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Abstract 12 

Uncertainty in hydrological modeling is of significant concern due to its effects on prediction 13 

and subsequent application in watershed management. Similar to other distributed 14 

hydrological models, model uncertainty is an issue in applying the Soil and Water 15 

Assessment Tool (SWAT). Previous research has shown how SWAT predictions are affected 16 

by uncertainty in parameter estimation and input data resolution. Nevertheless, little 17 

information is available on how parameter uncertainty and output uncertainty are affected 18 

by input data of varying complexity. In this study, SWAT-Hillslope (SWAT-HS), a modified 19 

version of SWAT capable of predicting saturation-excess runoff, was applied to assess the 20 

effects of input data with varying degrees of complexity on parameter uncertainty and output 21 

uncertainty. Four digital elevation model (DEM) resolutions (1, 3, 10 and 30 m) were tested 22 

for their ability to predict streamflow and saturated areas. In a second analysis, three soil 23 

maps and three land use maps were used to build nine SWAT-HS setups from simple to 24 

complex (fewer to more soil types/ land use classes), which were then compared to study the 25 

effect of input data complexity on model prediction/output uncertainty. The case study was 26 
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the Town Brook watershed in the upper reaches of the West Branch Delaware River in the 1 

Catskill Region, New York, USA. Results show that DEM resolution did not impact 2 

parameter uncertainty or affect the simulation of streamflow at the watershed outlet but 3 

significantly affected the spatial pattern of saturated areas, with 10m being the most 4 

appropriate grid size to use for our application. The comparison of nine model setups 5 

revealed that input data complexity did not affect parameter uncertainty. Model setups using 6 

intermediate soil/land use specifications were slightly better than the ones using simple 7 

information, while the most complex setup did not show any improvement from the 8 

intermediate ones. We conclude that improving input resolution and complexity may not 9 

necessarily improve model performance or reduce parameter and output uncertainty, but 10 

using multiple temporal and spatial observations can aid in finding the appropriate 11 

parameter sets and in reducing prediction/output uncertainty. 12 

Keywords: Input data complexity, parameter uncertainty, output uncertainty, SWAT-HS, 13 

Catskill region 14 

1. Introduction  15 

Uncertainty in hydrological modeling is of significant concern due to its effects on prediction 16 

and subsequent decision making (Van Griensven et al., 2008; Sudheer et al., 2011). The 17 

uncertainty of a model can be associated with different components: (i) model structure, (ii) 18 

input data, and (iii) model parameters (Lindenschmidt et al., 2007). Uncertainty due to model 19 

structure results from assumptions or simplifications made in the formulation of the model, 20 

and in application of the model under conditions that are not consistent with those 21 

assumptions or simplifications (Tripp and Niemann, 2008). Input data uncertainty is caused 22 

by changes in natural conditions, limitations of measurement, and lack of data (Beck, 1987). 23 

Parameter uncertainty results from the non-linear response of predictions to parameter 24 

changes and parameter interdependence leading to the possibility that changes in some 25 

parameters may be compensated for by changes in others, so that different parameter sets 26 
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may produce the same simulated results (Bárdossy and Singh, 2008). This so-called 1 

equifinality is very common in hydrological models and is one of the main causes for 2 

uncertainties in model predictions (Beven and Freer, 2001). 3 

SWAT-Hillslope (SWAT-HS) (Hoang et al., 2017) is a modified version of the Soil and Water 4 

Assessment Tool (SWAT) (Arnold et al., 1998) that improves the simulation of saturation-5 

excess runoff and creates interaction in flow and substance transport between the upland 6 

areas and the valley bottom. Initial testing of SWAT-HS was carried out in the Town Brook 7 

watershed, a 37 km2 headwater watershed in the upper reaches of the West Branch Delaware 8 

River in the Catskill Mountains of New York. The West Branch Delaware River drains into 9 

the Cannonsville Reservoir, part the New York City (NYC) water supply system which 10 

supplies high quality drinking water to over 9 million people in NYC and nearby 11 

communities. In this region, rainfall intensities rarely exceed infiltration rates and saturation-12 

excess runoff is common (Walter et al., 2003). Results showed good agreement between 13 

measured and modeled streamflow at both daily and monthly time steps. More importantly, 14 

the model predicted correctly the occurrence of saturated areas on specific days for which 15 

observations are available, which was not achieved with application of the standard SWAT 16 

model. Consequently, SWAT-HS performs well for our study region and shows promise as 17 

a good model for humid vegetated areas where saturation-excess runoff is dominant. The 18 

model modification is relatively new and research into its proper application is ongoing. Here 19 

SWAT-HS is applied to evaluate the effect of complexity of input data on parameter 20 

uncertainty and model prediction/output uncertainty. 21 

In previous SWAT studies, parameter uncertainty has received the most attention among the 22 

three types of model uncertainty (Shen et al., 2008; Cibin et al., 2010; Shen et al., 2010; Sexton 23 

et al., 2011). These studies confirmed limited identifiability of SWAT parameters and 24 

equifinality in calibrating discharge at the outlet of the watershed. Sexton et al. (2011) found 25 

that the model output uncertainty is not only caused by uncertainty of sensitive parameters 26 

but also contributed by non-sensitive parameters, and thus, suggested considering non-27 

sensitive parameters in calibration and uncertainty analysis. Parameter uncertainty caused 28 



4 
 

the least uncertainty for runoff (Shen et al., 2008; Shen et al., 2010) and greatest uncertainty 1 

for sediment (Sexton et al., 2011) among streamflow, sediment, nitrogen and phosphorus 2 

outputs. Moreover, the effect of parameter uncertainty can be temporally and spatially 3 

different. Temporally, parameter uncertainty causes higher output uncertainty in high-flow 4 

periods (Shen et al., 2008; Sexton et al., 2011; Shen et al., 2012). Spatially, SWAT generally 5 

predicted streamflow with less uncertainty in watersheds in humid climates relative to arid 6 

or semi‐arid climates (Veith et al., 2010). The source of uncertainty is mainly influenced by 7 

parameters associated with runoff (Shen et al., 2008). However, soil properties can also 8 

contribute to uncertainty (Shen et al., 2010). 9 

Effects of input data uncertainty have been evaluated in several SWAT applications by 10 

exploring the sensitivity of required input data for SWAT model set up, including the DEM, 11 

soil, and land use, on model outputs. While most studies focused on the sensitivity of 12 

predictions to DEM resolution, a few studies focused on the effects of soil and land use with 13 

varying spatial scales. Cotter et al. (2003) found that DEM resolution is the most sensitive 14 

input variable, while soil and land use resolution have insignificant impacts on the 15 

simulation of streamflow, sediment, nitrate, and total phosphorus. They suggested that the 16 

minimum DEM resolution should range from 30 to 300 m, and minimum land use and soils 17 

data resolution should range from 300 to 500 m. Chaubey et al. (2005) showed the significant 18 

impact of DEM resolution not only on watershed delineation, stream network and subbasin 19 

classification, but also on streamflow and nitrate load predictions. Based on SWAT 20 

application to a 21.8 km2 watershed in Lower Walnut Creek, central Iowa USA, Chaplot 21 

