
Point-by-point response to Reviewers 

 

Dear editor and reviewers, 

 

We would like to thank all of you for the review of our manuscript and the constructive 

suggestions. All the comments have been considered and a point by point response has been 

provided below.  

 

For Referee 2’s additional question about the structure of the manuscript, we provided a further 

explanation on why we prefer to keep the subsection describing the impact of spatial resolution 

of rainfall on model performance. The manuscript has been thoroughly revised and polished 

carefully with the reviewers’ help. 

 

The point-by point response is formatted as follows: 

- the referees’ comments are shown in black 

- authors’ response are shown in blue 

 

--------------------------------------------------------------------------------------------------------------------------------- 

1. Response to Anonymous Referee #1 

--------------------------------------------------------------------------------------------------------------------------------- 

The authors have satisfactorily addressed my reviewer comments and have made a number of 

revisions which have improved the manuscript. I recommend that the manuscript is accepted 

with a few minor revisions detailed below. 

1. The introduction is much improved with a wider range of references but the English needs to 

be carefully checked as there are a couple of sentences that don't make sense as currently 

written. Specifically: 

a. P3 L1-3 "As most of the hydrological models are flexible and can be easily adjusted to different 

time steps, which makes the sensitivity analysis of model output to the temporal variability of 

rainfall easy." 

b. P3 L13-15 "This could properly lead to a better understanding of the sensitive of rainfall inputs 

and help to identify relatively economical ways to improve tremendously the model behavior." 

Response: We sincerely thank you for the valuable comments. We have rewritten the above 

sentences to make them easier to be understood. The revised manuscript has been sent to two 

professionals for proofreading. According to their suggestions, we have thoroughly corrected the 

grammar and improved the clarity of the sentences. All the corrections are marked in the revised 



version. 

 

2. I liked the addition of Figure 7 but I think the x-axis is wrong. If you have plotted simply the top 

10th percentile of flows then surely the x-axis should go from 0 to 10 rather than 0 to 100? 

Response: Thank you for point it out. Yes, the x-axis should go from 0 and 10. We have added the 

corrected flow duration curve for flows higher than the 10th percentile of flow in the revised 

manuscript.  

 

Figure 7.  Comparison of the flow duration curve for flows higher than the 10th percentile of flow. 

 

3. Figures 8 - 11 - although the authors have made changes to these plots, I still find it difficult 

to distinguish between the colours (particularly the red and pink dots). It would be worth 

changing the pink dot to a green dot so it is easier to identify the catchments. 

Response: Thanks for the suggestion. We have changed the data point color schemes in Figure 

8-11 (change the pink and cyan dots to green and yellow, respectively). As shown in Figure 8, it 

can be easier to identify the catchments than the original figure. 

 



 

Figure 8. Comparison of NS model performance for using hourly and daily rainfall as model input 

for the DH and DD sets. 

 

--------------------------------------------------------------------------------------------------------------------------------- 

2. Response to Anonymous Referee #2 
--------------------------------------------------------------------------------------------------------------------------------- 

The literature review was extended, that is a good point. However it now reads like a very long 

list and the authors should help the readers by adding a few summarizing sentences, to underline 

that the literature does not have a “ready” answer for the question they ask and even that the 

papers they review do not agree with each other (which is a further reason for writing this paper). 

Response: We sincerely appreciate you for reviewing our manuscript. Your valuable comments 

and suggestions led to an improved version of the manuscript. We have reorganized the 

introduction part, and the literature review is expanded with a summary of previous studies. 

 

As far a the restructuration/simplification of the paper I had suggested the authors did not do it. I 

understand that this is a lot of work. However, in my opinion, it would have made the paper 

simpler and easier to understand. I believe the paper still reads more like an exhaustive report 

than as a selection of the most interesting results. 

Response: We thank the reviewer for your suggestion on simplifying the paper structure as 

mentioned in your previous comments: “I suggest removing the part on the different rainfall 

densities, and only keeping the densest network (high density daily disaggregated into hourly)”. 

We think that the imperfection of the sub-section titles in the earlier version hinder the reviewer 

from better understanding the logic flow of our result section. Therefore, we revised the 

sub-section titles of the result section in the revised manuscript. The revised sub-sections are: 



“4.1 Comparison of the rainfall dataset”, “4.2 Results of calibration and validation”, “4.3 Model 

performance using different temporal resolutions of rainfall data ”, “4.4 Model performance in 

terms of observation density”, “4.5 Model performance in terms of spatial resolution of rainfall 

data”, and “4.6 Common model calibration with different temporal resolutions”. As you may tell, 

the revised sub-section titles are easy to follow and each sub-section are closely related to the 

objectives and unique to each other. In addition, six sub-sections in a result section are not too 

many. We therefore believe the current structure works fine. 

In addition, we would like to answer in more detail for the questions you raised during your 

first review of the manuscript:  

(1) The purpose of this study is to find the effective ways for improving model performance for 

flood forecasting. It requires understanding the sensitivity of the rainfall-runoff modes to rainfall 

input data. The spatial variability of rainfall strongly influences the timing and shape of 

hydrograph, while the temporal variability mainly affects the peak of flood wave. As increasing 

the temporal and spatial resolutions of model are two common methods in hydrological 

modeling, we believe that the comparison of temporal and spatial variability of rainfall to runoff 

simulation is very important. With the testing of different spatial resolutions, we hope to answer 

the specific question that which one is more efficient to improve model performance: Increasing 

temporal resolution or spatial resolution of rainfall? We can conclude from this study that higher 

temporal resolution of rainfall can lead to a significant improvement of model performance, 

while higher spatial resolution of rainfall does not always enhance model performance. It 

suggests that compared with increasing the model spatial resolution that comes at a cost of 

increasing the complexity of model structure and parameters, increasing the temporal resolution 

of precipitation inputs with disaggregation method can be easier and more efficient to improve 

model performance. We think it is worth preserving the results based on different spatial 

resolutions of rainfall in the manuscript. 

(2) This study aims to increasing the accuracy of flood prediction and thus pays more attention 

on the high flow. The HBV model performance to different performance criteria has been 

investigated by our previous study. Result shows that the model sensitivity can be different is the 

model performance is measured differently. Result also shows that for most of the cases, the 

model performance for different objective functions have same tendency of changes under 

different catchments. In this study, each calibration process requires 90000 running of HBV model 

to obtain 10000 best parameter sets. Due to the heavy computation, we only tested the 

sensitively of model performance based on the most widely used performance criterion- NS 

coefficient. NS coefficient represents the squared difference between the observed and discharge 



series and mainly focuses on the high flow, which could satisfy the needs of improving the 

accuracy of flood prediction. 

