Dear Professor Hildebrant,

Following our mail exchange and the clarifications during skype conversation, we have modified the manuscript in the following way:

- Consideration of the comments of reviewer 2 (see below for detailed answers)
- Explicit discussion that the modelling allows to assess a "worst-case scenario" and a relative ranking of the potential impact
- Significant tightening of the text in response to the comments of reviewer 2

After careful consideration we decided to keep the current order of discussing the field experiment first and then the modelling.

Thank you again for handling the paper.

Answers to your specific comments in your mail from the 23.8.2019:

For example, in section 3.1 the manuscript states that one of the preferential pathways at site SCH was due to the L-drain and the other was unrelated. This may suggest that the L-drain creates flow paths that are of similar impact as the natural heterogeneity. Or worse, both flow path could actually be due to natural heterogeneity.

The natural heterogeneity under the road no longer exists. The road was constructed in a way to concentrate flow through the drain. This is exactly what we see in the example of SCH.

In my reading of section 3.1 and presented data, the field study does not contribute to "show" that the Ldrain constitutes the largest perturbation (this is a statement from the abstract), and also not that modeling and field study are coherent (from the abstract). I agree that the field observations do not contradict the modeling study, but this is a substantially more careful phrasing as currently.

Following your suggestion, we have adjusted the legend in Figure 7 to highlight the relative importance of the drains. The field results clearly show that the relative impact (in terms of concentration the flow) is most pronounced with the L-drain. We have added explanations highlighting that the models present a "worst-case" scenario. This is also considered in the abstract and in the conclusions.

The main conclusion of the abstract is that L-drains constitute the largest perturbation to the ground water flow, and the other investigated structures less so. My main criticism is that the word "perturbation" implies moving the system away from its natural state. The natural state is one marked with substantial heterogeneity causing flow paths. That natural heterogeneity is substantial, as shown be the experiment.

As discussed with you on skype, we feel the word perturbation is appropriate as a constructed road through a wetland is always moving the system away from its natural state.

In my letter, I also proposed a way forward which does not imply new model runs. In response in your email below you state "heterogeneity can, if one is lucky, reduce the influence of the drain". This type of statement should absolutely enter the manuscript. The homogeneous case is more or less the worst-case scenario. This is ok. But the overall tone of the manuscript needs to reflect this. Also, how can you quantify "if one is lucky", based on the field study?

We discuss this in the context of Figure 7. For the L-drain case one can see that a "plume" is forming downstream of the drain, i.e. that the concentrated flow is, to a certain extent redistributed. If no gullies form, it is indeed possible that the influence of the road downstream is reduced due to the horizontal redistribution of water through heterogeneous pathways.

# Personally, I would switch the order of presentation to first show the model results and follow up with the field study and discuss how it actually supports the model conclusions and where it is maybe inconclusive.

We have carefully considered this point and decided to stick to the original order. However, we added an additional explanation concerning the field- and modelling approach which also better explains the order.

# **Reviewer 2**

# Second Revision on "Assessing the perturbations of the hydrogeological regime in sloping fens through roads" by Fabien Cochand, Daniel Käser, Philippe Grosvernier, Daniel Hunkeler, Philip Brunner

# **General Comments**

I appreciate the detailed response of the authors to the comments I raised in the first round of review. They addressed all points and adapted the manuscript accordingly in most places. We thank the reviewer for this positive feedback.

The manuscript and figures have been improved significantly. At some positions, the added text requires further revision. Sometimes, the authors gave explanations as response to the reviewer which should be given in the manuscript to clarify these points also for the reader who might wonder at the same aspects while reading. There are also few remaining open questions from the first round of review. These issues are addressed in the comments below.

See our response to the comments below. We have gone the text very carefully and tightened the text and presentation in several places.

Although the author stated that they reworked the text (specifically in some sub-sections of 2 & 3), it appears to me that they only added few lines/words/brackets at critical points for some parts. Several paragraphs are still written in a repetitive and elongated manner which is not reader-friendly. You could easily cut out redundant phrases and repetitions to increase the readability (some examples given below). The authors should consider professional language support or at least a

proper proofreading and revision by a native speaker.

The document has been carefully checked and the wording has been improved.

# **Specific Comments**

# Background information on the three road structures developed in Switzerland is still missing [introduction].

We are aware of this. However, such data are not available. Most road constructions are on private grounds and there is no central data-based bringing together all of these data.

**Typo in l. 71-72** Thank you

Integrate your response to the text as background information on the model setup for the road types, e.g. When a road construction takes place, impermeable material is excavated upstream and filled downstream which is represented by an increased number of inactive cells below the road. (from answer to "The mesh modifications for cases 5d, 5e and 5f show an artificial increase of inactive cells below the road (step shape instead of continuous slope form).

We have now included a slightly modified version of this sentence in the introduction and the model setup:

# Shouldn't there be soil cells below the road construction? This might significantly modify the simulation results.")

No, in the cases we know this is not the case. The roads are constructed in a way to avoid this. The depth of the road construction does not have to go deep, as the soil layer above the clay is very thin (e.g. 40cm) in the sloping fens in Switzerland.

# **Section 2.2.3:**

It is not done by just renaming the subsection title; the text should be adapted as well (e.g. the first sentence in the section still starts with "The sensitivity analysis...")

As highlighted above, we have modified and tightened the text.

# Many newly added sentences require improvement in language (line 212-216, l. 2018-220), please perform a proper proofreading

As highlighted above, we have modified and tightened the text.

The authors still have a lot of redundant text which inhibits the readability: As highlighted above, we have modified and tightened the text.

Phrases like "In order to simulate each parameter combination" (1.224) could easily be cut out without any loss of information.

You could cut the entire sentences in l. 229-232: the method section should contain the specific information, not elaborate explanations on the motivation (which is anyway clear at that point of the paper). As highlighted above, we have modified and tightened the text.

# Section 3

Figure 7: First column: Head profile for the second and third site are still missing head values above and below the road which inhibits a proper picture of the hydraulics at these sites. I agree with the authors that the original form of display is preferable.

Note that the hydraulic head downslope the road in the Stouffe site is about 25cm and upslope the road in the Schöniseischwand is about 225cm and. The isolines are drown each 50cm, therefore these isolines are not presented in the figure.

Section 3.2 could still be condensed to focus on key facts and major results.

We have condensed this section

The discussion on gully erosion is a valuable addition. However, the text requires proper proofreading and shortening (e.g. the sentence in l. 341 is basically redundant). The section was carefully reworked and shortened

The section was carefully reworked and shorte.

**Typo in l. 322 "and"** Thank you

Figure 11: is interesting, however only for the no-road and L-drain comparison. The authors might consider different scaling to see differences also in the no-excavation and wood-log structures.

We have decided to remove Figure 11 and added a brief description to the text. Even with additional scaling, the perturbations are minor and thus can be discussed in the text.

Specific recommendations (1.335) are rather part of the conclusion section.

We have removed this information from this section

# L 344-358 are also rather part of a summary and/or conclusion.

Parts of this section were moved to the conclusions. We kept the model-specific point only

I still cannot agree with the sentence "Models results have to be interpreted as an average across multiple preferential flow paths." (l. 353-354) The simulation results in a homogeneous medium do not represent mean results of simulations in heterogeneous domains with preferential flow path! (Maybe just skip the sentence, the previous one gives a proper explanation.)

Thank you, we have deleted this sentence, as you suggested.

# **Assessing the perturbations of the hydrogeological regime in**

# 2 sloping fens through roads

3 Fabien Cochand<sup>1</sup>, Daniel Käser<sup>1</sup>, Philippe Grosvernier<sup>2</sup>, Daniel Hunkeler<sup>1</sup>, Philip Brunner<sup>1</sup>

4 <sup>1</sup>Centre of Hydrogeology and Geothermics, Université de Neuchâtel, Switzerland.

<sup>5</sup> <sup>2</sup>LIN'eco, ecological engineering, PO Box 51, 2732 Reconvilier, Switzerland.

6

7 Corresponding author: Fabien Cochand, fabien.cochand@unine.ch

# 8 Abstract

9 Roads in sloping fens constitute a hydraulic barrier for surface and subsurface flow. This can lead to theathe 10 drying out of downslope areas of the sloping fen as well as gully erosion. Different types of road construction have been proposed to limit the negative implications of the roads on flow dynamics. However, so far no systematic 11 12 analysis of their effectiveness has been carried out. This study presents an assessment of the hydrogeological 13 impact of three types of road structures in semi-alpine, sloping fens in Switzerland. Our analysis is based on a 14 combination of field measurements and fully integrated,-physically\_-based modelling. In the field approach, the 15 influence of the road was examined through tracer tests where the upslopeupslope of the road was sprinkled with 16 a saline solution. The spatial distribution of electrical conductivity downslope provided a qualitative assessment 17 of the flow paths and thus the implications of the road structures on subsurface flow. A quantitative albeit not site-18 specific assessment was carried out using numerical models simulating surface and subsurface flow in a fully 19 coupled way. - The different road types were implemented in the model and flow dynamics were simulated for a 20 wide range of slopes and hydrogeological conditions such as different hydraulic conductivity of the soil. The 21 results of the field and modelling analysis are coherent.clearly indicate that R roads designed with an L-drain (i.e. 22 collecting water upslope and releasing it in a concentrated manner downslope) constitute the largest 23 perturbations in terms of flow dynamics. The other investigated road structures were found to have less impact. 24 The developed methodologies and results are usefulcan be used for the planning of future road projects.

1

# Code de champ modifié

#### 26 1 Introduction

27 Wetlands can play a significant role in flood control (Baker, 2009;Zollner, 2003;Reckendorfer, 28 2013):Reckendorfer, 2013), mitigate climate change impacts (Cognard Plancq et al., 2004;Samaritani et al., 29 2011; Samaritani et al., 2011; Lindsay, 2010; Limpens, 2008) and feature great biodiversity (Rydin, 2005). 30 However, the world has lost 64% of its wetland areas since 1900 and an even greater loss has been observed in 31 Switzerland (Broggi, 1990), Broggi, 1990). Therefore, wetland conservation has received considerable attention. 32 However, the sprawl of human infrastructure, land-use changes, climate change or river regulations remain serious 33 factors that threaten wetlands. For instance, roads can substantially modify the surface-subsurface flow patterns of 34 sloping fens. The changes in flow patterns can influence sediment transport, moisture dynamics and biogeochemical processes as well as ecological dynamics. 35

36 The link between hydrological changes and sediment dynamics has been studied in various contexts see 37 e.g. Partington et al. (2017). Partington et al. 2017- From a civil engineering perspective, erosion of the road must 38 be avoided. A common strategy to avoid erosion of the road foundation is to collect water in drains and then release 39 it in a concentrated manner downslope. This, however, can lead to erosion of the downslope area, a phenomenon 40 known as « gully erosion ». A number of studies specifically focused on identifying the controlling processes and 41 relevant parameters of gully erosion (Capra et al. (2009); Valentin et al. (2005); Valentin et al. (2005a); Descroix 42 et al. (2008);Poesen et al. (2003);J:Poesen et al. (2003);Martínez-Casasnovas (2003);J:Daba et al. (2003);J:Betts 43 and DeRose (1999);)-Derose et al. (1998)), among others). Nyssen et al. (2002), Nyssen et al. (2002) investigated 44 the impact of road construction on gully erosion in the northern Ethiopian highlands, with a focus on surface water. In their study area, they observed the formation of a gully after the road construction downslope culvert 45 46 and downstream of the outlets of lateral-the road-drains. Based on field work and a subsequent statistical analysis, 47 they concluded that the main causes for gully development are athe concentrated runoff, the diversion of 48 concentered runoff to other catchments and the modifications of drainage areas induced by the road. The role of 49 groundwater was not considered in this study.

 50
 Reid and Dunne (1984)Reid and Dunne (1984) developed an empirical model for estimating road sediment

 51
 erosion of roads located in forested catchments in the Washington state (USA). They concluded that a heavily used

 52
 road produced 130 times more sediment that an abandoned road. Wemple and Jones (2003)Wemple and Jones

 53
 (2003) also developed an empirical model for estimating runoff production of a forest road at a catchment scale.

 54
 They demonstrated that during large storm events, subsurface flow can be intercepted by the road. The intercepted

| Code de champ modifié |  |
|-----------------------|--|
| Code de champ modifié |  |
|                       |  |

| -                 | Code de champ modifié |
|-------------------|-----------------------|
| 1                 | Code de champ modifié |
| Y                 | Code de champ modifié |
| 1                 | Code de champ modifié |
| ľ,                | Code de champ modifié |
| Ì                 | Code de champ modifié |
| Ì                 | Code de champ modifié |
| $\langle \rangle$ | Code de champ modifié |
|                   | Code de champ modifié |

| Code de champ | modifié |
|---------------|---------|
|---------------|---------|

Code de champ modifié

| 55 | water, if directly routed to ditches, increases the rising limb of the catchment hydrograph. At a smaller spatial scale |
|----|-------------------------------------------------------------------------------------------------------------------------|
| 56 | (0.1 km <sup>2</sup> ) Loague and VanderKwaak (2002) Loague and VanderKwaak (2002) assessed the impact of a road on     |
| 57 | the surface and subsurface flow using an integrated surface-subsurface flow model InHM (Integrated Hydrology            |
| 58 | Model) (VanderKwaak, 1999)(VanderKwaak, 1999) in a rural catchment. The results showed that the road induced            |
| 59 | a slight increase of runoff and a decrease of surface-subsurface water exchange around the road. Dutton et al.          |
| 60 | (2005) Dutton et al. (2005) investigated the impact of roads on the near-surface subsurface flow using a variability    |
| 61 | saturated subsurface model. They concluded that the permeability contrast caused by the road construction leads         |
| 62 | to a disturbance of near-surface subsurface flow which may significantly modify the physical and ecological             |
| 63 | environment.                                                                                                            |

Road construction can also impact the development of vegetation (Chimner, 2016). Von Sengbusch (2015)von Sengbusch (2015) investigated the changes in the growth of bog pines located in a mountain mire in the black forest (south-west Germany). The author suggests that the increase of bog pine cover is caused by a delayed effect of a road construction in 1983 along a margin of the bog. The road affects the subsurface flow and therefore prevents the upslopeupslope water to flow to the bog. According to Von Sengbusch (2015), von Sengbusch (2015), the road disturbances induce a larger variability in water table elevations during dry periods and consequently increase the sensitivity of the bog to climate change.

