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Abstract 22 

Oscillatory pumping test (OPT) is an alternative to constant-head and constant-rate pumping 23 

tests for determining aquifer hydraulic parameters without net water extraction. There is a large 24 

number of analytical models presented for the analysis of OPT. The combined effects of 25 

delayed gravity drainage (DGD) and initial condition regarding the hydraulic head are 26 

commonly neglected in the existing models. This study aims to develop a new model for 27 

describing the hydraulic head fluctuation induced by OPT in an unconfined aquifer. The model 28 

contains a groundwater flow equation with the initial condition of static water table, Neumann 29 

boundary condition specified at the rim of a finite-radius well, and a free surface equation 30 

describing water table motion with the DGD effect. The solution of the model is derived by the 31 

Laplace transform, finite integral transform, and Weber transform. Sensitivity analysis is 32 

carried out for exploring head response to the change in each of hydraulic parameters. Results 33 

suggest the DGD reduces to instantaneous gravity drainage in predicting transient head 34 

fluctuation when dimensionless parameter 𝑎1 = 𝜀𝑆𝑦𝑏/K𝑧  exceeds 500 with empirical 35 

constant 𝜀, specific yield Sy, aquifer thickness b, and vertical hydraulic conductivity Kz. The 36 

water table can be regarded as a no-flow boundary when 𝑎1 < 10−2. A pseudo-steady state 37 

model without initial condition causes a certain time shift from the actual transient model in 38 

predicting simple harmonic motion of head fluctuation during a late pumping period. In 39 

addition, the present solution agrees well to head fluctuation data observed at the Savannah 40 

River site. 41 

KEYWORDS: oscillatory pumping test, analytical solution, free surface equation, delayed 42 

gravity drainage, initial condition 43 
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Notation and Abbreviation 44 

a 𝜎/𝜇 

a1, a2 𝜀𝑆𝑦𝑏/𝐾𝑧, 𝑎1𝜇/𝜎 

b Aquifer thickness 

DGD Delayed gravity drainage 

h Hydraulic head 

ℎ̅  Dimensionless Hydraulic head, i.e., ℎ̅ = (2𝜋𝑙𝐾𝑟ℎ)/|𝑄|   

IGD Instantaneous gravity drainage 

Kr, Kz Aquifer horizontal and vertical hydraulic conductivities, respectively 

LHS Left-hand side 

l Screen length, i.e., 𝑧𝑢 − 𝑧𝑙 

OPT oscillatory pumping test 

P Period of oscillatory pumping rate 

PSS Pseudo-steady state 

𝑃̅ Dimensionless period, i.e., 𝑃̅ = (𝐾𝑟𝑃)/(𝑆𝑠𝑟𝑤
2) 

p Laplace parameter 

𝑄  Amplitude of oscillatory pumping rate 

RHS Right-hand side 

r Radial distance from the center of pumping well 

𝑟̅  Dimensionless radial distance, i.e., 𝑟̅ = 𝑟/𝑟𝑤 

rw Radius of pumping well 

SHM Simple harmonic motion  

Ss, Sy Specific storage and specific yield, respectively 

𝑡  Time since pumping 

𝑡̅  Dimensionless pumping time, i.e., 𝑡̅ = (𝐾𝑟𝑡)/(𝑆𝑠𝑟𝑤
2) 

z Elevation from aquifer bottom 

zl, zu Lower and upper elevations of partial well screen, respectively 

𝑧̅  Dimensionless elevation, i.e., 𝑧̅ = 𝑧 𝑏⁄  

𝑧𝑙̅, 𝑧𝑢̅ zl/b, zu/b 

𝛽𝑛 Roots of Eq. (16) 

𝛾  Dimensionless frequency of oscillatory pumping rate, i.e., 𝑆𝑠𝑟𝑤
2 𝜔/𝐾𝑟 

𝜀 Empirical constant associated with delayed gravity drainage 

𝜇  𝐾𝑧𝑟𝑤
2/𝐾𝑟𝑏

2 

𝜎  𝑆𝑦/(𝑆𝑠𝑏) 

𝜔  Frequency of oscillatory pumping rate, i.e., 𝜔 = 2𝜋/𝑃 

45 
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1. Introduction 46 

Numerous attempts have been made by researchers to the study of oscillatory pumping test 47 

(OPT) that is an alternative to constant-rate and constant-head pumping tests for determining 48 

aquifer hydraulic parameters (e.g., Vine et al., 2016; Christensen et al., 2017; Watlet et al., 49 

2018). The concept of OPT was first proposed by Kuo (1972) in the petroleum literature. The 50 

process of OPT contains extraction stages and injection stages. The pumping rate, in other 51 

words, varies periodically as a sinusoidal function of time. Compared with traditional constant-52 

rate pumping, OPT in contaminated aquifers has the following advantages: (1) low cost because 53 

of no disposing contaminated water from the well, (2) reduced risk of treating contaminated 54 

fluid, (3) smaller contaminant movement, and (4) stable signal easily distinguished from 55 

background disturbance such as tide effect and varying river stage (e.g., Spane and Mackley, 56 

2011). However, the disadvantages of OPT includes the need of an advanced apparatus 57 

producing periodic rate and the problem of signal attenuation in remote distance from the 58 

pumping well. Oscillatory hydraulic tomography adopts several oscillatory pumping wells with 59 

different frequencies (e.g., Yeh and Liu, 2000; Cardiff et al., 2013; Zhou et al., 2016; 60 

Muthuwatta, et al., 2017). Aquifer heterogeneity can be mapped by analyzing multiple data 61 

collected from observation wells. Cardiff and Barrash (2011) reviewed articles associated with 62 

hydraulic tomography and classified them according to nine categories in a table. 63 

Various groups of researchers have worked with analytical and numerical models for OPT; 64 

each group has its own model and investigation. For example, Black and Kipp (1981) assumed 65 

the response of confined flow to OPT as simple harmonic motion (SHM) in the absence of 66 

initial condition. Cardiff and Barrash (2014) built an optimization formulation strategy using 67 

the Black and Kipp analytical solution. Dagan and Rabinovich (2014) also assumed hydraulic 68 

head fluctuation as SHM for OPT at a partially penetrating well in unconfined aquifers. Cardiff 69 

et al. (2013) characterized aquifer heterogeneity using the finite element-based COMSOL 70 

software that adopts SHM hydraulic head variation for OPT. On the other hand, Rasmussen et 71 
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al. (2003) found hydraulic head response tends to SHM after a certain period of pumping time 72 

when considering initial condition prior to OPT. Bakhos et al. (2014) used the Rasmussen et al. 73 

(2003) analytical solution to quantify the time after which hydraulic head fluctuation can be 74 

regarded as SHM since OPT began. As mentioned above, most of the models for OPT assume 75 

hydraulic head fluctuation as SHM without initial condition, and all of them treat the pumping 76 

well as a line source with infinitesimal radius. 77 

Field applications of OPT for determining aquifer parameters have been conducted in 78 

recent years. Rasmussen et al. (2003) estimated aquifer hydraulic parameters based on 1- or 2- 79 

hour period of OPT at the Savannah River site. Maineult et al. (2008) observed spontaneous 80 

potential temporal variation in aquifer diffusivity at a study site in Bochum, Germany. Fokker 81 

et al. (2012; 2013) presented spatial distributions of aquifer transmission and storage 82 

coefficient derived from curve fitting based on a numerical model and field data from 83 

experiments at the southern city-limits of Bochum, Germany. Rabinovich et al. (2015) 84 

estimated aquifer parameters of equivalent hydraulic conductivity, specific storage and specific 85 

yield at the Boise Hydrogeophysical Research Site by curve fitting based on observation data 86 

and the Dagan and Rabinovich (2014) analytical solution. They conclude the equivalent 87 

hydraulic parameters can represent the actual aquifer heterogeneity of the study site. 88 