  (3) The HBV model used in this study is relatively simple. There is no interception routine in 

this version of HBV model. Currently, the process of interception is simulated implicitly in the 

evapotranspiration part of the model and the comparison of different temporal resolutions is 

based on the simulation of daily runoff. In our further study, the interception routine will be 

included to investigate the impact in hourly simulation.  

 

Last, I still found a number of typos (an example the authors write “in additional” instead of “in 

addition” in the conclusion). 

Response: We have carefully proofread the manuscript and corrected the typos and grammar 

errors in the revised manuscript. 
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Abstract. AsRainfall is the most important input for rainfall-runoff models,. precipitationIt is usually observedmeasured at specific

sites on a daily or sub-daily time scale and requires interpolation for further application. This study aims to explore that for a

given objective function, whetherevaluate if a higher temporal and spatial resolution of precipitation could provide an improvement inrainfall

can lead to improved model performance. Four different gridded hourly and daily precipitationrainfall datasets ,with a spatial

resolution of 1km×1km for the state of Baden-Württemberg state ofin Germany were constructed using a combination of data5

from a dense network of daily rainfall stations and a less dense network of sub-daily stations. Two different types of HBV models

with different model structures,A lumped and a spatially distributed HBV models were used to investigate the sensitivity of model

performance onto the spatial variability of precipitation. resolution of rainfall. For four selected mesoscale catchments, theseThe four different

rainfall datasets were used to simulate the daily discharges using both lumped and semi-distributed HBV models.drive both lumped and dis-

tributed HBV models to simulate daily discharges in four catchments. Different possibilities of improving the accuracy of daily streamflow10

prediction were investigated.Three main results were obtained from this study:Main findings include (1) a higher temporal resolution of precip-

itation improvedrainfall improves the model performance if the observationstation density wasis high; (2) a combination of observed

high temporal-resolution observations with disaggregatedisaggregated daily precipitationrainfall leads to afurther improvement in

the model performanceof the tested models; (3) for the present research, the increase of spatial resolution improvedimproves the

performance of the model insubstantially or only marginally forin most of the study catchments.15

1 Introduction

Rainfall is one of the most important driving forces in hydrological modeling and produces a direct impact ona primary driver of hydrological

models and can impact catchment runoff response significantly (Obled et al., 1994; Ly et al., 2013). In general, rRainfall is usually

measured by standard rain gauges or wireless telemetering pluviometers over a period of time (e.g. daily, sub-daily). TheUncer-

tainties in rainfall estimation for a catchment can occur due to instrument measuringerrorerrors as well as and the representativeness20

of point rainfall causes a certain amount of uncertainty in precipitation estimation for a specific catchment. Thespatial and temporal variability of

precipitationrainfall. is one of The latter are the main sources of uncertaintyuncertainties in model simulation and flood forecasting

(Beven, 1998; Berne et al., 2004). The spatial variability of rainfall strongly influences the timing and shape of hydrograph,
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while the temporal variability mainly affects the peak of flood wave (Singh, 1997). Therefore, it is of great significance to investigate

the sensitivity of hydrological models to rainfall input and find an effective way to improve the accuracy of model simulation and flood forecasting.The

improvement of flood simulation requires understanding the sensitivity of the rainfall-runoff models to rainfall input data. In

recentOver the past decades, extensive efforts have been put on investigating the influence of rainfall spatial variability in hydrological models.Different

interpolationvarious methods have been used to obtain the spatial distribution structuredistributions of rainfall based on rain gauge5

data and catchment characteristics (Goovaerts, 2000; Jeffrey et al., 2001; Hofierka et al., 2002; Haylock et al., 2008; Ly et al.,

2013). These approaches can potentially improve the spatial resolution of rainfall that is used as input for rainfall-runoff models, thereby reducing the uncer-

tainty of hydrological models.Singh (1997) found that the spatial variability of rainfall can have significant influence on the timing and shape of hydrograph,

while the temporal variability can affect the peak of flood wave.Kobold and Brilly (2006) used a different number of rain gauge stations to derive areal

rainfall and quantified uncertainties of rainfall inputs using HBV model in hourly time step.derived hourly areal rainfall interpolated from various10

numbers of rain gauges to quantitatively assess the sensitivity of peak flow to the uncertainty of rainfall data using an HBV

model. They found that the error in precipitationrainfall may lead to even greater error in the peak of floodflood peak. Bardossy and

Das (2008) also investedstudied the impact of spatial variability of rainfall by varying the distribution of therain gauge network.

They found that the transferabilitytransferabilities of model parameters calibrated based on sparesparse and densitydense rainfall

information isare very different. Das et al. (2008) used four different model structures to simulate daily runoff in central15

Europe. Results indicated that the semi-distributed and semi-lumped models outperform the lumped and distributed model

structures, and they naturally concluded. They suggested that the lack of spatial information is responsible for the low efficiency of

distributed model. Xu et al. (2013) indicated that the increase of rain gauge network density gradually improvescan improve the

model performanceup to some threshold, but no apparent improvement was observed when the number of rain gauges exceeded

thea threshold. Lobligeois et al. (2014) investigated the impacts of rainfall spatial variability by implementing diverse representations of model for a20

considerable number of catchments. They typically found that for the region with variable precipitation, the semi-distributed models outperform the lumped

one, but these two models perform similar for the catchments that having relatively uniform precipitation. found that simi-distributed models outper-

form the lumped models when rainfall is highly variable over simulation catchment, but they perform similarly when rainfall is

relatively uniform. Emmanuel et al. (2015) proposed rainfall variability indexes to carefully evaluatecharacterize the influence of

rainfallspatial variability rainfall and implemented this approach in the model simulation for the Cevennes catchment in France25

(Emmanuel et al., 2017). They found that higher spatial resolution of rainfall could achieve better model performance. We

can learn from these researches that the sensitivity of model performance to the spatial resolution of rainfall seems different

for some of the case studies. However, the increasing ofspatial resolution in model simulation leadscan lead to considerable

complexity of model structure and requires forrequire much more data than using a lumped version.

Simultaneously, theThe rainfall-runoff response of a catchment is also strongly impacted by the temporal variability of rainfall30

(Bárdossy and Pegram, 2016). The highHigh temporal resolution rainfall data is typically measured byare collected at pluviometer

stations (wireless instruments recording at sub-daily intervals, be called sub-daily data in the following),with telemetry at sub-daily time resolu-

tions. which faces the problem of poor dataSub-daily data often have poor quality caused by equipment malfunction or misreading.