(2005) proposed an upper limit of 50 m for the DEM for watershed simulation, after 22 

determining that coarser grid sizes do not substantially affect runoff but result in significant 23 

errors for nitrogen and sediment yields. Geza and McCray (2008) and Mukundan et al. (2010) 24 

compared SWAT streamflow simulations using a low resolution State Soil Geographic 25 

database (STATSGO) and a high resolution Soil Survey Geographic database (SSURGO). 26 

While Geza and McCray (2008) found that STATSGO performed better than SSURGO before 27 
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calibration and the opposite was observed after calibration, Mukundan et al. (2010) found 1 

insignificant differences between the two datasets in simulating streamflow.  2 

Most previous SWAT studies focused on how SWAT predictions are affected by uncertainty 3 

of parameter estimation and different input data. Limited information is available on how 4 

parameter uncertainty and output uncertainty are affected by different input data with the 5 

exception of Kumar and Merwade (2009) who tested the impact of watershed subdivision 6 

and the use of two soil datasets (STATSGO and SSURGO) on streamflow calibration and 7 

parameter uncertainty. Although there have been numerous studies on the effect of DEM 8 

resolution on SWAT predictions, none have discussed its effects on model uncertainty and 9 

specifically on parameter uncertainty. Moreover, these studies on model uncertainty used an 10 

integrated response of the watershed (i.e., discharge at the outlet) for assessing complex 11 

processes inside the watershed and have not used additional spatial datasets that may reduce 12 

model uncertainty.  13 

The two main objectives of this paper are to evaluate: (i) the effect of DEMs of various spatial 14 

resolutions (1, 3, 10, and 30 m) on the uncertainty of streamflow and saturated area 15 

predictions, and (ii) the impact of combinations of soil and land use data with various degrees 16 

of complexity on the uncertainty in model simulation. In both analyses, we not only 17 

investigate the effect on model prediction/output uncertainty but also discuss their effect on 18 

the uncertainty in parameter estimation. Through this study we seek to answer specific 19 

questions including identifying the suitable DEM resolution for good model performance, 20 

and the appropriate complexity of the distributed input data. Answers to these research 21 

questions will be the basis for reducing decision uncertainty on model input selection in our 22 

future applications of SWAT-HS in the NYC water supply system. 23 

  24 
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2. Material and methods 1 

2.1. Study area: Town Brook watershed, New York 2 

The 37 km2 Town Brook watershed is located in the Catskill Mountains, Delaware County, 3 

New York State (Fig. 1) and is the headwater of the Cannonsville Reservoir watershed, which 4 

is one of four reservoir watersheds in the New York City’s Delaware system. Elevation ranges 5 

from 493 to 989 m. The area is humid with an average temperature of eight (8) oC and average 6 

annual precipitation of 1123 mm yr-1. Approximately 1/3 of the total precipitation in the 7 

region falls as snow (Pradhanang et al., 2011). Most soils are either silt loam or silty clay loam. 8 

The upper terrain of the watershed has shallow soils (average thickness 80 cm) overlaying 9 

fractured bedrock and steep slopes (average slope 29 %), while deeper soils (average 10 

thickness 180 cm) underlain by a dense fragipan restricting layer and gentler slope (average 11 

slope 14 %) are common in the lower terrain. Deciduous and mixed forests predominate in 12 

the upper terrain, covering more than half of the land area. In the lowland area, the principle 13 

land uses are agriculture (32 %) that includes dairy and beef farms with cropland and 14 

pastures; brushland (9 %); and residential areas (4 %). 15 

2.2. Brief description of SWAT-HS 16 

SWAT-HS is a modified version of the SWAT model version 2012 (SWAT2012) that is capable 17 

of predicting saturation-excess runoff. Two main modifications made in SWAT-HS include: 18 

(i) adding information on topography and soil water storage capacity to the modeling unit of 19 

SWAT, i.e. Hydrological Response Unit (HRU); and (ii) introducing a surface aquifer that 20 

allows lateral exchange of subsurface water from upslope to downslope areas. 21 

Similar to SWAT, SWAT-HS divides the watershed into subbasins. Additionally, the 22 

watershed is divided into a maximum of 10 wetness classes, each of which consists of areas 23 

in the subbasin with similar topographic indices. Subsequently, the subbasin is further 24 

divided into HRUs that are unique combinations of soil, land use, and slope as in SWAT, 25 

with an additional component: wetness class. The topographic index (TI) is defined as: 26 
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where TI is the soil topographic index [with units of ln(d m-1)], α is the upslope contributing 2 

area per unit contour length (m), )tan(  is the local surface topographic slope, sK is the mean 3 

saturated hydraulic conductivity of the soil (m d-1), and D is the soil depth (m). 4 

The soil water storage capacity of the wetness classes is defined as the amount of water in the 5 

rootzone between field capacity and saturation. This was assumed to vary across the soil 6 

wetness classes following a Pareto distribution (Hoang et al., 2017). Wetness classes that are 7 

located in the downslope areas have lower storage capacities, which means they are ‘wetter’ 8 

than wetness classes in the upslope areas with smaller TI values and higher storage 9 

capacities.  The wetter the wetness class, the faster the runoff response is during a rainstorm. 10 

A surface aquifer is introduced to connect all wetness classes across the hillslope and 11 

transmits subsurface flow that is generated from this aquifer (known as lateral flow in SWAT) 12 

laterally through the hillslope from “drier” (upslope) to “wetter” (downslope) wetness 13 

classes. 14 

SWAT-HS removes the original curve number method of SWAT in predicting total surface 15 

runoff. Instead, it simulates infiltration-excess runoff and saturation-excess runoff separately 16 

with different methods. Infiltration-excess runoff is predicted using the Green-Ampt method 17 

built into SWAT. Saturation-excess runoff in SWAT-HS is generated in the “wetter” 18 

(downslope) wetness classes by two processes: (i) rain falls in wet areas with limited storage 19 

capacities where the excess water becomes runoff, and (ii) water from the upland areas is 20 

transported laterally to the lowland areas and the water exceeding soil storage capacity 21 

becomes runoff (see Supplementary materials for more details). 22 

2.3. Methodology 23 

2.3.1. Effect of DEM resolution  24 

Four DEMs from fine to coarse resolution were used to set up the SWAT-HS model for the 25 

Town Brook watershed. The resolutions employed were 1 m, 3 m, 10 m, and 30 m. The 1 m 26 
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DEM (DEM1m) was derived from 2009 aerial LiDAR data acquired by New York City 1 