71 Based on these previous studies, and basic principles of subsurface flow (Darcys' law), a simple conceptual 72 model describing the influence of roads on the flow system can be drawn (Figure 1), - Common to all road types 73 are the physical laws that describe subsurface flow (Darcy's law) and surface flow (a surface flow equation such 74 as the diffusion wave approximate to the Saint Venant equations). Roads are generally built with materials of low 75 hydraulic conductive and therefore act as aconstitute a hydrogeological barrier. In natural conditions, rainwater 76 infiltrates the soil and follows the topographical gradient. In case of heavy precipitation events, water can also 77 directly flow on the surface (runoff in (Figure 1, Figure 1a). Toa, overland flow)) as overland flow. When a road 78 construction takes placeTo construct the foundation of the a road, aimpermeable material with a very low 79 permeability is used.is excavated upstream and filled downstream to avoid erosion of the constructionused material 80 under the road. This subsequently blocks the flow from the upslopeupstream towards the downslopedownstream. 81 However, due to the buildup of hydraulic heads in the upslopeupstream of the road (Figure 1b), the road)without 82 the presence of a drain to connected the upstream and the downstream, the road would is can be innundated during 83 precipitation events. , due to the buildup of hydraulic heads in the upstream of the road (Figure 1b). To reduce the 84 occurrence of inundations, drains are installed under all roads (Figure 1c). The design and the materials of drains

4

| Code de champ modifié |  |
|-----------------------|--|
|                       |  |
|                       |  |
|                       |  |
| Code de champ modifié |  |
|                       |  |
|                       |  |
|                       |  |
| Code de champ modifié |  |
|                       |  |

| Code de champ modifié |
|-----------------------|
|                       |
| Code de champ modifié |
|                       |

Code de champ modifié

Mis en forme

85 havesignificantly have potentially a significant effect a effect on flow dynamics. Figure 1 Figure 1 c presents a typical 86 condition where a non-continuous drain (i.e., drains are perpendicularly installed at regular distances along the 87 road) is installed.used to connect both sides of the roadinstalled. The drain captures the Upstream-flow 88 upslopeupstream along the road and the discharge is released in a concentrated manner downslope. 89 Thisdownstream. and downstream subsurface flows are deviated and the drain becomes the main outlet. Theis 90 concentration of subsurface flow downslopedownstream of the drain-may induce gully erosion and disturb the 91 hydraulic regime of the sloping fens-. For example, the wetland is at risk of drying out downslopedownstream of 92 the road as the flow is concentrated to a small strip downslopedownstream of the drain. Note, however, however, 93 that a gully must not necessarily develop because the flow-velocity at the drain-exit might not be sufficiently large 94 to trigger erosion. Also, the drying out of the wetland beyond the direct vicinity of the downslopedownstream area 95 of the drain must not necessarily happen. The-and-tThe concentrated release from the drain can water, to a certain 96 extent, spread out horizontally. In any case, as 97 98

99 If a<u>Aa</u> road-<u>thus</u> is constructed, it constitutes a hydrogeological barrier <u>which</u>(Figure 1b) and consequently affects <u>witchwhitch</u> perturbs the natural the flow dynamics. Drains installed underneath the road <u>Figure 1g</u>) can mitigate the effect of this hydrogeological barrier. The design and the materials of drains significantly affect flow dynamics. Figure 1c presents a typical condition where a non-continuous drain (i.e., drains are perpendicularly installed at regular distances along the road) is used to connect both sides of the road. Upstream and downstream subsurface flows are deviated and the drain becomes the main outlet. The concentration of subsurface flow downstream of the drain may induce gully erosion and disturb the hydraulic regime of the sloping fens.

Mis en forme : Surlignage
Mis en forme : Surlignage



 108
 Figure 1: Conceptual subsurface dynamics in sloping fens: a) natural conditions, b) with a road without a drain (only

 109
 shown for illustrative reasons as essentially all roads have drains). In this case, water will flow both across and under

 110
 the road. Uncontrolled flow beneath the road can cause erosion of the road foundation.--and-c) with a road-and-with a

 111
 drain: In this design, surface water flow is reduced and flow beneath road occurs in a controlled manner through the

 121
 drain. Water is released downslopedownstream in a concentrated manner with the risk of gully erosion and the drying

 113
 out of parts of the wetland. While it is possible that the concentrated groundwater flowsflow fens our horizontally

 114
 downslopedownstream through natural heterogeneity, there is a high risk of gully erosion.r

115 The design of the roads and especially the drains is expected to have a significant influence on the degree 116 of perturbation. While these studies clearly indicate that roads can have adverse effects on the surface and 117 subsurface flow dynamics and the associated ecosystems, a detailed study on how roads perturb the flow system 118 and dynamics in a sloping fen has not been carried out. In Switzerland, more than 20'000 ha are included in the 119 national inventory of fens of national importance (Broggi 1990), most of them are located in the mountainous 120 regions of the northern Prealps. Hence, the majority of Swiss fens is composed of sloping fens, which developed 121 on nearly impermeable geomorphological layers such as silty moraine material or a particular rock layer named 122 "flysch". Although organic, soils are not necessarily peaty and most of the time quite superficial, not exceeding a 123 few decimeters in thickness. Water flow is therefore mostly consisting of runoff and partly occurring in the shallow 124 part of the subsurface. The construction of a road in this kind of sloping fens removes completely the soil layer in 125 which subsurface flow occurs, thus constituting a major perturbation of the hydraulic regime. Construction 126 techniques to limit these adverse impacts have been proposed but their efficiency has so far not been investigated. 127 Three fundamentally different road structures with various construction techniques and materials (hereinafter 128 further detailed) were developed in Switzerland to reduce the impacts of roads. These three road types are 129 conceptually illustrated in Figure 2Figure 2. The efficiency of developed road structures was so far not assessed 130 after completion ..., neither in the field through field-based experiments, nor on a conceptual level.- This study 131 focuses on these three road structures described hereafter:

- The *no-excavation* structure (Figure 2Figure 2a) aims at preserving soil continuity under the road. It consists of a <u>leveledlevelled</u> layer of gravel, anchored to the ground, and underlying 0.16m thick concrete slabs. Soil compaction is limited by using a-low-density gravel, made of expanded glass chunks (Misapor<sup>TM</sup>) approximately fivefold lighter than conventional material.
- The *L*-drain structure (Figure 2Figure 2b) aims at collecting subsurface water <u>upslopeupstream</u> the road and redirecting it to discrete outlets on the other side. The setup consists of a trench, approximately 0.4m
   deep, filled with a matrix of sandy gravel that contains an L-shaped band of coarse gravel acting as the drain. This is the most common approach to build roads in Switzerland.
- The *wood-log* structure (Figure 2Figure 2c) aims at promoting homogeneous flow under the road but does not preserve soil continuity. Embedded in a trench, approximately 0.4m deep, the wooden framework is filled with wooden logs forming a permeable medium. The wooden logs are then covered with mixed gravel.

In Switzerland, more than 20'000 ha are included in the national inventory of fens of national importance (Broggi 1990), most of them are located in the mountainous regions of the northern Prealps. These fens developed on nearly impermeable geomorphological layers such as silty moraine material or a particular rock layer named "flysch". The majority of remaining Swiss fens are sloping fens in this particular geological environment. To protect the remaining wetlands it is important to reduce the impact of these constructions, be it in the context of replacing existing, old roads or for the construction of new roads.

150 The aim of this study is to investigate, document and assess the hydrogeological impact of the 151 threethreevarious road structures and their effects on fen water dynamics to support decision-makers in choosing 152 road structures with minimal impact. AA combination of fieldwork and hydrogeological modelling tasks was 153 employed. Fieldwork was used to document and obtain the required information on the hydrogeological impact of 154 existing road structures on fen water dynamics. It is the first time that these road-types are systematically analysed 155 under field conditions.-and thus provide important information on their effectiveness. Sites with similar natural 156 conditions were chosen to compare the influence of different road constructions on flow processes. The field 157 studies allow for assessing the effectiveness of a given road structure at a particular location, however, they cannot 158 provide a generalizable analysis of the different road types under different environmental and physical conditions, 159 e.g. the slope or the hydraulic properties of the fen. This gap was filled by the development of generic numerical 160 models. The models are kept deliberately simple in terms of the heterogeneity of the soil. This The main advantage 161 of the modelling approach is This allows to comparatively explore the potential impact of the different road 162 structures. with regard to the the possibility to generate a multitude of different models with various 163 characteristics such as different road structures, influence of The modelling allows a systematic 164 comparison comparison of this potential impact for different conditions for the most important hydraulic properties: 165 the slopes of off fens and the bulk hydraulic conductivity. hydraulic conductivity and to test their impacts on the 166 flow dynamics. These model results can help in the planning of new roads. However, as the heterogeneity of the 167 soil is not considered in the models and the horizontal redistribution due to field-specific heterogeneity cannot be 168 considered (see figure 1c), the),- t The simulations thus thus constitute a "worst-case " scenario, which nevertheless 169 allows a ranking the different road structures in terms of perturbation and the riskperturbationrisk for gully erosion. Cross section view



170

171

172

Figure 2 : Conceptual road structures, a) No-excavation road structure, b) L-drain road structure and c) Wood-log road structure.

173 2 Methods

### 174 2.1 Study areas and fieldwork

Four sloping fen areas located in alpine or peri-alpine regions of Switzerland (<u>Table 1</u>Table 1) were selected. All areas are situated in protected fen areas, and their selection was based on two main criteria:

1771. The subsurface water flow must occur only in the topsoil layer and as runoff (as described in the178 introduction).

179 2. The types of installed road structures (no-excavation, L-drain and wood-log).

To fulfil the first criteria, soil profiles were analysed to ensure that each area with different road types had the comparable soil stratigraphy: It had to be composed of organic soil on top of a layer of impermeable clay and similar hydraulic regimes (e.g., runoff and subsurface flow occurring only in the topsoil layer). In addition, to ensure that subsurface water is forced to cross the road instead of flowing in parallel of the road (and thus not being affected directly by the road), another important criterion for the selection of the study areas was that subsurface flow is perpendicular to the road.

| 186 | To evaluate the hydraulic connection provided by the <u>roadbed</u> structures, tracer tests were carried             |
|-----|-----------------------------------------------------------------------------------------------------------------------|
| 187 | out. As illustrated schematically in Figure 3, a saline solution was spread on the upslopeupstream area was irrigated |

188 with a saline solution and the occurrence of the tracer was monitored downslope the road. In the absence of surface

189 runoff, the occurrence of a tracer downslope demonstrates the hydrogeological connection through the road.

190 Furthermore, the spatial distribution of the tracer front reflects the heterogeneity of the flow paths.

### 191 Table 1. Field site locations and features.

|                   | St-Antonien<br>(STA)    | Schoeniseischwand<br>(SCH) | Stouffe (STO)           | Höhmad<br>(HMD)         |
|-------------------|-------------------------|----------------------------|-------------------------|-------------------------|
| Road type         | No excavation           | L-Drain                    | Wood-log                | Wood-log                |
| Terrain slope     | 0.27                    | 0.13                       | 0.13                    | 0.15                    |
| WGS84 coordinates | 46.96760°N<br>9.84843°E | 46.78872°N<br>7.96805°E    | 46.72957°N<br>7.83861°E | 46.74027°N<br>7.89871°E |

| 193 | Each area On each fieldsite, an area of a corresponds to an 8 x 20m rectangle that includes a 2.5 to 3.5m                            |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|
| 194 | wide road segment was selected. A network of approximately 30 mini-piezometers on both sides of the road                             |
| 195 | (Figure 3Figure 3) was installed to monitor the hydraulic heads and was used to obtain samples for the tracer test.                  |
| 196 | The mini-piezometers are high-density polyethene (HDPE) tubes no longer than 1.5m (ID: 24mm). Each                                   |
| 197 | tube was screened with 0.4mm slots from the bottom end to 5cm below ground level. It was inserted into the soil                      |
| 198 | after extracting a core with a manual auger (diameter: 4-6cm). The gap between the tube and the soil was filled                      |
| 199 | with fine gravel and sealed on the top with a 4cm thick layer of bentonite or local clay. Hydraulic heads were                       |
| 200 | measured using a manual water-level meter ( $\pm$ 0.3cm). At each point, the terrain and the top of the piezometer                   |
| 201 | were levelled using a level ( $\pm$ 0.3cm), whereas the horizontal position was measured with a tape measure ( $\pm$ 5cm).           |
| 202 | The tracer tests were conducted using two oscillating sprinklers designed to reproduce a 30mm rain event                             |
| 203 | during 2-3 hours. This is equivalent to an intense rain event. Prior to the experiment, the sprinklers were activated                |
| 204 | for 15-60 minutes to wet the soil surface. Sodium chloride was added to the irrigated solution to obtain an electrical               |
| 205 | conductivity of 5-10mS/cm which is approximately ten times higher than the natural electrical conductivity of the                    |
| 206 | groundwater. <u>Subsequently Then Subsequently</u> , the area (60m <sup>2</sup> ) upslopeupslope of the road (upslope injection area |
| 207 | of Figure 3Figure 3) was irrigated with the salt solution using the two sprinklers. The electrical conductivity (EC)                 |
| 208 | of soil water was manually measured using a conductimeter conductivity meter in all mini-piezometers prior to                        |
| 209 | the experiment, immediately after, and 24h later. An increase in EC in piezometers located in the downslope area                     |
| 210 | indicates that the injected salt water flowed from the upslopeupstream area to the downslope area below the road                     |
| 211 | and clearly shows a hydraulic connection. Conversely, if no changes in EC are observed in piezometers, this                          |
| 212 | indicates a strongly hampered hydraulic connection below the road.                                                                   |



Code de champ modifié

229 saturated<u>unsaturated</u>, HGS employs the Van Genuchten (1980), Van Genuchten (1980), functions to relate pressure 230 head to saturation and relative hydraulic conductivity. Simultaneously, HGS also solves the 2D depth-averaged 231 diffusion-wave approximation of the Saint-Venant equation for describing the surface flow. To couple surface and 232 subsurface and simulate the water exchanges between both domains, the "dual node approach" is used. In this 233 approach, the top nodes representing the ground surface are used for calculating both subsurface and surface flow, 234 the exchange flux between the two domains is calculated on the basis of the head-difference between the surface and the subsurface and a coupling factor. The water exchanges are calculated as hydraulic head differences of the 235 236 two domains and multiplied by the vertical hydraulic conductivity of the top layer and a coupling factor.

237 The iterative Newton-Raphson method is used to solve the nonlinear equations. At each subsurface node, saturation 238 and groundwater heads are calculated, which allows for the calculation of the Darcy flux. For further details on 239 the code, HGS capabilities and application, see Aquanty (2017), Brunner and Simmons (2012) or Cochand et al. 240 (2019). The iterative Newton Raphson method is used to solve the nonlinear equations. At each subsurface node, 241 saturation and groundwater heads are calculated, which allows for the calculation of the Darcy flux. On the surface 242 domain, the surface water heights are calculated at each node to determine surface water flux. Rivers and lakes are 243 characterized by a surface water depth larger than 0. For further details on the code, HGS capabilities and 244 application, see Aquanty (2017), Brunner and Simmons (2012) or Cochand et al. (2019).

245

# 2.2.2 Conceptual models and model implementation

246 Figure 4Figure 4 illustrates the conceptual model of each case. Existing engineering sketches were used as 247 a basis for the implementationimplemetion of the drain and road. Geometry, topography, and slopes are based on 248 the physical conditions in the field. In each model, the soil layer has a thickness of 0.4m and the surface and 249 subsurface water are-is only supplied by precipitation. The upslopeupstream boundary is the catchment boundary 250 (water divide) and the downslopedownstream boundary represents the outlet of the model. Finally, it was assumed 251 that the layer beneath the soil was impermeable (as observed in the field).) and engineering plans were used to 252 design drain and road. One Neumann (constant flux) boundary condition was used on the top face for simulating 253 precipitation. A constant-groundwater head boundary condition (Dirichlet type) equal to the ground surface 254 elevation (2m) was used on the lowest cells of the slope (x=76m on the Figure 5Figure 5a) allowing the 255 groundwater to flow out of the model. Finally, a critical depth boundary condition which allows which forces the 256 surface water to reach allows surface water to flow out of the model domain given elevation (2m in our case) to 257 flow out of the model was implemented on the top nodes located at x=76m. All-and aAll other faces are no\_-flow 258 boundary conditions.

### Code de champ modifié

Code de champ modifié Code de champ modifié Code de champ modifié



elevation was fixed at 2m on the right side (x=76m) and varies from 9.6m to 24.8m on the left side (x=0) according
to the slope of the model. The mesh was <u>composed made upcomposed</u> of 24 layers, 127,200 nodes and 118,440
rectangular prism elements. To <u>guarantee numerical ensure an appropriate level of detail numerical stability</u>, several
mesh <u>discretization</u>-refinements were <u>implemented</u>. <u>The made inlemented</u>. <u>Therefore</u>, <u>tThe</u> element size varies
between 2m and 0.1m horizontally (in the X and Y directions) and 0.09m and 0.06m vertically.

259

260

261

The base case model and the three other models representing different road types have the same boundary conditions and finite element meshes, however, modifications were made between coordinates 61<x<66 to for the implementation of the different road types. Figure 5 depicts the differences between the base case model





 277
 Figure 5 : Model development: a) Base case model, b) Base case model cross-section between 61m < x < 66m, c) No 

 278
 excavation model between 61m < x < 66m, d) L-drain model between 61m < x < 66m, e) L-drain model between 61m < x < 66m.