Compared with sub-daily rainfall data, the daily rainfall datadaily data are more reliable and plentifultend to be more available and

reliable, cover a longer duration of time periods. Disaggregating daily into sub-daily valuesdata offers a potential solution to35
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accurately capture the temporal variability of rainfall (Parkes et al., 2013; Bardossy and Pegram, 2016). Pui et al. (2012) prop-

erlycompared three different approaches for disaggregating daily rainfall into sub-daily series and indicatedfound the resampling

method is the best wayone for rainfall disaggregatingdisaggregation. Bárdossy and Pegram (2016) used Gaussian Copula-based

model for disaggregating daily data to infill the gap of pluviometersub-daily data, and they found that this conditional disaggre-

gation of precipitationrainfall is reliable and applicable in various regions. Breinl and Di Baldassarre (2019) applied a spatial5

method of fragments to disaggregate daily precipitationrainfall into hourly values. Although considerable studies have been carried out in

the interpolation of sub-daily rainfall, thoroughly verification of the data quality of these products through the comparison of rainfall-runoff simulation results

is required. It is extreme important to find out if the disaggregation leads to an improvement of model performance. As most of the hydrological models

are flexible and can be easily adjusted to different time steps, which makes the sensitivity analysis of model output to the temporal variability of rainfall

easy.Kobold and Brilly (2006) found that calibrating hydrological models with sub-daily time steps can significantly improve10

the accuracy of flood forecasting.

Furthermore, certainSome studies focus on both the spatial and temporal resolution of rainfall. Bruneau et al. (1995) indi-

catedfound that the temporal and spatial resolutions of rainfall used foras the inputs of thehydrological model possess amodels

can have considerable influence on the model efficiency and parametersparameter values. Booij (2002) assuredlyfound thatthe in-

fluence of modelrainfall spatial resolution is indeedgreater than rainfalltemporal variability on theresolution in terms of simulation of15

extreme flowflows. Meselhe et al. (2009) indicatedpointed out that the physically based model ismodels are more sensitive to the

spatial and temporal resolution of rainfall data than theconceptual modelmodels. Zhu et al. (2018) found that the spatial variabil-

ity of rainfall is much more sensitive to model performance for catchments larger than 2000km2 under dry soil condition; while

flood, and floods in thesmall catchments is controlledare more influenced by the temporal variability of rainfall. Since a vast number

of efforts had been made to improveSo far, more efforts have been invested in improving the spatial or temporal resolution of rainfall,20

it is important to focus on a quantitative analysis andbut there are less studies on quantification and direct comparison of the potential effect

of rainfall temporal variability with the spatial variability to catchment dynamic response. This could properly lead to a better understanding of the sensitive

of rainfall inputs and help to identify relatively economical ways to improve tremendously the model behavior.catchment dynamic responses driven

by different rainfall temporal and spatial resolutions.

The ultimateoverarching aim of this study is to undoubtedly gain more firsthand knowledge onunderstand the dependency of hydro-25

logical model performance on the precipitationrainfall data. The specific research objectives are three-fold: (1) investigate the

effects of rainfall data quality on model performance, (2) examine the sensitivity of model performance to different spatial

and temporal resolutions of rainfall data using two different model spatial configurations, and (3) explore the possibility of

improving model performance on a daily scale. The effects of rainfall data quality on model performance were investigated. The sensitivity of

model performance to different spatial and temporal resolutions of rainfall data was examined using two distinctive model structures. The possibility of im-30

proving model performance on a daily scale was properly discussed.The manuscript is organized as follows: the introduction,paper will be followed

by section 2 , which describesto describe the study area and the precipitationrainfall datasets used in this research. In section 3,

the hydrological model and the calibration framework used in this researchmethod are explained, while section. Section 4 presents the

results and discussion of this work. The conclusions and outlook are providedin section 5.
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2 Study area and hydrometeorological datasets

This study was testedarea is located in a semi-humid region in the Baden-Württemberg state of Germany (Figure 1) that characterized

by temperate monsoon climatewith temperate monsoon climate of mild winter and warm summer. Elevations of this state rangeElevation

of this region ranges from 85m to 1493m above sea level. The heterogeneity of climate characteristics is mainly due to the great

variability of elevations within the study area. Winters are mild whereas summers are warmer.The annual mean air temperature in Baden-5

Württemberg is about 10.2 °C. PrecipitationRainfall is evenly distributed throughthroughout the year. However, its seasonality

shows a weak trend. The monthly rainfall reaches its peakis highest in June , whereas the month of October shows the least precipita-

tionand lowest in October. The meteorological observationsdata used in this study waswere provided by the German Weather

Service (DWD). Daily air temperature data required for the rainfall-runoff model waswere interpolated on a 1×1 km2 grid

from the observations using the algorithm ofExternal Drift Kriging algorithm (Ahmed and De Marsily, 1987). The topographical10

elevation was taken as external drift (Hundecha and Bárdossy, 2004; Das et al., 2008). The long term monthly potential

evapotranspiration and the average air temperature were used to compute the daily potential evapotranspiration using the

Hargreaves and Samani method (Hargreaves and Samani, 1985).

PrecipitationRainfall data from a dense network of daily precipitationrainfall stations (62 km2/station in 1991) and from a less

dense network of sub-daily stations (144 km2/station in 1991) with high resolution precipitationrainfall observations were used15

for this study. All available data fromdata are available for the time period 1991-2010 was considered. The number of available

daily stations and sub-daily stations varies according to different time period. Figure 2 illustrates the number of available

observation locationsstations in Baden-Württemberg between the years1991 and 2010. It can be seen from the graph, more than

430 daily stations were available in 1991, whilebut only 30 sub-daily stations were available in 1991. The total number of daily

stations decreased dramaticallyto 250 around 2003 and remained constantstable for the subsequent years. The number of sub-daily20

stations kepthas been increasing throughout the wholethis period and experienced a sharp increase from 100 to 200 in the year2005.

The followingFour different precipitationrainfall datasets were created according to the available observed data:generated and explained as

follows.

1. High temporal resolution observed precipitationrainfall was aggregated to hourly time stepsand then interpolated subse-

quentlytoa 1×1 km2 gridgrids using the ordinary Kriging algorithm (Matheron, 1963). The correlation function obtained25

from the cross-correlations of the hourly time series was used as a basis for the variogram. This set will beis referred to

as Sparse Hourly (SH) set.