Department of Environmental Protection (RACNE, 2011). This was resampled to create 3 m, 2 

10 m and 30 m resolution DEMs (DEM3m, DEM10m and DEM30m).  3 

DEMs were used to delineate the watershed, calculate flow paths, slopes, drainage areas, and 4 

compute gridded values of TI. Based on TI values, the watershed was divided into 10 wetness 5 

classes (Fig. 4). Wetness class 1, covering a very small fraction of the watershed (0.59%), 6 

corresponds to the perennial stream network and is the “wettest” wetness class. We grouped 7 

50% of the watershed with the lowest TI values in the upland as the “driest” wetness class 8 

(wetness 10), because saturated areas never exceeded 50 % of the watershed based on 9 

observations (Harpold et al., 2010) and predictions by other watershed models like Soil 10 

Moisture Routing model (Agnew et al., 2006), SWAT-VSA (Easton et al., 2008) and SWAT-11 

WB (White et al., 2011). Subsequently, we divided the remaining areas into 8 wetness classes 12 

(wetness class 2 – 9) with approximately equal areas (~ 6 % each) based on TI values. 13 

Applying the same procedure of wetness class division using four DEM resolutions, the four 14 

SWAT-HS setups have approximately similar areal percentage of each wetness class. 15 

HRUs were created based on 10 wetness classes, 17 soil types, and 11 land use types. A single 16 

time series of daily precipitation and temperature data were interpolated from a 4 km x 4 km 17 

gridded PRISM climate dataset (Daly et al., 2008) using the inverse distance weighting 18 

method. Solar radiation data were derived as the average of airport stations at Albany and 19 

Binghamton supplied by the Northeast Regional Climate Center. Relative humidity and wind 20 

speed were generated by the built-in weather generator in SWAT. The procedure outlined 21 

above is similar to the SWAT-HS setup used by Hoang et al. (2017). 22 

Four SWAT-HS setups were run on a daily time step from 1998 – 2012. The first 3 years were 23 

used as the warming up period and the model was calibrated and validated for the periods 24 

2001–2007 and 2008–2012, respectively. We excluded the year 2011 from the validation period 25 

because there were two extreme events (Hurricane Irene and Tropical Storm Lee) in August 26 

and September 2011 that the model could not capture well. The calibration was carried out 27 

in two stages, i.e. snowmelt calibration and flow calibration, and by applying Monte Carlo 28 
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sampling method. Since the Town Brook watershed is located in a region that is heavily 1 

impacted by snow, the prediction of snow storage and snowmelt will significantly affect the 2 

timing and volume of predicted streamflow in winter and early spring. Consequently, we 3 

divided the calibration in two stages in order to reduce the number of calibrated parameters 4 

involved in one calibration and to focus on getting the right results for snow processes before 5 

adjusting other processes.  6 

For snowmelt calibration, we calibrated 5 snowmelt related parameters in group (i) (Table 1) 7 

by generating randomly 10,000 parameter sets, running these sets using SWAT-HS, 8 

comparing the streamflow predictions with observations and choosing the best parameter set 9 

with the best fit to streamflow observations (highest value of daily Nash Sutcliffe Efficiency 10 

(NSE)) to use for the flow calibration stage. For flow calibration, 10,000 parameter sets of 9 11 

flow parameters in group (ii) (Table 1) were generated which were then run with SWAT-HS. 12 

The simulations in the flow calibration stage were used for uncertainty analysis. 13 

We evaluated the effect of DEM resolution on representing topographical characteristics of 14 

the watershed by comparing the statistical distributions of elevation, slope angle, upslope 15 

contributing area, and TI using DEMs with various spatial resolutions (1m, 3m, 10m and 16 

30m). Subsequently, to evaluate the effect of DEM resolution on model uncertainty, we 17 

compared the four SWAT-HS setups with different DEM resolutions based on: (i) the 18 

uncertainty in streamflow predictions using “good” performance parameter sets, (ii) 19 

predictions of saturated areas and their uncertainties, and (iii) uncertainty in parameter 20 

estimation. We used the Generalized Likelihood Uncertainty Estimation (GLUE) approach 21 

(Beven and Binley, 1992) to estimate the uncertainty in streamflow and saturated area 22 

predictions caused by parameter uncertainty. For each model setup, “good” simulations were 23 

identified as those with a Nash-Sutcliffe Efficiency (NSE) greater than 0.65 for use in 24 

uncertainty estimation of streamflow. Our choice of NSE threshold at 0.65 is based on the  25 

guideline for model performance evaluation by Moriasi et al. (2007) that suggested “good” 26 

model performance for streamflow as corresponding to monthly NSE higher than 0.65. As 27 

NSE values at the monthly time step are usually higher than the daily values, we believe that 28 
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that our choice of NSE higher than 0.65 as “good” model performance for a daily time step is 1 

a reasonable choice. Subsequently, from these “good” simulations, we compared predictions 2 

of saturated areas with our available field observations of saturated areas to re-select the 3 

“good” parameter sets for both simulated streamflow and saturated areas, to estimate the 4 

uncertainty in predicted saturated areas. Six observations of saturated areas (28, 29, 30 April 5 

2006, 12 April 2007, 7 June 2007, and 2 August 2007) are available for small areas in the 6 

headwaters of the Town Brook watershed.  7 

2.3.2. Effect of soil and land use complexity 8 

We built nine SWAT-HS setups ranging from simple (fewer soil types/land use classes/fewer 9 

HRUs) to complex (more soil types/ land use classes, more HRUs) based on three soil maps 10 

and three land use maps. In all nine setups, DEM10m was used based on its performance as 11 

the best predictor of saturated areas (see discussion).  12 

Three soil maps were created with increasing levels of complexity (Fig. 2). The simplest map 13 

(TBsoil_1) had a homogenous soil type, which was created using area-weighted average soil 14 

data from the 4 dominant soil types (Hcc, LhB, OeB, WmB) in Town Brook. The second soil 15 

map TBsoil_2 has a unique soil type for each wetness class and was created by area-weighted 16 

averaging of dominant soil properties in the corresponding wetness class. The most complex 17 

soil map TBsoil_3 consisted of all 17 soil types.   18 

Three land use maps with increasing levels of complexity were created (Fig. 2). The simplest 19 

land use map (TBlanduse_1), had agriculture as the representative land use for the watershed 20 

because it is one of the dominant land uses and potentially has a more significant impact on 21 

water quality than other land use types. The more complex land use map (TBlanduse_2) 22 

classifies Town Brook into 3 diverse land use types: agriculture, forest and urban areas. The 23 

most complex one (TBlanduse_3) contains all 11 land use types. 24 

HRUs were generated based on a wetness map (10 classes), soil map, land use and slope 25 

