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Key points

1. An analytical model of the hydraulic head due to oscillatory pumping in unconfined
aquifers is presented.

2. Head fluctuations affected by instantaneous and delayed gravity drainages are discussed.

3. The effect of initial condition on the phase of head fluctuation is analyzed.

4. The present solution agrees well to head fluctuation data taken from a field oscillatory

pumping.
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Abstract

Oscillatory pumping tests (OPTs) provide an alternative to constant-head and constant-rate
pumping tests for determining aquifer hydraulic parameters when OPT data are analyzed based
on an associated analytical model coupled with an optimization approach. There is a large
number of analytical models presented for the analysis of OPT. The combined effects of
delayed gravity drainage (DGD) and initial condition regarding the hydraulic head are
commonly neglected in the existing models. This study aims to develop a new model for
describing the hydraulic head fluctuation induced by OPT in an unconfined aquifer. The model
contains a groundwater flow equation with the initial condition of static water table, Neumann
boundary condition specified at the rim of a partially screened well, and a free surface equation
describing water table motion with the DGD effect. The solution is derived using the Laplace,
finite-integral, and Weber transforms. Sensitivity analysis is carried out for exploring head
response to the change in each of hydraulic parameters. Results suggest the DGD reduces to
instantaneous gravity drainage in predicting transient head fluctuation when dimensionless
parameter a; = €S,b/K, exceeds 500 with empirical constant e, specific yield Sy, aquifer
thickness b, and vertical hydraulic conductivity K.. The water table can be regarded as a no-
flow boundary when a; < 1072 and P < 10* s with P being the period of oscillatory
pumping rate. A pseudo-steady state model without initial condition causes a time shift from
the actual transient model in predicting simple harmonic motion of head fluctuation during a
late pumping period. In addition, the present solution agrees well to head fluctuation data

observed at the Savannah River site.

KEYWORDS: oscillatory pumping test, analytical solution, free surface equation, delayed

gravity drainage, initial condition
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Notation and Abbreviation

bD,/(Cyri2)

b/(kCy), T/ (kD)

Aquifer thickness

K,/S,

K /Ss

Delayed gravity drainage

Hydraulic head

Dimensionless Hydraulic head, i.e., h = 2mlK,.h/Q
Instantaneous gravity drainage

Aquifer horizontal and vertical hydraulic conductivities, respectively
Left-hand side

Screen length, i.e., z, — z;

oscillatory pumping test

Period of oscillatory pumping rate

Pseudo-steady state

Dimensionless period, i.e., P = D,.P/r2

Laplace parameter

Amplitude of oscillatory pumping rate

Right-hand side

Radial distance from the center of pumping well
Dimensionless radial distance, i.e., ¥ = /7,

Radius of pumping well

Simple harmonic motion

Specific storage and specific yield, respectively

Time since pumping

Dimensionless pumping time, i.e., £ = D,.t/r2
Elevation from aquifer bottom

Lower and upper elevations of well screen, respectively
Dimensionless elevation, i.e., Z = z/b

zilb, zu/b

K, /K

Roots of Eq. (15)

1/€

Dimensionless frequency of oscillatory pumping rate, i.e., wr2/D,
Empirical constant associated with delayed gravity drainage
ar2/b?

Frequency of oscillatory pumping rate, i.e., w = 2m/P
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1. Introduction

Numerous attempts have been made by researchers to the study of oscillatory pumping test
(OPT) that is an alternative to constant-rate and constant-head pumping tests for determining
aquifer hydraulic parameters (e.g., Vine et al., 2016; Christensen et al., 2017; Watlet et al.,
2018). The concept of OPT was first proposed by Kuo (1972) in the petroleum literature. The
process of OPT contains extraction stages and injection stages. The pumping rate, in other
words, varies periodically as a sinusoidal function of time. Compared with traditional constant-
rate pumping, OPT in contaminated aquifers has the following advantages: (1) low cost because
of no disposing contaminated water from the well, (2) reduced risk of treating contaminated
fluid, (3) smaller contaminant movement, and (4) stable signal easily distinguished from
background disturbance such as tide effect and varying river stage (e.g., Spane and Mackley,
2011). However, the disadvantages of OPT include the need of an advanced apparatus
producing periodic rate. Oscillatory hydraulic tomography adopts several oscillatory pumping
wells with different frequencies (e.g., Yeh and Liu, 2000; Cardiff et al., 2013; Zhou et al., 2016;
Muthuwatta et al., 2017). Aquifer heterogeneity can be mapped by analyzing multiple data
collected from observation wells. Cardiff and Barrash (2011) reviewed articles associated with
hydraulic tomography and classified them according to nine categories in a table.