2. Observed daily precipitationrainfall combined with the daily aggregations of the high temporal resolution data were used

to create a 1×1 km2 gridded datasets using the ordinary Kriging algorithm. The variogram was based on the cross-

correlations of the daily time series. This set will beis referred to as Dense Daily (DD) set.30

3. High resolution precipitationrainfall was aggregated to daily time steps and interpolated subsequently for a 1×1 km2 grid

using the ordinary Kriging. The variogram was based on the cross-correlations of the aggregated daily time series. This

set will be referred as Sparse Daily (SD) set.
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4. Observed daily precipitationrainfall combined with the hourly aggregations of the high temporal resolution data were used

to create a 1×1 km2 grid using the disaggregation method rescaled ordinary Kriging (Bárdossy and Pegram, 2016).

The variogram was based on the cross-correlations of the hourly time series. This set is denotedreferred to as Dense

Hourly (DH) set.

Figure 3 shows the flow chart of the data collection and process. The DD and SD sets are practicallythe daily aggregations of5

the DH and SH sets. Note that DH is a dataset combining hourly observationsand artificially disaggregatedisaggregated daily gauge

data. One of the research questions raised here is to find out if adisaggregation leads to an improvement of model performance.

Comparisons of the model performances on the pairsperformance using the inputs of (SD, SH) and (DD, DH) provide information

onpair will reveal the effect of temporal resolution. While comparisonsMeanwhile, comparison between (SD, DD) and (SH, DH) ,

provide information onwill show the influence of the rainfall observation network density on the model performance.10

Four mesoscale catchments (Figure 1), namely Rottweil, Schwaibach, Pforzheim and Kocherstetten, were selected from the

upstream region of the state for testing the sensitivity of model performance to the four different rainfall datasetsas described

previously. The daily streamflow record of these catchments was collected for the period 1991-2010. The basic characteristics

for the study catchments are listed in Table 1. These catchments rangingrange in size from 417km2 to about1300km2, along with

alarge differencedifferences in elevation and annual precipitation. It can be seen clearly from the map that these four catchments15

have different rain gauge densitydensities, the Schwaibach catchment , whichlocated in the mountainmountainous area with vari-

ouselevations (from 190m to 1028m),ranging from 190m to 1028m has the lowest density of rain gauge network and the highest

annual precipitation. Rottweil and Kocherstetten have similar climate conditions in terms of annual precipitation and runoff,

but the catchment size of Kocherstetten is almost three times of Rottweil. Pforzheim has the smallest drainage area and the

lowest amount of precipitation.20

3 Model and methodology

3.1 Model structure

The conceptual HBV model was introduceddeveloped in the 1970s atby the Swedish Meteorological and Hydrological Institute

(SMHI) (Bergström and Forsman, 1973). DueThanks to its simplicity, low demand of inputs and fewsmall number of model

parameters, the HBV model has been a preferred modelwidely used for rainfall-runoff simulation and flood forecasting. Figure25

4 represents the structure diagram of the HBV model (Singh, 2010). In general, There are three main modules are includedin the

HBV model, namely snow routine, soil moisture routine and runoff routine (Hartmann, 2007; Singh, 2010).

First of all,In the snow routine, the snow accumulation and meltmelting process is estimated by the relatively simple degree-

day method (Rango and Martinec, 1995) usingwith two parameters: degree day factor (DD) and threshold temperature for

snow/rain (TT) (as shown in Equation 1). In this method, theThe measured precipitation is supposed to be solid (snowfall) if the30

air temperature is lower than thethreshold temperature, otherwise, precipitation appears liquid state (rainfall) if the weather is
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warmer than the threshold value.

Snowmelt=DD · (T −TT ), if T > TT (1)

In the HBV model, soil moisture storage is decided by balancing rainfall and evapotranspiration according to two soil moisture

constants: permanent wilting point (PWP) and field capacity (FC). The soil wetness index, which is represented bydefined as the

ratio of direct runoff to effective precipitation ( ∆Q
∆P ), can be estimated byis expressed as:5

∆Q

∆P
= (

SM

FC
)Beta (2)

where SM denotes the actual soil moisture and Beta determinesthe proportion of effective precipitation contributing to runoff

at afor given soil moisture state. The approach ofPenman equation is used to estimate the potential evapotranspiration according to

the long-term monthly mean air temperature (TM ) and long-term monthly averageaveraged potential evapotranspiration (PEM )

(Penman, 1948):10

Etp = (1 +C(T −TM ))PEM (3)

Herewhere C is the evapotranspiration coefficient. The actual evapotranspiration (Eta) can be estimated asfollow:

Eta =

Etp if SM > PWP

SM
PWP ·Etp else

(4)

As shown in Equation 2, runoff response routine is calculated by a non-linear function based on excessive effective precipitation

and actual soil moisture. The runoff concentration process consists of upper and lower reservoirs with five freeparameters:15

Q0 =K0(S1 −HL) (5)

Q1 =K1S1 (6)

Qd =KdS1 (7)20

Q2 =K2S2 (8)

The runoff is divided into surface flow (Q0), interflow (Q1) and base flow (Q2) with three recession coefficients K0, K1 and

K2, along with a conceptual threshold water level (HL) for generating surface flow. The two parallel reservoirs are connected

in the form of percolation storage (Qd) from upper reservoir to the lower one with the parameter of percolation constant Kd.25
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Finally, aA transformation function approach with the triangular weighting parameter MAXBAS is used to smooth the generatedtotal

runoff (Q0 +Q1 +Q2) to obtain discharge at the outlet.

In this study, for investigating the sensitivity of model performance on the spatial resolution of input variables, two HBV

models with different levels of complexityspatially configurations were applied: lumped HBV and spatially distributed HBV,

respectively. In the lumped model, precipitation, temperature and potential evapotranspiration were supposed to be equallyassumed5

uniformly distributed among thewithin a catchment and all the processes were calculated for the whole catchment. Previous

studies have indicated that the altitudeelevation is an important reason for the spatial differentiation of meteorological elements,

such asvariables, including temperature, precipitation, evapotranspiration and snow melt are in reality not uniformly distributed

within a catchment. They often exhibit dependence with elevation. Therefore, theThe spatially distributed HBV model was con-

structed to separate the wholeused in this study divides a catchment into several zones based on topographicelevation. The 1×1 km210

grid based precipitationrainfall and temperature data were computed averagely according to elevation zone and used as inputs for model simula-

tionaveraged for each elevation zone. In the spatially distributed model, the parameters associated with the snowmelt and soil

moisture modules related parameters can be adjusted differentlywere calibrated for each elevation zone. The parameters controllingasso-

ciated with the runoff response processesmodule were estimated for the wholecalibrated for each catchment similarly to the lumped

model (Das et al., 2008).15

There areOut of the 15 parameters describingwithin the HBV model, where only9 parameters were selected for calibrationcalibrated

in this study. Table 2 lists the initial upper and lower limit of the to-be-calibrated parameters that will be optimized by model calibra-

tionusing historical data. The data depth based parameter optimization method-Robust Parameter Estimation (ROPE) algorithm

(Bárdossy and Singh, 2008) was applied for model parameter identificationoptimization. The ROPE approach could lead to a

certain number of model parameters with ideal model performance (Bárdossy et al., 2016). For this study, each simulation20

results in 10,000 heterogeneous parameter sets with similar and goodsimilarly acceptable model performance.