maps. We assumed that slope does not have an impact on HRU discretization to simplify the 26 
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set up. We also set a threshold of 1 % for soil and 1 % for land use to eliminate minor soil 1 

types/ land uses that cover only less than 1 % of the sub-basin area.  2 

The nine model setups are categorized in 3 groups: (i) simple: the setups that use either the 3 

simplest soil or land use (TB1–TB5), (ii) intermediate: the setups that use the average 4 

complexity for maps of either soil or land use (TB6–TB8); and (iii) complex: the setup that uses 5 

the most complex maps (TB9) (Table 2). 6 

To evaluate the effect of soil and land use data complexity on model uncertainty, we 7 

compared the nine SWAT-HS setups using the same methodology used to evaluate the effect 8 

of DEM resolution on model uncertainty that is described above.  9 

3. Results 10 

3.1. The effect of DEM resolution on model uncertainty 11 

3.1.1. Effect on topographic characteristics  12 

DEM resolution has varying effects on the distribution of elevation, slope angle, upslope 13 

contributing area, and TI values. However, the distributions of elevation are similar using 14 

different DEMs, indicating no effect from DEM resolution (Fig. 3a). The finer resolution 15 

DEMs (DEM1m and DEM3m) are able to give more precise slope values. Therefore, coarser 16 

DEM resolutions produce slightly narrower slope distributions, lower mean slope angles, 17 

lower probability for steep slopes and higher probability for gentle slopes than the finer DEM 18 

resolutions because of the smoothing of topography and loss of topographic details (Fig. 3b). 19 

DEM resolution has a significant effect on the calculated values of upslope contributing areas 20 

(Fig. 3c). With the finer spatial resolutions, grids in DEM1m and DEM3m have smaller 21 

contributing areas than the ones in coarser resolution DEM10m and DEM30m. This results in 22 

substantial differences in the distribution of TI in that the finer resolution DEMs provide 23 

lower values of TI (Fig. 3d). The impact of DEM grid size on TI distribution is mainly due to 24 

its impact on upslope contributing area rather than slope. Our results are consistent with 25 

previous studies on the effect of DEM resolution on topographic attributes and topographic 26 
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wetness index (Zhang and Montgomery, 1994; Thompson et al., 2001; Sørensen and Seibert, 1 

2007; Gillin et al., 2015).   2 

Depending on the DEM used, the four wetness maps formed by grouping areas of similar TI 3 

into 10 wetness classes show remarkable differences (Fig. 4). It should be noted here that the 4 

differences are in the spatial distribution of wetness classes while the areal percentage of each 5 

wetness class is approximately similar irrespective of the DEM used. In Fig. 4, we show the 6 

wetness maps for the headwater area where observations of saturated areas are available. It 7 

can be clearly seen that the spatial patterns of wetness classes in coarser resolution DEMs (10 8 

m and 30 m) are quite similar, but are very different from the finer resolution DEMs (1 m and 9 

3 m). DEM1m has a complex pattern with all wetness classes spread out, making it difficult 10 

to see their boundaries, while the pattern becomes more coherent in coarser DEMs where the 11 

boundaries of the wetness classes are easier to distinguish. Our results are consistent with 12 

previous studies on the effect of grid size on spatial patterns of topographic wetness index 13 

that have been reported by Thomas et al. (2017), Erskine et al. (2006), and Zhang and 14 

Montgomery (1994).  15 

3.1.2. Effect on the prediction of streamflow 16 

To evaluate the effect of DEM on the uncertainty of streamflow predictions, we compared 17 

streamflow outputs from 10,000 Monte Carlo simulations of four model setups with DEMs 18 

of different resolutions (Fig.5a). Subsequently, we evaluated and compared streamflow 19 

estimates in the validation period based on only “good” parameter sets (Fig. 5b). Statistical 20 

criteria for evaluating uncertainty are shown in Table 3. The comparison between observed 21 

flow and 90% prediction uncertainty measured between 5th and 95th percentiles of predicted 22 

flows from “good” parameter sets is shown in Fig. S3 in the Supplementary Materials. In all 23 

setups, more than 50% of the parameter sets give “satisfactory” performances (NSE ≥ 0.5) (Fig. 24 

5). Of the total randomly generated parameter sets, 14–23% give “good” streamflow 25 

performance in the four setups, with higher percentages in coarser resolution setups 26 

(DEM10m and DEM30m) (Table 3). For the calibration period, the maximum NSE, NSElog 27 
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and Kling-Gupta Efficiency (KGE) values are equivalent (around 0.69, 0.82 and 0.81, 1 

respectively) in the four setups. However, the median NSE, mean NSE, mean NSElog and 2 

mean KGE are all higher in coarser resolution setups (DEM10m and DEM30m) than the 3 

higher resolution ones (DEM1m and DEM3m). In the finer resolution setups, there are higher 4 

percentages of parameter setups that give poor fit to observed streamflow (NSE is negative) 5 

which causes lower mean values of NSE as well as NSElog and KGE. The uncertainty ranges 6 

of predicted flows, particularly intermediate flows are wider in the finer resolution setups 7 

(Fig. S3) although uncertainty bounds match observations very well in all four setups. For 8 

the validation period, the “good” parameter sets all give above satisfactory to good fit to 9 

observations and relatively similar performance to each other. Generally, there are only slight 10 

differences in SWAT-HS performance on streamflow using different DEMs implying the 11 

insignificant effect of DEM resolution on streamflow simulation and the uncertainty of 12 

streamflow outputs. 13 

Although the effect of DEMs on streamflow prediction is minor, the setups using coarser 14 

resolution DEM10m and DEM30m are slightly better and preferred for application. These 15 

two setups give higher NSE value ranges and significantly higher mean NSE values resulted 16 

from all random combinations of parameters than the finer resolution setups. These two 17 

setups also have more “good” parameter sets indicating higher probability to get “good” 18 

representation of the modeled watershed. This implies better streamflow prediction by these 19 

two setups even without calibration. 20 

3.1.3. Effect on the prediction of saturated areas 21 

The probabilities of saturation in 10 wetness classes were compared among four DEM 22 

resolution setups using only “good” parameter sets for both streamflow and saturated area 23 

predictions (Fig. 6). The probability of saturation, which indicates the number of days in the 24 

calibration period when the wetness class is saturated, shows no significant difference among 25 

the four setups indicating that DEM resolution does not have an impact on the probability of 26 

saturation. It is important to note that we tried to keep the areal percentage of each wetness 27 
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class approximately the same in the four setups using different DEMs. The ‘good’ parameter 1 

sets in four setups should give comparable predictions of overall streamflow, percentage of 2 

watershed area that is saturated, and the time that each wetness class was saturated, which 3 

results in similar probability of saturation. Wetness classes 7 to 10 are predicted to be mostly 4 

dry, implying that almost 70 % of the watershed is rarely saturated. Wetness class 1 has a 5 

high probability of saturation (80–100 %) because its soil water storage capacity is very low, 6 

i.e., the wetness class is prone to saturation whenever there is precipitation. The probability 7 

of saturation decreases in the more upslope wetness classes: 60–80 % in wetness class 2, 30–8 