Although a large number of studies have been made in developing analytical models for 89 

OPT, little is known about the combined effects of delayed gravity drainage (DGD), finite-90 

radius pumping well, and initial condition prior to OPT. Analytical solution to such a question 91 

will not only have important physical implications but also shed light on OPT model 92 

development. This study builds an improved model describing hydraulic head fluctuation 93 

induced by OPT in an unconfined aquifer. The model is composed of a typical flow equation 94 

with the initial condition of static water table, an inner boundary condition specified at the rim 95 

of the pumping well for incorporating finite-radius effect, and a free surface equation 96 

describing the motion of water table with the DGD effect. The analytical solution of the model 97 
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is derived by the methods of Laplace transform, finite integral transform, and Weber transform. 98 

Based on the present solution, sensitivity analysis is performed to explore the hydraulic head 99 

in response to the change in each of hydraulic parameters. The effects of DGD and 100 

instantaneous gravity drainage (IGD) on the head fluctuations are compared. The quantitative 101 

criterion for treating the well radius as infinitesimal is discussed. The effect of the initial 102 

condition on the phase of head fluctuation is investigated. In addition, curve fitting of the 103 

present solution to head fluctuation data recorded at the Savannah River site is presented. 104 

2. Methodology 105 

2.1. Mathematical model 106 

Consider an OPT in an unconfined aquifer illustrated in Fig. 1. The aquifer is of unbound lateral 107 

extent with a finite thickness 𝑏. The radial distance from the centerline of the well is r; an 108 

elevation from the impermeable bottom of the aquifer is z. The well with outer radius 𝑟𝑤 is 109 

screened from zu to zl. 110 

The flow equation describing spatiotemporal head distribution in aquifers can be written 111 

as:  112 

𝐾𝑟 (
𝜕2ℎ

𝜕𝑟2
+
1

𝑟

𝜕ℎ

𝜕𝑟
) + 𝐾𝑧

𝜕2ℎ

𝜕𝑧2
= 𝑆𝑠

𝜕ℎ

𝜕𝑡
   for   𝑟𝑤 ≤ 𝑟 < ∞, 0 ≤ 𝑧 ≤ 𝑏  and  𝑡 ≥ 0   (1) 113 

where ℎ(𝑟, 𝑧, 𝑡) is hydraulic head at location (r, z) and time t; 𝐾𝑟 and 𝐾𝑧 are respectively 114 

the radial and vertical hydraulic conductivities; Ss is the specific storage. Consider water table 115 

as a reference datum where the elevation head is set to zero; the initial condition is expressed 116 

as: 117 

ℎ = 0 at 𝑡 = 0 (2) 118 

The rim of the wellbore is regarded as an inner boundary under the Neumann condition 119 

expressed as: 120 

2𝜋𝑟𝑤𝐾𝑟𝑙
𝜕ℎ

𝜕𝑟
= {

𝑄sin(𝜔𝑡)  for   𝑧𝑙 ≤ 𝑧 ≤ 𝑧𝑢
0   outside screen interval

   at   𝑟=𝑟𝑤 (3) 121 

where 𝑙 = 𝑧𝑢 − 𝑧𝑙  is screen length; 𝑄  and 𝜔 = 2𝜋/𝑃  are respectively the amplitude and 122 
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frequency of oscillatory pumping rate (i.e., 𝑄sin(𝜔𝑡)) with a period P. Water table motion can 123 

be defined by Eq. (4a) for IGD (Neuman, 1972) and Eq. (4b) for DGD (Moench, 1995). 124 

𝐾𝑧
𝜕ℎ

𝜕𝑧
= −𝑆𝑦

𝜕ℎ

𝜕𝑡
   at    𝑧 = 𝑏 for IGD  (4a) 125 

𝐾𝑧
𝜕ℎ

𝜕𝑧
= −𝜀 𝑆𝑦 ∫

𝜕ℎ

𝜕𝑡′

𝑡

0
exp(−𝜀(𝑡 − 𝑡′)) d𝑡′   at    𝑧 = 𝑏 for DGD      (4b) 126 

where 𝑆𝑦 is the specific yield; 𝜀 is an empirical constant. The impervious aquifer bottom is 127 

under the no-flow condition: 128 

𝜕ℎ

𝜕𝑧
= 0  at   𝑧 = 0  (5) 129 

The hydraulic head far away from the pumping well remains constant, written as 130 

lim
𝑟→∞

ℎ(𝑟, 𝑧, 𝑡) = 0 (6) 131 

Define dimensionless variables and parameters as follows: 132 

ℎ̅ =
2𝜋𝑙𝐾𝑟

𝑄
ℎ, 𝑟̅ =

𝑟

𝑟𝑤
, 𝑧̅ =

𝑧

𝑏
, 𝑧𝑙̅ =

𝑧𝑙

𝑏
, 𝑧𝑢̅ =

𝑧𝑢

𝑏
, 𝑡̅ =

𝐾𝑟

𝑆𝑠𝑟𝑤
2 𝑡, 𝑃̅ =

𝐾𝑟

𝑆𝑠𝑟𝑤
2 𝑃 133 

 𝛾 =
𝑆𝑠𝑟𝑤

2

𝐾𝑟
𝜔, 𝜇 =

𝐾𝑧𝑟𝑤
2

𝐾𝑟𝑏2
, 𝜎 =

𝑆𝑦

𝑆𝑠𝑏
 , 𝑎 =

σ

𝜇
, 𝑎1 =

𝜀𝑆𝑦𝑏

𝐾𝑧
, 𝑎2 =

𝑎1𝜇

𝜎
 (7) 134 

where the overbar stands for a dimensionless symbol. Note that the magnitude of 𝑎1 is related 135 

to the DGD effect (Moench, 1995) and γ is a dimensionless frequency parameter. With Eq. (7), 136 

the dimensionless forms of Eqs. (1) - (6) become, respectively, 137 

𝜕2ℎ̅

𝜕𝑟̅2
+
1

𝑟̅

𝜕ℎ̅

𝜕𝑟̅
+ 𝜇

𝜕2ℎ̅

𝜕𝑧̅2
=

𝜕ℎ̅

𝜕𝑡̅
  for   1 ≤ 𝑟̅ < ∞, 0 ≤ 𝑧̅ < 1  and  𝑡̅ ≥ 0  (8) 138 

ℎ̅ = 0  at  𝑡̅ = 0 (9) 139 

𝜕ℎ̅

𝜕𝑟̅
= {

sin(𝛾𝑡̅)  for  𝑧𝑙̅ ≤ 𝑧̅ ≤ 𝑧𝑢̅
  0  outside screen interval

  at  𝑟̅ = 1 (10) 140 

𝜕ℎ̅

𝜕𝑧̅
= −𝑎

𝜕ℎ̅

𝜕𝑡̅
  at  𝑧̅ = 1 for IGD (11a) 141 

𝜕ℎ̅

𝜕𝑧̅
= −𝑎1 ∫

𝜕ℎ̅

𝜕𝑡̅′
exp(−𝑎2(𝑡̅ − 𝑡̅

′)) 𝑑𝑡̅′
𝑡̅

0
  at  𝑧̅ = 1 for DGD (12b) 142 

𝜕ℎ̅

𝜕𝑧̅
= 0  at  𝑧̅ = 0 (13) 143 

lim
𝑟̅→∞

ℎ̅(𝑟̅, 𝑧̅, 𝑡̅) = 0 (14) 144 

Eqs. (8) – (13) represent the transient DGD model when excluding (11a) and transient IGD 145 
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model when excluding (11b). 146 