Various groups of researchers have worked with analytical and numerical models for OPT;
each group has its own model and investigation. For example, Black and Kipp (1981) assumed
the response of confined flow to OPT as simple harmonic motion (SHM) in the absence of
initial condition. Cardiff and Barrash (2014) built an optimization formulation strategy using
the Black and Kipp analytical solution. Dagan and Rabinovich (2014) also assumed hydraulic
head fluctuation as SHM for OPT at a partially screened well in unconfined aquifers. Cardiff
et al. (2013) characterized aquifer heterogeneity using the finite element-based COMSOL
software that adopts SHM hydraulic head variation for OPT. On the other hand, Rasmussen et
al. (2003) found hydraulic head response tends to SHM at a late period of pumping time when

4
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considering initial condition prior to OPT. Bakhos et al. (2014) used the Rasmussen et al. (2003)
analytical solution to quantify the time after which hydraulic head fluctuation can be regarded

as SHM since OPT began. As mentioned above, most of the models for OPT assume hydraulic

head fluctuation as SHM without initial condition, and all of them treat the pumping well as a

line source with infinitesimal radius.

Field applications of OPT for determining aquifer parameters have been conducted in
recent years. Rasmussen et al. (2003) estimated aquifer hydraulic parameters based on 1- or 2-
hour period of OPT at the Savannah River site. Maineult et al. (2008) observed spontaneous
potential temporal variation in aquifer diffusivity at a study site in Bochum, Germany. Fokker
et al. (2012; 2013) presented spatial distributions of aquifer transmission and storage
coefficient derived from curve fitting based on a numerical model and field data from
experiments at the southern city-limits of Bochum, Germany. Rabinovich et al. (2015)
estimated aquifer parameters of equivalent hydraulic conductivity, specific storage and specific
yield at the Boise Hydrogeophysical Research Site by curve fitting based on observation data
and the Dagan and Rabinovich (2014) analytical solution. They conclude the equivalent
hydraulic parameters can represent the actual aquifer heterogeneity of the study site.

Although a large number of studies have been made in developing analytical models for
OPT, little is known about the combined effects of delayed gravity drainage (DGD), finite-
radius pumping well, and initial condition prior to OPT. Analytical solution to such a question
will not only have important physical implications but also shed light on OPT model
development. This study builds an improved model describing hydraulic head fluctuation
induced by OPT in an unconfined aquifer. The model is composed of a typical flow equation
with the initial condition of static water table, an inner boundary condition specified at the rim
of the partially screened well for incorporating finite-radius effect, and a free surface equation
describing the motion of water table with the DGD effect. The analytical solution of the model

is derived by the methods of Laplace transform, finite-integral transform, and Weber transform.
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Based on the present solution, sensitivity analysis is performed to explore the hydraulic head
in response to the change in each of hydraulic parameters. The effects of DGD and
instantaneous gravity drainage (IGD) on the head fluctuations are compared. The quantitative
criterion for treating the well radius as infinitesimal is discussed. The effect of the initial
condition on the phase of head fluctuation is investigated. In addition, curve fitting of the

present solution to head fluctuation data recorded at the Savannah River site is presented.
2. Methodology

2.1. Mathematical model
Consider an OPT in an unconfined aquifer illustrated in Fig. 1. The aquifer is of unbound lateral
extent with a finite thickness b. The radial distance from the centerline of the well is 7; an
elevation from the impermeable bottom of the aquifer is z. The well with outer radius 7, is
screened from elevation z, to z.

The flow equation describing spatiotemporal head distribution in aquifers can be written

as:

9’h  10h 90%h oh
52 T 57 5 = 7 < <z< >
Dr(6T2+r6r+a622) ot for TW_T<OO,0_Z_b and t >0 (1)

where D, = K,./S;; a = K,/K,; h(r,z,t) is hydraulic head at location (7, z) and time ¢; K,
and K, are respectively the radial and vertical hydraulic conductivities; Ss is the specific
storage. Consider water table as a reference datum where the elevation head is set to zero; the
initial condition is expressed as:

h=0att=0 (1)
The rim of the wellbore is regarded as an inner boundary under the Neumann condition
expressed as:

Qsin(wt) for z, <z < z,

at r=r, 2
0 outside screen interval w 2)

oh
27rrWKrla—r = {

where | = z,, — z; is screen length; Q and w = 2m/P are respectively the amplitude and

frequency of oscillatory pumping rate (i.e., Qsin(wt)) with a period P. Water table motion can
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be defined by Eq. (4a) for IGD (Neuman, 1972) and Eq. (4b) for DGD (Moench, 1995).

oh 1 0h
%= oo at z=>b forIGD (3a)

L= L ["Pexp(—(t—7)/K)dr at z=b for DGD (4b)

2z kCy 0 a7
where C, = K,/S,, k =1/e¢ with € being an empirical constant, and S, is the specific
yield. Note that Eq. (4b) reduces to Eq. (4a) when k — o or € = 0. The impervious aquifer

bottom is under the no-flow condition:

oh _
E—Oatz—O 4)

The hydraulic head far away from the pumping well remains constant, written as

lim h(r,z,t) =0 (5)
T—00

Define dimensionless variables and parameters as follows:

T 2TmlK. _ r _ z z _ z — D _ D = D
h==—"Fh f=—, 7=, 7=-,Z,=—", t==t, T=—1, P==P
Q Tw b b b T T T
2 2 2
Wty angy bDy b ny
= —_— = a=—— a4 =—, A, = 6
14 Dy’ H bz’ Cyrd’ 1 KCy' 27 kD, (6)

where the overbar stands for a dimensionless symbol. Note that the magnitude of a, is related
to the DGD eftect (Moench, 1995) and y is a dimensionless frequency parameter. With Eq. (7),

the dimensionless forms of Egs. (1) - (6) become, respectively,

9°h  10h 9’h  dh _ _ =
ﬁ+;£+,ua?=5for 1<7r<ow 0<z<land t=0 (7)
h=0att=0 (8)
R sin(yt) for z; <7< 7, _

or { 0 outside screen interval ar ©)
oh oh _

5, = a5 atz= 1 for IGD (10a)
O ay [F2B exp(—ay(F—T))dF at Z=1 for DGD (11b)
0z 1) 57 €XPL7 A2

M _0atz=0 12
az - 2= (12)
lim h(#,z,t) =0 (13)
T—00
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Egs. (8) — (13) represent the transient DGD model when excluding (11a) and transient IGD
model when excluding (11b).

2.2. Transient solution for unconfined aquifer

The Laplace transform and finite-integral transform are applied to solve Egs. (8) - (13)

(Latinopoulos, 1985; Liang et al., 2017; 2018). The transient solution can then be expressed as

h(7,Z,E) = hexp(T, Z,£) + hsum(T, 2, F) (14a)
with

Rexp (7, 2,8) = =L 501 [, cos(BnZ) exp(pof) Im(e &,) df (14b)
hsum(7, 2, ©) = A, (T, Z)cos(yE — ¢, (7, 2)) (14c)
A, (7,2) = \Ja,(F,2)2 + b(F, 2)? (14d)
a,(7,2) = = X1 [ Po c0s(BaZ) Im(e;£7) d{ (14e)
be(,2) = L i J; cos(Baz) Im(ese;) d (146)
¢ (7,2) = cos (b, (+,2) /A(1, 2)) (14g)
&1 = Ko(AoP) (5in(2yBn) — sin(Zi8)) / (BndoK1(A0) (0§ + ¥?)) (14h)
&, = (Bi +¢5)/ (B + 5 + o) (141)
Po = —¢ — ups (14j)
Ao =JTi (14k)

where ¢, = ap, for IGD and a,p,/(py + a,) for DGD, i is the imaginary unit, Im(-) is the

imaginary part of a complex number, Ky(—) and K;(—) are the modified Bessel functions

of the second kind of order zero and one, respectively, and f,, is the positive roots of the

equation:

tan B, = ¢o/Bn (15)
The method to find the roots of f3,, is discussed in Section 2.3. The detailed derivation of

Eqgs. (14a) — (14k) is presented in the supporting material. The first term on the right-hand side

(RHS) of Eq. (14a) exhibits exponential decay due to the initial condition since pumping began;
8
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the second term defines SHM with amplitude A,(7,Z) and phase shift ¢.(7,Z) at a given
point (7, Z). The numerical results of the integrals in Egs. (14b), (14¢) and (14f) are obtained
by the Mathematica NIntegrate function.

2.3. Calculation of f,

The eigenvalues By, ..., Bn, the roots of Eq. (15) can be determined by applying the
Mathematica function FindRoot based on Newton’s method with reasonable initial guesses.
The roots are located at the intersection of the curves plotted by the RHS and left-hand side
(LHS) functions of f3,, in Eq. (15). The roots are very close to the vertical asymptotes of the
periodical tangent function tanf,. When ¢, = ap,, the initial guess for each f, can be
considered as Sy, +3 where By, =(2n—1)nr/2, n€(1,2,..0) and § is a small

positive value set to 10'°. When ¢y = a,po/(po + a;), the initial guess is setto By, — & for

a, — ¢ < 0. There is an additional vertical asymptote at f5,, = m derived from the
RHS function of Eq. (15) (i.e., pg + a, = 0) if a, — ¢ > 0. The initial guess is therefore set
to fon +6 for o, onthe LHS of the asymptote and Sy, — 6 for Sy, onthe RHS.

2.4. Transient solution for confined aquifer

When S, =0 (i.e., a =0 or a; = 0), Eq. (11a) or (11b) reduces to dh/dz = 0 for no-flow
condition at the top of the aquifer, indicating the unconfined aquifer becomes a confined one.
Under this condition, Eq. (15) becomes tanf, = 0 with roots S, =0, m, 2m, ..., nm, ...,
oo; Eq. (141) reduces to &, = 1; factor 2 in Egs. (14b), (14e) and (14f) is replaced by unity for
Pn = 0 and remains for the others. The analytical solution of the transient head for the

confined aquifer can be expressed as Eqs. (14a) - (14k) with

op (2D = 2 [ Im(eq) exp(~¢D) g — Z;VZ [ costom) (e exp(pod) d¢

0

(16a)

a,(7,2) = == [, {Im(eo) d{ + =%y [ po cos(nmz) Im(e;) d{ (16b)
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be(7,2) =L [" Im(eo) d{ + L35, f,° cos(nmz) Im(ey) d¢ (16¢)

g0 = (Zy — 2)Ko (A7) /(oK1 (A0) ({* +¥?)) (16d)
Note that Eq. (14h) reduces to Eq. (16d) based on f,, = 0 and L' Hospital's rule. When

Z, =1 and Z; = 0 for the case of full screen, Eq. (14h) gives ¢, =0 for S, > 0 and the

second RHS terms of Egs. (16a) — (16c) can therefore be eliminated. This causes the solution

for confined aquifers is independent of dimensionless elevation Z, indicating only horizontal

flow in the aquifer.