3.2 Performance criteria

Previous studies have shown that model performance strongly depends on the selection of performance criteria (Gupta et al.,

2009). The simulated result andmodel simulations corresponding to the model parameters using different objective functions differ

considerably as they have different focusfocuses (Bárdossy et al., 2016). The purpose of this study is to investigate the sensitivity25

of conceptual model to rainfall variability, and according find effective ways to improve the precision of flood forecasting. Since

high flow is extremely important for floodsflood forecasting, the Nash-Sutcliffe (NS) coefficient (Nash and Sutcliffe, 1970), one

of the widely used indicators, was used in this study to assess the model performance based on observed discharge. NS effi-

ciencycoefficient is one of the most widely used performance criteria in model simulation. Itfocuses on high flow as it evaluates the squared

difference between simulated and measured streamflow. NS efficiencyIt can be calculated using the following equation:30

NS = 1−
∑T

t=1 (Qo(t)−Qm(t))
2∑T

t=1

(
Qo(t)− Q̄o

)2 (9)
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where Qo(t) and Qm(t) are the observed and simulated dischargesdischarge, respectively, and Q̄o is the mean of observed

discharge series.

Meanwhile, theThe Mean Square Error (MSE) of the flow for the time period thatof the observed discharge ishigher than the

10th percentile of flow was calculatedused to assess the flood forecasting ability of the models:

MSE =
1

n

n∑
i=1

(Q0(i)−Qm(i))2 (10)5

Herewhere Qo(i) and Qm(i) are the observed and modeled discharges when the observed discharge is higher than the 10th

percentile of flow.

3.3 Model calibration experiments

A split sample calibration methodology has beenwas applied in this study to separatedivide the wholedata seriesinto two changeequal10-

year periods: 1991-2000 and 2001-2010. Model calibration was carried out for both time periods and then a cross-validation10

analysis was performed as well. For each calibration run, the first water year data was used as a warm-up period to reduce initial

errorsand was not used to evaluate the model performance.

In this study we investigated the impacts of using different methods for spatial interpolation of hourly rainfall data on model

performance. The four rainfall datasets were assignedused as input variables for model calibration and validation. In all mod-

eling experiments, daily mean temperature and potential evapotranspiration were used as inputs. This is to isolate the effects15

of different rainfall inputs on the model performance. We also assessed theThe effects of the temporal and spatial resolutions of

the rainfall inputs on the model performance were assessed in terms of Nash-Sutcliffe efficiencyNS coefficient and the mean square

errorMSE of the high flow. We conducted experiments of model calibration for a lumped and a spatially distributed HBV model

using hourly and daily input variables, respectively. For the spatially distributed model structure, a contour interval of 100m

was takenused to divide the whole studya catchment into severaldifferent elevation zones. Note that all the model calibrations were20

performed on the basis of simulating daily discharge. Due to the limitation of observed temperature, air temperature and potential evapotranspi-

ration were assumed to be constant over the whole day.

We also wonderinvestigated if the combination of daily scale modeland hourly scale model leads to amodels can lead to better pre-

diction in streamflow. It is interesting to investigate the similarities of different temporal resolution. Therefore, the common

calibration tragedyapproach was proposed in this studyused to calibrate the daily scale modeland hourly scale modelmodels simultane-25

ously. This kind ofapproach is expected tomay identify robust model parameters for the application of model inthat are applicable using

different temporal resolutions. CommonThe common calibration approach is a multi-objective optimization function and the

compromise programming method (Zeleny, 1981) was used to formulate the objective function:

O(θ) =
n∑

i=1

(NS∗
i −NSi(θ))

p (11)

Here index i indicatesdenotes the type of temporal resolution, NS∗
i means the optimal model performance which can be repre-30

sented by the individual calibrated model performance. Here we aim to minimize the value of objective function O(θ). For the
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balancing factor p, a moderately high p= 4 was given in this study. More details about the common calibration of hydrological

models’ strategy can be found in Bárdossy et al. (2016).

4 Results and discussion

4.1 Comparison of the rainfall datasets

Firstly, theThe quality of the rainfall productsdatasets was assessed and compared for the four selected catchments. As the SD5

and DD sets are thedaily aggregations of the SH and DH sets, herewe only compared the daily precipitationrainfall sets SD and

DD for both calibration decadesperiods (Figure 5). It can be seen clearly from the figures that the interpolated precipitationrainfall

datasets display some difference for all study catchments. The asymmetry of the scatterplots is fairly obviousevident for the first

decade (1991-2000)period 1991-2000. In general, the DD dataset leads to higher value than the SD dataset. The reason behind thisIt is

mainly because the low density of sub-daily observations during the period of 1991-2000 leads to biglarge errors in the spatial10

interpolation of rainfall. This is especially the case for Schwaibach catchment which varies strongly in geographical elevation

(from 190m to 1028m. For the period of 2001-2010, the SD and DD sets become similar in magnitude along with the increasing of available

sub-daily observations.are in closer agreement due to higher density of sub-daily gauges.

4.2 Calibration and validation model performanceResults of calibration and validation

As designeddescribed in section 3.3, for the selected catchments, model calibrations were carried out using four rainfall datasets15

for both lumped and spatially distributed HBV models. Data series from 1991 to 2010 were average split into two sub-periodsTwo 10-year

time periods 1991-2000 and 2001-2010 were used for calibration and cross-validation. This leads toIn total 16 calibration runs

and 16 validation runs were performed for everyeach catchment. As mentionmentioned before, each simulation could obtainob-

tained 10,000 parameter sets with similar model performance. To make it simple, we tookWe then used the mean value of the

corresponding10,000 model performances to representquantify the model efficiencyperformance.20

Table 3 lists the average value of the NS model performance for the four selected catchments using lumped HBV model

and Table 4 lists the simulated NS performance for spatially distributed version of the model, respectively. The results show

that all four datasets can reproduce relatively accurate historical daily streamflow series for all selected catchments. Results

also indicateshow that the model performances vary across catchments. The Kocherstetten catchment generally performs the

best with an average NS value of 0.84 for all simulations, while thePforzheim catchment has the worst mean NS performance of25

0.58 for all calibration runs. Moreover, for a specific catchment, the calibrated model performancesmodels perform differently for

different data period are also different. For the Schwaibach and Pforzheim catchmentscatchment, the calibrated model performance

for the timeperiod of 2001-2010 is obviouslybetter than the performance for the time period 1991-2000 for most of the datasets.