2.2. Transient solution for unconfined aquifer 147 

The Laplace transform and finite integral transform are applied to solve Eqs. (8) - (13) 148 

(Latinopoulos, 1985; Liang et al., 2017; 2018). The transient solution can then be expressed as 149 

ℎ̅(𝑟̅, 𝑧̅, 𝑡̅) = ℎ̅exp(𝑟̅, 𝑧̅, 𝑡̅) + ℎ̅SHM(𝑟̅, 𝑧̅, 𝑡̅) (15a) 150 

with 151 

ℎ̅exp(𝑟̅, 𝑧̅, 𝑡)̅ =
−2𝛾

𝜋
∑ ∫ cos(𝛽𝑛𝑧̅) exp(𝑝0𝑡)̅ Im(𝜀1𝜀2) 𝑑𝜁

∞

0
∞
𝑛=1  (15b) 152 

ℎ̅SHM(𝑟̅, 𝑧̅, 𝑡̅) = 𝐴̅𝑡(𝑟̅, 𝑧̅)cos(𝛾𝑡̅ − 𝜙𝑡(𝑟̅, 𝑧̅)) (15c) 153 

𝐴̅𝑡(𝑟̅, 𝑧̅) = √𝑎𝑡(𝑟̅, 𝑧̅)2 + 𝑏𝑡(𝑟̅, 𝑧̅)2 (15d) 154 

𝑎𝑡(𝑟̅, 𝑧̅) =
2

𝜋
∑ ∫ 𝑝0 cos(𝛽𝑛𝑧̅) Im(𝜀1𝜀2)

∞

0
∞
𝑛=1 𝑑𝜁 (15e) 155 

𝑏𝑡(𝑟̅, 𝑧̅) =
2𝛾

𝜋
∑ ∫ cos(𝛽𝑛𝑧̅) Im(𝜀1𝜀2)

∞

0
∞
𝑛=1 𝑑𝜁 (15f) 156 

𝜙𝑡(𝑟̅, 𝑧̅) = cos−1(𝑏𝑡(𝑟̅, 𝑧̅)/𝐴̅𝑡(𝑟, 𝑧̅)) (15g) 157 

𝜀1 = 𝐾0(𝜆0𝑟̅)(sin(𝑧𝑢̅𝛽𝑛) − sin(𝑧𝑙̅𝛽𝑛))/(𝛽𝑛𝜆0𝐾1(𝜆0)(𝑝0
2 + 𝛾2)) (15h) 158 

𝜀2 = (𝛽𝑛
2 + 𝑐0

2)/(𝛽𝑛
2 + 𝑐0

2 + 𝑐0) (15i) 159 

𝑝0 = −𝜁 − 𝜇𝛽𝑛
2 (15j) 160 

𝜆0 = √𝜁𝑖 (15k) 161 

where 𝑐0 = 𝑎𝑝0 for IGD and 𝑎1𝑝0/(𝑝0 + 𝑎2) for DGD, i is the imaginary unit, Im(-) is the 162 

imaginary part of a complex number, 𝐾0(−) and 𝐾1(−) are the modified Bessel functions 163 

of the second kind of order zero and one, respectively, and 𝛽𝑛 is the positive roots of the 164 

equation: 165 

tan𝛽𝑛 = 𝑐0/𝛽𝑛 (16) 166 

The method to find the roots of 𝛽𝑛 is discussed in section 2.3. The detailed derivation of Eqs. 167 

(15a) – (15k) is presented in the supporting material. The first term on the right-hand side (RHS) 168 

of Eq. (15a) exhibits exponential decay due to the initial condition since pumping began; the 169 

second term defines SHM with amplitude 𝐴̅𝑡(𝑟̅, 𝑧̅) and phase shift 𝜙𝑡(𝑟̅, 𝑧̅) at a given point 170 
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(𝑟̅, 𝑧̅). The numerical results of the integrals in Eqs. (15b), (15e) and (15f) are obtained by the 171 

Mathematica NIntegrate function. 172 

2.3. Calculation of 𝜷𝒏 173 

The eigenvalues 𝛽1, …, 𝛽𝑛, the roots of Eq. (16) with c = c0, can be determined by applying 174 

the Mathematica function FindRoot based on Newton’s method with reasonable initial guesses. 175 

The roots are located at the intersection of the curves plotted by the RHS and left-hand side 176 

(LHS) functions of 𝛽𝑛 in Eq. (16). The roots are very close to the vertical asymptotes of the 177 

periodical tangent function tan 𝛽𝑛 . When 𝑐0 = 𝑎𝑝0 , the initial guess for each 𝛽𝑛  can be 178 

considered as 𝛽0,𝑛 + 𝛿  where 𝛽0,𝑛 = (2𝑛 − 1)𝜋/2 , 𝑛 ∈ (1,2, …∞)  and 𝛿  is a small 179 

positive value set to 10-10 to prevent the denominator in Eq. (16) from zero. When 𝑐0 =180 

𝑎1𝑝0/(𝑝0 + 𝑎2), the initial guess is set to 𝛽0,𝑛 − 𝛿 for 𝑎2 −  𝜁 ≤ 0. There is an additional 181 

vertical asymptote at 𝛽𝑛 = √(𝑎2 −  𝜁)/𝜇 derived from the RHS function of Eq. (16) if 𝑎2 −182 

 𝜁 > 0. The initial guess is therefore set to 𝛽0,𝑛 + 𝛿 for 𝛽0,𝑛 on the LHS of the asymptote 183 

and 𝛽0,𝑛 − 𝛿 for 𝛽0,𝑛 on the RHS. 184 

2.4. Transient solution for confined aquifer 185 

When Sy = 0 (i.e., 𝑎 = 0 or 𝑎1 = 0), Eq. (11a) or (11b) reduces to 𝜕ℎ̅/𝜕𝑧̅ = 0 for no-flow 186 

condition at the top of the aquifer, indicating the unconfined aquifer becomes a confined one. 187 

Under this condition, Eq. (16) becomes tan𝛽𝑛 = 0 with roots 𝛽𝑛 = 0, 𝜋, 2𝜋, …, 𝑛𝜋, …, 188 

∞; Eq. (15i) reduces to 𝜀2 = 1; factor 2 in Eqs. (15b), (15e) and (15f) is replaced by unity for 189 

