[Similarity and dissimilarity in model-results between single and multiple flow direction simulations based on a distributed ecohydrological model]
[Zhenwu Xu, and Guoping Tang]
[Department of Water Resources and Environment, School of Geography and Planning, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China]

## Contents of this file

S1 Supporting information on evaluation of leaf area index and net primary productivity
S2 Figures S1 to S4
S3 Tables S1, S2

## S1 Supporting information

S1.1 Evaluation on leaf area index and net primary productivity
Simulated annual mean leaf area index (LAI) in the shrub-dominated watershed Cleve Creek (Figure 5) averaged 0.29 to $0.31 \mathrm{~m}^{2} / \mathrm{m}^{2}$ and ranged from 0.19 to 0.45 $m^{2} / m^{2}$ during 1991-2012 under four algorithms (Table S2), closing to reported data for similar ecosystems. White et al. (2000) indicated that LAI in shrublands in arid ecosystems averaged $0.22 \mathrm{~m}^{2} / \mathrm{m}^{2}$ and ranged from 0.21 to $1.09 \mathrm{~m}^{2} / \mathrm{m}^{2}$. Gibbens et al. (1996) indicated that LAI in shrub communities typically ranged from 0.3 to 0.4 $m^{2} / m^{2}$ in the southwestern USA. The point-intercept-measured LAI for sagebrushsteppe ecosystems in the western USA averaged $0.33 \mathrm{~m}^{2} / \mathrm{m}^{2}$ (Finzel et al., 2012). The simulated net primary productivity (NPP) in the study area averaged 138 to $145 \mathrm{gC} / \mathrm{m}^{2}$ per year and ranged from 94 to $213 \mathrm{gC} / \mathrm{m}^{2}$ per year during 1991-2012, also falling within the ranges of reported data in similar ecosystems. Tian et al. (2010) indicated that NPP in shrublands in the southern USA ranged from 0 to $300 \mathrm{gC} / \mathrm{m}^{2}$ per year. Spatially, LAI and NPP were simulated to be greater in valleys and lower in the ridges of the watershed (Fig. 5), largely as a result of differences in annual mean soil moisture across the watershed (higher in valleys and lower in the ridges, Fig. 3). In addition, simulated LAI and NPP were lowest (zero) for bare ground, lower for shrubs/grasses and higher for conifers. These agreements and patterns indicated that HESS captured well the spatial and temporal patterns of vegetation in the study area (e.g. Fig. S3)

S2 Figures


Figure S1. The total number of cells where flow is routed to from 1 to 8 downslope neighbors. The digits in x -axis refers to the number of downslope neighbors receiving water from a center cell.


Figure S2. Model's results under four algorithms in calibration of simulated daily streamflow (SF) (dashed line) against observed data (solid line). NS is short for NashSutcliff coefficient.



Figure S3 The variation of HESS's simulated monthly mean LAI ( $m^{2} / m^{2}$ ) and NPP $\left(\mathrm{gC} / \mathrm{m}^{2}\right)$ in a typical year 2005 under four algorithms for the Cleve Creek watershed.


Figure S4. The flow distribution from a typical individual cell (red rectangle with a distance to stream of 400 m ) to stream between D8 and MD8 algorithm at cell level. Clearly, flow is in only one direction under D8 while it is distributed more than one cell and in multiple directions under MD8. As a result, the dispersion of flow at cell level is greater under MD8 than that under D8. Differences in flow distribution also result in the accumulated area of flow differ among cells.

61 Table S2. Statistics of HESS's simulated LAI and NPP per year during 1991-2012.

|  | Leaf area index $\left(m^{2} / m^{2}\right)$ |  |  | Net primary productivity $\left(\mathrm{gC} / \mathrm{m}^{2}\right)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mean | Min | Max | $\sigma$ | Mean | Min | Max | $\sigma$ |
| D8 | 0.29 | 0.20 | 0.44 | 0.059 | 141 | 208 | 99 | 30.6 |
| MD8 | 0.31 | 0.20 | 0.45 | 0.063 | 145 | 213 | 102 | 31.5 |
| D $\infty$ | 0.29 | 0.19 | 0.43 | 0.060 | 138 | 207 | 94 | 31.2 |
| RMD $\infty$ | 0.30 | 0.20 | 0.44 | 0.063 | 143 | 212 | 100 | 31.5 |

## S3 Tables

Table S1. Calibration and evaluation of HESS's simulated flow on an annual series