50 % in class 3, 5–22 % in class 4, 1–9 % in class 5, 0–3 % in class 6, 0–1 % in class 7, 0–0.3 % in 9 

class 8, 0–0.08 % in class 9, and 0 % in class 10. We also observed that the uncertainty of 10 

saturation probability of the more upslope wetness classes is lower because they only 11 

respond to high rainfall events.  12 

The results of the probability of saturation correspond well with the uncertainty of 13 

percentage of saturated areas shown in Fig. 7. The four model setups do not have significant 14 

differences in the percentage of saturated areas in the watershed. The maximum, minimum, 15 

and interquartile range indicated by the top and bottom values of the four box plots are 16 

slightly different because of minor differences in division of wetness classes in the watershed. 17 

For the majority of the time, no more than approximately 25 % of the total watershed area is 18 

saturated. The watershed can be saturated up to more than 50 % in extreme events that are 19 

shown as outliers in the boxplots. The median percentage of saturated areas in the watershed 20 

is only around 7–8 %. 21 

Although the statistical distributions of saturated areas in four DEM setups are relatively 22 

similar, the spatial distributions of saturated areas simulated in a small headwater area (Fig.1) 23 

on specific days (28–30 April 2006), when observations are available, appeared to be different 24 

as shown in Fig. 8. In Fig. 8, the saturated areas simulated in four DEM setups correspond to 25 

the saturation of wetness classes 1, 2 and 3. Saturated areas cover approximately equal areas 26 

of the watershed for the different DEM resolutions, but differ significantly in spatial 27 
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distribution. The saturated areas resulting from DEM1m and DEM3m are scattered, not well 1 

connected, and broadly distributed. For coarser resolution DEM10m and DEM30m, saturated 2 

areas connect well with each other and with the areas concentrated near streams. The 3 

percentages of simulated saturated areas that intersect with observations increase with 4 

coarser resolution DEMs: 34 % (DEM1m), 53 % (DEM3m), 85 % (DEM10m) and 90 % 5 

(DEM30m). Therefore, based on visual comparison with observations and our calculation, 6 

the coarser resolution DEMs give better fits to observed saturated areas than the higher 7 

resolution DEMs. Among the four DEMs, DEM10m provides the most realistic 8 

representation of saturated areas and reasonable fit to observations.  9 

3.1.4. Effect on parameter uncertainty 10 

Figure 9 shows the comparison between the distribution of “good” parameters for streamflow 11 

(in green) and the distribution of “good” parameters for both streamflow and saturated areas 12 

(in blue) in four SWAT-HS model setups with different resolution DEMs. Only two 13 

parameters distributions (latb and Smax) are plotted in Fig. 9 because they are the most 14 

sensitive parameters (Hoang et al., 2017). Although the number of good parameters for 15 

streamflow varies in four setups, the ranges of good parameter values and the shape of their 16 

distributions are alike for all calibrated parameters. Using multiple observations (both 17 

streamflow and saturated areas) helps to reduce a great number of “good” parameters in all 18 

4 setups but does not significantly narrow down the value ranges of good parameters. The 19 

similarity in the distribution of good parameters in four setups with different DEM 20 

resolutions implies that DEM resolution has a negligible impact on parameter uncertainty for 21 

this watershed. 22 

3.2. Effect of soil and land use input complexity on model uncertainty  23 

3.2.1. Effect on uncertainty in streamflow predictions 24 

All nine SWAT-HS setups with different degrees of complexity are able to obtain good model 25 

performance and are comparable to one another (Fig. 10 and Table 4). More than 50 % of the 26 
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total simulations in each setup produce NSE greater than 0.5, which corresponds to 1 

“satisfactory” performance. All setups also have high percentages of “good” performance 2 

(12.5 – 22.6 %), with TB1 and TB8 having the lowest and highest percentages, respectively. 3 

The maximum NSE, NSElog and KGE obtained from nine setups are relatively equivalent. 4 

The mean values of the three metrics are slightly different, except for the TB3 setup with the 5 

lowest mean values in all three metrics. This is also reflected in Fig. S4 (Supplementary 6 

Materials) showing that all setups capture measured streamflow well within their 7 

uncertainty ranges with TB3 being the poorest setup with the widest uncertainty range. 8 

Applying only the “good” parameter sets in the validation period, we observe insignificant 9 

differences among the nine setups, but TB3 still performs the worst in low flow with the 10 

lowest NSElog. All these “good” parameter sets give above ‘satisfactory’ to “good” fit to 11 

observations in the validation periods implying that all nine setups are reasonable to use for 12 

flow predictions. In spite of minor differences, from all the evaluation criteria, TB3 gives the 13 

poorest performance among nine setups followed by the simplest setup TB1. Setups TB6 to 14 

TB9 give equally good performance and are better than the remaining ones.  15 

Grouping the nine setups into three groups: (i) simple (TB1 – TB5), (2) intermediate (TB6 – TB8); 16 

and (iii) complex (TB9), we observe that the model performance of setups in intermediate 17 

groups are slightly better than the simple one although the differences are small. The 18 

intermediate group has a higher number of “good” parameter sets, a higher mean NSE in the 19 

calibration period, as well as consistently better performance in the validation period. The 20 

most complex setup (TB9) gives equally good performance as setups in the intermediate group 21 

with no improvement in any statistical metric.   22 

All nine setups use the same DEM with 10m resolution and have the same distribution of 23 

wetness classes; therefore, the distributions of their predicted saturated areas are similar and 24 

thus are not shown here. 25 
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3.2.2. Effect on parameter uncertainty 1 

We tested the effect of soil and land use complexity on parameter uncertainty by comparing 2 

the distribution of good parameters among nine setups with different degrees of complexity, 3 

as in Fig. 11. We only showed the distribution of one calibrated parameter latb as an example 4 

because we observed the same behavior in the remaining calibrated parameters. Similar to 5 

the comparison of four setups using different DEMs, the nine setups with different degrees 6 

of complexity produce different numbers of good parameters for streamflow and saturated 7 

areas, but are similar in the shape of their distributions and value ranges. Accordingly, soil 8 

and land use complexity have negligible effects on parameter uncertainty.  9 

4. Discussion 10 

The objective of this study is to estimate uncertainty in model parameterization, and 11 

predictions of streamflow and saturated areas due to the effects of DEM resolution and 12 

complexity in model setup, specifically combinations of land use and soils. The following 13 

sections discuss the proposed research questions based on the results obtained. 14 