𝛽𝑛 = 0  and remains for the others. The analytical solution of the transient head for the 190 

confined aquifer can be expressed as Eqs. (15a) - (15k) with 191 

ℎ̅exp(𝑟̅, 𝑧̅, 𝑡)̅ =
−𝛾

𝜋
∫ Im(𝜀0) exp(−𝜁𝑡̅) 𝑑𝜁
∞

0

−
2𝛾

𝜋
∑∫ cos(𝑛𝜋𝑧̅) Im(𝜀1) exp(𝑝0𝑡̅) 𝑑𝜁

∞

0

∞

𝑛=1

 192 

 (17a) 193 

𝑎𝑡(𝑟̅, 𝑧̅) = −
1

𝜋
∫ 𝜁Im(𝜀0)
∞

0
𝑑𝜁 +

2

𝜋
∑ ∫ 𝑝0 cos(𝑛𝜋𝑧̅) Im(𝜀1)

∞

0
∞
𝑛=1 𝑑𝜁 (17b) 194 
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𝑏𝑡(𝑟̅, 𝑧̅) =
𝛾

𝜋
∫ Im(𝜀0)
∞

0
𝑑𝜁 +

2𝛾

𝜋
∑ ∫ cos(𝑛𝜋𝑧̅) Im(𝜀1)

∞

0
∞
𝑛=1 𝑑𝜁 (17c) 195 

𝜀0 = (𝑧𝑢̅ − 𝑧𝑙̅)𝐾0(𝜆0𝑟̅)/(𝜆0𝐾1(𝜆0)(𝜁
2 + 𝛾2)) (17d) 196 

Note that Eq. (15h) reduces to Eq. (17d) based on 𝛽𝑛 = 0 and L' Hospital's rule. When 𝑧𝑢̅ =197 

1 and 𝑧𝑙̅ = 0 for the case of full screen, Eq. (15h) gives 𝜀1 = 0 for 𝛽𝑛 > 0 and the second 198 

RHS terms of Eqs. (17a) – (17c) can therefore be eliminated. This causes the solution for 199 

confined aquifers is independent of dimensionless elevation 𝑧̅, indicating only horizontal flow 200 

in the aquifer. 201 

2.5. Pseudo-steady state solution for unconfined aquifer 202 

A pseudo-steady state (PSS) solution ℎ̅s accounts for SHM of head fluctuation after a certain 203 

period of pumping time and satisfies the following form (Dagan and Rabinovich, 2014) 204 

ℎ̅s(𝑟̅, 𝑧̅, 𝑡̅) = Im(𝐻̅(𝑟̅, 𝑧̅) 𝑒𝑖𝛾𝑡̅) (18) 205 

where 𝐻̅(𝑟̅, 𝑧̅) is a space function of 𝑟̅ and 𝑧̅. Define a PSS IGD model as Eqs. (8) - (13) 206 

excluding (9), (11b) and replacing sin(𝛾𝑡)̅  in (10) by 𝑒𝑖𝛾𝑡̅ . Substituting Eq. (18) and 207 

𝜕ℎ̅s/𝜕𝑡̅ = Im(𝑖𝛾𝐻̅(𝑟̅, 𝑧̅) 𝑒𝑖𝛾𝑡̅) into the model results in 208 

𝜕2𝐻̅

𝜕𝑟̅2
+
1

𝑟̅

𝜕𝐻̅

𝜕𝑟̅
+ 𝜇

𝜕2𝐻̅

𝜕𝑧̅2
= 𝑖𝛾𝐻 (19) 209 

𝜕𝐻̅

𝜕𝑟̅
= {

1  for  𝑧𝑙̅ ≤ 𝑧̅ ≤ 𝑧𝑢̅
0  outside screen interval

  at  𝑟̅ = 1 (20) 210 

𝜕𝐻̅

𝜕𝑧̅
= −𝑖𝑎𝛾𝐻̅   at   𝑧̅ = 1 for IGD (21) 211 

𝜕𝐻̅

𝜕𝑧̅
= 0   at   𝑧̅ = 0 (22) 212 

lim
𝑟̅→∞

𝐻̅ = 0 (23) 213 

The resultant model is independent of 𝑡̅ , indicating the analytical solution of 𝐻̅(𝑟̅, 𝑧̅)  is 214 

tractable. Similarly, consider a PSS DGD model that equals the PSS IGD model but replaces 215 

(11a) by (11b). Substituting Eq. (18) into the result yields a model that depends on 𝑡̅, indicating 216 

the solution ℎ̅s to the PSS DGD model is not tractable. 217 

The Weber transform, defined in Eq. (B.1) of the supporting material, may be considered 218 
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as a Hankel transform with a more general kernel function. It can be applied to diffusion-type 219 

problems with a radial-symmetric region from a finite distance to infinity. For groundwater 220 

flow problems, it can be used to develop the analytical solution for the flow equation with a 221 

boundary condition of Dirichlet, Neumann, or Robin type specified at the rim of a finite-radius 222 

well (e.g., Lin and Yeh, 2017; Povstenko, 2015). Taking the transform and the formula of 223 

𝑒𝑖𝛾𝑡̅ = cos(𝛾𝑡̅) + 𝑖 sin(𝛾𝑡̅) to solve Eqs. (18) - (23) yields the solution of ℎ̅s expressed as 224 

ℎ̅s(𝑟̅, 𝑧̅, 𝑡̅) = 𝐴̅𝑠(𝑟̅, 𝑧̅) cos(𝛾𝑡 − 𝜙𝑠(𝑟̅, 𝑧̅)) (24a) 225 

𝐴̅𝑠(𝑟̅, 𝑧̅) = √𝑎s(𝑟̅, 𝑧̅)
2 + 𝑏s(𝑟̅, 𝑧̅)

2  (24b) 226 

𝑎𝑠(𝑟̅, 𝑧̅) = Re(𝐻̅(𝑟̅, 𝑧̅)) (24c) 227 

𝑏s(𝑟̅, 𝑧̅) = Im(𝐻̅(𝑟̅, 𝑧̅)) (24d) 228 

𝜙s(𝑟̅, 𝑧̅) = cos
−1(𝑏𝑠(𝑟̅, 𝑧̅)/𝐴𝑠(𝑟̅, 𝑧̅)) (24e) 229 

𝐻̅(𝑟̅, 𝑧̅) =

{
 

 ∫ 𝐻̃𝑢 𝜉 Ω 𝑑𝜉
∞

0
  for  𝑧𝑢̅ < 𝑧̅ ≤ 1

∫ 𝐻̃𝑚 𝜉 Ω 𝑑𝜉
∞

0
  for  𝑧𝑙̅ ≤ 𝑧̅ ≤ 𝑧𝑢̅

∫ 𝐻̃𝑙  𝜉 Ω 𝑑𝜉
∞

0
  for  0 ≤ 𝑧̅ < 𝑧𝑙̅

 (24f) 230 

Ω = (𝐽0(𝜉𝑟̅)𝑌1(𝜉) − 𝑌0(𝜉𝑟̅)𝐽1(𝜉))/(𝐽1
2(𝜉) + 𝑌1

2(𝜉)) (24g) 231 

with the Bessel functions of the first kind of order zero 𝐽0(−) and one 𝐽1(−) as well as the 232 