 279
 x < 66m along the transversal drain f) Wood-log model between 61m < x < 66m.

```
280 2.2.3 Model setup Model application
```

281 The <u>model applicationsensitivity analysis</u> consists of the variation of model properties<u>- and parameters in</u>

282 order to assess their effect onunderstand how they control the groundwatersloping fen dynamics. The sensitivities

283 of the following parameters were analyzed: fen slope, soil hydraulic conductivities and road drain hydraulic

conductivities. These parameters were selected because <u>according to thethey govern thethe</u> Darcy's law (1) theyand consequently they control the groundwater <u>flow</u> dynamics. K is the hydraulic conductivity of the soil and the drain and  $\nabla$ H the <u>hydraulic gradient of gradient oof</u> the fens <u>which itselfitslef is will be strongly influenced</u> controlled by the <u>topographical slope</u>.

(1)

## $q = K * \nabla H$

288 For each property varied in the sensitivity analysis, three different values were chosen (Table 2), ): a low, 289 an intermediate and a high value, values with the aim of covering the whole range of its observed values in sloping 290 fens. For the soil hydraulic conductivities (KS), values presented in Charman (2002) Charman (2002) were used 291 and vary varied between 8.64m/d and 0.0864m/d. This corresponds to a soil composed of gravely z organic matter 292 (as observed for example in St-Antonien site) or loamy organic matter (as observed for example in 293 Schoeniseischwand site).  $\alpha$  and  $\beta$  Van Genuchten parameters ( $\alpha$  and  $\beta$ ), ) and the residual water content, as well 294 as the residual water content, were considered similar assumingwere not varied, their capillary rises are comparable 295 and does not play a critical role in a 40cm soil layer mainly saturated. The road drains (KD) which are made with 296 of coarse or very coarse gravel wereand have were assigned a hydraulic conductivity varying between 8640m/d 297 and 86.4m/d (Fetter 2001).) and, their van Genuchten parameters are corresponding to those of gravel. The slopes 298 were fixed at 10%, 20% and 30%, as observed during the fieldwork. The Note that tThe hydraulic conductivities 299 of the wood-log (W-L) drain hydraulic conductivities of the wood log (W-L) were assumed ten times more 300 conductive and more porous than the gravel drain, because of its particular structure (wood logs). The road concrete 301 is almost impermeable and was thus conceptualized with a very low hydraulic conductivity, and its van Genuchten 302 parameters corresponding to ofa-fine material. The road basement is constructed made with constructed using highly 303 compacted fine material (sand and loam) andhave a lowfeature and was thus implemented with a low hydraulic 304 conductivity, the -and are assigned van Genuchten parameters of corresponding to fine material. Finally, the 305 implemented soil and road surface flow properties correspond to a wetland and urban cover (Li et al., 2008)(Li et 306 al., 2008).

Code de champ modifié

Code de champ modifié

### 307 Table 2 : Subsurface and surface flow parameters.

|            | Subsurface flow properties                                                            |      |                      |      |         |  |
|------------|---------------------------------------------------------------------------------------|------|----------------------|------|---------|--|
|            | Hydraulic Porosity Van Genuchten α Van Genuchten β Residual w<br>conductivity content |      |                      |      |         |  |
| Units      | K [md <sup>-1</sup> ]                                                                 | θ[-] | α [m <sup>-1</sup> ] | β[-] | Swr [-] |  |
| Soil - KS1 | 8.64                                                                                  | 0.25 | 4                    | 1.41 | 0.04    |  |
| Soil - KS2 | 0.864                                                                                 | 0.25 | 4                    | 1.41 | 0.04    |  |
| Soil - KS3 | 0.0864                                                                                | 0.25 | 4                    | 1.41 | 0.04    |  |

| Drains - KD1      | 8640      | 0.25 | 29.4  | 3.281 | 0.04 |
|-------------------|-----------|------|-------|-------|------|
| Drains - KD2      | 864       | 0.25 | 29.4  | 3.281 | 0.04 |
| Drains - KD3      | 86.4      | 0.25 | 29.4  | 3.281 | 0.04 |
| Drains - WL - KD1 | 86400     | 0.7  | 29.4  | 3.281 | 0.04 |
| Drains - WL - KD2 | 8640      | 0.7  | 29.4  | 3.281 | 0.04 |
| Drains - WL - KD3 | 864       | 0.7  | 29.4  | 3.281 | 0.04 |
| Road concrete     | 0.0000864 | 0.05 | 1.581 | 1.416 | 0.04 |
| Road basement     | 0.00864   | 0.25 | 4     | 1.416 | 0.04 |
|                   |           |      |       |       |      |

| Surface flow properties                                             |                       |                                         |                                      |                    |                    |  |
|---------------------------------------------------------------------|-----------------------|-----------------------------------------|--------------------------------------|--------------------|--------------------|--|
| Coupling length Manning's roughness Rill storage Obstruction height |                       |                                         |                                      |                    |                    |  |
| Units                                                               | l <sub>c</sub> [m]    | n <sub>x</sub><br>[m <sup>-1/3</sup> s] | n <sub>y</sub> [m <sup>-1/3</sup> s] | D <sub>t</sub> [m] | O <sub>t</sub> [m] |  |
| Soil                                                                | 1. x 10 <sup>-2</sup> | 0.03                                    | 0.03                                 | 0.005              | 0.005              |  |
| Bood                                                                | 1 x 10 <sup>-2</sup>  | 0.018                                   | 0.018                                | 0.001              | 0.001              |  |

<sup>308</sup> 

In order to simulate each parameter combination, a total of 90 models were developed (27 models for each

road structures and 9 models for natural conditions). Models are run for 10'000 days (about 27 years) with a
constant flux equal to 380mm/y on the top representing the rainfall to reach a steady state. This precipitation allows
for the saturation of the downslope part of the model. Subsequently, subsurface flow rates in the soil layer were
extracted at each section with an area of 0.4m<sup>2</sup> (1m wide times the soil thickness) presented in Figure 6Figure 6.
Changes in subsurface flow rates indicate a perturbation of flow dynamics and therefore, a comparison of flow

314 <u>ratespatesvelocities</u> between each model was made to present the effect of each road structure and sloping fen

315 properties on the dynamics.

Mis en forme : Anglais (Royaume-Uni)

Mis en forme : Anglais (Royaume-Uni)

Code de champ modifié



329 The heterogeneity of the hydraulic conductivity of the soil is apparent from the tracer tests results (Figure 330 7Figure 7, 3rd column: EC 24 hours after injection). At all four sites, the front of the saline solution is not uniform 331 because of the but follows the heterogeneity of the soil hydraulic conductivity. Nevertheless, theroad structures the 332 road structures or the drains may createplay the role of aconstitutecreate preferential flow paths. This that This is 333 clearly occurringparticularly obviousclearly occuring at the SCH site where the front follows two preferential flow 334 paths. One related to the L-drain (right path) and the other on the left, unrelated to the L-drain, suggesting that the 335 latter drains only a part of the water and the other part follows a natural, preferential flow path. At the HMD site, 336 the saline solution is far more concentrated on the left side of the plot, yet apparently not as a result of the road's 337 structure. Rather, the soil appears more permeable on the left side of the plot, both upslope and downslope of the 338 road. Finally, the decrease in EC observed 24 hours after injection at some locations might result from the following: (1) the tracer injection induces, by "piston effect", the displacement of a small volume of local water 339 340 with a lower EC; (2) the tracer injection was preceded by a period of irrigation without tracer. This, which could 341 have diluted the pre-irrigation soil solution.

342 In each case, the irrigation experiments demonstrate the continuity of subsurface flow under the road for 343 all structures. For the no-excavation and wood-log type, the perturbation of the flow field seems to be controlled by the natural heterogeneity of the soil and flow paths, and not by the road itself. Conversely, the field data strongly 344 345 suggest that the L-drain constitutes an important preferential pathway and consequently subsurface flow is 346 increasingly concentrated. In terms of wetland conservation, t This flow convergence is a serious threat (can cause 347 gully erosion., local drying up of the soil). Despite these strong indications, it is clear that with the field data alone 348 no conclusive analysis can be made as no data before the construction of the road are available. Fieldwork allows 349 for site specific conclusions, but more general conclusions which are not specific to a site are impossible. 350 Therefore, numerical modelling was used to fill this gap.



Figure 7 : Fieldwork results at the four field sites: 1<sup>st</sup> column) Measured groundwater heads before tracer test, 2<sup>nd</sup>
 column) Measured measured\_EC before tracer test and 3<sup>rd</sup> before and after tracer test differences in EC. The
 hydraulic heads downslope the road in the Stouffe site is about 25cm and upslope the road in the Schöniseischwand is
 about 225cm (between two isolines) and are not presented in the figure

#### 359 3.2 Modelling

360 The presentation of models results is divided into three parts; the first one focus on the lower part of the fen 361 downstream the road, the second on the upper part of the fen upstream the road and finally, all model results are 362 discu ssed. Figure 8Figure 8 a shows the results of the models with a slope of 10%, Figure 8Figure 8 b with a slope 363 of 20% and Figure 8Figure 8b with a slope of 30%. In each dot chart, the groundwater flow rates (always in m<sup>3</sup>/d) 364 are plotted with crosses for the base case model, diamonds for the no-excavation type, squares for the L-drain type 365 and circles for the wood-log type. In addition, the maximum flow rate capacity of the soil calculated with the 366 Darcy's LawLlaw (1) - and the flow rate induced by the precipitation are also presented for the interpretation of the 367 results. In the following paragraphs, the base case (natural conditions) results are presented and discussed, followed 368 by the simulations of the road structures.

In the base case model, groundwater flow rates rates velocities vary from 0.003 ( $m^{3}/d$ ) to 0.069 ( $m^{3}/d$ ) for a 369 370 10% slope,  $0.006 \text{ (m}^3/\text{d)}$  to  $0.069 \text{ (m}^3/\text{d)}$  for a 20% slope and to from  $0.009 \text{ (m}^3/\text{d)}$  to  $0.069 \text{ (m}^3/\text{d)}$  for a 30% slope. 371 The groundwater flow rate decreases following gradually dependingfollowing a decreasedecrese of on the 372 hydraulic conductivities (KS) of the soil layer. The For any slope, where hydraulic conductivities are high (KS1), groundwater flow ratesprates velocities are higher compared to the case where hydraulic conductivities are low 373 374 (KS3). The primary observation is that groundwater flow rates velocities are mainly controlled by the hydraulic 375 conductivities, and therefore the slope plays a minor less important role. This is expected, as the 376 ratiosDdifferencesratios of between the maximum and minimum hydraulic conductivity are two orders of 377 magnitude, whilewhereas changes between while slopes were multiplied multiplyied by a factor of tow-two (for a 378 slope of 20%) or three (for a slope of 30%).%) the groundwater flow. Therefore, the groundwater flow is increased 379 by a factor 3 between the model KS3 with a slope of 10% and model KS3 with a slope of 30%. ConcerningFinally, 380 it can be seen that the maximum flow rate of the soil is reached and lower than precipitation in all cases except if 381 the hydraulic conductivity is high (KS1). This means that for Concerning the formation of surface flow thesomethe 382 following observation-interesting observations can be made. For all KS2 and KS3 models, surface flow occurs 383 while and conversely the soil is able to infiltrate the precipitation in while the infiltration capacity of the KS1 models 384 is never exceeded, and thus no surface flow occurs.

Mis en forme : Anglais (Royaume-Uni) Mis en forme : Police : Mis en forme : Anglais (Royaume-Uni) Mis en forme : Anglais (Royaume-Uni)

385

386

In the no-excavation and wood-log type models, the <u>influence</u><u>effectinfluence</u> on flowrates caused by the <u>presence of the</u><u>of</u> road structures is quite similar. <u>Groundwater</u><u>The <u>gGroundwater</u></u> flows vary from 0.01 (m<sup>3</sup>/d) to

Mis en forme : Police :

387  $0.069 \text{ (m}^3\text{/d)}$  for a 10% slope, 0.01 (m<sup>3</sup>/d) to 0.069 (m<sup>3</sup>/d) for a 20% slope and to 0.010 (m<sup>3</sup>/d) to 0.069 (m<sup>3</sup>/d) 388 for a 30% slope. Compared to the base case model, results show that the no-excavation and wood-log type 389 structures have a minimal impact on flow perturbation perturbation. The only marked difference is that groundwater 390 flow ratesratesvelocities are slightly higher if the soil hydraulic conductivities are low (KS3). This is due tofor 391 each slope in the wood log type model. This can, to a certain extent, be explained by the fact that because because 392 the hydraulic conductivity of the base of the road (consisting of wood-logs) is higher than the hydraulic 393 conductivity of the soil which and therefore facilitates the infiltration. Conversely, in the base case model, less 394 water is infiltrated but more surface runoff occurs. For the no excavation model with a slope of 10%, results are 395 not presented for technical reasons. For this specific geometry and topography, a different structure of the mesh 396 had to be generated which did not allow for a direct visual comparison with the other models. In the 20% and 30% 397 slope models, the results of the no-excavation model are similar to the base case model.

398 In the L-drain type model, the effect of the road is markedly different from the other road structures. The 399 groundwater flows vary significantly in the observation sections. points sections. The maximum flows are always 400 obtained in the observation point section G (see Figure 6 for the location of the sections) just 401 downslopedownstream of the drain outlet and can be 10 times higher than compared in the compared to the base 402 case. Conversely, minimum flows are obtained in observation sections C and D observation points sections-in 403 which flow rates canratesvelocity maycan be 10 times lower. Significant differences in groundwater flow are also 404 observed in the same transect (within the same model).) To condense this information, the ratios between 405 maximum and minimum flow rate are calculated for the L-drain structures (numbersNumbers at the bottom right 406 of the panels in Figure 8Figure 8). The maximum differences are observed forif the for the cases where the 407 hydraulic conductivity of soil (KS) and drain (KD) are high and may-vary from 0.025 (m<sup>3</sup>/d) to 0.150 (m<sup>3</sup>/d). 408 Conversely, when KS and/or KD are low, the differences along the transect are smaller. The L drain structures 409 also facilitate water infiltration in soil with a low permeability (KS3) where groundwater velocities are slightly 410 higher than the base case model. Finally, the it can be seen that slope accentuates groundwater flow rateratevelocity 411 differences along the transect. Therefore, an increase of groundwater flow differences in the same model-is 412 observed for the 10% and 30% slope scenarios, within the same model. The impact of the L-drain may be further explored by extracting groundwater flows lower than 2m downslope the road 23.5m to assess the extent of 413 414 perturbations. Figure 9 Figure 9 shows additional simulated groundwater flows for the most critical cases (i.e. KS1 415 with a slope of 10%, 20% and 30%) downslopedownstream the road at 3.5m and 6.5m respectively and 2.5m 416 upslope. Atupstream. It can be seen that aAt 3.5m the groundwater flows already regain their upslopeupstream

| - | Mis en forme : Police :              |
|---|--------------------------------------|
| 1 | Mis en forme : Police :              |
| ١ | Mis en forme : Police :              |
| ľ | Mis en forme : Police :              |
| Y | Mis en forme : Police :              |
| - | Mis en forme : Anglais (Royaume-Uni) |