2.5. Pseudo-steady state solution for unconfined aquifer

A pseudo-steady state (PSS) solution hg accounts for SHM of head fluctuation at a late period

of pumping time and satisfies the following form (Dagan and Rabinovich, 2014)

hs(7,2,t) = Im(H(F, 2) e?) (17)

where H(7,Z) is a space function of 7 and Z. Define a PSS IGD model as Egs. (8) - (13)

excluding (9), (11b) and replacing sin(yf) in (10) by e¢. Substituting Eq. (17) and

dhs/0t = Im(iyH(7, Z) ") into the model results in

62

Q
N
T

10H .
o2 tior THoz —UH (18)
oM 1for z,<z2< 7, _
or {0 outside screen interval r (19)
9H . = _
Frie —iayH at z=1 forIGD (20)
0H _
Frie 0 at z=0 (21)
lIimH=0 (22)
T —00

The resultant model is independent of £, indicating the analytical solution of H(7,Z2) is
tractable. Similarly, consider a PSS DGD model that equals the PSS IGD model but replaces
(11a) by (11b). Substituting Eq. (17) into the result yields a model that depends on t, indicating
the solution hs to the PSS DGD model is not tractable.

The Weber transform, defined in Eq. (B.1) of the supporting material, may be considered

10
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as a Hankel transform with a more general kernel function. It can be applied to diffusion-type
problems with a radial-symmetric region from a finite distance to infinity. For groundwater
flow problems, it can be used to develop the analytical solution for the flow equation with a
Neumann boundary condition specified at the rim of a finite-radius well (e.g., Lin and Yeh,
2017; Povstenko, 2015). Taking the transform and the formula of et = cos(yf) + i sin(yf)

to solve Egs. (18) - (22) yields the solution of h expressed as

hs(7, 2,) = Ay(F, 2) cos(yt — ps(7,2)) (23a)
Ay (7, 2) = \Jas(F, 2)% + bs(T, 2)? (23b)
as(7,z) = Re(H(7, 2)) (23¢)
bs(7,2) = Im(H (7, 2)) (23d)
¢s(7, 2) = cos™(by(F,2) /As(T, 2)) (23e)

([, §Qdé for 7, <z<1
H(72) =X [, Hn £ QdE for 7, <7< 7, 236)
\ [ B ¢0dE for 0<z<7

Q= (JoGMNN(E) — Y EML(E)/UF () + Y () (23g)
with the Bessel functions of the first kind of order zero Jo(—) and one J;(—) as well as the

second kind of order zero Y,(—) and one Y;(—),

H, = Hy(c; exp(A,2) + ¢, exp(—A,2)) for z, <z <1
H,, = Hy(cs exp(A,2) + c,exp(—2,2) — 1) for z; <z < 7, (23h)
H, = Hycs(exp(1y,2) + exp(—2,,2)) for 0 <z < Z
¢, = —e (A, — 0)(sinh(Z4,,) — sinh(Z,4,,))/D (23i)
c, = —e*(A,, + 0)(sinh(Z4,,) — sinh(Z,1,,))/D (23j)

e—(1+zl+zu)aw

_ C+Z2DAw 4 pZutw — o (2Z1+Z) Ay _ (Z1+22,) A
c3 = 5 (J(e Viw + e e i ) + (o —1,,)e'" +
AW(€(2+Z_l)AW — ez_ulw + e(zz_l+z_u)/1w)) (231()
€y = W ((0 —A,)e @M 4 (g 4 1,)(e@H M — g@FEMy 4

11
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e(z+zz-z+zu)aw)) (231)

C5 — %e—(1+z'l+z'u)lw(ez'llw _ eZ_uﬂ.W)((/‘{W _ O.)e(Z_l+Z_u)lW + (AW + O.)BZAW) (23m)

where 12, = (% +iy)/u , o=iya , H,=2/(muéAi) and D =2(ocoshil, +
Aw sinh 4,,), and Re(-) is the real part of a complex number. Again, one can refer to the
supporting material for the derivation of the solution. Eq. (23a) indicates SHM for the response
of the hydraulic head at any point to oscillatory pumping. Note that Eq. (23f) reduces to
H(r,2) = fooo H,, £ Q dé for a fully screened well when z; = 0 and z, = 1.