second kind of order zero 𝑌0(−) and 𝑌1(−), 233 

{

𝐻̃𝑢 = 𝐻̃𝑝(𝑐1 exp(𝜆𝑤𝑧̅) + 𝑐2 exp(−𝜆𝑤𝑧̅))  for  𝑧𝑢̅ < 𝑧̅ ≤ 1

𝐻̃𝑚 = 𝐻̃𝑝(𝑐3 exp(𝜆𝑤𝑧̅) + 𝑐4 exp(−𝜆𝑤𝑧̅) − 1)  for  𝑧𝑙̅ ≤ 𝑧̅ ≤ 𝑧𝑢̅

𝐻̃𝑙 = 𝐻̃𝑝𝑐5(exp(𝜆𝑤𝑧̅) + exp(−𝜆𝑤𝑧̅))  for  0 ≤ 𝑧̅ < 𝑧𝑙̅

  (24h) 234 

𝑐1 = −𝑒−𝜆𝑤(𝜆𝑤 − 𝛼)(sinh(𝑧𝑙̅𝜆𝑤) − sinh(𝑧𝑢̅𝜆𝑤))/𝐷 (24i) 235 

𝑐2 = −𝑒𝜆𝑤(𝜆𝑤 + 𝛼)(sinh(𝑧𝑙̅𝜆𝑤) − sinh(𝑧𝑢̅𝜆𝑤))/𝐷 (24j) 236 

𝑐3 =
𝑒−(1+𝑧̅𝑙+𝑧̅𝑢)𝜆𝑤

2𝐷
(𝛼(𝑒(2+𝑧̅𝑙)𝜆𝑤 + 𝑒 𝑧̅𝑢𝜆𝑤 − 𝑒(2𝑧̅𝑙+𝑧̅𝑢)𝜆𝑤) + (𝛼 − 𝜆𝑤)𝑒

(𝑧̅𝑙+2𝑧̅𝑢)𝜆𝑤 +237 

𝜆𝑤(𝑒
(2+𝑧̅𝑙)𝜆𝑤 − 𝑒 𝑧̅𝑢𝜆𝑤 + 𝑒(2𝑧̅𝑙+𝑧̅𝑢)𝜆𝑤)) (24k) 238 

𝑐4 =
𝑒−(1+𝑧̅𝑙+𝑧̅𝑢)𝜆𝑤

2𝐷
((𝛼 − 𝜆𝑤)𝑒

(𝑧̅𝑙+2𝑧̅𝑢)𝜆𝑤 + (𝛼 + 𝜆𝑤)(𝑒
(2+𝑧̅𝑙)𝜆𝑤 − 𝑒(2+𝑧̅𝑢)𝜆𝑤 +239 
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𝑒(2+2𝑧̅𝑙+𝑧̅𝑢)𝜆𝑤)) (24l) 240 

𝑐5 =
1

2
𝑒−(1+𝑧̅𝑙+𝑧̅𝑢)𝜆𝑤(𝑒 𝑧̅𝑙𝜆𝑤 − 𝑒 𝑧̅𝑢𝜆𝑤)((𝜆𝑤 − 𝛼)𝑒

(𝑧̅𝑙+𝑧̅𝑢)𝜆𝑤 + (𝜆𝑤 + 𝛼)𝑒
2𝜆𝑤) (24m) 241 

where 𝜆𝑤
2 = (𝜉2 + 𝑖𝛾)/𝜇 , 𝛼 = 𝑖𝛾𝑎 , 𝐻̃𝑝 = 2/(𝜋𝜇𝜉𝜆𝑤

2 )  and 𝐷 = 2(𝛼 cosh 𝜆𝑤 +242 

𝜆𝑤 sinh 𝜆𝑤) , and Re(-) is the real part of a complex number. Again, one can refer to the 243 

supporting material for the derivation of the solution. Eq. (24a) indicates SHM for the response 244 

of the hydraulic head at any point to oscillatory pumping. Note that Eq. (24f) reduces to 245 

𝐻̅(𝑟̅, 𝑧̅) = ∫ 𝐻̃𝑚 𝜉 Ω 𝑑𝜉
∞

0
 for a fully screened well when 𝑧𝑙̅ = 0 and 𝑧𝑢̅ = 1.  246 

2.6. Pseudo-steady state solution for confined aquifers 247 

Applying the finite Fourier cosine transform to the model, Eqs. (19) – (23) with Sy = 0 (i.e., 248 

𝑎 = 0) for the confined condition, leads to an ordinary differential equation with two boundary 249 

conditions. With solving the boundary-value problem, the solution of ℎ̅s for confined aquifers 250 

can be expressed as Eqs. (24a) - (24e) with 𝐻̅(𝑟̅, 𝑧̅) defined as 251 

𝐻̅(𝑟̅, 𝑧̅) = −2∑
𝐾0(𝑟̅𝜆𝑚)

𝜆𝑚𝐾1(𝜆𝑚)
× {

0.5(𝑧𝑢̅ − 𝑧𝑙̅)  for  𝑚 = 0
cos(𝑚𝜋𝑧̅)

𝑚𝜋
(sin(𝑧𝑢̅𝑚𝜋) − sin(𝑧𝑙̅𝑚𝜋))  for  𝑚 > 0

∞
𝑚=0   (25) 252 

where 𝜆𝑚
2 = 𝛾𝑖 + 𝜇(𝑚𝜋)2. The derivation of Eq. (25) is also listed in the supporting material. 253 

For a fully screened well (i.e., 𝑧𝑢̅ = 1, 𝑧𝑙̅ = 0), the first term of the series (i.e., m = 0) remains 254 

and the others equal zero because of sin(𝑧𝑢̅𝑚𝜋) − sin(𝑧𝑙̅𝑚𝜋) = 0. The result is independent 255 

of dimensionless elevation 𝑧̅, indicating the confined flow is only horizontal. 256 

2.7. Special cases of the present solution 257 

Table 1 classifies the present solution (i.e., solution 1) and its special cases (i.e., solutions 2 to 258 

6) according to transient or PSS flow, unconfined or confined aquifer, and IGD or DGD. Each 259 

of solutions 1 to 6 reduces to a special case for fully screened well. Existing analytical solutions 260 

can be regarded as special cases of the present solution as discussed in section 3.4 (e.g., Black 261 

and Kipp, 1981; Rasmussen et al., 2003; Dagan and Rabinovich, 2014). 262 

2.8. Sensitivity analysis 263 
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Sensitivity analysis evaluates hydraulic head variation in response to the change in each of Kr, 264 

Kz, Ss, Sy, ω, and 𝜀. The normalized sensitivity coefficient can be defined as (Liou and Yeh, 265 

1997) 266 

𝑆𝑖 = 𝑃𝑖
𝜕𝑋

𝜕𝑃𝑖
 (26) 267 

where 𝑆𝑖 is the sensitivity coefficient of ith parameter; 𝑃𝑖 is the magnitude of the ith input 268 

parameter; X represents the present solution in dimensional form. Eq. (26) can be approximated 269 

as 270 

𝑆𝑖 = 𝑃𝑖
𝑋(𝑃𝑖+∆𝑃𝑖)−𝑋(𝑃𝑖)

∆𝑃𝑖
 (27) 271 

where ∆𝑃𝑖, a small increment, is chosen as 10-3𝑃𝑖. 272 

3. Results and Discussion 273 

The following sections demonstrate the response of the hydraulic head to oscillatory pumping 274 

using the present solution. The default values in calculation are r = 0.05 m, z = 5 m, t = 0, b = 275 

