ℎ̅exp + ℎ̅SHM for transient flow. IGD Solution 5 565 

expressed as ℎ̅𝑠 = 𝐴̅𝑠 cos(𝛾𝑡 − 𝜙𝑠) accounts for PSS flow. 566 

  567 
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 568 

Figure 6. Heads fluctuations at 𝑟̅ = 6 predicted by Solutions 3 and 6 for (a) partially-screened 569 

pumping well and (b) fully-screened pumping well. Solution 3 is expressed as ℎ̅ = ℎ̅exp +570 

ℎ̅SHM  for transient flow. Solution 6 expressed as ℎ̅𝑠 = 𝐴̅𝑠 cos(𝛾𝑡 − 𝜙𝑠)  accounts for PSS 571 

flow. 572 

 573 
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 574 

Figure 7. Comparision of field observation data with head fluctuations predicted by the present 575 

solution. Solutions 3 and 6 represent transient and PSS confined flows, respectively. PSS 576 

Solutions 4 and 5 stand for DGD and IGD conditions, respectively.  577 

 578 