Mis en forme : Anglais (Royaume-Uni)

| 417 | conditions. At 6.5m <u>downslope</u> downstream the road, all observation <u>points-sections</u> are very close <u>to</u> the |   |           |
|-----|-------------------------------------------------------------------------------------------------------------------------------|---|-----------|
| 418 | upslopeupstream flows except in sectionobservation pointsection G where flows are still slightly higher.                      |   |           |
| 419 | Finally, the impact of road structure on the upstream road dynamics may be also assessed. Figure 10 shows the                 |   |           |
| 420 | same information as Figure 8 but at 2.5m upstream. It can be seen that for all models, upstream flows are similar             |   |           |
| 421 | to the base case model. This means that all structures allow the groundwater to cross the road.                               |   |           |
| 422 | 3.3 Modelling results discussion                                                                                              |   |           |
| 423 | Results show that the no-excavation structure has the least impact on the groundwater velocities and the                      |   |           |
| 424 | wood-log structure has a limited impact on groundwater dynamics. The only difference with the base case (no road              |   |           |
| 425 | at all) model is that the groundwater velocities observed are slightly higher where the hydraulic conductivity of             |   |           |
| 426 | the soil layer is low (KS3). This is caused by the wood log drain which facilitates water infiltration in a low-              |   |           |
| 427 | conductive soil layer. Finally, the L-drain structure impacted significantly the groundwater dynamics. Significant            |   |           |
| 428 | differences are observed in each scenario, mainly due to the L shape drain. Downstream of the drain outlet                    |   |           |
| 429 | (observation point G), groundwater velocities are higher than other observation points along the transect,                    |   |           |
| 430 | regardless of the slope and the drain hydraulic conductivity. Maximum differences may reach two orders of                     |   |           |
| 431 | magnitude from 0.0346 (m/d) to 1.296 (m/d) in the same transect. Only the soil hydraulic conductivity reduces                 |   |           |
| 432 | differences in groundwater velocity along the transect and the slightly higher groundwater velocity in comparison             |   |           |
| 433 | with the base case model indicates that gravel drain also facilitates water infiltration in low-conductivity soil layer.      |   |           |
| 434 | In addition to the assessment of perturbation through roads, the model T the Mmodel results can be used to                    |   |           |
| 435 | evaluatepredictevaluate the risk of gully erosionand allows us to make recommendation to avoid them. Gully                    |   |           |
| 436 | erosion may occur when changes in surface flow dynamics induce runoff concentration (Nyssen et al.,                           |   | Code de   |
| 437 | 2002: Valentin et al., 2005b). As presented in Figure 8 Figure 8, the maximum flow rate capacity of the soil is small_        |   | Code de   |
| 438 | in comparison to caomparison withto the precipitation. For all model scenarios except for KS1, the soil capacity              |   |           |
| 439 | is lower than the precipitation and amount which is already set pretty low in the model. This means and thus                  |   |           |
| 440 | surfacethatsurface runoff already occurs in the models and is likely to occuroccure naturallyin-sloping fens.                 |   |           |
| 441 | However, the surface runoff may be triggered accentuated triggered -by subsurface perturbation caused by the                  |   |           |
| 442 | presence of the-L-drain structures. To illustrate this process, the simulated surface flow velocities of each road            |   |           |
| 443 | structure downslopedownstream the road for the model KS2-KD2 and slope of 20% are presented in Figure                         |   |           |
| 444 | 10Figure 10. In this case, the maximum flow rate capacity of the soil is approximately approximately equal to                 | _ | Mis en fo |
| 445 | precipitation, therefore runoff should not occur. However, thisit can be seen some runoff in thethis is not the case          |   | Mis en fo |
| 1   |                                                                                                                               |   |           |

Code de champ modifié

Code de champ modifié

 Mis en forme : Anglais (Royaume-Uni), Vérifier l'orthographe et la grammaire

 Mis en forme : Vérifier l'orthographe et la grammaire

| 446 | for the L-drain-model. The occurrence of surface runoff-which is is the consequence of the subsurface flow              |   |                                                                                                             |   |
|-----|-------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------|---|
| 447 | concentration. In this configuration, the soil-infiltration capacity of the soil is too small to accommodate the        |   |                                                                                                             |   |
| 448 | concentrated flow collected upslope, thusupstream, and consequently, thethus groundwater emerges and flows on           |   |                                                                                                             |   |
| 449 | the surface and surface flow is triggered., This constitutes an increase increasinge the of the risk for gully erosion. |   |                                                                                                             |   |
| 450 | In addition, the perturbation on the roads upslopeuphill of the road was assessedAlthough the formation of gullies      |   |                                                                                                             |   |
| 451 | depends of a lot of other factors (Valentin et al., 2005b), such as soil type or the rain intensity, the model showed   |   | Code de champ modifié                                                                                       |   |
| 452 | that downstream L-drain structure may cause runoff-concentration which is an important factor.                          | _ |                                                                                                             |   |
| 453 | A simple recommendation can be made to avoid this runoff concentration.                                                 |   |                                                                                                             |   |
| 454 | If the maximum flow rate capacity of the soil is smaller than the flow rate induced by precipitation, the               |   |                                                                                                             |   |
| 455 | installation of an L-drain structure should not be considered.may lead to surface runoff.                               |   |                                                                                                             |   |
|     |                                                                                                                         |   |                                                                                                             |   |
| 456 | If the maximum flow rate capacity of the soil is larger than the flow rate induced by precipitation, an L-              | _ |                                                                                                             |   |
| 457 | drain may be considered only if the concentred flow calculated by multiplying the drainage area by the                  |   | Mis en forme : Surlignage                                                                                   |   |
| 458 | precipitation is smaller than maximum flow rate capacity of the soil                                                    |   |                                                                                                             |   |
| 459 | Finally, the impact of road structure on the upslopeupstream road dynamics wasmaywere be also assessed (Figure          |   |                                                                                                             |   |
| 460 | not shown)). Figure 11 Figure 11 shows the same information as Figure & Figure & but at 2.5m upslope.                   |   | <b>4is en forme :</b> Anglais (Royaume-Uni)                                                                 |   |
| 461 | Upslopeupstreamhill. It can be seen that for all models, uUpstreamhill flows are similar to the base case model,        |   | Mis en forme : Anglais (Royaume-Uni)                                                                        |   |
| 462 | thus the influence of the road is, not unexpectedly, marginal for all road types, This means that all structures        |   | Mis en forme : Vérifier l'orthographe et la grammaire Mis en forme : Vérifier l'orthographe et la grammaire | _ |
| 463 | allow the groundwater to crossflow across the road-                                                                     |   |                                                                                                             |   |
|     |                                                                                                                         |   |                                                                                                             |   |
| 464 | The                                                                                                                     |   | <b>Mis en forme :</b> Anglais (Canada)                                                                      |   |
| 465 | The significant impact of the L-drain road structure which concentrates groundwater flow is clearly                     |   |                                                                                                             |   |
| 466 | establishedidentified in the numerical approach and is consistent with the field observations. For the other road       |   |                                                                                                             |   |
| 467 | structures alsotoo, the numerical models are consistent with fieldwork results by showing a relatively undisturbed      |   |                                                                                                             |   |
| 468 | groundwater flow downslope the road. The use of numerical models allowed for a quantitative estimation of the           |   |                                                                                                             |   |
| 469 | flow perturbation induced by each road structure and model results were consistent with the field observations. In      |   |                                                                                                             |   |
| 470 | addition, tThe development of models with various combinations of parameters also allowed for exploring a larger        |   |                                                                                                             |   |
| 471 | narameter space than using field work only. For instance, the fact that the impact of an L-drain structure on the       |   |                                                                                                             |   |
| 470 | parameter space than using new work only. For instance, the fact that the impact of an E-trainin structure of the       |   |                                                                                                             |   |
| 472 | water dynamics is less marked if the hydraulic conductivity of soil is low would have been impossible to identify       |   |                                                                                                             |   |
| 473 | by using fieldwork only. However                                                                                        |   |                                                                                                             |   |

474 The mainHowever, a numerical model is always a simplified reproduction of the reality. The simplification 475 of the The main model simplification assumption is that the the assumption that of a homogeneous hydraulic conductivity of the soil is homogeneous. HoweverHoweverGroundwater flow in fens can occur along preferential 476 477 pathways. T, therefore, the models are not able intended to reproduce small-scale 478 observationsprocessesobservations, i.e. the exact hydraulic head in a an individual <u>mini-piezometer</u>, but instead 479 can be used to explore the influence of the road structures under different soil conditions (overall hydraulic 480 conductivity) and slopes. -Given that no horizontal redistribution of the flow downslopedownstream can be 481 simulated,- for this the consideration of heterogeneity would be required, consequently-, the models thus constitute 482 a worst-case scenario. The models-Models results have to be interpreted as an average across multiple preferential 483 flow paths. Nevertheless, tThe models nevertheless allow for a relative ranking of the potential impact and clearly 484 show the increased risk for surface water flow generation and thus gully erosion. Clearly, the L-drain shows the 485 largest impact. The two other road structures are thus the preferred choice. 486 Further investigations should be carried out to identify groundwater velocity flow threshold values above which a

risk of for instance gully erosion is present. This is especially important for L-drain structures where the increase
 of flow velocities is higher than for the other structures. Finally, the impact on sloping fen vegetation related to
 perturbations of the groundwater flow should be further investigated. In this way, road construction could be better
 planned.

| a)                              | Soil hydraulic cond<br>KS1= 8.64 m                                 | luctivity Soil hydraulic condi<br>(d KS2 = 0.864 m      | d Soil hydraulic conductivity<br>KS3 = 0.0864 m/d              |
|---------------------------------|--------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|
| aulic<br>ivity<br>0 m/d         | 9 1.0x10"                                                          | 1.0x10°                                                 | 1.0x10°                                                        |
| ain hydr<br>onducti<br>11 = 864 |                                                                    | ₽⊕ 1.0x10<br>1.0x10 <sup>2</sup>                        | 1.0x10 <sup>2</sup> 0000000                                    |
| E . A                           | 400                                                                | 1.0x10 <sup>-3</sup>                                    | 1.0x10 <sup>-3</sup>                                           |
|                                 | 1.0x10° A B C D E F                                                | GH 1.0x10 <sup>0</sup> A B C D E F C                    | ABCDEFGH                                                       |
| /draulic<br>ictivity<br>364 m/d | .0x10 <sup>-1</sup> ⊕⊕⊕⊕⊕⊕                                         | ਦਾ :<br>⊕⊕ 1.0x10 <sup>1 -</sup> ਵਰ੍ਰਰੁਰੁਣੁਣੁੱ          | 1.0x10 <sup>-1</sup>                                           |
| Condu<br>condu<br>KD2 = {       | 1.0x10 <sup>-2</sup>                                               | 1.0x10 <sup>-2</sup>                                    | 1.0x10 <sup>2</sup> 00000000000000000000000000000000000        |
| -                               | 8 1.0x10 <sup>-3</sup>                                             | 1.0x10 <sup>3</sup>                                     | 1.0x10 <sup>3</sup>                                            |
| y<br>n/d                        | (p) 1.0x10°                                                        | 1.0x10°                                                 | 1.0x10°                                                        |
| hydrau<br>luctivit<br>86.4 n    | € 1.0x10 <sup>-1</sup><br>⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕                            | ⊕⊕ <sup>1.0x10'</sup> <del>©</del> ₽₽₽₽₽                | 1.0x10 <sup>-1</sup>                                           |
| Conc<br>KD3 =                   | 01.0x10 <sup>-2</sup>                                              | 1.0x10 <sup>-2</sup>                                    | 1.0x10² ©@©©©©©Ö©<br>+++++++                                   |
|                                 | 8 1.0x10 <sup>-3</sup><br>A B C D E F                              | GH ABCDEFO                                              | 1.0x10 <sup>3</sup><br>SH ABCDEFGH                             |
|                                 | + no road                                                          | L-drain type                                            | <ul> <li>wood-log type</li> </ul>                              |
| b)                              | <ul> <li>– - Precipitation</li> <li>Soil hydraulic cond</li> </ul> | Maximum soil capacity<br>Iuctivity Soil hydraulic condu | uctivity Soil hydraulic conductivity                           |
| D)                              | KS1= 8.64 m<br>♀ 1.0x10° -                                         | /d KS2 = 0.864 m/                                       | d KS3 = 0.0864 m/d<br>1.0x10 <sup>0</sup>                      |
| tivity<br>40 m/d                | E<br><sup>2</sup><br>1.0x10 <sup>-1</sup> ⊕ ⊕ ⊕ ⊕ ⊕ ⊕              | • 1.0x10 <sup>-1</sup>                                  | a. 1.0x10 <sup>-1</sup>                                        |
| ain hyd<br>onduci<br>11 = 86    | 5 1.0x10 <sup>2</sup> 0 0 0                                        | 1.0x10 <sup>2</sup>                                     | 1.0x10 <sup>2</sup> =                                          |
| E . R                           | 5 1.0x10 <sup>-3</sup>                                             | 1.0x10 <sup>-3</sup>                                    |                                                                |
|                                 | € 1.0x10° A B C D E F                                              | GH 1.0x10° A B C D E F G                                | 1.0x10° A B C D E F G H                                        |
| trivity<br>54 m/d               | 1.0x10 <sup>-1</sup>                                               | ₽<br>₽ ₽ 1.0x10' ₽ ₽ ₽ ₽ ₽ ₽                            | 1.0x10 <sup>-1</sup>                                           |
| ain hyo<br>conduc<br>D2 = 80    | 1.0x10 <sup>2</sup>                                                | 1.0x10 <sup>-2</sup>                                    | 1.0x10 <sup>2</sup> ◎◎◎◎◎◎ <sup>0</sup><br><del>↑↑↑↑↑↑↑↑</del> |
| P X                             | 5 1.0x10 <sup>-3</sup>                                             | 1.0x10 <sup>-3</sup>                                    | 1.0x10 <sup>-3</sup>                                           |
| 0.7                             | 1.0x10° ABCDEF                                                     | GH 1.0x10° ABCDEFG                                      | 1.0x10° A B C D E F G H                                        |
| draulic<br>ctivity<br>6.4 m/d   | <sup>ft</sup> 1.0x10 <sup>-1</sup> ⊕ ⊕ ⊕ ⊕ ⊕ ⊕                     | ₽₽ 1.0x10 <sup>-1</sup> ₽₽₽₽₽                           | • 1.0×10 <sup>-1</sup>                                         |
| condu<br>condu                  | 1.0x10 <sup>-2</sup>                                               | 1.0x10 <sup>-2</sup>                                    | 1.0x10 <sup>-2</sup>                                           |
| ο×                              | 8 1.0x10 <sup>-3</sup>                                             | 1.0x10 <sup>-3</sup>                                    | 1.0x10 <sup>-3</sup>                                           |
|                                 | + no road                                                          | no-excavation type                                      | L-drain type O wood-log type                                   |
|                                 | · Precipitation                                                    | Maximum soil capacity                                   |                                                                |
| C)                              | KS1= 8.64 m/                                                       | d KS2 = $0.864 \text{ m/s}$                             | d KS3 = 0.0864 m/d                                             |
| aulic<br>vity<br>0 m/d          | ate 1 0x10 <sup>-1</sup>                                           | 1.0×10 <sup>-1</sup>                                    | - 10-10-1                                                      |
| in hydr<br>onducti<br>1 = 864   |                                                                    |                                                         |                                                                |
| D o O                           | puno 1 0~10 <sup>3</sup>                                           | 1.0x10 <sup>-3</sup>                                    | 1.0~10 <sup>3</sup>                                            |
|                                 | € 1.0x10° A B C D E F                                              | 3 H 1.0x10° A B C D E F G                               | HA B C D E F G H                                               |
| ivity<br>4 m/d                  | 8<br>1.0x10 <sup>-1</sup>                                          |                                                         | a. 1.0x10 <sup>-1</sup>                                        |
| ain hyd<br>onduct<br>D2 = 86    | 80 90 90 90 90 90 90 90 90 90 90 90 90 90                          | 1.0x10 <sup>-2</sup>                                    | 1.0x10 <sup>2</sup>                                            |
| 2.2                             | 0 1.0x10 <sup>3</sup>                                              | 1.0x10 <sup>-3</sup>                                    | 1.0x10 <sup>-3</sup>                                           |
|                                 | € 1.0x10° A B C D E F 0                                            | A B C D E F G                                           | H 1.0x10 <sup>0</sup> A B C D E F G H                          |
| tivity<br>.4 m/d                | .0x10 <sup>-1</sup> .0x10 <sup>-1</sup> .0x10 <sup>-1</sup>        |                                                         |                                                                |
| ain hyc<br>conduc<br>D3 = 86    | 1.0x10 <sup>-2</sup>                                               | 1.0x10 <sup>2</sup>                                     | 1.0x10 <sup>2</sup>                                            |
| P A                             | 8 1.0x10 <sup>-3</sup>                                             | 1.0x10 <sup>-3</sup>                                    |                                                                |
|                                 | ABCDEF<br>+ no road ◇                                              | GH ABCDEFG<br>no-excavation 🗌 L                         | H ABCDEFGH<br>drain type 🔿 wood-log type                       |
|                                 | Dessisitation                                                      | Adventure and second                                    |                                                                |