10 m, Q = 10-3 m3/s, rw = 0.05 m, zu = 5.5 m, zl = 4.5 m, Kr = 10-4 m/s, Kz = 10-5 m/s, Ss = 10-5 276 

m-1, Sy = 10-4, ω = 2π/30 s-1, and 𝜀 = 10−2 s-1. The corresponding dimensionless parameters 277 

and variables are 𝑟̅ = 1 , 𝑧̅ = 0.5 , 𝑡̅ = 0 , 𝑧𝑢̅ = 0.55 , 𝑧𝑙̅ = 0.45 , γ = 5.24× 10-5, 𝜇 =278 

2.5 × 10−6, 𝑎 = 4 × 105, 𝑎1 = 1 and 𝑎2 = 2.5 × 10−6. 279 

3.1. Delayed gravity drainage 280 

Previous analytical models for OPT consider either confined flow (e.g., Rasmussen et al., 2003) 281 

or unconfined flow with IGD effect (e.g., Dagan and Rabinovich, 2014). Little attention has 282 

been given to the DGD effect. This section examines the relation between these three kinds of 283 

models. Figure 2 shows the curve of the dimensionless amplitude 𝐴̅𝑡 at (𝑟̅, 𝑧̅) = (1, 1) of 284 

solution 1 versus the dimensionless parameter 𝑎1  related to the effect. The transient head 285 

fluctuations are plotted by solution 1 with 𝑎1 = 10−2 , 1, 10, 500, solution 2 for IGD and 286 

solution 3 for confined flow. When 10−2 ≤ 𝑎1 ≤ 500, the 𝐴̅𝑡 gradually decreases with 𝑎1 287 

to the trough and then increases to the ultimate value of 𝐴̅𝑡 = 1.79 × 10
−2. The DGD, in other 288 
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words, causes an effect. When 𝑎1 ≤ 10
−2, solutions 1 and 3 agree on the predicted heads, 289 

indicating the unconfined aquifer with the DGD effect behaves like confined aquifer and the 290 

water table can be regarded as a no-flow boundary. When 𝑎1 ≥ 500, the head fluctuations 291 

predicted by solutions 1 and 2 are identical, indicating the DGD effect can be ignored and Eq. 292 

(4b) reduces to (4a) for the IGD condition. 293 

3.2. Effect of finite radius of pumping well  294 

Existing analytical models for OPT mostly treated the pumping well as a line source with 295 

infinitesimal radius (e.g., Rasmussen et al., 2003; Dagan and Rabinovich, 2014). The finite 296 

difference scheme for the model also treats the well as a nodal point by neglecting the radius. 297 

These will lead to significant error when a well has the radius ranging from 0.5 m to 2 m (Yeh 298 

and Chang, 2013). This section discusses the relative error in predicted amplitude defined as 299 

𝑅𝐸 = |𝐴̅𝐷&𝑅 − 𝐴̅𝑡|/𝐴̅𝑡             (28) 300 

where 𝐴̅𝐷&𝑅 and 𝐴̅𝑡 are the dimensionless amplitudes at 𝑟̅ = 1 (i.e., r = rw) predicted by the 301 

Dagan and Rabinovich (2014) solution and the IGD solution 2. Note that their solution assumes 302 

infinitesimal radius of a pumping well and has a typo that the term 𝑒−𝐷𝑤+1 − 𝑒−𝐷𝑤 should 303 

read 𝑒𝛽(−𝐷𝑤+1) − 𝑒−𝛽𝐷𝑤  (see their Eq. (25)). Figure 3 demonstrates the RE for different 304 

values of radius rw. The RE increases with rw as expected. For case 1 of rw = 0.1 m, both 305 

solutions agree well in the entire domain of 1 ≤ 𝑟̅ ≤ ∞, indicating a pumping well with rw ≤ 306 

0.1 m can be regarded as a line source. For the extreme case 2 of rw = 1 m or case 3 of rw = 2 307 

m, the Dagan and Rabinovich solution underestimates the dimensionless amplitude for 1 ≤308 

𝑟̅ ≤ 6 and agrees to the present solution for 𝑟̅ > 6. The REs for these two cases exceed 10%. 309 

The effect of finite radius should therefore be considered in OPT models especially when 310 

observed hydrulic head data are taken close to the wellbore of a large-diameter well. 311 

3.3. Sensitivity analysis  312 

The temporal distributions of normalized sensitivity coefficient 𝑆𝑖 defined as Eq. (27) with 313 

𝑋 = ℎexp of solution 1 are displayed in Fig. 4a for the response of exponential decay to the 314 
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change in each of six parameters Kr, Kz, Ss, Sy, ω and 𝜀. The exponential decay is very sensitive 315 

to variation in each of Kr, Kz, Ss and ω because of |𝑆𝑖| > 0. Precisely, a positive perturbation 316 

in Ss produces an increase in the magnitude of ℎexp while that in Kr or Kz causes a decrease. 317 

In addition, a positive perturbation in ω yields an increase in ℎexp before t = 1 s and a decrease 318 

after that time. It is worth noting that 𝑆𝑖 for Sy or 𝜀 is very close to zero over the entire period 319 

of time, indicating ℎexp is insensitive to the change in Sy or 𝜀 and the subtle change of gravity 320 

drainage has no influence on the exponential decay. On the other hand, the spatial distributions 321 

of 𝑆𝑖 associated with the amplitude 𝐴𝑡 are shown in Fig. 4b in response to the changes in 322 

those six parameters. The 𝐴𝑡 is again sensitive to the change in each of Kr, Kz, Ss and ω but 323 

insensitive to the change in Sy or 𝜀. The same result of |𝑆𝑖| ≅ 0 for Sy or 𝜀 applies to any 324 

observation point under the water table (i.e., 𝑧̅ < 1), but |𝑆𝑖| > 0 at the water table (i.e., 𝑧̅ =325 

1) shown in Fig. 4c. From those discussed above, we may conclude the changes in the four key 326 

parameters Kr, Kz, Ss and ω significantly affect head prediction in the entire aquifer domain. 327 

The change in Sy or 𝜀 leads to insignificant variation in the predicted head below the water 328 

table and slight variation at the water table. 329 

3.4. Transient head fluctuation affected by the initial condition 330 

Figure 5 demonstrates head fluctuations predicted by DGD solution 1 and IGD solution 2 331 

expressed as ℎ̅ = ℎ̅exp + ℎ̅SHM for transient flow and by IGD solution as ℎ̅𝑠 = 𝐴̅𝑠 cos(𝛾𝑡 −332 

𝜙𝑠) for PSS flow. The transient head fluctuation starts from ℎ̅ = 0 at 𝑡̅ = 0 and approaches 333 

SHM predicted by ℎ̅SHM when ℎ̅exp ≅ 0 m after 𝑡̅ = 0.5𝑃̅ (i.e., 6 × 104). Solutions 1 and 334 

2 agree to the ℎ̅ predictions because the head at 𝑧̅ = 0.5 under the water table is insensitive 335 

to the change in Sy or 𝜀 as discussed in section 3.3. It is worth noting that the solution of Dagan 336 

and Rabinovich (2014) for PSS flow has a certain time shift from the ℎ̅SHM of solution 2. This 337 

indicates the phase of their solution (i.e., 1.50 rad) should be replaced by the phase of solution 338 