This might be due to the increasing of therain gauge density inside or nearbynear the catchment and the quality of rainfall data

with the development of time and technological progress. In particular, the model calibrations for the period 1991-2000 of30

the Schwaibach catchment using the sets SH and SD perform very weakpoorly for both calibration and validation; the loss in NS
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coefficient. NS coefficient using SH and SH inputs is about 0.3 when compared to the correspondingless than the results of the sets DH

and DD. This indicates that systematic interpolated precipitationrainfall errors have critical influence on model calibration.

The flexibility of model in flood prediction is analyzed with the behavior of high flowWe then analyzed if the model is robust for simulating

high flows. Tables 5 and 6 list the mean square error of flows higher than theerrors of the top 10th percentile of flowflows for the

lumped modeland spatially distributed model, respectively. Figure 6 shows the flow duration curve for the natural logarithm5

of simulated and observed discharge for all study catchment for the years between 2001 and 2010, while . Figure 7 shows the

corresponding results for flows higher than the 10th percentile of flow. Results indicate obviouslythat for most of the calibration

runs, the set DH performs the best for the high flow, followed by set SH, set DD performs a little weaker than set SH, while set

SD has the worst performance in theflood simulation.

4.3 Comparison of theModel performance corresponding to the temporal resolutionusing different temporal resolutions of10

rainfall data

Firstly, the model performance of different temporal resolutionresolutions of rainfall was compared for allfour datasets and two

model structuresspatial configurations. For the pairwise comparison, all the conditions are the same in the model except for the

rainfall temporal resolution of input variables(hourly and daily). The results of the sparse sets and dense sets are separated here.

Figure 8 compares the model performance of using hourly and daily rainfall variables as model input for the precipitation setsinputs15

that were interpolated using only high-resolution precipitationrainfall observations (SH, SD). Figure 9 compares the correspond-

ingresults forfrom the rainfall datasetsinputs that incorporated observed daily value with high-resolution observations (DH, DD).

The result shows that all the scatters are layinglying below the diagonal line for the different level of observation density. For

both calibration and validation periods, the simulations using hourly input data as model inputoutperform the one thatones based

on the daily resolution. For the dataset with low observation network density, the averageaveraged NS valueof set SH is about20

0.73 for the calibration period and 0.68 for the validation period, while the mean NS coefficient that wascalibrated using SD set

is 0.67 and 0.6, respectively. The higher observation density datasets show a similar tendency. The mean NS valueof using DH

set is around 0.79 for calibration and 0.77 for validation, while the resultthat of set DD is 0.72 and 0.69, respectively. The fact

that the hourly scale model performs better than the daily model indicatingsuggests that the dynamic runoff of catchment could

be better simulated with a higher temporal resolution of input variablesrainfall. According to the distances from the diagonal to25

the scatter plots, we could findcan observe that the difference in model performance for different temporal resolutionresolutions

is larger for the catchments with relatively low NS model performance, such as Schwaibach and Pforzheim. For Rottweil and

Kocherstetten, the modelperformance of hourly calibrated model is only slightly better than the daily basedmodel.

4.4 Comparison of theModel performance corresponding toin terms of observation density

Results also indicate thatThe rainfall datagauge network density has significant impact on model simulation and parameter optimiza-30

tion. Figure 10 plots the simulated NS coefficient for the daily datasets that was interpolated using different density of rainfall observation network.shows

the simulated NS coefficient of the model simulations using the daily input data interpolated using different densities of rain

gauge networks. It shows obviously from the location of points that the simulated model performance ofusing the DD set is
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generally better than the result ofthat using the SD set for both calibration and validation periodsperiod. The averageaveraged NS

model performance of DD set over all simulations is aboutand SD sets are 0.71 while the value for SD set isand 0.64, respectively. The

model performance for the hourly based simulationusing hourly inputs shows similar trend as the model performance for the daily time

stepthat using daily inputs. As shown in Figure 11, the model calibration ofusing the DH set outperformoutperforms the result ofone

using the SH set. TheThese results demonstrate that the high observation density could lead to considerablehigh rain gauge density lead to5

improvement of model performance forat both daily and hourly time scalesresolution.

Figure 12 illustrates the cumulative distribution function of NS model performancecoefficient using sets SD, SH and DH for

model calibration (left) and validation (right). As can be seen clearly from the curves, if precipitationrainfall data comes from a

sparse network of sub-daily stations, use of higher temporal resolution datasets (as represented by set SHthe SH set) can achieveleads

to better model performance than the lower ones (as represented by set SD)using lower resolution ones (the SD set). Decreasing the10

length of time step in model simulation could provide a better fitSimulation of daily streamflow can benefit from running the model at

a higher temporal resolution. In addition, the combination of observed high-resolution observationssub daily rainfall with disaggre-

gatedisaggregated daily precipitationrainfall (as represented by set DHthe DH set) leads to a further improvement of daily streamflow

predictionsimulation.

4.5 Comparison of theModel performance corresponding to thein terms of spatial resolution of rainfall data15

The model performance of different model structures in terms of different spatial resolutions was assessed by comparing performance for lumped

HBV model and spatially distributed HBV modelwas compared between the lumped and spatially distributed HBV model when they

were driven by different rainfall datasets. Figure 13 compares the NS model performance for these two model structuresfor cali-

bration (left) and validation (right) periods. The correlation between model performance and the spatial resolution of model

seems not clear for the study catchments. For some simulations, the elevation zone basedspatially distributed models outperformmodel20

outperforms the lumped, ones especially for the catchments having high NS coefficient. Despite, despite the increase in model

performance being only marginal. However, for the catchments with relatively weakpoorer model performance, the lumped

model could even lead to slightly better performance than the semi-distributed model, structure,especially for the validation

period thatwhen the difference seems larger than the calibration period. It indicates that for model validation, the model pa-

rameters estimated by distributed HBV model shows weaker transferability. Possible explanation for this case could be that25

the distributed model structure raises thehas a larger number of parameters to be identifiedcalibrated and the parameters are under-

estimated during the calibration period. We canconclude from this comparisonthat the improvement in spatial resolution of model

structure did not clearlyenhance the model performance, . However, it is surprising since we expected a better model performance with a higher

spatial resolution of model and a complicated set of parameterswhich is surprising since higher spatial resolution and more model param-

eters are expected to improve the model performance. TheOur results supportconfirm the findings of Das et al. (2008) that the30

distributed model structures doesmodels do not significantlynecessarily improve model performance.