| a) the set of a definition of the set of a defi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | Sc                                               | ail hydraulic conductivity             | , Sr                 | ail hydraulic conductivit | v S                  | ail hydraulic conductivity |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------|----------------------------------------|----------------------|---------------------------|----------------------|----------------------------|
| Number         Number         Number         Number         Number           Intervent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a)                   | E 1 0 10                                         | KS1= 8.64 m/d                          |                      | KS2 = 0.864 m/d           |                      | KS3 = 0.0864 m/d           |
| Manual Construction         Market Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.9                  | 9 1.0x10"                                        |                                        | 1.0x10*              | 1                         | 1.0x10*              | 1                          |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | fivity<br>40 m       | 1.0x10 <sup>-1</sup>                             | *******                                | 1.0x10 <sup>-1</sup> |                           | 1.0x10 <sup>-1</sup> |                            |
| $ \begin{array}{c} \begin{array}{c} 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 86                 | er floa                                          |                                        |                      | ****                      |                      |                            |
| $ \begin{array}{c} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf$    | Cor Cor              | 1.0x10*                                          | 0.0                                    | 1.0x10 <sup>-2</sup> |                           | 1.0x10°              | 00000000                   |
| $ \begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 5 1.0x10 <sup>-3</sup>                           | 32.3                                   | 1.0x10 <sup>-3</sup> | 9.3                       | 1.0x10 <sup>-3</sup> | 1.7                        |
| No.00         I.0x10 <sup>1</sup> I.0x10 <sup>1</sup> I.0x10 <sup>1</sup> I.0x10 <sup>1</sup> I.0x10 <sup>1</sup> 91004740000         10x10 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | 5 1 0~100                                        | ABCDEFGH                               | 1.0~100              | ABCDEFGH                  | 1.0~100              | ABCDEFGH                   |
| $ \begin{array}{c} 10x10^{\circ} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9 . P                | E I.OKTO                                         |                                        | 1.0410               |                           | 1.0410               | 1                          |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H H                  | 1.0x10 <sup>-1</sup>                             |                                        | 1.0x10 <sup>-1</sup> | -                         | 1.0x10 <sup>-1</sup> |                            |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 86                 | - <u>6</u>                                       | 0 0                                    |                      | ******                    |                      |                            |
| $ \begin{array}{c} \mathbf{C} \\ \mathbf$    | Con rain             | 1.0x10*                                          |                                        | 1.0x10°              |                           | 1.0x10*              | 0000000                    |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} AB \ C \ D \ E \ F \ G \ H \\ \hline 1 \ 0x10^{2} \\ \hline 1 \ 0x10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | 5 1.0x10 <sup>3</sup>                            | 22.8                                   | 1.0x10 <sup>-3</sup> | 9.1                       | 1.0x10 <sup>-2</sup> | 1.7                        |
| $ \begin{array}{c} \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | S 1 0-10 <sup>9</sup>                            | ABCDEFGH                               | 1.0~100              | ABCDEFGH                  | 1.0~100              | ABCDEFGH                   |
| $ \begin{array}{c} \begin{array}{c} 1 0x10^{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.9                  | E I.OKTO                                         |                                        | 1.0410               |                           | 1.0410               |                            |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tivit.               | 1.0x101                                          | ******                                 | 1.0x10 <sup>-1</sup> | *******                   | 1.0x10 <sup>-1</sup> |                            |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | aduc<br>aduc         | of the second                                    | 0 0 0 0                                |                      | ******                    |                      |                            |
| $ \begin{array}{c} \mathbf{a} \\ \mathbf{b} \\ \mathbf{b} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf$    | Con rain             | 1.0x10°                                          | 1                                      | 1.0x10°              | 1                         | 1.0x10 <sup>-2</sup> | 00000000                   |
| A B C D E F G H<br>A B C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • •                  | 5 1.0x10 <sup>-3</sup>                           | 9.4                                    | 1.0x10 <sup>-3</sup> | 3.5                       | 1.0x10 <sup>-3</sup> | 1.7                        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | 0                                                | ABCDEFGH                               |                      | ABCDEFGH                  |                      | ABCDEFGH                   |
| b) Soli hydraulic conductivity Soli hydraulic conductivity KS2 = 0.064 mid 1.0x10 <sup>2</sup><br>KS2 = 0.064 mid 1.0x102 $KS2 = 0.064 mid 1.0x102$ $KS =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | +                                                | - no road 🛛                            | L-drain              | type O                    | wood-                | log type                   |
| b) Soit bydraulic conductivity Soit bydraulic conductivity KS2 = 0.084 mid<br>KS2 = 0.084 mid<br>1.0x10 <sup>2</sup> 1.0x10 <sup>2</sup> 1.                                                                                                          |                      |                                                  | · Precipitation                        | Maxim                | um soil capacity          |                      |                            |
| KS1 = 0.6864 mid         KS2 = 0.6864 mid         KS2 = 0.6864 mid         KS3 = 0.0864 mid           Introduction         Introtion         Introduction         Introducti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | b)                   | Sc                                               | bil hydraulic conductivity             | so So                | il hydraulic conductivit  | y So                 | bil hydraulic conductivity |
| $ \begin{array}{c} \begin{array}{c} 1 0x10^{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5)                   | € 1.0×10 <sup>0</sup>                            | KS1= 8.64 m/d                          | 1.0×10 <sup>0</sup>  | KS2 = 0.864 m/d           | 1.0x10°              | KS3 = 0.0864 m/d           |
| $ \begin{array}{c} 10x10^{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No lie               | (LL) of                                          | D                                      |                      |                           |                      |                            |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | drau<br>40 n         | 1.0x101                                          | *******                                | 1.0x10 <sup>-1</sup> | *******                   | 1.0x10 <sup>-1</sup> |                            |
| $ \begin{array}{c} \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 86                 | in a second                                      | 0 0                                    |                      |                           |                      |                            |
| $ \begin{array}{c} \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AC Col               | 8 1.0x10*                                        |                                        | 1.0x10*              |                           | 1.0x10*              | *******                    |
| $ \begin{array}{c} 1 0x10^{\circ} \\ 1 0x10^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 8 1.0x10 <sup>-3</sup>                           | 39.0                                   | 1.0x10 <sup>-3</sup> | 16.0                      | 1.0x10 <sup>-3</sup> | 1.7                        |
| Open particular         Description         Description <thdescription< th=""></thdescription<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | \$ 1 0x10°                                       | ABCDEFGH                               | 1 0x10 <sup>0</sup>  | ABCDEFGH                  | 1.0x10 <sup>0</sup>  | ABCDEFGH                   |
| $ \begin{array}{c} 10x10^{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 P                  | (L)                                              | 0                                      |                      |                           |                      |                            |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hand Hand            | 2 1.0x10 <sup>-1</sup>                           | *******                                | 1.0x10 <sup>-1</sup> | *******                   | 1.0x10 <sup>-1</sup> |                            |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 86                 | for to the                                       | 0.00                                   |                      | 0 0                       |                      | 00000000                   |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | fon rain             | 1.0x10*                                          |                                        | 1.0x10*              | 3.0                       | 1.0x10*              | +++++++                    |
| $ \begin{array}{c} 1 \ 0x10^{\circ} \\ 1 \ 0x10^{\circ} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 0                  | 8 1.0x10 <sup>-3</sup>                           | 26.7                                   | 1.0x10 <sup>-3</sup> | 15.3                      | 1.0x10 <sup>-3</sup> | 1.7                        |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | € 1.0x10 <sup>0</sup>                            | ABCDEFGH                               | 1.0x10 <sup>0</sup>  | ABCDEFGH                  | 1.0x10°              | ABCDEFGH                   |
| $ \begin{array}{c} \begin{array}{c} 10x10^{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U D                  | (L)                                              | 0                                      |                      |                           |                      |                            |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nivity<br>A m        | <sup>8</sup> / <sub>≥</sub> 1.0x10 <sup>-1</sup> | *******                                | 1.0x10"              | *******                   | 1.0x10 <sup>-1</sup> | 1                          |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | duct<br>abd          | for a fer fo                                     | 0000                                   |                      | 0 0                       |                      |                            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Con rain             | 8 1.0X10                                         | 1                                      | 1.0x10-              | 1                         | 1.0x10               | *****                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 ¥                  | g 1.0x10 <sup>-3</sup>                           | 10.6                                   | 1.0x10 <sup>-3</sup> | 11.5                      | 1.0x10 <sup>-3</sup> | - 1.7                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                                                  | ABCDEFGH                               |                      | ABCDEFGH                  |                      | ABCDEFGH                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | + no r                                           | road 🔷 no-ex                           | cavation             | type 🗌 L-dra              | ain type             | O wood-log type            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | · Pre                                            | cipitation — Maxim                     | num soil             | capacity                  |                      |                            |
| $\begin{array}{c} \mathbf{KS} = 0.084 \text{ m/d} \\ \mathbf{KS} = 0.010^{10} \text{ m/d} \\ \mathbf{KS} = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c)                   | So                                               | il hydraulic conductivity              | So                   | il hydraulic conductivity | y So                 | il hydraulic conductivity  |
| $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -/                   | € 1.0x10 <sup>0</sup>                            | KS1= 8.64 m/d                          | 1.0x10 <sup>0</sup>  | KS2 = 0.864 m/d           | 1.0x10 <sup>9</sup>  | KS3 = 0.0864 m/d           |
| $ \begin{array}{c} 1 0x10^{\circ} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | th mid               | E) a                                             | o                                      |                      |                           |                      |                            |
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | drai<br>ctivi<br>640 | 2 1.0x10 <sup>1</sup>                            | *******                                | 1.0x10 <sup>-1</sup> | *******                   | 1.0x10 <sup>-1</sup> |                            |
| $ \begin{array}{c} \begin{array}{c} B \\ \hline G \\ \hline \hline G \\ \hline G \\$ | in h                 | 1 0x10 <sup>2</sup>                              | 0 0                                    | 1.0x10 <sup>-2</sup> | 0 0                       | 1.0x10 <sup>-2</sup> | 200000000                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AC OF                | EMPL                                             |                                        | 1.0410               | 296                       | 1.0410               | 10                         |
| $ \begin{array}{c} 1 0x10^{0} \\ 1 0x10^{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | g 1.0x10 <sup>-3</sup>                           | 1, , , , , , , , , , , , , , , , , , , | 1.0x10 <sup>-3</sup> | 28.0                      | 1.0x10 <sup>-3</sup> | 1.0                        |
| Image: Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                                                  | ABCDEFGH                               | 1.0x10°              | ABCDEFGH                  | 1.0x10°              | ABCDEFGH                   |
| $ \begin{array}{c} \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A A                  | E) a                                             |                                        |                      |                           |                      | 1                          |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | drau<br>64 n         | E 1.0x101                                        | *******                                | 1.0x10 <sup>-1</sup> | *******                   | 1.0x10 <sup>-1</sup> |                            |
| $ \begin{array}{c} 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n hy<br>ndu          | 50 1 0×10 <sup>2</sup>                           | 0 0                                    | 1.0x10 <sup>-2</sup> | 0 0                       | 1.0x10 <sup>2</sup>  | 00000000                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pa S G               | mpun                                             | 0 0<br>72 2                            |                      | 20.4                      |                      | 10                         |
| A B C D E F G H<br>10x10 <sup>0</sup><br>10x10 <sup>0</sup><br>10x10 <sup>0</sup><br>10x10 <sup>0</sup><br>10x10 <sup>0</sup><br>10x10 <sup>0</sup><br>A B C D E F G H<br>10x10 <sup>1</sup><br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Con V                | g 1.0x10 <sup>-3</sup>                           | /3.3                                   | 1.0x10 <sup>-3</sup> | 28.4                      | 1.0x10 <sup>-3</sup> | 1.8                        |
| Signature         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | € 1.0x10°                                        | ABCDEFGH                               | 1.0x10 <sup>0</sup>  | ABCDEFGH                  | 1.0x10 <sup>0</sup>  | ABCDEFGH                   |
| Battanger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>unger<br>un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e P                  | E e                                              | 0                                      |                      |                           |                      |                            |
| ABCDEFGH         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tivit                | 2 1.0x10 <sup>-1</sup>                           | *******                                | 1.0x10 <sup>-1</sup> | *******                   | 1.0x10 <sup>-1</sup> |                            |
| matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 86                 | e                                                |                                        |                      | 0 0                       |                      | 00000000                   |
| B         0'.7'         20.5         1.8           A B C D E F G H         A B C D E F G H         A B C D E F G H         A B C D E F G H           +         no road         0         no-excavation         □         L-drain type         0         wood-log type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CON CON              | 8 1.0x10*                                        | 0.0                                    | 1.0x10*              | B 9                       | 1.0x10 <sup>-2</sup> | *******                    |
| ABCDEFGH ABCDEFGH<br>+ no road $\diamond$ no-excavation<br>L-drain type $\bigcirc$ wood-log type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | g 1.0x10 <sup>-3</sup>                           | 67.7                                   | 1.0x10 <sup>-3</sup> | 26.5                      | 1.0x10 <sup>-3</sup> | 1.8                        |
| + no road 🔷 no-excavation 🗌 L-drain type 🔾 wood-log type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                                                  | ABCDEFGH                               |                      | ABCDEFGH                  |                      | ABCDEFGH                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | + no ro                                          | bad 🔷 no-exc                           | avation              | L-drai                    | n type               | O wood-log type            |

Figure 8 : Simulated groundwater <u>flow ratesratesvelocities</u> 2m <u>downslope downstream</u> each road <u>structurestructureses</u>
 and each parameter combination with a slope of a) 10%, b) 20% and c) 30%. <u>Numbers at the bottom right of each</u>
 panel are the ratio between maximum and minimum groundwater flow within the LLI-drain transect



 499
 Figure **2**: Extent of perturbations due to the LiL-drain road type: Simulated groundwater <u>\*-flow ratesrateselocities at</u>