2.6. Pseudo-steady state solution for confined aquifers

Applying the finite Fourier cosine transform to the model, Egs. (18) — (22) with S, =0 (i.e.,
a = 0) for the confined condition, leads to an ordinary differential equation with two boundary
conditions. With solving the boundary-value problem, the solution of hg for confined aquifers
can be expressed as Eqgs. (23a) - (23e) with H(7#,Z) defined as

0.5(z,—7;) form=0

(sin(z,mm) — sin(zymm)) for m > 0 (24)

— o )
H(r,z) = -2 2m=0% X {cos(mnz‘)
mm

where A2, = yi + u(mm)?. The derivation of Eq. (24) is also listed in the supporting material.
For a fully screened well (i.e., z, = 1, z; = 0), the first term of the series (i.e., m = 0) remains
and the others equal zero because of sin(Z,mm) — sin(Z;mm) = 0. The result is independent
of dimensionless elevation Z, indicating the confined flow is only horizontal.

2.7. Special cases of the present solution

Table 1 classifies the present solution (i.e., Solution 1) and its special cases (i.e., Solutions 2 to
6) according to transient or PSS flow, unconfined or confined aquifer, and IGD or DGD. Each
of Solutions 1 to 6 reduces to a special case for fully screened well. Existing analytical solutions
can be regarded as special cases of the present solution as discussed in Section 3.4 (e.g., Black
and Kipp, 1981; Rasmussen et al., 2003; Dagan and Rabinovich, 2014).

2.8. Sensitivity analysis

12
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Sensitivity analysis evaluates hydraulic head variation in response to the change in each of K,
K., Ss, Sy, o, and €. The normalized sensitivity coefficient can be defined as (Liou and Yeh,

1997)

(104

where S; is the sensitivity coefficient of ith parameter; P; is the magnitude of the ith input
parameter; X represents the present solution in dimensional form. Eq. (25) can be approximated

as

X(Pi+AP)—-X(P;)

5 = PR (26)

where AP;, a small increment, is chosen as 107P;.
3. Results and Discussion

The following sections demonstrate the response of the hydraulic head to oscillatory pumping
using the present solution. The default values in calculation are ¥ =0.05m,z=5m, b =10 m,
0=103m%s, rv=0.05m,z,=55m,z=45m, K,=10* m/s, K.= 10° m/s, S; = 10° m™, S,
= 10* o = 2n/30 s, and k = 100 s. The corresponding dimensionless parameters and
variables are 7 =1, Z= 0.5, Z, = 0.55, z; = 0.45, y = 5.24x10°, u=25%x107%, a =
4x10° a; =1 and a, = 2.5 X 107°,
3.1. Delayed gravity drainage

Previous analytical models for OPT consider either confined flow (e.g., Rasmussen et al.,
2003) or unconfined flow with IGD effect (e.g., Dagan and Rabinovich, 2014). Little attention
has been paid to the consideration of the DGD effect. This section addresses the diffrence
among these three models. Figure 2 shows the curve of the dimensionless amplitude A, at (7,
Z)=(1, 1) of Solution 1 versus the dimensionless parameter a, related to the DGD effect. The
transient head fluctuations are plotted based on Solution 1 with a; = 1072, 1, 10, 500,
Solution 2 for IGD and Solution 3 for confined flow. Define the relative error as
RE = |4, — A,|/A, (27)

13
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where A} is the dimensionless amplitude predicted by Solution 2 for the case of a; = 500
or Solution 3 for the case of a; = 1072. The curves of the RE versus the period of oscillatory
pumping rate (i.e., P) for these two cases are displayed. The range of P < 10°s (1.16 d)
contains most practical applications of OPT. When 1072 < a; < 500, the A, gradually
decreases with a; to the trough and then increases to the ultimate value of A, = 1.79 x 1072,
The DGD, in other words, causes an effect. When a; < 1072, Solutions 1 and 3 agree on the
predicted heads; the RE is below 1% for P < 10*s (2.78 h), indicating the unconfined aquifer
with the DGD effect behaves like confined aquifer and the water table can be regarded as a no-
flow boundary when a; < 1072 and P < 10*s. When a; > 500, the head fluctuations
predicted by both Solutions 1 and 2 are identical; the largest RE is about 0.45%, indicating the
DGD effect is ignorable and Eq. (4b) reduces to (4a) for the IGD condition. This conclusion is
applicable for any magnitude of P in spite of P > 10°s.

3.2. Effect of finite radius of pumping well

Existing analytical models for OPT mostly treated the pumping well as a line source with
infinitesimal radius (e.g., Rasmussen et al., 2003; Dagan and Rabinovich, 2014). The finite
difference scheme for the model also treats the well as a nodal point by neglecting the radius.
These will lead to significant error when a well has the radius ranging from 0.5 m to 2 m (Yeh
and Chang, 2013). This section discusses the relative error in predicted amplitude defined as
RE = MD&R - I‘Tt|//ft (28)
where A, and Apgr are the dimensionless amplitudes at 7 =1 (i.e., = r) predicted by IGD

Solution 2 and the Dagan and Rabinovich (2014) solution, respectively. Note that their solution

—Dyw+1 _ ,—Dy

assumes infinitesimal radius of a pumping well and has a typo that the term e e
should read ef(-Pw*1) — ¢=BDw (see their Eq. (25)). Figure 3 demonstrates the RE for
different values of radius 7. The RE increases with 7, as expected. For case 1 of ,, = 0.1 m,

both solutions agree well in the entire domain of 1 < 7 < oo, indicating a pumping well with

rw < 0.1 m can be regarded as a line source. For the extreme case 2 of ,, = 1 m or case 3 of
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rw =2 m, the Dagan and Rabinovich solution underestimates the dimensionless amplitude for
1 <7 < 6 and agrees to the present solution for 7 > 6. The RESs for these two cases exceed
10%. The effect of finite radius should therefore be considered in OPT models especially when
observed hydrulic head data are taken close to the wellbore of a large-diameter well.