2 (i.e., 𝜙𝑡 = 1.64 rad) so that their solution exactly fits the ℎ̅SHM of solution 2. 339 
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    Figure 6 displays head fluctuations predicted by transient solution 3 expressed as ℎ̅ =340 

ℎ̅exp + ℎ̅SHM  and PSS solution 6 as ℎ̅𝑠 = 𝐴̅𝑠 cos(𝛾𝑡 − 𝜙𝑠)  for partially-screened pumping 341 

well in panel (a) and full screen in panel (b). The Rasmussen et al. (2003) solution for transient 342 

flow predicts the same ℎ̅ as solution 3. The Black and Kipp (1981) for PPS flow also predict 343 

close ℎ̅SHM predictions of solution 3. The phase of solution 6 (i.e., 𝜙𝑠 = 1.50 rad for panel 344 

(a) and 1.33 rad for (b)) should also be replaced by the phase of solution 3 (i.e., 𝜙𝑡 = 1.64 345 

rad for (a) and 1.81 rad for (b)) so that both solutions 3 and 6 agree to the SHM of head 346 

fluctuation. As concluded, excluding the initial condition with Eq. (18) for a PSS model leads 347 

to a certain time shift from the SHM of the head fluctuation predicted by the associated transient 348 

model while the transient and PSS models give the same SHM amplitude. 349 

3.5. Application of the present solution to field experiment 350 

Rasmussen et al. (2003) conducted field OPTs in a three-layered aquifer system containing one 351 

Surficial Aquifer, the Barnwell-McBean Aquifer in between and the deepest Gordon Aquifer 352 

at the Savannah River site. Two clay layers dividing these three aquifers may be regarded as 353 

impervious strata. For the OPT at the Surficial Aquifer, the formation has 6.25 m averaged 354 

thickness near the test site. The fully-screened pumping well has 7.6 cm outer radius. The 355 

pumping rate can be approximated as Qsin(𝜔𝑡) with Q = 4.16×10-4 m3/s and 𝜔 = 2π h-1. The 356 

distance from the pumping well is 6 m to the observation well 101D and 11.5 m to well 102D. 357 

The screen lengths are 3 m from the aquifer bottom for well 101D and from the water table for 358 

well 102D. For the OPT at the Barnwell-McBean Aquifer, the formation mainly consists of 359 

sand and fine-grained material. The pumping well has outer radius of 7.6 cm and pumping rate 360 

of Qsin(𝜔𝑡) with Q = 1.19×10-3 m3/s and 𝜔 = π h-1. The observation well 201C is at 6 m 361 

from the pumping well. The data of time-varying hydraulic heads at the observation wells (i.e., 362 

101D, 102D, 201C) are plotted in Fig. 7. One can refer to Rasmussen et al. (2003) for detailed 363 

description of the Savannah River site. 364 

The aquifer hydraulic parameters are determined based on solutions 3 to 6 coupled with 365 
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the Levenberg–Marquardt algorithm provided in the Mathematica function FindFit (Wolfram, 366 

1991). Solutions 4 and 5 are used to predict depth-averaged head expressed as 367 

(𝑧𝑢
′ − 𝑧𝑙

′)−1 ∫  ℎ𝑠𝑑𝑧
𝑧𝑢
′

𝑧𝑙
′  with the upper elevation 𝑧𝑢

′  and lower one 𝑧𝑙
′ of the finite screen of 368 

the observation well 101D or 102D at the Surficial Aquifer. Note that solutions 3 and 6 are 369 

independent of elevation because of the fully-screened pumping well. Define the standard error 370 

of estimate (SEE) as SEE = √
1

𝑀
∑ 𝑒𝑗

2𝑀
𝑗=1  and the mean error (ME) as ME =

1

𝑀
∑ 𝑒𝑗
𝑀
𝑗=1  where 371 

ej is the difference between predicted and observed hydraulic heads and M is the number of 372 

observation data (Yeh, 1987). The estimated parameters and associated SEE and ME are 373 

displayed in Table 2. The result shows the estimated Sy is very small, and the estimated T and 374 

S by solution 3 or 6 for confined flow are close to those by solution 4 or 5 for unconfined flow, 375 

indicating that the unconfined flow induced by the OPT in the Surficial Aquifer is negligibly 376 

small. Little gravity drainage due to the DGD effect appears with a1 = 20 for wells 101D and 377 

102D as discussed in section 3.1. Rasmussen et al. (2003) also revealed the confined behaviour 378 

of the OPT-induced flow in the Surficial Aquifer. The estimated Sy is one order less than the 379 

lower limit of the typical range of 0.01 ~ 0.3 (Freeze and Cherry, 1979), which accords with 380 

the findings of Rasmussen et al. (2003) and Rabinovich et al. (2015). Such a fact might be 381 

attributed to the problem of the moisture exchange limited by capillary fringe between the 382 

zones below and upper the water table. Several laboratory researches have confirmed an 383 

estimate of Sy at short period of OPT is much smaller than that determined by constant-rate 384 

pumping test (e.g., Cartwright et al., 2003; 2005). On the other hand, transient solution 3 gives 385 

smaller SEEs than PSS solution 6 for the Barnwell-McBean Aquifer and better fits to the 386 

observed data at the early pumping periods as shown in Fig. 7. From those discussed above, 387 

we may conclude the present solution is applicable to real-world OPT. 388 

4. Concluding remarks 389 

A variety of analytical models for OPT have been proposed so far, but little attention is paid to 390 
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the joint effects of DGD, initial condition, and finite radius of a pumping well. This study 391 

develops a new model for describing hydraulic head fluctuation due to OPT in unconfined 392 

aquifers. Static hydraulic head prior to OPT is regarded as an initial condition. A Neumann 393 

boundary condition is specified at the rim of a finite-radius pumping well. A free surface 394 

equation accounting for the DGD effect is considered as the top boundary condition. The 395 

solution of the model is derived by the Laplace transform, finite integral transform and Weber 396 

transform. The sensitivity analysis of the head response to the change in each of hydraulic 397 

parameters is performed. The observation data obtained from the OPT at the Savannah River 398 

site are analyzed by the present solution when coupling the Levenberg–Marquardt algorithm 399 

to estimate aquifer hydraulic parameters. Our findings are summarized below: 400 

1. When 10−2 ≤ 𝑎1 ≤ 500, the effect of DGD on the head fluctuation should be considered. 401 

The amplitude of head fluctuation predicted by DGD solution 1 decreases with increasing 402 

𝑎1 to a certain trough and then increases to the amplitude predicted by IGD solution 2. 403 

When 𝑎1 > 500, the DGD becomes IGD. Both solutions 1 and 2 predict the same head 404 

fluctuation. When 𝑎1 < 10−2, the DGD results in the water table under no-flow condition. 405 