 500
 G point section G at for</u> different distances the road.

Code de champ modifié

| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hydraulic conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Soil h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hydraulic conductivity                                                                                                                            | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hydraulic conductivity                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 훈 1.0x10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0x10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 102 - 0.004 110                                                                                                                                   | 1.0x10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0004 m/d                                                                                                                                |
| /draulic<br>ictivity<br>640 m/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e) etc. 1.0x101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 66666666                                                                                                                                          | 1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                           |
| n une                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the 1.0x10-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0x10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                   | 1.0x10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                           |
| 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mpuno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ****                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ອ 1.0x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ABCDEEGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ABCDEEGH                                                                                                                                          | 1.0x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ABCDEEGH                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | € 1.0x10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0x10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ABOBEION                                                                                                                                          | 1.0x10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           |
| tivity<br>4 m/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                   | 1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                           |
| n nya<br>nduc<br>= 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ler flov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del>~~~~~~</del>                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           |
| KD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0x10*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0x10*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                   | 1.0x10*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *******                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g 1.0x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                   | 1.0x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | € 1.0x10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ABCDEFGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0x10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ABCDEFGH                                                                                                                                          | 1.0x10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ABCDEFGH                                                                                                                                  |
| vity<br>1 m/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9 1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                   | 1.0×10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                           |
| ducti<br>86.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ir flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           |
| Concerned and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0x10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0x10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                   | 1.0x10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *******                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 1.0x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                   | 1.0x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | de de de de de de de                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ABCDEFGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ABCDEFGH                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ABCDEFGH                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | + no road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L-di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rain type                                                                                                                                         | O w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ood-log type                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Precipitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ty So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | il hydraulic conductivi                                                                                                                           | ity s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oil hydraulic conductivi                                                                                                                  |
| )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ 1 0×10 <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KS1= 8.64 m/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0~100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | KS2 = 0.864 m/d                                                                                                                                   | 1.0~100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KS3 = 0.0864 m/d                                                                                                                          |
| hy m/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e (E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                   | 1.0410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                           |
| uctiv<br>3640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E 1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ******                                                                                                                                            | 1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                           |
| = 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | le 1.0x10 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0x10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                   | 1.0x10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                           |
| 2 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | wpuno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ĕ 1.0x10™                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ABCDEFGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0x10*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ABCDEFGH                                                                                                                                          | 1.0x10*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ABCDEFGH                                                                                                                                  |
| 2. D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (家 1.0x10 <sup>0</sup> ) (史)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0x10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                 | 1.0x10 <sup>d</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                         |
| tivit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *****                                                                                                                                             | 1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                           |
| conduc<br>CD2 = 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 1.0x10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0x10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                   | 1.0x10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *******                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00 1 0x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0×10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                   | 1 0x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 1.0×10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ABCDEFGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0×10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ABCDEFGH                                                                                                                                          | 1.0×10 <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ABCDEFGH                                                                                                                                  |
| A P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (LL) a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                   | 1.0410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                           |
| activi<br>36.4 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E 1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *******                                                                                                                                           | 1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                           |
| 3 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0x10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                   | 1.0x10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *******                                                                                                                                   |
| n X O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T 1.0x10*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44444444                                                                                                                                  |
| 2 Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tempunou<br>4 0 4 10 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10-103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                   | 10.103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                           |
| 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E 1.0x10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ABCDEFGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ABCDEFGH                                                                                                                                          | 1.0x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ABCDEFGH                                                                                                                                  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | + no ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ABCDEFGH<br>bad ◇ no-ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ABCDEFGH<br>type 🗌 L-dra                                                                                                                          | 1.0x10 <sup>-3</sup><br>ain type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A B C D E F G H<br>O wood-log type                                                                                                        |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | + no ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A B C D E F G H<br>bad ◇ no-ex<br>ipitation — Maxi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0x10 <sup>-3</sup><br>ccavation 1<br>mum soil c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ABCDEFGH<br>type □ L-dra<br>capacity                                                                                                              | 1.0x10 <sup>.3</sup><br>ain type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ABCDEFGH<br>O wood-log type                                                                                                               |
| )<br>2 2 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + no ro<br>· Prec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A B C D E F G H<br>cad $\diamondsuit$ no-e:<br>ipitation Maxi<br>Ni hydraulic conductivi<br>KS1= 8.64 m/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0x10 <sup>-3</sup><br>ccavation 1<br>mum soil c<br>ty So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A B C D E F G H<br>type L-dra<br>aapacity<br>il hydraulic conductivi<br>KS2 = 0.864 m/d                                                           | 1.0x10 <sup>3</sup><br>ain type<br>ity S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A B C D E F G H<br>wood-log type<br>oil hydraulic conductivi<br>KS3 = 0.0864 m/d                                                          |
| () () () () () () () () () () () () () (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + no ro<br>Prec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A B C D E F G H<br>coad $\diamondsuit$ no-ex<br>ipitation Maxi<br>NI hydraulic conductivi<br>KS1= 8.64 m/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0x10 <sup>-3</sup><br>xcavation f<br>mum soil o<br>ty So<br>1.0x10 <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A B C D E F G H<br>type L-dra<br>capacity<br>il hydraulic conductivi<br>KS2 = 0.864 m/d                                                           | 1.0x10 <sup>-3</sup><br>ain type<br>ity S<br>1.0x10 <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A B C D E F G H<br>wood-log type<br>oil hydraulic conductivi<br>KS3 = 0.0864 m/d                                                          |
| ctivity (C CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | € 1.0x10 <sup>-1</sup><br>→ no ro<br>Prec<br>Sc<br>() 1.0x10 <sup>-1</sup><br>= 1.0x10 <sup>-1</sup><br>= 1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A B C D E F G H<br>coad ◇ no-ei<br>ipitation → Maxi<br>Nydraulic conductivi<br>KS1=8.64 m/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0x10 <sup>-3</sup><br>xcavation 1<br>mum soil c<br>ty So<br>1.0x10 <sup>0</sup><br>1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A B C D E F G H<br>type                                                                                                                           | 1.0x10 <sup>-3</sup><br>ain type<br>ity S<br>1.0x10 <sup>0</sup><br>1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A B C D E F G H<br>wood-log type<br>oil hydraulic conductivi<br>KS3 = 0.0864 m/d                                                          |
| an ny arauna ( Ura<br>onductivity c.<br>1 = 8640 m/d KD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0x10 <sup>-1</sup> 1.0x10 <sup>-3</sup> + no ro     · Prec     Sc     (n: 1.0x10 <sup>-1</sup> (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A B C D E F G H<br>Dad ♦ no-ei<br>ipitation Maxi<br>NH hydraulic conductivi<br>KS1= 8.64 m/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0x10 <sup>-3</sup><br>xcavation f<br>mum soil o<br>ty So<br>1.0x10 <sup>-0</sup><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A B C D E F G H<br>type  L-dra<br>capacity It hydraulic conductivi<br>KS2 = 0.864 m/d                                                             | 1.0x10 <sup>-3</sup><br>ain type<br>ity S<br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A B C D E F G H<br>wood-log type                                                                                                          |
| Conductivity Condu | t.0x10 <sup>-1</sup><br>+ no rα<br>Prec<br>Sc<br>(0.1.0x10 <sup>-1</sup><br>*<br>1.0x10 <sup>-1</sup><br>*<br>*<br>1.0x10 <sup>-1</sup><br>*<br>*<br>1.0x10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A B C D E F G H<br>bad ◇ no-ei<br>ipitation — Maxi<br>bil hydraulic conductivi<br>KS1= 8.64 m/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0x10 <sup>-3</sup><br>xcavation f<br>mum soil o<br>ty So<br>1.0x10 <sup>0</sup><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A B C D E F G H<br>type  L-dra<br>capacity II hydraulic conductivi<br>KS2 = 0.864 m/d                                                             | 1.0x10 <sup>-3</sup><br>ain type<br>ity <b>S</b><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A B C D E F G H<br>wood-log type<br>oil hydraulic conductivi<br>KS3 = 0.0864 m/d                                                          |
| Conductivity Condu | (p) 1.0x10 <sup>-1</sup><br>+ no rc<br>Prec<br>Sc<br>(p) 1.0x10 <sup>-1</sup><br>+ 1.0x10 <sup>-1</sup><br>+ 1.0x10 <sup>-1</sup><br>+ 1.0x10 <sup>-1</sup><br>+ 1.0x10 <sup>-2</sup><br>+ 1.0x10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A B C D E F G H<br>bad $\diamond$ no-ex<br>ipitation — Maxi<br>In hydraulic conductivi<br>KS1= 8.64 m/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0x10 <sup>-3</sup><br>xcavation f<br>mum soil o<br>ty So<br>1.0x10 <sup>-0</sup><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-2</sup><br>1.0x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A B C D E F G H<br>type L-dra<br>capacity<br>ill hydraulic conductivi<br>KS2 = 0.864 m/d                                                          | 1.0x10 <sup>-3</sup><br>ain type<br>ity <b>S</b><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-2</sup><br>1.0x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A B C D E F G H<br>wood-log type<br>oil hydraulic conductivi<br>KS3 = 0.0864 m/d<br>C D E E C C                                           |
| c Drain nycraulic (. Dra<br>conductivity C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | te 1.0x10 <sup>-1</sup><br>+ no rc<br>· Prec<br>Sc<br>(0,1.0x10 <sup>3</sup><br>+ 1.0x10 <sup>1</sup><br>(1,0x10 <sup>1</sup><br>1.0x10 <sup>1</sup><br>1.0x10 <sup>1</sup><br>1.0x10 <sup>2</sup><br>(0,1.0x10 <sup>3</sup><br>1.0x10 <sup>3</sup><br>(0,1.0x10 <sup>3</sup><br>1.0x10 <sup>3</sup><br>(0,1.0x10 <sup>3</sup><br>1.0x10 <sup>3</sup><br>(0,1.0x10 <sup>3</sup><br>1.0x10 <sup>3</sup><br>(0,1.0x10 <sup>3</sup><br>1.0x10 <sup>3</sup><br>(0,1.0x10 <sup>3</sup><br>(0                                                                                                                                                                                                                                                                                                                                                                                                                            | A B C D E F G H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0x10 <sup>-3</sup><br>xcavation 1<br>mum soil d<br>ty So<br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-2</sup><br>1.0x10 <sup>-3</sup><br>1.0x10 <sup>-9</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A B C D E F G H<br>type L-dra<br>capacity<br>iit hydraulic conductivi<br>KS2 = 0.864 mid<br>A B C D E F G H                                       | 1.0x10 <sup>-3</sup><br>ain type<br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-2</sup><br>1.0x10 <sup>-3</sup><br>1.0x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A B C D E F G H<br>wood-log type<br>oil hydraulic conductivi<br>KS3 = 0.0864 mid<br>************************************                  |
| tivity conductivity (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | терплико<br>1.0x10 <sup>-1</sup><br>+ по гг<br>Ресс<br>5x<br>(0,(ш) яци лох10 <sup>3</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A B C D E F G H<br>oad $\Diamond$ no-e:<br>piptation Maxia<br>bil hydraulic common Maxia<br>KS1= 8.64 mid<br>e & & & & & & & & & & & & & & & & & & &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0x10 <sup>3</sup><br>xceavation 1<br>mum soil of<br>ty So<br>1.0x10 <sup>0</sup><br>1.0x10 <sup>1</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>3</sup><br>1.0x10 <sup>9</sup><br>1.0x10 <sup>9</sup><br>1.0x10 <sup>9</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A B C D E F G H<br>type L-drc<br>capacity<br>III hydraulic conductivit<br>KS2 = 0.844 m/d<br>********<br>A B C D E F G H                          | 1.0x10 <sup>-3</sup><br>ain type<br>ity S<br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-2</sup><br>1.0x10 <sup>-3</sup><br>1.0x10 <sup>-0</sup><br>1.0x10 <sup>-0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A B C D E F G H<br>wood-log type<br>oil hydraulic conductivi<br>KS3 = 0.0864 m/d<br>A B C D E F G H                                       |
| rinyoraduc Drann yoraduc Controverse Contr | tox10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A B C D E F G H<br>Dad ◇ no-e:<br>pipitation → Maxi<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Maxia<br>Max | 1.0x10 <sup>3</sup><br>xcavation 1<br>mum soil o<br>1.0x10 <sup>0</sup><br>1.0x10 <sup>1</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>3</sup><br>1.0x10 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A B C D E F G H<br>yppe L-drr<br>capacity<br>III hydraulic conductivit<br>KS2 = 0.844 m/d<br>A B C D E F G H                                      | 1.0x10 <sup>-3</sup><br>ain type<br>ity <b>S</b><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-2</sup><br>1.0x10 <sup>-3</sup><br>1.0x10 <sup>-3</sup><br>1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A B C D E F G H<br>wood-log type<br>oil hydraulic conductivi<br>KS3 = 0.0864 m/d<br>A B C D E F G H                                       |
| KD2 = 864 m/d KD1 = 8640 m/d KD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ериппо<br>1.0x10 <sup>-1</sup><br>+ потко<br>Ргес<br>Sc<br>(h(l)) вы намонима<br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A B C D E F G H<br>ad One-<br>ispitation Maxie<br>IN tydraulic conductivi<br>KS1= 8.64 m/d<br>A B C D E F G H<br>A B C D E F G H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0x10 <sup>3</sup><br>xcavation 1<br>mum soil of<br>ty So<br>1.0x10 <sup>9</sup><br>1.0x10 <sup>3</sup><br>1.0x10 <sup>9</sup><br>1.0x10 <sup>9</sup><br>1.0x10 <sup>1</sup><br>1.0x10 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A B C D E F G H<br>type L dra<br>capacity<br>III hydraulic conductivit<br>KS2 = 0.864 m/d<br>A B C D E F G H                                      | 1.0x10 <sup>-3</sup><br>ain type<br>ity <b>S</b><br>1.0x10 <sup>-0</sup><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-0</sup><br>1.0x10 <sup>-0</sup><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A B C D E F G H<br>wood-log type<br>oil hydraulic conductivi<br>KS3 = 0.0864 mid<br>A B C D E F G H<br>A B C D E F G H                    |
| Control of the contro | ериппи<br>1.0x10 <sup>-1</sup><br>+ по гос<br>Р Ресс<br>Sc<br>(h(u)) жи лолоз<br>1.0x10 <sup>3</sup><br>1.0x10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A B C D E F G H<br>aad ◇ no-e:<br>sipitation ─ Maxixi<br>III hydraulic conduiti<br>KS1= 8.64 mid<br>A B C D E F G H<br>⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0x10 <sup>3</sup><br>xcavation 1<br>mum soil of<br>ty So<br>1.0x10 <sup>0</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>9</sup><br>1.0x10 <sup>9</sup><br>1.0x10 <sup>9</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A B C D E F G H<br>type C L-dra<br>trapacity<br>III hydraulic conductivit<br>KS2 = 0.864 m/d<br>A B C D E F G H                                   | 1.0x10 <sup>-3</sup><br>ain type<br>ity S<br>1.0x10 <sup>-0</sup><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-0</sup><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-2</sup><br>1.0x10 <sup>-2</sup><br>1.0x10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A B C D E F G H<br>wood-log type<br>oll hydraulic conductivi<br>KS3 = 0.0864 m/d<br>A B C D E F G H<br>A B C D E F G H                    |
| conductivity conductivity conductivity (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | терного<br>1.0x10 <sup>-1</sup><br>+ потк<br>Ресс<br>Sc<br>(hul) неи хода извенения<br>1.0x10 <sup>3</sup><br>1.0x10 | A B C D E F G H<br>aad ◇ no-ei<br>ipitation → Maxim<br>Invatraulic conductivi<br>KS1= 8.64 m/d<br>A B C D E F G H<br>A B C D E F G H<br>A B C D E F G H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0x10 <sup>3</sup><br>xcavation f<br>mum soil o<br>ty So<br>1.0x10 <sup>9</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>1</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A B C D E F G H<br>type L-dra<br>capacity<br>III hydraulic conductivi<br>KS2 = 0.864 mid<br>A B C D E F G H<br>A B C D E F G H<br>A B C D E F G H | 1.0x10 <sup>-3</sup><br>ain type<br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-2</sup><br>1.0x10 <sup>-2</sup><br>1.0x10 <sup>-2</sup><br>1.0x10 <sup>-2</sup><br>1.0x10 <sup>-2</sup><br>1.0x10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A B C D E F G H<br>wood-log type<br>oli hydraulic conductivi<br>KS3 = 0.0864 m/d<br>A B C D E F G H<br>A B C D E F G H<br>A B C D E F G H |
| inic conductivity conductivity of KD1 = 8640 m/d KD2 = 864 m/d KD1 = 8640 m/d KD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | инстрикции (1.0x10 <sup>-1</sup><br>+ потк<br>Ресс<br>Sr<br>(hul) не жид натематики<br>1.0x10 <sup>-1</sup><br>(hul) не жид натематики<br>1.0x10 <sup>-1</sup><br>(hul) не жид натематики<br>1.0x10 <sup>-1</sup><br>(hul) не жид натематики<br>1.0x10 <sup>-2</sup><br>(hul) не жид на техно-<br>1.0x10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A B C D E F G H<br>aad ◇ no-e;<br>ipipitation → Maxi<br>Itydraulic conductivi<br>KS1= 8.64 mid<br>A B C D E F G H<br>A B C D E F G H<br>A B C D E F G H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0x10 <sup>3</sup><br>xcavation f<br>mum soil of<br>ty So<br>1.0x10 <sup>9</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>1</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A B C D E F G H                                                                                                                                   | 1.0x10 <sup>-3</sup><br>ain type<br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-2</sup><br>1.0x10 <sup>-2</sup><br>1.0x10 <sup>-2</sup><br>1.0x10 <sup>-2</sup><br>1.0x10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A B C D E F G H<br>wood-log type<br>oil hydraulic conductivi<br>KS3 = 0.0864 m/d<br>A B C D E F G H<br>A B C D E F G H<br>A B C D E F G H |
| Voraulic Uranilic Uranili Voraulic Ura<br>Voraulic Conductivity Conductivity of<br>86.4 m/d KD2 = 86.4 m/d KD1 = 86.40 m/d KD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | терпоно<br>1.0x10 <sup>-1</sup><br>Ргес<br>Sc<br>(h,ll) лих10 <sup>-3</sup><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-1</sup>                                                                                                                                                        | A B C D E F G H<br>ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0x10 <sup>3</sup><br>xcavation to<br>ty So<br>1.0x10 <sup>9</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A B C D E F G H                                                                                                                                   | 1.0x10 <sup>-3</sup><br>ain type<br>ity S<br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-2</sup><br>1.0x10 <sup>-3</sup><br>1.0x10 <sup>-3</sup><br>1.0x10 <sup>-1</sup><br>1.0x10 <sup>-3</sup><br>1.0x10 <sup>-3</sup><br>1.0x10 <sup>-3</sup><br>1.0x10 <sup>-3</sup><br>1.0x10 <sup>-3</sup><br>1.0x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A B C D E F G H<br>wood-log type<br>oil hydraulic conductivi<br>KS3 = 0.0864 m/d<br>A B C D E F G H<br>A B C D E F G H<br>A B C D E F G H |
| contribution variation variatio variatio variation variation variation variation varia | терника<br>1.0x10 <sup>-1</sup><br>Ргес<br>Sc<br>(h,ll) Вил Алабо<br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A B C D E F G H           bad         > no-e;           ipplation         Maximum           ipplation         Maximum           ipplation         A B C D E F G H           Ipplation         Ipplation           A B C D E F G H           Ipplation           A B C D E F G H           Ipplation           A B C D E F G H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0x10 <sup>3</sup><br>xcavation f<br>ty So<br>1.0x10 <sup>9</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A B C D E F G H                                                                                                                                   | 1.0x10 <sup>3</sup><br>intype<br>ity S<br>1.0x10 <sup>4</sup><br>1.0x10 <sup>4</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup></sup> | A B C D E F G H<br>wood-log type<br>oil hydraulic conductivi<br>KS3 = 0.0864 mid<br>A B C D E F G H<br>A B C D E F G H<br>A B C D E F G H |
| KD3 = 86.4 m/d KD2 = 86.4 m/d KD1 = 86.40 m/d KD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | терного<br>1.0x10 <sup>-1</sup><br>+ потк<br>Ргес<br>Sc<br>(1,0,10 <sup>-1</sup><br>1.0x10                                                                                                                                                                 | A B C D E F G H<br>A B C D E F G H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0x10 <sup>3</sup><br>xcavation of the second of the se | A B C D E F G H<br>ype L-drr<br>capacity<br>III hydraulic conductivit<br>KS2 = 0.844 m/d<br>A B C D E F G H<br>A B C D E F G H<br>+++++++         | 1.0x10 <sup>3</sup><br>intype<br>ity S<br>1.0x10 <sup>4</sup><br>1.0x10 <sup>4</sup><br>1.0x10 <sup>2</sup><br>1.0x10 <sup></sup> | A B C D E F G H                                                                                                                           |