| SF (mm/day) |  |  |  |  |  |  | NS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Observed | D8 | MD8 | D $\infty$ | RMD $\infty$ | SF- $\sigma$ | D8 | MD8 | D $\infty$ | RMD $\infty$ | NS- $\sigma$ |
| 1991 | 0.44 | 0.30 | 0.31 | 0.30 | 0.30 | 0.00 | 0.46 | 0.45 | 0.46 | 0.45 | 0.01 |
| $\underline{1992}$ | 0.32 | 0.35 | 0.35 | 0.35 | 0.35 | $\underline{0.00}$ | 0.93 | 0.93 | 0.92 | 0.93 | $\underline{0.00}$ |
| 1993 | 0.57 | 0.48 | 0.47 | 0.48 | 0.47 | 0.00 | 0.53 | 0.51 | 0.53 | 0.52 | 0.01 |
| 1994 | 0.38 | 0.33 | 0.34 | 0.34 | 0.34 | 0.00 | 0.53 | 0.56 | 0.52 | 0.55 | 0.02 |
| 1995 | 0.99 | 1.02 | 1.00 | 1.03 | 1.01 | 0.01 | 0.82 | 0.83 | 0.82 | 0.83 | 0.00 |
| 1996 | 0.51 | 0.58 | 0.59 | 0.58 | 0.58 | 0.00 | -0.66 | -0.61 | -0.72 | -0.67 | 0.04 |
| 1997 | 0.57 | 0.58 | 0.59 | 0.59 | 0.59 | 0.00 | 0.62 | 0.62 | 0.61 | 0.62 | 0.00 |
| 1998 | 0.94 | 1.01 | 0.99 | 1.01 | 1.00 | 0.01 | 0.84 | 0.83 | 0.84 | 0.84 | 0.01 |
| 1999 | 0.74 | 0.78 | 0.77 | 0.77 | 0.77 | 0.00 | 0.89 | 0.87 | 0.89 | 0.88 | 0.01 |
| 2000 | 0.51 | 0.54 | 0.55 | 0.53 | 0.55 | 0.01 | -1.17 | -1.04 | -1.08 | -1.10 | 0.05 |
| 2001 | 0.53 | 0.38 | 0.39 | 0.38 | 0.39 | 0.01 | 0.87 | 0.88 | 0.87 | 0.87 | 0.00 |
| 2002 | 0.38 | 0.23 | 0.24 | 0.22 | 0.23 | 0.01 | 0.92 | 0.93 | 0.92 | 0.92 | 0.00 |
| 2003 | 0.43 | 0.22 | 0.24 | 0.22 | 0.23 | 0.01 | 0.83 | 0.84 | 0.83 | 0.84 | 0.01 |
| 2004 | 0.40 | 0.39 | 0.40 | 0.39 | 0.39 | 0.00 | 0.97 | 0.97 | 0.97 | 0.97 | 0.00 |
| $\underline{2005}$ | 1.35 | 1.15 | 1.12 | 1.17 | 1.14 | $\underline{0.02}$ | 0.84 | 0.85 | 0.85 | 0.86 | $\underline{0.00}$ |
| 2006 | 0.81 | 0.61 | 0.62 | 0.62 | 0.62 | 0.00 | 0.84 | 0.83 | 0.85 | 0.84 | 0.00 |
| 2007 | 0.45 | 0.43 | 0.44 | 0.43 | 0.44 | 0.00 | 0.86 | 0.87 | 0.86 | 0.86 | 0.00 |
| 2008 | 0.38 | 0.33 | 0.34 | 0.33 | 0.34 | 0.00 | 0.92 | 0.93 | 0.92 | 0.93 | 0.00 |
| 2009 | 0.48 | 0.58 | 0.57 | 0.58 | 0.57 | 0.01 | 0.90 | 0.92 | 0.90 | 0.91 | 0.01 |
| 2010 | 0.58 | 0.54 | 0.53 | 0.54 | 0.53 | 0.00 | 0.83 | 0.82 | 0.83 | 0.82 | 0.01 |
| 2011 | 1.30 | 0.98 | 0.95 | 0.98 | 0.96 | 0.01 | 0.76 | 0.74 | 0.77 | 0.75 | 0.01 |
| 2012 | 0.45 | 0.42 | 0.43 | 0.42 | 0.42 | 0.00 | 0.88 | 0.88 | 0.87 | 0.88 | 0.00 |

*SF is short for observed streamflow; NS is is short for the Nash-Sutcliff coefficient;
SF- $\sigma$ is standard deviation of simulated streamflow under four algorithms; NS- $\sigma$ is standard deviation of NS under four algorithms.

* $\sigma$ is standard deviation of annual data.


## References

Finzel, J. A., Seyfried, M. S., Weltz, M. A., Kiniry, J. R., Johnson, M.-V. V., and Launchbaugh, K. L.: Indirect Measurement of Leaf Area Index in SagebrushSteppe Rangelands, Rangeland Ecology \& Management, 65, 208-212, 10.2111/rem-d-11-00069.1, 2012.

Gibbens, R. P., Hicks, R. A., and Dugas, W. A.: Structure and function of C-3 and C4 Chihuahuan Desert plant communities. Standing crop and leaf area index, Journal of Arid Environments, 34, 47-62, 10.1006/jare.1996.0092, 1996.
Tian, H., Chen, G., Liu, M., Zhang, C., Sun, G., Lu, C., Xu, X., Ren, W., Pan, S., and Chappelka, A.: Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895-2007, Forest Ecology and Management, 259, 1311-1327, 10.1016/j.foreco.2009.10.009, 2010.
White, M. A., Asner, G. P., Nemani, R. R., Privette, J. L., and Running, S. W.: Measuring fractional cover and leaf area index in arid ecosystems: Digital camera, radiation transmittance, and laser altimetry methods, Remote Sensing of Environment, 74, 45-57, 10.1016/s0034-4257(00)00119-x, 2000.