3.3. Sensitivity analysis

The temporal distributions of normalized sensitivity coefficient S; defined as Eq. (26) with
X = heyp of Solution 1 are displayed in Fig. 4a for the response of exponential decay to the
change in each of six parameters K, Kz, Ss, Sy, @ and ¢. The exponential decay is very sensitive
to variation in each of K,, K-, Ss and w because of |S;| > 0. Precisely, a positive perturbation
in S; produces an increase in the magnitude of hey, while that in K, or K: causes a decrease.
In addition, a positive perturbation in @ yields an increase in heyp, before =1 sand a decrease
after that time. It is worth noting that S; for S, or € is very close to zero over the entire period
of time, indicating hey, is insensitive to the change in Syor & and the subtle change of gravity
drainage has no influence on the exponential decay. On the other hand, the spatial distributions
of S; associated with the amplitude A; are shown in Fig. 4b in response to the changes in
those six parameters. The A; is again sensitive to the change in each of K, K-, Ss and @ but
insensitive with the change in S, or &. The same result of |S;| = 0 for S, or € applies to any
observation point under the water table (i.e., Z < 1), but [S;| > 0 at the water table (i.e., Z =
1) shown in Fig. 4c. From those discussed above, we may conclude the changes in the four key
parameters K, K-, S5 and o significantly affect head prediction in the entire aquifer domain.
The change in S, or ¢ leads to insignificant variation in the predicted head below the water
table and slight variation at the water table.

3.4. Transient head fluctuation affected by the initial condition

Figure 5 demonstrates head fluctuations predicted by DGD Solution 1 and IGD Solution 2

expressed as h = hgyp, + hgyy for transient flow and by IGD solution as hy = A, cos(yt —
p exp S

¢s) for PSS flow. The transient head fluctuation starts from h =0 at £ = 0 and approaches
15
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SHM predicted by hsyy when hey, = 0 mafter £ = 0.5P (i.e., 6 x 10*). Solutions 1 and

2 agree to the h predictions because the head at Z = 0.5 under the water table is insensitive
to the change in S, or ¢ as discussed in Section 3.3. It is worth noting that the solution of
Dagan and Rabinovich (2014) for PSS flow has a time shift from the hgyy of Solution 2. This
indicates the phase of their solution (i.e., 1.50 rad) should be replaced by the phase of Solution
2 (i.e., ¢, = 1.64 rad) so that their solution exactly fits the hgyy of Solution 2.

Figure 6 displays head fluctuations predicted by transient Solution 3 expressed as h =
i_lexp + hgym and PSS Solution 6 as hy = A cos(yt — ¢) for partially screened pumping
well in panel (a) and full screen in panel (b). The Rasmussen et al. (2003) solution for transient
flow predicts the same h as Solution 3. The Black and Kipp (1981) for PPS flow also predicts
close hgyy prediction of Solution 3. The phase of Solution 6 (i.e., ¢s = 1.50 rad for panel (a)
and 1.33 rad for (b)) can be replaced by the phase of Solution 3 (i.e., ¢, = 1.64 rad for (a)
and 1.81 rad for (b)) so that the hgyy prediction of Solutions 3 is identical to the h;

prediction of Solution 6. As concluded, excluding the initial condition with Eq. (17) for a PSS

model leads to a time shift from the SHM of the head fluctuation predicted by the associated
transient model while the transient and PSS models give the same SHM amplitude.

3.5. Application of the present solution to field experiment

Rasmussen et al. (2003) conducted field OPTs in a three-layered aquifer system containing one
Surficial Aquifer, the Barnwell-McBean Aquifer in between and the deepest Gordon Aquifer
at the Savannah River site. Two clay layers dividing these three aquifers may be regarded as
impervious strata. For the OPT at the Surficial Aquifer, the formation has 6.25 m averaged
thickness near the test site. The fully-screened pumping well has 7.6 cm outer radius. The
pumping rate can be approximated as Osin(wt) with Q=4.16x10*m?/sand w =2nh'. The
distance from the pumping well is 6 m to the observation well 101D and 11.5 m to well 102D.
The screen lengths are 3 m from the aquifer bottom for well 101D and from the water table for

well 102D. For the OPT at the Barnwell-McBean Aquifer, the formation mainly consists of
16
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sand and fine-grained material. The pumping well has outer radius of 7.6 cm and pumping rate
of Osin(wt) with O = 1.19%10° m’/s and w = n h™!. The observation well 201C is at 6 m
from the pumping well. The data of time-varying hydraulic heads at the observation wells (i.e.,
101D, 102D, 201C) are plotted in Fig. 7. One can refer to Rasmussen et al. (2003) for detailed
description of the Savannah River site.