The complex structure version ofdistributed model did not perform better than the lumped model in current researchthis study. This

might be due to the lack ofcould be because the catchment underlying surface information and/or the calibration procedure was
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not enoughsufficient for the identification ofidentifying optimal distributed model parameters. A second explanationreason could be

thatthe temporal resolution of the forcerainfall inputs is not sufficient for the distributed model structure.

4.6 Common calibration of modelsmodel calibration with different temporal resolutions

As shown before, the combination of hourly observationsand daily observations leadgauge data leads to the improvement of data

quality as the model using sets DH and DD showhas better modelperformance than theusing sets SH and SD. Furthermore,5

common calibration of the lumped HBV model was performed for the sets DH and DD to identify model parameters good

for both hourly and daily time steps. It is important to note that the value of time step dependentparameters (DD, K0, K1, Kd and

K2) that are dependent on time steps should be converted according to the temporal resolution ofsimulation step of the model.

The common calibration was performed for two decadesthe two time periods separately, and thea cross-validation analysis was

performed as well. The common calibration and validation results were compared with the individual calibration cases(Figure10

14). For the calibration period, the common calibration always leads to slightly weaker performance for all datasets. For three

of the DD datasets, model performances of common parameters are rathersimilar to individual calibration results. The average

loss of NS model performancecoefficients over all catchments is about 0.02 for set DH and 0.01 for set DD. For the validation

period, from the scatter plots,it is clearly seencan be seen from the scatter plots that the common parameters outperform the individual

ones for about half of the all simulations. It indicatessuggests that common calibrated parameters based on different time steps could be a15

feasible approach for increasingparameters values obtained using the common calibration approach based on different time steps can

improve the temporal transferability of models. The reason for the robustness of common parameters might be that common

calibration tragedy couldstrategy can provide more information for identifying model parameters.

The calibrated model parameters using daily precipitationrainfall, hourly precipitationrainfall and common calibration tragedystrat-

egy were also comparedin this study. Figure 15 and Figure 16 show the distributiondistributions of the optimized model parameters20

for Rottweil and Pforzheim, respectively. Note that all the parameter values have beenparameters are normalized by the initial range

that listedranges in Table 2. Form the box plots we could find that some model parameters strongly depend on the selected rainfall

dataset. , especially This is very evident with the shape factor (Beta) and the threshold water level for surface runoff (L), strongly

depend on the selected precipitation dataset.

5 Conclusions and outlook25

In this study, we investigated the impacts of temporal and spatial variability of rainfall in model simulation and parameter

estimation. We also explored the question whether higher temporal and spatial resolutions of rainfall data lead to any improve-

ment of model performance. Both the lumped HBVand spatially distributed HBV modelsmodel were applied to simulate thedaily

runoff for four mesoscale catchments driven by four different types ofprecipitationrainfall datasets which were constructed using

a combination of data from high density of daily stations and relatively low density sub-daily stations. The impacts of rainfall30

variability on model simulationsimulations were evaluated using Nash-Sutcliffe efficiencythe NS coefficient and the mean squared

error of flows higher than the 10th percentile of flow. The sensitivity of modelmodel sensitivities to the temporal and spatial res-
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olutions of rainfall waswere compared. In additionaladdition, the common calibration approach was proposed to calibrate the

models with different time steps simultaneously for seekingfinding robust model parameters.

For the study catchments, the results indicate that the temporal variability of rainfall data has direct impact on dynamic

response of a catchment. For both lumped and spatially distributed models, if the observation density is the same, the hourly

based simulation completelyoutperforms the daily based simulation, indicating that higher temporal resolution couldcan signif-5

icantly improve the model performance. Disaggregating high density daily observations into relatively low density sub-daily

values could lead to considerable model improvement, especially for the catchment with a sparse rain gauge network. Rainfall

disaggregatingdisaggregation approach providesis an effective way forof increasing the temporal resolution of rainfall data and

the model performance of model simulation. However, the lumped and spatially distributed HBV model perform very similarly,

indicating that higher modelspatial resolution does not or only marginally improve the model performance for the study catch-10

ments. The result supportsagrees with the general findings of Lobligeois et al. (2014) and Zhu et al. (2018), where insignificant

improvement was observed using higher spatial resolution of rainfall. The reason that the spatially distributed model does not

outperform the lumped model could be due to the fact the study catchments are smaller than 2000km2 and havewith relatively

uniform precipitationrainfall.

As discussedstated at the beginning of this paper, we aim to investigate the sensitivity of model to rainfall variability and15

to find effective ways for improving the model performance. This research indicatesstudy shows that rainfalldata disaggregation

approachcouldcan lead to a significant improvement of model performance, while higher spatial resolution of rainfall does not

always enhance model performance. Most of the hydrological models can be easily adjusted to use different time steps. The

study suggests that increasing the temporal resolution of precipitationrainfall inputs with disaggregation method couldcan be an

easier and more efficient way to improve model performance, compared withto increasing the model spatial resolution that20

comesat a cost of increasing the complexity of model structure and parameters.

This study focuses on high flows and uses only the Nash-Sutcliffe efficiencyNS coefficient as the objective function to investigate thea

quantitative measure of model sensitivity. As model performance highly depends on the selection of objective functions, the

model sensitivity can be different if using different performance criteriathe model performance is measured differently. In addition,

all the hourly simulated runoff was aggregated into daily, the hydrological response was evaluated based on daily discharge.25

Sub-daily response of a catchment is more sensitive to the temporal and spatial variability of rainfall, which couldshould be

considered in the future if the hourly discharge observation is available.
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Table 1. Catchment characteristics for the 4 selected catchments.

No. Stream gauge Longitude Latitude Area Elevation Annual Average Annual

name (oE) (oN) (km2) (m) precipitationrainfall (mm) temperature (oC) runoff (mm)

1 Rottweil, Neck 8.38 48.10 455 555-1010 929.0 9.7 363.2

2 Schwaibach,Kinzig 8.02 48.24 955 190-1028 1331.8 9.7 757.3

3 Pforzheim,Würm 8.43 48.52 417 357-583 761.7 9.3 232.9

4 Kocherstetten, Kocher 9.45 49.16 1288 292-698 930.6 9.4 401.6
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Table 2. Description of HBV model parameters and parameter ranges for model calibration.