4.1. What is the most suitable DEM resolution to use in SWAT-HS? 15 

Our results show that randomly generated parameter values from coarser resolution DEMs 16 

(DEM10m and DEM30m) perform better for streamflow prediction. However, after 17 

calibration, the effect of DEM resolution on the uncertainty of streamflow prediction is very 18 

minor. This result is in agreement with Liu et al. (2005) using the Wetspa model with 50–800 19 

m cell sizes, Molnar and Julien (2000) using the CASC2D model with 127–914 m cell sizes, 20 

and Chaplot (2005) using SWAT with 20–500 m DEMs. These studies found that discharge 21 

was simulated equally well irrespective of DEM resolution as long as parameters are 22 

calibrated properly.  23 

DEM resolution has very limited impact on probability of saturation in wetness classes and 24 

percentage of saturated areas in the watershed, but greatly influences the spatial distribution 25 
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of saturated areas. SWAT-HS simulates the saturation-excess runoff coming from saturated 1 

areas based on a statistical soil water distribution assigned to wetness classes. The “wettest” 2 

wetness classes downslope with lowest soil water storage capacity are saturated first 3 

followed by “drier” adjacent wetness classes located more upslope. Therefore, the 4 

distribution of saturated areas follows the distribution of wetness classes categorized by the 5 

values of TI. Accordingly, the sensitivity of DEMs on saturated area predictions can be 6 

explained by the effect of DEM resolution on TI.  7 

Figure 12 shows the relationships of TI with slope angle, upslope contributing area and 8 

elevation using two representative DEM resolutions: 1 m and 10 m. It is evident that DEM1m 9 

can capture a significantly wider range of slopes than DEM10m because of its finer resolution. 10 

Also, the percentage of grids that have low values of TI is significantly higher in DEM1m 11 

than in DEM10m (Fig. 12 uses red lines for reference), which also can be seen in Fig. 3d. Low 12 

TI values are usually found in grids with steep slopes or with low upslope contributing areas 13 

(according to Eq. 1). Because DEM1m captures steep slopes at a local scale and has a high 14 

number of grids with low upslope contributing area (Fig. 3c), the percentage of low TI values 15 

in DEM1m is much higher. If we look at the relationship between TI and elevation, we can 16 

see that the distribution of TI values in DEM1m spread out wider than in DEM10m at all 17 

elevations. This explains why the distribution of TI values in DEM1m has a more complex 18 

pattern while DEM10m has a more coherent pattern with high TI grids well matched to the 19 

stream network (Fig. 13). Because of that, in this case study, the coarser DEMs (DEM10m and 20 

30m) give a more suitable representation of the landscape than the finer DEMs (DEM1m and 21 

3m). This is possibly the reason why the coarser DEMs setups have higher probabilities for 22 

good performance (i.e., a higher number of ‘good’ parameter sets) and have better 23 

performance in all aspects as compared with the finer DEMs. 24 

Our findings are in agreement with Lane et al. (2004) who used a high resolution LiDAR 25 

DEM 2m with TOPMODEL, which simulates hydrology based on TI. TOPMODEL predicted 26 

the widespread existence of disconnected saturated zones that expanded within an 27 
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individual storm event but which did not necessarily connect with the drainage network. 1 

They found that using the LiDAR DEM 2m, TI has a complex pattern, associated with small 2 

areas of both low and high values of the TI, leading to the appearance of disconnected 3 

saturated areas. After remapping the topographic data at progressively coarser resolutions 4 

by spatial averaging of elevations within each cell, they found that as the topographic 5 

resolution is coarsened, the number and extent of unconnected saturated areas were reduced, 6 

and the catchments displayed more coherent patterns, with saturated areas more effectively 7 

connected to the channel network. Moreover, Quinn et al. (1995) showed how progressively 8 

refining model resolution from 50 m to 5 m reduces the kurtosis in the distribution of TI 9 

values and increases quite substantially the number of very low index values.  10 

For the Town Brook watershed, DEM10m is the best choice among four DEMs tested because 11 

of its slightly better performance for streamflow and more importantly, its good fit to 12 

observations of saturated areas. Although DEM30m also gives very good results for 13 

streamflow and distribution of saturated areas, we did not choose DEM30m because its 14 

coarse cell size may overestimate the extent of actual saturated areas. Therefore, DEM10m is 15 

the preferred choice to scale-up the application of SWAT-HS to larger watersheds in the New 16 

York City water supply system for future applications. Our choice of DEM10m is in 17 

agreement with Kuo et al. (1999) who evaluated the effect of DEM grid sizes ranging from 18 

10–400 m on runoff and soil moisture for a variable-source area hydrology model and 19 

observed that by using the 10x10 m grid cells, the overall pattern of simulated wet areas 20 

showed a close correspondence with the poorly drained areas defined in the soil survey. 21 

Zhang and Montgomery (1994), in a study that evaluated grid size effect using TOPMODEL, 22 

also suggested that a 10 m grid size presents a rational compromise between increasing 23 

resolution and data volume for simulating geomorphic and hydrological processes. In 24 

contrast, Thomas et al. (2017) indicated that LiDAR DEM 1–2 m is optimal for modeling 25 

hydrologically sensitive (runoff generating) areas and is far better than the radar based 26 

DEM5m. However, their case study is a complex agricultural catchment dominated by micro-27 
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topographic features, which can only be captured using high resolution DEMs. Our choice of 1 

DEM10m is in contrast to Buchanan et al. (2014) who preferred DEM3m rather than DEM10m 2 

because of the better fit with the observed patterns of soil moisture collected in five different 3 

agricultural field sites. The difference in scale of case studies (field scale vs. watershed scale) 4 

and characteristics of case studies (agricultural fields vs. a mixture of forest and agriculture) 5 

between Buchanan et al. (2014) and our study may have resulted in different conclusions on 6 

choice of the appropriate DEM resolution. Therefore, the sensitivity of DEM resolution may 7 

depend on the scale and characteristics of the watershed. The dominant hydrological process 8 

in the watershed may have a big impact on the sensitivity of DEM on hydrological prediction. 9 

In the Town Brook watershed, lateral flow is a dominant flow component and saturation-10 

excess runoff is a dominant type of surface runoff, thus, topography is the most important 11 

factor. Consequently, DEM10m that represents a realistic distribution of TI with high TI area 12 

compatible with the main stream network gave a better model performance. In a field-scale 13 

watershed, finer DEM resolution is probably better because it can capture a more detailed 14 

and realistic representation of TI distribution. In an agricultural area dominated by 15 

subsurface tile drainage, DEM resolution may not be sensitive. 16 

It should be noted here that all four DEMs in this study are derived from the same source of 17 

2009 aerial LiDAR data with 1 meter resolution. The coarser DEMs (DEM3m, DEM10m and 18 