The aquifer hydraulic parameters are determined based on Solutions 3 to 6 coupled with
the Levenberg—Marquardt algorithm provided in the Mathematica function FindFit (Wolfram,
1991). Note that a robust Gauss-Newton algorithm provides an alternative for the parameter

estimation (Qin et al., 2018a; 2018b). Solutions 4 and 5 are used to predict depth-averaged
head expressed as (z;, — z])™! fZZ,“ hsdz with the upper elevation z,, and lower one z; of
l

the finite screen of the observation well 101D or 102D at the Surficial Aquifer. Note that

Solutions 3 and 6 are independent of elevation because of the fully-screened pumping well.
Define the standard error of estimate (SEE) as SEE = ’% ?4:1 ej2 and the mean error (ME)

as ME = % 9/1=1 ej where ¢; is the difference between predicted and observed hydraulic heads

and M is the number of observation data (Yeh, 1987). The estimated parameters and associated
SEE and ME are displayed in Table 2. The estimates of 7, S and D, given in Rasmussen et al.
(2003) are also presented. The result shows the estimated Sy is very small, and the estimated 7’
and S by Solution 3, 6 or the Rasmussen et al. (2003) solution for confined flow are close to
those by Solution 4 or 5 for unconfined flow, indicating that the unconfined flow induced by
the OPT in the Surficial Aquifer is negligibly small. Little gravity drainage due to the DGD
effect appears with a; = 20 for wells 101D and 102D as discussed in Section 3.1. Rasmussen
et al. (2003) also revealed the confined behaviour of the OPT-induced flow in the Surficial
Aquifer. The estimated S, is one order less than the lower limit of the typical range of 0.01 ~
0.3 (Freeze and Cherry, 1979), which accords with the findings of Rasmussen et al. (2003) and
Rabinovich et al. (2015). Such a fact might be attributed to the problem of the moisture
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exchange limited by capillary fringe between the zones below and above the water table.
Several laboratory research outcomes have confirmed an estimate of Sy at short period of OPT
is much smaller than that determined by constant-rate pumping test (e.g., Cartwright et al.,
2003; 2005). In addition, the difference in 7, S or D, estimated by Solution 6 and those by the
Rasmussen et al. (2003) solution may be attributed to the fact that their solution assumes
isotropic hydraulic conductivity (i.e., K- = K>). On the other hand, transient Solution 3 gives
smaller SEEs than PSS Solution 6 or the Rasmussen et al. (2003) solution for the Barnwell-
McBean Aquifer and better fits to the observed data at the early pumping periods as shown in
Fig. 7. From those discussed above, we may conclude the present solution is applicable to real-

world OPT.
4. Concluding remarks

A variety of analytical models for OPT have been proposed so far, but little attention is paid to
the joint effects of DGD, initial condition, and finite radius of a pumping well. This study
develops a new model for describing hydraulic head fluctuation due to OPT in unconfined
aquifers. Static hydraulic head prior to OPT is regarded as an initial condition. A Neumann
boundary condition is specified at the rim of a finite-radius pumping well. A free surface
equation accounting for the DGD effect is considered as the top boundary condition. The
solution of the model is derived by the Laplace transform, finite-integral transform and Weber
transform. The sensitivity analysis of the head response to the change in each of hydraulic
parameters is performed. The observation data obtained from the OPT at the Savannah River
site are analyzed by the present solution when coupling the Levenberg—Marquardt algorithm
to estimate aquifer hydraulic parameters. Our findings are summarized below:
1. When 1072 < a; < 500, the effect of DGD on head fluctuations should be considered.
The amplitude of head fluctuation predicted by DGD Solution 1 decreases with increasing
a, to a trough and then increases to the amplitude predicted by IGD Solution 2. When
a; > 500, the DGD becomes IGD. Both Solutions 1 and 2 predict the same head
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fluctuation. When a; < 1072 and P < 10%*s, the DGD results in the water table under
no-flow condition. Solution 1 for unconfined flow gives an identical head prediction to

Solution 3 for confined flow.

. Assuming a large-diameter well as a line source with infinitesimal radius underestimates

the amplitude of head fluctuation in the domain of 1 < 7 < 6 when the radius exceeds 80
cm, leading to relative error RE > 10% shown in Fig. 3. In contrast, the assumption is valid
in predicting the amplitude in the domain of 7 > 6 in spite of adopting a large-diameter
well. When 17, <10 cm (i.e., RE < 0.45%), the well radius can be regarded as
infinitesimal. The result is applicable to existing analytical solutions assuming infinitesimal

radius and finite difference solutions treating the pumping well as a nodal point.

. The sensitivity analysis suggests the changes in four parameters K, K., Sy and w

significantly affect head prediction in the entire aquifer domain. The change in S, or ¢
causes insignificant variation in the head under water table but slight variation at the water

table.