Parameter Description Max Min

TT Threshold temperature for snow melt initiation (0C) 2 -2

DD Degree-day factor 3 1.5

FC Field capacity (mm) 600 50

Beta Shape coefficient 8 0.2

HL Threshold water level for near surface flow (mm) 100 1

K0 Near surface flow storage constant 0.8 0.2

K1 Interflow storage constant 0.25 0.1

Kd Percolation storage constant 0.2 0.05

K2 Baseflow storage constant 0.1 0.01
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Table 3. Average NS model performance for the lumped HBV model.

Catchment
PrecipitationRainfall Calibration for Calibration for Validation for Validation for

dataset 1991-2000 2001-2010 1991-2000 2001-2010

Rottweil

SH 0.71 0.71 0.65 0.65

DH 0.79 0.73 0.73 0.68

SD 0.61 0.61 0.56 0.55

DD 0.67 0.63 0.63 0.59

Schwaibach

SH 0.60 0.88 0.52 0.72

DH 0.89 0.88 0.88 0.87

SD 0.57 0.85 0.49 0.68

DD 0.84 0.86 0.83 0.83

Pforzheim

SH 0.61 0.69 0.60 0.65

DH 0.63 0.69 0.63 0.67

SD 0.48 0.60 0.46 0.56

DD 0.48 0.60 0.49 0.57

Kocherstetten

SH 0.88 0.85 0.86 0.84

DH 0.89 0.85 0.87 0.84

SD 0.84 0.84 0.81 0.79

DD 0.84 0.83 0.81 0.81
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Table 4. Average NS model performance for the distributed HBV model.

Catchment
PrecipitationRainfall Calibration for Calibration for Validation for Validation for

dataset 1991-2000 2001-2010 1991-2000 2001-2010

Rottweil

SH 0.70 0.68 0.63 0.55

DH 0.80 0.69 0.74 0.66

SD 0.61 0.59 0.54 0.46

DD 0.68 0.60 0.63 0.57

Schwaibach

SH 0.59 0.88 0.50 0.76

DH 0.90 0.88 0.88 0.87

SD 0.55 0.86 0.47 0.72

DD 0.85 0.86 0.84 0.85

Pforzheim

SH 0.55 0.68 0.55 0.64

DH 0.59 0.67 0.59 0.64

SD 0.42 0.58 0.41 0.54

DD 0.45 0.58 0.46 0.54

Kocherstetten

SH 0.88 0.86 0.86 0.84

DH 0.89 0.86 0.87 0.84

SD 0.84 0.84 0.82 0.80

DD 0.84 0.84 0.82 0.81
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Table 5. Mean square error of the flowfor flows higher than the 10th percentile of flow for the lumped HBV model.

Catchment
PrecipitationRainfall Calibration for Calibration for Validation for Validation for

dataset 1991-2000 2001-2010 1991-2000 2001-2010

Rottweil

SH 83.1 74.6 118.7 83.5

DH 55.1 69.8 82.4 84.7

SD 120.0 104.5 151.4 108.5

DD 101.7 98.9 120.0 110.1

Schwaibach

SH 2511.4 338.6 3214.9 663.6

DH 565.4 324.4 722.7 328.2

SD 2739.9 401.1 3423.0 805.7

DD 916.0 389.2 1048.1 448.2

Pforzheim

SH 11.8 7.3 12.4 8.3

DH 11.2 6.9 11.8 7.3

SD 19.1 10.6 19.6 12.0

DD 18.9 10.3 19.5 10.9

Kocherstetten

SH 438.9 457.5 545.5 558.7

DH 288.5 439.3 350.5 518.8

SD 651.9 551.9 801.9 760.4

DD 556.0 544.1 665.0 701.3
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Table 6. Mean square errorof the flowfor flows higher than the 10th percentile of flow for the distributed HBV model.

Catchment
PrecipitationRainfall Calibration for Calibration for Validation for Validation for

dataset 1991-2000 2001-2010 1991-2000 2001-2010

Rottweil

SH 89.0 86.8 127.8 120.1

DH 56.5 85.2 80.1 95.0

SD 121.0 113.6 161.4 144.5

DD 100.6 111.5 119.6 121.9

Schwaibach

SH 2657.1 326.9 3330.8 527.1

DH 526.1 311.4 680.7 317.7

SD 2869.6 387.9 3546.7 681.5

DD 892.8 376.5 983.2 405.9

Pforzheim

SH 12.5 7.1 12.7 8.1

DH 11.9 6.7 12.4 7.2

SD 19.6 10.3 19.7 11.5

DD 19.5 9.9 19.6 10.6

Kocherstetten

SH 425.7 455.1 541.2 551.5

DH 293.5 429.1 355.3 515.1

SD 633.3 552.0 778.6 727.3

DD 542.4 540.8 637.0 670.9
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Figure 1. Locations of the pluviometers(hourly)sub-daily and daily rain gauges in Baden-Württemberg and the four selected catchments.
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Figure 2. The number of available observation locations. Daily stations - solid line, Sub-daily stations - dashed line.
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Figure 3. Schematic representation of four different precipitation data setsrainfall datasets.
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Figure 4. Schematic representation of HBV model.
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Figure 5. Comparison of the daily precipitationrainfall data that interpolated using different observation network densitydensities of rain gauge

network.
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Figure 6. Comparison of the simulated flow duration curve.
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Figure 7. Comparison of the simulated flow duration curve for flows higher than the 10th percentile of flow.
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Figure 8. Comparison of NS model performancecoefficient for using hourly and daily variablesrainfall as model input for the SH and SD sets.
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Figure 9. Comparison of NS model performancecoefficient for using hourly and daily variablesrainfall as model input for the DH and DD sets.
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Figure 10. Comparison of model performanceNS coefficient for different densitydensities of rainfall observationrain gauge network, models were

simulated based on daily time step.
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Figure 11. Comparison of model performanceNS coefficient for different densitydensities of rainfall observationrain gauge network, models were

simulated based on hourly time step.
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Figure 12. Cumulative distribution of NS coefficient for model calibration using different precipitationrainfall datasets .
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Figure 13. Comparison of model performanceNS coefficient for different spatial resolution of model structure.
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Figure 14. Comparison of model performanceNS coefficient for individual calibration and common calibration forusing datasets with different

temporal resolution datasetsresolutions.
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Figure 15. Comparison of model parameters for different temporal resolutionresolutions for Rottweil catchment.
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Figure 16. Comparison of model parameters for different temporal resolutionresolutions for Pforzheim catchment.
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