DEM30m) are resampled products from DEM1m. Therefore, the four different DEM 19 

resolutions carry similar information, but differ in topographic smoothing. A comparison of 20 

various resolution DEMs from different sources may not yield the same results.  21 

4.2. What is the appropriate complexity of the distributed soil and land use inputs? 22 

From our comparison of nine SWAT-HS setups in three groups of complexity (simple, 23 

intermediate and complex), we found that with all randomly generated parameter values, the 24 

intermediate and complex groups are better than the simple group based on slightly higher 25 

mean NSE values and a higher probability of good performance based on randomly 26 

generated parameter values. The TB3 setup, which was built from the most complex soil map 27 
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(17 soil types) and the simplest land use map (1 land use) and the simplest setup TB1 are the 1 

two poorest setups in the simple group. Additionally, compared to the intermediate group, the 2 

complex group does not gain any improvement from using inputs that are more detailed. 3 

However, with proper calibration, all nine models are able to provide good performances 4 

and their “good” parameter sets continue to perform equally well in the validation period. In 5 

addition to streamflow, all nine setups are able to capture saturated areas correctly on specific 6 

days where observations are available. We conclude that increasing spatial input details does 7 

not necessarily give better results for streamflow simulation as long as the model is properly 8 

calibrated. However, over-simplification like the simple setups TB1, TB3 with only one land 9 

use type may have greater impacts on water quality modeling. We recommend using 10 

intermediate inputs for the SWAT-HS setup that adequately represent the spatial distribution 11 

of dominant soils and land use types.  12 

Our results are in agreement with previous studies on the effect of model input complexity 13 

on streamflow simulation. Using an urban hydrological distributed model in a small 14 

residential area, Petrucci and Bonhomme (2014) showed that the inclusion of some basic 15 

geographical information that helps to correctly estimate impervious cover and identify 16 

paths for surface water improves the model performance, but further refinements are less 17 

effective. Finger et al. (2015) compared different setups with increasing detail in input 18 

information using the HBV model and three observational data sets. They found that 19 

enhanced model input complexity does not lead to a significant increase in overall 20 

performance in water quantity, but suggested that the availability and use of different 21 

datasets to calibrate hydrological models might be more important than model input data 22 

complexity to achieve realistic estimations of runoff composition. Muleta et al. (2007) also 23 

showed that streamflow simulated by SWAT is relatively insensitive to spatial scale when 24 

comparing multiple watershed delineations from different soil and land use input data. 25 

In comparison with the effect of DEM resolution, the importance of soil and land use 26 

information is not as significant in the prediction of both streamflow and saturated areas. As 27 
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our studied watershed is a rural area and dominated by saturation-excess runoff, topography 1 

and the wetness conditions of areas in the watershed are more important than land use in 2 

water quantity modeling. Moreover, SWAT-HS uses TI as the basis for hydrological 3 

modeling, thus, the effect of DEM resolution on hydrological predictions is dominant. 4 

Therefore, when the appropriate DEM resolution is used, soil and land use information 5 

become less sensitive to hydrological predictions. We think that this finding is applicable to 6 

watersheds where application of SWAT-HS is suitable, i.e., watersheds dominated by 7 

saturation-excess runoff. This finding may be also valid in applications of other topography-8 

based watershed models including: TOPMODEL (Beven and Kirkby, 1979; Quinn and Beven, 9 

1993), SWAT-VSA (Easton et al., 2008), SWAT-WB (White et al., 2011). These results may not 10 

be applicable in water quality modeling. Since land use information controls the inputs of 11 

nutrients and information of other human activities that affect water quality, the water 12 

quality prediction is expected to be very sensitive to the details of land use. 13 

4.3. How does input complexity affect parameter uncertainty and model output 14 

uncertainty? 15 

Our results show that regardless of the level of detail of input data, we obtained numerous 16 

sets of parameter values that give equally good performance for streamflow and saturated 17 

area predictions. Modifying the level of detail in input data changes the number of “good” 18 

parameter sets, but the ranges of “good” parameter values and the shape of their distributions 19 

remain the same. The number of randomly generated Monte Carlo parameter sets is 20 

sufficiently high to give a good coverage of parameter space. Although different inputs result 21 

in varied numbers of “good” parameter sets, those numbers in all setups are adequate to 22 

represent the distribution of ‘good’ parameter which reflects their sensitivities to hydrological 23 

prediction. Therefore, we conclude that for this case study and the particular model SWAT-24 

HS, using higher resolution DEM or adding complex information on soil or land use does not 25 

reduce parameter uncertainty or solve the equifinality problem. This statement may not be 26 

valid for other areas that are characterized by numerous land uses and complex variations in 27 
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topography and soil types. This is also not valid for physically based models which require 1 

detailed soil and land use information and a minimum number of parameters for calibration. 2 

Combining different observations (temporal observations of streamflow and spatial 3 

observations of saturated areas in multiple days) in calibration will help to reduce the number 4 

of “good” parameter sets and choose the appropriate parameter sets that give good 5 

representation of hydrological processes in the watershed. The importance of using multiple 6 

data sets have been addressed in Finger et al. (2015), McMillan et al. (2011) and Kirchner 7 

(2006). Our study is not aimed at solving the equifinality problem, but rather reduces the 8 

number of solutions considered when using SWAT-HS to predict streamflow. The outcome 9 

of this study directly reduces the decision uncertainty with regard to selecting the optimum 10 

combination of input datasets for model setup that gives the best model results both spatially 11 

and temporally. This has implications for watershed modeling by reducing model run time 12 

as we scale-up the application of SWAT-HS to other larger watersheds within the NYC water 13 

supply system. 14 

5. Summary and conclusions 15 

This paper is a follow-up to our previous study using the SWAT-HS model, investigating the 16 

effect of input data complexity on the uncertainty in predictions of streamflow and saturated 17 

areas. The input data include DEMs with different resolutions and different combinations of 18 

simple to complex soil and land use maps. The main objectives are to explore whether using 19 

more complex spatial data yields better, more robust results, and guide the selection of the 20 

most appropriate input data for future applications of SWAT-HS in other watersheds or 21 

larger watersheds within the New York City water supply system. 22 

We chose DEM10m resampled from LiDAR DEM1m as the most appropriate resolution 23 

because DEM10m gives a better physical representation of the landscape and is a 24 

compromise between the high resolution DEM1m and DEM3m that provide too much spatial 25 

detail that affects the calculation of upslope contributing areas and TI, and coarse resolution 26 
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DEM30m that averages out the essential details. We recommend the use of an intermediate 1 

soil and land use map for our future applications of SWAT-HS. Our results show that 2 

streamflow is not sensitive to both DEM resolution and soil and land use complexity as long 3 

as proper calibration is carried out. However, DEM resolution has a significant impact on the 4 

spatial distribution of predicted saturated areas due to its substantial control on the 5 

distribution of TI values. The effect from soil and land use inputs becomes minor when the 6 