Solution 1 for unconfined flow gives an identical head prediction to solution 3 for confined 406 

flow.  407 

2. Assuming a large-diameter well as a line source with infinitesimal radius underestimates 408 

the amplitude of head fluctuation in the domain of 1 ≤ 𝑟̅ ≤ 6 when the radius exceeds 80 409 

cm, leading to relative error RE > 10% shown in Fig. 3. In contrast, the assumption is valid 410 

in predicting the amplitude in the domain of 𝑟̅ > 6 in spite of adopting a large-diameter 411 

well. When 𝑟𝑤 ≤ 10  cm (i.e., RE < 0.45%), the well radius can be regarded as 412 

infinitesimal. The result is applicable to existing analytical solutions assuming infinitesimal 413 

radius and finite difference solutions treating the pumping well as a nodal point. 414 

3. The sensitivity analysis suggests the changes in four parameters Kr, Kz, Ss and ω 415 

significantly affect head prediction in the entire aquifer domain. The change in Sy or 𝜀 416 
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causes insignificant variation in the head under water table but slight variation at the water 417 

table. 418 

4. Analytical solutions for OPT are generally expressed as the sum of the exponential and 419 

harmonic functions of time (i.e., ℎ̅ = ℎ̅exp + 𝐴̅𝑡 cos(𝛾𝑡 − 𝜙𝑡)) for transient solutions (e.g., 420 

solution 3) and harmonic function (i.e., ℎ̅s = 𝐴̅𝑠 cos(𝛾𝑡 − 𝜙𝑠) ) for PSS solutions (e.g., 421 

solution 6). The latter assuming Eq. (18) without the initial condition produces a certain 422 

time shift from the SHM predicted by the ℎ̅SHM. The phase 𝜙𝑠 should be replaced by 𝜙𝑡 423 

so that ℎ̅s and ℎ̅SHM are exactly the same. 424 

 425 
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Table 1. The present solution and its special cases 507 

Well 

screen 

Transient flow Pseudo-steady state flow 

 Unconfined aquifer Confined aquifer  Unconfined aquifer Confined aquifer 

Partial  Solutions 1 and 2 Solution 3  Solutions 4 and 5 Solution 6 

Full  Solutions 1 and 2a Solution 3a,b  Solutions 4 and 5a Solution 6a,b 

Solution 1 consists of Eqs. (15a) – (15k) with the roots of Eq. (16) and 𝑐0 = 𝑎1𝑝0/(𝑝0 + 𝑎2) for DGD. 508 

Solution 2 is the same as solution 1 but has 𝑐0 = 𝑎𝑝0 for IGD. 509 

Solution 3 equals solution 1 with Eqs. (17a) – (17d) and 𝛽𝑛 = 0, 𝜋, 2𝜋, …, 𝑛𝜋. 510 

Solution 4 is the component ℎ̅SHM of solution 1 for DGD. 511 

Solution 5 consists of Eqs. (24a) – (24m) for IGD. 512 

Solution 6 consists of Eqs. (24a) – (24e) with 𝐻(𝑟̅, 𝑧̅) defined by Eq. (25). 513 

a 𝑧𝑢̅ = 1 and 𝑧𝑙̅ = 0 for fully screened well 514 

b The solution is independent of elevation. 515 

 516 
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Table 2. Hydraulic parameters estimated by the present solution for OPT data from the Savannah River site 517 

Observation 

well 

Present 

solution 
T (m2/s) S Kz (m/s) Sy 𝜀 (s-1) SEE ME 

Surficial Aquifer 

101D Solution 3a 9.27 × 10−4 2.44 × 10−3 - - - 0.018 −5.56 × 10−3 

 Solution 6b 9.18 × 10−4 2.33 × 10−3 - - - 0.018 −2.20 × 10−4 

 Solution 4c 4.61 × 10−4 3.95 × 10−3 7.38 × 10−6 2.23 × 10−3 1.06 × 10−2 0.018 −2.20 × 10−4 

 Solution 5c 5.25 × 10−4 1.09 × 10−3 2.61 × 10−5 5.49 × 10−3 - 0.019 −2.30 × 10−4 

102D Solution 3a 9.13 × 10−4 1.76 × 10−3 - - - 0.010 −4.38 × 10−3 

 Solution 6b 9.17 × 10−4 1.67 × 10−3 - - - 0.011 9.57 × 10−4 

 Solution 4c 9.57 × 10−5 7.85 × 10−4 3.68 × 10−6 4.95 × 10−3 2.38 × 10−3 0.011 9.57 × 10−4 

 Solution 5c 9.49 × 10−5 3.25 × 10−4 4.67 × 10−6 4.68 × 10−3 - 0.011 9.50 × 10−4 

Barnwell-McBean Aquifer 

201C Solution 3a 5.86 × 10−5 7.07 × 10−4 - - - 0.232 0.046 

 Solution 6b 6.03 × 10−5 6.54 × 10−4 - - - 0.363 0.281 

a transient confined flow 518 

b PSS confined flow 519 

c PSS unconfined flow 520 
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Figures 521 

 522 

Figure 1. Schematic diagram for oscillatory pumping test at a partially screened well of finite 523 

radius in an unconfined aquifer.  524 
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 525 

Figure 2. Influence of delayed gravity drainage on the dimensionless amplitude 𝐴̅𝑡  and 526 

transient head ℎ̅  at 𝑟̅ = 1 , 𝑧̅ = 1  predicted by solution 1 for different magnitudes of 𝑎1 527 

related to the influence. 528 

 529 
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 530 

Figure 3. Relative error (RE) on the dimensionless amplitudes 𝐴̅𝑡 at the rim of the pumping 531 

well (i.e., r = rw) predicted by the Dagan and Rabinovich (2014) solution and the IGD solution 532 

2. The well radius is assumed infinitesimal in the Dagan and Rabinovich (2014) solution and 533 

finite in our solution.    534 
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 535 

Figure 4. The normalized sensitivity coefficient Si associated with (a) the exponential 536 

component hexp of solution 1 and (b) the SHM amplitude At for parameters Kr, Kz, Ss, Sy, ω and 537 

𝜀. The observation locations for panels (a) and (b) are under water table (i.e., 𝑧̅ = 0.5). Panel 538 

(c) displays the curves of Si of hexp and At at water table (i.e., 𝑧̅ = 1) versus Sy and 𝜀. 539 

 540 
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 541 

Figure 5. Heads fluctuations at 𝑟̅ = 6 predicted by (a) DGD solution 1 and (b) IGD solution 542 

2. Solutions 1 and 2 are expressed as ℎ̅ = ℎ̅exp + ℎ̅SHM for transient flow. IGD solution 5 543 

expressed as ℎ̅𝑠 = 𝐴̅𝑠 cos(𝛾𝑡 − 𝜙𝑠) accounts for PSS flow. 544 

  545 
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 546 

Figure 6. Heads fluctuations at 𝑟̅ = 6 predicted by solutions 3 and 6 for (a) partially-screend 547 

pumping well and (b) fully-screened pumping well. Solution 3 is expressed as ℎ̅ = ℎ̅exp +548 

ℎ̅SHM  for transient flow. Solution 6 expressed as ℎ̅𝑠 = 𝐴̅𝑠 cos(𝛾𝑡 − 𝜙𝑠)  accounts for PSS 549 

flow. 550 

 551 
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 552 

Figure 7. Comparision of field observation data with head fluctuations predicted by the present 553 

solution. Solutions 3 and 6 represent transient and PSS confined flows, respectively. PSS 554 

solutions 4 and 5 stand for DGD and IGD conditions, respectively.  555 

 556 