. Analytical solutions for OPT are generally expressed as the sum of the exponential and

harmonic functions of time (i.e., h = i_lexp + A; cos(yt — ¢,)) for transient solutions (e.g.,

Solution 3) and harmonic function (i.e., hg = A cos(yt — ¢)) for PSS solutions (e.g.,
Solution 6). The latter assuming Eq. (17) without the initial condition produces a time shift
from the SHM predicted by the hgyy. The phase ¢ should be replaced by ¢, so that

hy and hgyy are exactly the same.
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Table 1. The present solution and its special cases

Well Transient flow Pseudo-steady state flow
screen Unconfined aquifer Confined aquifer Unconfined aquifer Confined aquifer
Partial Solutions 1 and 2 Solution 3 Solutions 4 and 5 Solution 6
Full Solutions 1 and 2¢ Solution 3% Solutions 4 and 5¢ Solution 6%

Solution 1 consists of Egs. (14a) — (14k) with the roots of Eq. (15) and ¢y = aypy/(py + a,) for DGD.

Solution 2 is the same as Solution 1 but has ¢, = ap, for IGD.

Solution 3 equals Solution 1 with Eqgs. (16a) — (16d) and S, =0, m, 2m, ..., nm.
Solution 4 is the component hgyy of Solution 1 for DGD.

Solution 5 consists of Egs. (23a) — (23m) for IGD.

Solution 6 consists of Egs. (23a) — (23¢) with H(7,Z) defined by Eq. (24).

27y =1 and z; = 0 for fully screened well

b The solution is independent of elevation.
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Table 2. Hydraulic parameters estimated by the present solution and the Rasmussen et al. (2003) solution for OPT data from the Savannah River site

Obsjvr;‘;“"“ Solution T (m%s) s D, (m?/s) K. (m/s) S, Cy (m/s) a K (s) SEE ME
Surficial Aquifer
101D Solution 3¢ 9.27 x 107* 2.44 x 1073 0.380 - - - - - 0.018 —5.56 x 1073
Solution 67 9.18 x 10™* 2.33x 1073 0.393 - - - - - 0.018 —220x107*
Solution 4¢ 4,61 x 1074 3.95 x 1073 0.117 7.38 x 107 2.23x 1073 3.31x1073 0.10 94.34 0.018 —2.20x 107
Solution 5¢ 5.25x 10™* 1.09 x 1073 0.482 2.61x 1075 549 x 1073 4,75 x 1073 0.31 - 0.019 —-2.30x 107
Rasmussen et _3 4 _ 4
al. (2003)/, 2.17 x 10 1.35x 10 16.074 - - - - _ 0.018 220 % 10
102D Solution 3¢ 9.13x 107* 1.76 x 1073 0.519 - - - - - 0.010 —-438x1073
Solution 6° 9.17 x 107 1.67 x 1073 0.549 - - - - - 0.011 9.57 x 107
Solution 4¢ 9.57 x 1075 7.85 x 107* 0.122 3.68 x 107° 495x 1073 743 x 1074 0.24 420.17 0.011 9.57 x 107
Solution 5¢ 9.49 x 105 3.25x 107* 0.292 4,67 x 1076 468 x 1073 9.98 x 107* 0.31 - 0.011 9.50 x 10~*
Rasmussen et _3 4 -4
al. (2003)° 2.27 x 10 2.28 x 10 9.956 - - - - - 0.011 9.57 x 10
Barnwell-McBean Aquifer
201C Solution 3¢ 5.86 x 107> 7.07 x 1074 0.083 - - - - - 0.232 0.046
Solution 6° 6.03 x 1075 6.54 x 1074 0.092 - - - - - 0.363 0.281
Rasmussen et o g 105 474 x 10~ 0.150 - - - - - 0.363 0.281

al. (2003)

% transient confined flow
b PSS confined flow

¢ PSS unconfined flow
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Figure 1. Schematic diagram for oscillatory pumping test at a partially screened well of finite

radius in an unconfined aquifer.
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Figure 4. The normalized sensitivity coefficient S; associated with (a) the exponential

component /exp of Solution 1 and (b) the SHM amplitude A4, for parameters K, Kz, Ss, Sy, @ and

€. The observation locations for panels (a) and (b) are under water table (i.e., Z = 0.5). Panel

(c) displays the curves of S; of /exp and A4, at water table (i.e., z = 1) versus Sy and €.
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Figure 5. Heads fluctuations at 7 = 6 predicted by (a) DGD Solution 1 and (b) IGD Solution

2. Solutions 1 and 2 are expressed as h = i_lexp + hgyy for transient flow. IGD Solution 5

expressed as hy = A cos(yt — ¢¢) accounts for PSS flow.
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Figure 6. Heads fluctuations at ¥ = 6 predicted by Solutions 3 and 6 for (a) partially-screened
pumping well and (b) fully-screened pumping well. Solution 3 is expressed as h = f_lexp +

heyy for transient flow. Solution 6 expressed as hs = Ag cos(yt — ¢p) accounts for PSS

flow.
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Figure 7. Comparision of field observation data with head fluctuations predicted by the present
solution. Solutions 3 and 6 represent transient and PSS confined flows, respectively. PSS

Solutions 4 and 5 stand for DGD and IGD conditions, respectively.
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