Code de champ modifié

 512
 Figure 10 : Simulated surface flow of the KS2-KD2 model and a slope of 20% for each road structure. The results

 513
 clearly indicate the increased risk caused by the L-drain of triggering surface runoff and thus potentially gully 

 514
 erosion and the drying out of sections of the wetland

| a)                                              | 501                                                 | KS1= 8.64 m/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0×10° -             | KS2 = 0.864 m/d                           | 1.0×10 <sup>0</sup>  | KS3 = 0.0864 m/c                                                                                               |
|-------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------|
| ity<br>m/d                                      | te (m <sup>1</sup> )                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                           |                      |                                                                                                                |
| hydra<br>luctiv<br>8640                         | E 1.0x10 <sup>1</sup>                               | $\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0x10 <sup>-1</sup>  | <u>.</u>                                  | 1.0x10 <sup>-1</sup> |                                                                                                                |
| conc<br>CD1 =                                   | 1.0x10 <sup>-2</sup>                                | - Jacob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0x10 <sup>-2</sup>  |                                           | 1.0x10 <sup>-2</sup> |                                                                                                                |
|                                                 | g 1.0x10 <sup>-3</sup>                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0x10 <sup>-3</sup>  |                                           | 1.0x10 <sup>-3</sup> | *****                                                                                                          |
|                                                 |                                                     | ABCDEFGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0x10 <sup>0</sup> - | ABCDEFGH                                  | 1.0x10 <sup>0</sup>  | ABCDEFG                                                                                                        |
| draulic<br>stivity<br>64 m/d                    | E)<br>9<br>2<br>3<br>2<br>3<br>1.0x10 <sup>-1</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0x10 <sup>-1</sup>  |                                           | 1.0x10 <sup>-1</sup> |                                                                                                                |
| in hy<br>anduc                                  | e 10x10 <sup>-2</sup>                               | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0x10 <sup>-2</sup>  | <del>*********</del>                      | 1.0x10 <sup>-2</sup> |                                                                                                                |
| a oy                                            | wpuno                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                                           |                      | ******                                                                                                         |
|                                                 | ල 1.0x10°                                           | ABCDEFGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0x10° -             | ABCDEFGH                                  | 1.0x10° -            | ABCDEFG                                                                                                        |
| Nd Vd                                           | p 1.0x10"                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0x10"               |                                           | 1.0x10"              |                                                                                                                |
| drau<br>ctivit                                  | 8 1.0x10 <sup>-1</sup>                              | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0x10 <sup>-1</sup>  | จัดจัดจัดจัด                              | 1.0x10 <sup>-1</sup> |                                                                                                                |
| ain hy<br>condu                                 | units 1.0x10 <sup>2</sup>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0x10 <sup>-2</sup>  |                                           | 1.0x10 <sup>-2</sup> |                                                                                                                |
| E of                                            | punous 1.0×10 <sup>-3</sup>                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0×10 <sup>-3</sup>  |                                           | 1.0×10 <sup>-3</sup> | ******                                                                                                         |
|                                                 | 0 1.0010                                            | ABCDEFGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0410                | ABCDEFGH                                  | 1.0410               | ABCDEFG                                                                                                        |
|                                                 |                                                     | + no road<br>· Precipitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L-di<br>— Max         | rain type<br>kimum soil capacity          | ⊖ wa                 | od-log type                                                                                                    |
| b)                                              | S                                                   | oil hydraulic conductivi<br>KS1= 8.64 m/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ty So                 | il hydraulic conductiv<br>KS2 = 0.864 m/d | ity So               | KS3 = 0.0864                                                                                                   |
| ty<br>m/d                                       | 9 1.0x10°                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0x10*               |                                           | 1.0x10*              | la superior de la constante de |
| ydrau<br>uctivi<br>8640                         | 1.0x10 <sup>-1</sup>                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0x10 <sup>-1</sup>  | ******                                    | 1.0x10 <sup>-1</sup> |                                                                                                                |
| cond<br>D1 =                                    | Late 1.0x10 <sup>-2</sup>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0x10 <sup>-2</sup>  |                                           | 1.0x10 <sup>-2</sup> | *****                                                                                                          |
| ο×                                              | 0 1.0x10 <sup>-3</sup>                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0x10 <sup>-3</sup>  |                                           | 1.0x10 <sup>-3</sup> |                                                                                                                |
|                                                 |                                                     | ABCDEFGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0x10 <sup>0</sup>   | ABCDEFGH                                  | 1.0x10°              | ABCDEF                                                                                                         |
| ity<br>m/d                                      | ate (m <sup>3</sup>                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                           |                      | 1                                                                                                              |
| hydra<br>ductiv<br>= 864                        | 2 1.0x10'                                           | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0x10"               | ******                                    | 1.0x10"              |                                                                                                                |
| Con<br>KD2:                                     | 1.0x10 <sup>-2</sup>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0x10 <sup>-2</sup>  |                                           | 1.0x10 <sup>-2</sup> | *****                                                                                                          |
| -                                               | 00 1.0x10 <sup>-3</sup>                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0x10 <sup>-3</sup>  | Leenerser.                                | 1.0x10 <sup>-3</sup> | 1                                                                                                              |
|                                                 | () 1.0x10°                                          | ABCDEFGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0x10°               | ABCDEFGH                                  | 1.0x10°              | ABCDEF                                                                                                         |
| aulic<br>ivity<br>4 m/d                         | 5<br>1.0x10 <sup>-1</sup>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0x10 <sup>-1</sup>  |                                           | 1.0x10 <sup>-1</sup> |                                                                                                                |
| = 86.                                           | or flow                                             | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | ********                                  |                      |                                                                                                                |
| Drair<br>COI<br>KD3                             | 1.0x10*                                             | lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0x10*               |                                           | 1.0x10*              | *****                                                                                                          |
|                                                 | ₿ 1.0x10 <sup>-3</sup>                              | ABCDEEGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0x10 <sup>-3</sup>  | ABCDEEGH                                  | 1.0x10 <sup>-3</sup> | ABCDEE                                                                                                         |
|                                                 | + nor                                               | road $\Diamond$ no-ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | xcavation 1           | type 🗌 L-dr.                              | ain type             | O wood-log                                                                                                     |
|                                                 | · Pred                                              | cipitation Maxi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mum soil d            | capacity                                  |                      |                                                                                                                |
| c)                                              | S                                                   | oil hydraulic conductivi<br>KS1= 8.64 m/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ty So                 | il hydraulic conductiv<br>KS2 = 0.864 m/d | ity So               | KS3 = 0.0864                                                                                                   |
| ty<br>m/d                                       | 9 1.0x10°                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0x10°               |                                           | 1.0x10°              |                                                                                                                |
| ydrau<br>uctivi<br>8640                         | 1.0x10'                                             | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0x10 <sup>-1</sup>  | *******                                   | 1.0x10 <sup>-1</sup> |                                                                                                                |
| cond<br>D1 =                                    | u 1.0x10 <sup>-2</sup>                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0x10 <sup>-2</sup>  |                                           | 1.0x10 <sup>-2</sup> | *****                                                                                                          |
| ο×                                              | 9000 1.0x10 <sup>-3</sup>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0x10 <sup>-3</sup>  |                                           | 1.0x10 <sup>-3</sup> | 1                                                                                                              |
|                                                 | € 1.0x10°                                           | ABCDEFGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0x10°               | ABCDEFGH                                  | 1.0x10°              | ABCDEF                                                                                                         |
| vity<br>m/d                                     | E .                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.10                 |                                           | 40.001               | 1                                                                                                              |
| hydr<br>ductin<br>= 864                         | - 1.0x10'                                           | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0x10"               | *******                                   | 1.0X10 '             |                                                                                                                |
| KD2                                             | 01.0x10 <sup>-2</sup>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0x10 <sup>-2</sup>  |                                           | 1.0x10 <sup>-2</sup> | *****                                                                                                          |
|                                                 | 8 1.0x10 <sup>-3</sup>                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0x10 <sup>-3</sup>  | 1                                         | 1.0x10 <sup>-3</sup> |                                                                                                                |
|                                                 | )<br>일 1.0x10°                                      | ABCDEFGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0x10°               | ABCDEFGH                                  | 1.0x10°              | ABCDEF                                                                                                         |
| U D                                             | 5<br>9<br>1.0x10 <sup>-1</sup>                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0x10 <sup>-1</sup>  |                                           | 1.0x10 <sup>-1</sup> | 1                                                                                                              |
| auli au                                         | 2                                                   | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | *******                                   |                      |                                                                                                                |
| hydrauli<br>nductivity<br>= 86.4 m/             | fer flo                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A 100 M 100 M         |                                           | 1.0x10 <sup>-4</sup> |                                                                                                                |
| Drain hydrauli<br>conductivity<br>KD3 = 86.4 m/ | 1.0x10 <sup>-2</sup>                                | - Free Provide | 1.0x10*               |                                           |                      | 1                                                                                                              |
| Drain hydrauli<br>conductivity<br>KD3 = 86.4 m/ | 1.0x10 <sup>-2</sup><br>1.0x10 <sup>-3</sup>        | ABODEEOU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0x10*               | ABODEEC                                   | 1.0x10 <sup>-3</sup> | ABCDET                                                                                                         |

| 517 | —                                                                                                                       |        |
|-----|-------------------------------------------------------------------------------------------------------------------------|--------|
| 518 |                                                                                                                         |        |
| 519 | combination with a slope of a) 10%, b) 20% and c) 30%.                                                                  |        |
| 520 | A                                                                                                                       | Mis en |
| 521 | 4 Conclusions                                                                                                           |        |
| 522 | This study assessed presented an assessment of assessed three road structures regarding their perturbations             |        |
| 523 | of the natural groundwater flow. Two of these road structures were specifically developed to reduce the negative        |        |
| 524 | impacts of the road. The study is based on two complementary approaches; fieldafield-based tracer tests-in the          |        |
| 525 | field and numerical models simulating groundwater flow for the different road structures. The combination of            |        |
| 526 | fieldwork and the development of numerical models was fundamental to achieve the goal of this study. The tracer         |        |
| 527 | test allowed for a better understanding of groundwater flow throughout road structures and allowed for evaluating       |        |
| 528 | their effectiveness at a given location. However, the tracer tests are time-consuming and only a few field sites are    |        |
| 529 | available. The numerical approach, on the other hand, allows for exploring any combination of slope, hydraulic          |        |
| 530 | properties or road structure, thus providing a more comprehensive approach. In our study, the trends between the        |        |
| 531 | numerical and field approaches were consistent. The significant impact of the L-drain road structure is clearly         |        |
| 532 | established in the numerical approach and is consistent with the field observations. For the other road structures      |        |
| 533 | too, the numerical models are consistent with fieldwork results by showing relatively undisturbed groundwater           |        |
| 534 | flow downslope the road.                                                                                                |        |
| 535 |                                                                                                                         |        |
| 536 | It is the first time that the performance of these road-structures hass been investigated in the field. The tracer      |        |
| 537 | tests showed that both sides of the road where hydraulically connected for all investigated road structures.            |        |
| 538 | Groundwater flow was heterogeneous suggesting the occurrence of <u>natural</u> preferential flow paths in the soil. The |        |
| 539 | presence of a transversal drain (L-drain) beneath the road constitutes suggests that an L-drain constitutes a           |        |
| 540 | preferential flow path, however, which is of much greater importance than the naturally occurring preferential          |        |
| 541 | pathways. The field results further suggest that the wood-log and no-excavation structures as less impactful that       |        |
| 542 | the L-drain. The This was also confirmed by the models The simulation results are consistent with the assessment        |        |
| 543 | of the relative impact of the different road-types. Groundwater flow rates Velocities 10 times larger than in the       |        |
| 544 | natural case were obtained in the numerical simulations. This is not further astonishing as the drains were             |        |
| 545 | specifically designed for this purpose. The two other road structures (wood-log and no-excavation) do not perturb       |        |
| 1   |                                                                                                                         |        |

# Mis en forme : Français (Canada)

|                                                                                                | the flow field to the extent of the L-drain. To minimize the perturbation of flow fields, the wood-log and no-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 547                                                                                            | excavation structures are recommended.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                  |
| 548                                                                                            | The combination of fieldwork and the development of numerical models was fundamental to achieve the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  |
| 549                                                                                            | goal of this study. The tracer test allowed for a better understanding of groundwater flow throughout road structures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                  |
| 550                                                                                            | and allowed for evaluating their effectiveness at a given location. However, the tracer tests are time-consuming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                  |
| 551                                                                                            | and only a few field sites are available. The numerical approach, on the other hand, allows for exploring any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |
| 552                                                                                            | combination of slope, hydraulic properties or road structure, thus providing a more comprehensive approach. In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |
| 553                                                                                            | our study, the trends between the numerical and field approaches were consistent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  |
| 554                                                                                            | 5 Acknowledgements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |
| 555                                                                                            | This research was funded by the Swiss Federal Office for the Environment (FOEN) and supported by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                  |
| 556                                                                                            | Swiss Federal Office for Agriculture (FOAG). The authors are grateful to Benoit Magnin, Peter Staubli Andreas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |
| 557                                                                                            | Stalder, Anton Stübi and Ueli Salvisberger for their collaborations. We thank the three anonymous reviewers and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                  |
| 558                                                                                            | the editor for their constructive comments. We thank the three anonymous reviewers and the Editor, A:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                  |
| 559                                                                                            | Hildebrandt, for their input to the paper.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                  |
| 560                                                                                            | 6 References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                  |
| 561<br>562                                                                                     | Aquanty: HydroGeoSphere, a three dimensional numerical model describing fully integrated subsurface and surface flow and solute transport. Waterloo, ON, Canada., 2017.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Code de champ modifié                                                                            |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                  |
| 563<br>564<br>565                                                                              | Baker, C., Thompson, J. R. and Simpson. M.: 6. Hydrological Dynamics I: Surface Waters, Flood and Sediment Dynamics The Wetlands Handbook, 1st edition. Edited by E. Maltby and T. Barker. 2009. Blackwell Publishing, 120-168, 2009.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                  |
| 563<br>564<br>565<br>566<br>567<br>568                                                         | <ul> <li>Baker, C., Thompson, J. R. and Simpson. M.: 6. Hydrological Dynamics I: Surface Waters, Flood and Sediment Dynamics The Wetlands Handbook, 1st edition. Edited by E. Maltby and T. Barker. 2009.</li> <li>Blackwell Publishing, 120-168, 2009.</li> <li>Betts, H. D., and DeRose, R. C.: Digital elevation models as a tool for monitoring and measuring gully erosion, International Journal of Applied Earth Observation and Geoinformation, 1, 91-101, <a href="http://dx.doi.org/10.1016/S0303-2434(99)85002-8">http://dx.doi.org/10.1016/S0303-2434(99)85002-8</a>, 1999.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Code de champ modifié                                                                            |
| 563<br>564<br>565<br>566<br>567<br>568<br>569<br>570                                           | <ul> <li>Baker, C., Thompson, J. R. and Simpson. M.: 6. Hydrological Dynamics I: Surface Waters, Flood and Sediment Dynamics The Wetlands Handbook, 1st edition. Edited by E. Maltby and T. Barker. 2009.</li> <li>Blackwell Publishing, 120-168, 2009.</li> <li>Betts, H. D., and DeRose, R. C.: Digital elevation models as a tool for monitoring and measuring gully erosion, International Journal of Applied Earth Observation and Geoinformation, 1, 91-101, <a href="http://dx.doi.org/10.1016/S0303-2434(99)85002-8">http://dx.doi.org/10.1016/S0303-2434(99)85002-8</a>, 1999.</li> <li>Broggi, M. E.: Minimum requis de surfaces proches de l'état naturel dans le paysage rural, illustré par l'exemple du Plateau suisse. Liebefeld-Berne., Rapport 31a du Programme national de recherche "Sol",</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Code de champ modifié<br>Mis en forme : Français (Suisse)                                        |
| 563<br>564<br>565<br>566<br>567<br>568<br>569<br>570<br>571<br>572<br>572<br>573               | <ul> <li>Baker, C., Thompson, J. R. and Simpson. M.: 6. Hydrological Dynamics I: Surface Waters, Flood and Sediment Dynamics The Wetlands Handbook, 1st edition. Edited by E. Maltby and T. Barker. 2009. Blackwell Publishing, 120-168, 2009.</li> <li>Betts, H. D., and DeRose, R. C.: Digital elevation models as a tool for monitoring and measuring gully erosion, International Journal of Applied Earth Observation and Geoinformation, 1, 91-101, <a href="http://dx.doi.org/10.1016/S0303-2434(99)85002-8">http://dx.doi.org/10.1016/S0303-2434(99)85002-8</a>, 1999.</li> <li>Broggi, M. E.: Minimum requis de surfaces proches de l'état naturel dans le paysage rural, illustré par l'exemple du Plateau suisse. Liebefeld-Berne., Rapport 31a du Programme national de recherche "Sol", 199p, 1990.</li> <li>Brunner, P., and Simmons, C. T.: HydroGeoSphere: a fully integrated, physically based hydrological model, Groundwater, 50, 170-176, 2012.</li> </ul>                                                                                                                                                                                                                                                                                                                                               | Code de champ modifié<br>Mis en forme : Français (Suisse)<br>Mis en forme : Anglais (États-Unis) |
| 563<br>564<br>565<br>566<br>567<br>568<br>569<br>570<br>571<br>572<br>573<br>574<br>575<br>576 | <ul> <li>Baker, C., Thompson, J. R. and Simpson. M.: 6. Hydrological Dynamics I: Surface Waters, Flood and Sediment Dynamics The Wetlands Handbook, 1st edition. Edited by E. Maltby and T. Barker. 2009.</li> <li>Blackwell Publishing, 120-168, 2009.</li> <li>Betts, H. D., and DeRose, R. C.: Digital elevation models as a tool for monitoring and measuring gully erosion, International Journal of Applied Earth Observation and Geoinformation, 1, 91-101, <a href="http://dx.doi.org/10.1016/S0303-2434(99)85002-8">http://dx.doi.org/10.1016/S0303-2434(99)85002-8</a>, 1999.</li> <li>Broggi, M. E.: Minimum requis de surfaces proches de l'état naturel dans le paysage rural, illustré par l'exemple du Plateau suisse. Liebefeld-Berne., Rapport 31a du Programme national de recherche "Sol", 199p, 1990.</li> <li>Brunner, P., and Simmons, C. T.: HydroGeoSphere: a fully integrated, physically based hydrological model, Groundwater, 50, 170-176, 2012.</li> <li>Capra, A., Porto, P., and Scicolone, B.: Relationships between rainfall characteristics and ephemeral gully erosion in a cultivated catchment in Sicily (Italy), Soil and Tillage Research, 105, 77-87, <a href="http://dx.doi.org/10.1016/j.still.2009.05.009.2009">http://dx.doi.org/10.1016/j.still.2009.05.009.2009</a></li> </ul> | Code de champ modifié<br>Mis en forme : Français (Suisse)<br>Mis en forme : Anglais (États-Unis) |

| 578<br>579        | Chimner, R. A., Cooper, D. J., Wurster, F. C. and Rochefort, L.: An overview of peatland restoration in North America: where are we after 25 years?, Restoration Ecology, 25, 283-292, 2016.                                                                                                                    |                                      |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 580<br>581        | Cochand, F., Therrien, R., and Lemieux, JM.: Integrated Hydrological Modeling of Climate Change Impacts in a Snow-Influenced Catchment, Groundwater, 57, 3-20, doi:10.1111/gwat.12848, 2019.                                                                                                                    |                                      |
| 582<br>583<br>584 | Cognard Plancq, A. L., Bogner, C., Marc, V., Lavabre, J., Martin, C., and Didon Lescot, J. F.: Etude du rôle<br>hydrologique d'une tourbière de montagne: modélisation comparée de couples "averse-crue" sur deux<br>bassins versants du Mont-Lozère., Etudes de géographie physique, n° XXXI, p. 3 - 15, 2004. | Mis en forme : Français (Suisse)     |
| 585               | Daba, S., Rieger, W., and Strauss, P.: Assessment of gully erosion in eastern Ethiopia using                                                                                                                                                                                                                    | Mis en forme : Anglais (États-Unis)  |
| 586               | photogrammetric techniques, CATENA, 50, 273-291, http://dx.doi.org/10.1016/S0341-                                                                                                                                                                                                                               | Code de champ modifié                |
| 587               | <u>8162(02)00135-2,</u> 2003.                                                                                                                                                                                                                                                                                   | Mis en forme : Anglais (États-Unis)  |
| 588<br>589        | Derose, R. C., Gomez, B., Marden, M., and Trustrum, N. A.: Gully erosion in Mangatu Forest, New Zealand, estimated from digital elevation models, Earth Surface Processes and Landforms, 23, 1045-                                                                                                              |                                      |
| 590               | 1053, <del>doi:</del> 10.1002/(SICI)1096-9837(1998110)23:11<1045::AID-E5P920>3.0.CO;2-1, 1998.                                                                                                                                                                                                                  | Mis en forme : Anglais (Royaume-Uni) |
| 591<br>592        | Descroix, L., González Barrios, J. L., Viramontes, D., Poulenard, J., Anaya, E., Esteves, M., and Estrada, J.: Gully and sheet erosion on subtropical mountain slopes: Their respective roles and the scale effect,                                                                                             | Mis en forme : Anglais (Etats-Unis)  |
| 593               | CATENA, 72, 325-339, <u>http://dx.doi.org/10.1016/j.catena.2007.07.003</u> , 2008.                                                                                                                                                                                                                              | Code de champ modifié                |
| 594<br>595<br>596 | Dutton, A. L., Loague, K., and Wemple, B. C.: Simulated effect of a forest road on near-surface hydrologic response and slope stability, Earth Surface Processes and Landforms, 30, 325-338, 10.1002/esp.1144, 2005.                                                                                            |                                      |
| 597               | Li, Q., Unger, A. J. A., Sudicky, E. A., Kassenaar, D., Wexler, E. J., and Shikaze, S.: Simulating the multi-                                                                                                                                                                                                   |                                      |
| 598<br>599        | seasonal response of a large-scale watershed with a 3D physically-based hydrologic model, Journal of<br>Hydrology, 357, 317-336, http://dx.doi.org/10.1016/j.ibydrol.2008.05.024, 2008                                                                                                                          | Code de champ modifié                |
| 600<br>601<br>602 | Limpens, J., Berendse, F., Blodau, C., Canadell, J. G., Freeman, C., Holden, J., Roulet, N., Rydin, H. and<br>Schaepman-Strub, G.: Peatlands and the carbon cycle: from local processes to global implications – a<br>synthesis, Biogeosciences, 5, 1475-1491, 2008.                                            |                                      |
| 603<br>604<br>605 | Lindsay, R.: Peatbogs and carbon: a critical synthesis to inform policy development in oceanic peat bog conservation and restoration in the context of climate change, University of East London, Technical Report, 2010.                                                                                       |                                      |
| 606<br>607<br>608 | Loague, K., and VanderKwaak, J. E.: Simulating hydrological response for the R-5 catchment: comparison of two models and the impact of the roads, Hydrological Processes, 16, 1015-1032, 10.1002/hyp.316, 2002.                                                                                                 |                                      |
| 609               | Martínez-Casasnovas, J. A.: A spatial information technology approach for the mapping and                                                                                                                                                                                                                       |                                      |
| 610               | quantification of gully erosion, CATENA, 50, 293-308, <u>http://dx.doi.org/10.1016/S0341-</u>                                                                                                                                                                                                                   | Code de champ modifié                |
| 611               | <u>8162(02)00134-0</u> , 2003.                                                                                                                                                                                                                                                                                  | Mis en forme : Anglais (États-Unis)  |
| 612<br>613<br>614 | Nyssen, J., Poesen, J., Moeyersons, J., Luyten, E., Veyret-Picot, M., Deckers, J., Haile, M., and Govers, G.: Impact of road building on gully erosion risk: a case study from the Northern Ethiopian Highlands, Earth Surface Processes and Landforms, 27, 1267-1283, 10.1002/esp.404, 2002.                   |                                      |
| 615               | Partington, D., Therrien, R., Simmons, C. T., and Brunner, P.: Blueprint for a coupled model of                                                                                                                                                                                                                 |                                      |
| 616               | sedimentology, hydrology, and hydrogeology in streambeds, Reviews of Geophysics, 55, 287-309,                                                                                                                                                                                                                   |                                      |
| 617               | <u>10.1002/2016rg000530, 2017.</u>                                                                                                                                                                                                                                                                              |                                      |

Poesen, J., Nachtergaele, J., Verstraeten, G., and Valentin, C.: Gully erosion and environmental change:
 importance and research needs, CATENA, 50, 91-133, <a href="http://dx.doi.org/10.1016/S0341-620">http://dx.doi.org/10.1016/S0341-620</a>
 8162(02)00143-1, 2003.

Reckendorfer, W., Funk, A., Gschöpf, C., Hein, T. and Schiemer, F.: Aquatic ecosystem functions of an isolated floodplain and their implications for flood retention and management, Journal of Applied

623 Ecology , 50, 119–128, 2013.

648 649

Reid, L. M., and Dunne, T.: Sediment production from forest road surfaces, Water Resources Research,
20, 1753-1761, 10.1029/WR020i011p01753, 1984.

Rydin, H. a. J., J.: The biology of peatlands, Oxford University Press, 343p., 2005.

Samaritani, E., Siegenthaler, A., Yli-Petäys, M., Buttler, A., Christin, P.-A., and Mitchell, E. A. D.: Seasonal
 Net Ecosystem Carbon Exchange of a Regenerating Cutaway Bog: How Long Does it Take to Restore
 the C-Sequestration Function?, Restoration Ecology, 19, 480-489, 10.1111/j.1526-100X.2010.00662.x,
 2011.

- Valentin, C., Poesen, J., and Li, Y.: Gully erosion: Impacts, factors and control, CATENA, 63, 132-153,
   <u>http://dx.doi.org/10.1016/j.catena.2005.06.001</u>, <del>2005a.</del>
- Malentin, C., Poesen, J., and Li, Y.: Gully erosion: Impacts, factors and control, CATENA, 63, 132-153,
   https://doi.org/10.1016/j.catena.2005.06.001, 2005b.
- Van Genuchten, M. T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated
   soils, Soil science society of America journal, 44, 892-898, 1980.

VanderKwaak, J. E.: Numerical simulation of flow and chemical transport in integrated surface subsurface hydrologic systems, Ph.D. thesis, Departement of Earth Science, University of Waterloo,
 Waterloo, Ontario, Canada., 1999.

Vonven Sengbusch, P.: Enhanced sensitivity of a mountain bog to climate change as a delayed effect
 of road construction, Mires and Peat, 15: Art. <u>6, (Online: http://www.mires-and-peat.net/pages/volumes/map15/map1506.php),6, (Online: http://www.mires-and-peat.net/pages/volumes/map15/map1506.php),2015.
</u>

644 Wemple, B. C., and Jones, J. A.: Runoff production on forest roads in a steep, mountain catchment, 645 Water Resources Research, 39, 2003.

Zollner, A.: Das Abflussgeschehen von unterschiedlich genutzten Hochmooreinzugsgebieten - Bayer.
 Akad. f. Naturschutz u. Landschaftspflege - Laufen / Salzach, Laufener Seminarbeitr. , 111-119, 2003.

Code de champ modifié Mis en forme : Anglais (États-Unis)

 Mis en forme : Police : Times New Roman, 10 pt, Anglais (États-Unis), Vérifier l'orthographe et la grammaire

 Code de champ modifié

 Mis en forme : Anglais (Royaume-Uni)

 Mis en forme : Anglais (États-Unis)

 Mis en forme : Anglais (Royaume-Uni)

 Mis en forme : Anglais (Koyaume-Uni)

 Mis en forme : Anglais (Koyaume-Uni)

 Mis en forme : Anglais (Royaume-Uni)

 Mis en forme : Anglais (Koyaume-Uni)

| Mis en forme : Anglais (Royaume-Uni) |
|--------------------------------------|
| Mis en forme : Anglais (États-Unis)  |
| Code de champ modifié                |
| Mis en forme : Anglais (Royaume-Uni) |
| Mis en forme : Anglais (États-Unis)  |