appropriate DEM resolution is used in the model setup. 7 

For the New York City watershed region, our study will provide guidance for choosing input 8 

data (DEM resolution and the degree of complexity for soil and land use) to apply SWAT-HS 9 

in a larger scale watershed that requires division into multiple subbasins and a certain degree 10 

of complexity for soil and land use information. Our results are particularly informative 11 

when we use SWAT-HS to identify critical runoff generating areas and locations within the 12 

watershed where management interventions for water quality improvements (e.g. 13 

Phosphorus load reduction) are most effective. Besides New York City watersheds, our 14 

findings are applicable to watersheds with similar land use, topography, and climate, but 15 

similar investigation is needed in other regions using the methodology described in this 16 

paper.  17 

From this study it can be inferred that hydrological prediction is very sensitive to the choice 18 

of DEM (with greater effects on prediction of saturated areas than streamflow), when using 19 

a hydrologic model that uses topographic index as the basis for hydrological modeling in a 20 

watershed that is dominated by saturation-excess runoff. With SWAT-HS and models that 21 

are based on TI such as TOPMODEL, SWAT-VSA and SWAT-WB, DEM resolution is more 22 

influential than the complexity of soil/land use information. When the appropriate DEM 23 

resolution is used, soil and land use information become less influential to hydrological 24 

predictions. 25 

Regardless of the level of detail for input data, the equifinality problem can cause uncertainty 26 

in modeled results when using different SWAT-HS setups. Increasing input data complexity 27 
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does not help to reduce parameter uncertainty and the uncertainty of model predictions. 1 

However, using multiple types of observed datasets such as spatial observations in addition 2 

to the conventional temporal observations can eliminate a high number of unsuitable 3 

parameter sets and guide selection of the appropriate parameter sets that give good temporal 4 

and spatial predictions for streamflow and saturated areas. 5 
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Figure 1: Town Brook watershed, Delaware County, New York 11 
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Figure 2: Soil and land use maps with increasing levels of complexity to build SWAT-HS 3 

model setups 4 
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 15 

Figure 3: Difference in cumulative probability distribution of elevation, slope, upslope 16 

contributing area, and topographic index between different DEM resolutions 17 
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Figure 4: Wetness maps created from DEMs with different resolutions 3 
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 1 

(a) Calibration period (based on 10,000 Monte Carlo parameter sets) 2 

 3 
 4 

(b) Validation period (based on “good” Monte Carlo parameter sets) 5 

 6 

Figure 5: Boxplots of NSE values in SWAT-HS set ups with different DEM resolutions for 7 

calibration and validation periods (the number above the boxplot is the maximum NSE of each 8 

setup) 9 
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Figure 6: Probability of saturation of wetness classes in SWAT-HS set ups with different 3 

DEM resolutions using good parameters for both streamflow and saturated areas 4 
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Figure 7: Percentage of saturated areas taking into account parameter uncertainty in the 3 

calibration period in SWAT-HS setups using DEMs with different resolutions 4 
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 1 

Figure 8: Simulated and observed saturated areas from four SWAT-HS setups using 2 

different DEMs, 28-30 April 2006 3 
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Figure 9: Distribution of “good” parameters for streamflow (in green) and for both 10 

streamflow and saturated areas (in blue) with log y axis in four SWAT-HS setups using 11 

different DEM resolutions 12 
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(a) Calibration period (based on 10,000 Monte Carlo parameter sets) 3 
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 8 

 9 

 10 

 11 

(b) Validation period (based on “good” Monte Carlo parameter sets) 12 

Figure 10: Boxplots of NSE values in SWAT-HS set ups with different degrees of 13 

complexity for calibration and validation periods (The number above the boxplot is the 14 

maximum NSE of each setup) 15 
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 1 

Figure 11: Distribution of good parameter values (parameter latb) for streamflow (in 2 

green) and for both streamflow and saturated areas (in blue) with log y axis in nine SWAT-3 

HS setups with different degrees of complexity 4 
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 1 

Figure 12: Relationships of topographic index with slope, upslope contributing area, and 2 

elevation with two different DEM resolutions: 1m and 10m (red lines are used as reference 3 

to compare the two DEM resolutions) 4 
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 1 

Figure 13: Distribution of topographic index values using different DEMs 2 
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Table 1: SWAT-HS parameters for streamflow calibration 2 

Name Unit Definition Range 

Group (i): Snowmelt calibration 

SFTMP oC Snowfall temperature -5 - 5 

SMTMP oC Snowmelt temperature -5 - 5 

SMFMX mm oC-1 Maximum snowmelt factor 5 - 10 

SMFMN mm oC-1 Minimum snowmelt factor 0 - 5 

TIMP - Snow pack temperature lag factor 0 - 1 

Group (ii): Flow calibration 

RCHRG_PAF mm Fraction of root zone percolation that recharges 

the surface aquifer 

0 - 1000 

latA  Surface aquifer non-linear reservoir coefficient 0 - 1 

latB  Surface aquifer non-linear reservoir coefficient 1 - 3 

ALPHA_BF days-1 Baseflow recession constant 0 - 1 

EFFPORFACTOR  Fraction of effective porosity that can hold water 

under saturated conditions 

0 - 1 

EPCO  Plant water uptake compensation factor 0 - 1 

ESCO  Soil evaporation compensation factor 0 - 1 

Smax mm Maximum soil water storage capacity in the 

watershed 

100 - 400 

b  Shape parameter defining the distribution of soil 

water storage capacity 

0.1 - 3 

 3 
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Table 2: SWAT-HS model set ups with increasing levels of complexity 1 

SWAT-HS 

setups 

Wetness 

classes 

Soil map Land use 

map 

Number of 

HRUs 

Degree of 

complexity 

TB1 10 TBsoil_1 TBlanduse_1 10  

TB2 10 TBsoil_2 TBlanduse_1 10  

TB3 10 TBsoil_3 TBlanduse_1 26 Simple 

TB4 10 TBsoil_1 TBlanduse_2 30  

TB5 10 TBsoil_1 TBlanduse_3 60  

TB6 10 TBsoil_2 TBlanduse_2 30  

TB7 10 TBsoil_2 TBlanduse_3 60 Intermediate 

TB8 10 TBsoil_3 TBlanduse_2 80  

TB9 10 TBsoil_3 TBlanduse_3 146 Complex 

TBsoil_1: homogeneous soil 2 

TBsoil_2: 10 soil types (unique soil type for each wetness class) 3 

TBsoil_3: 17 soil types 4 

TBlanduse_1: homogenous land use (Agriculture) 5 

TBlanduse_2: 3 land use types (Agriculture, Forest, and Urban) 6 

TBlanduse_3: 11 land use types 7 

 8 
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Table 3: Statistical criteria to compare the effect of DEM resolution on model uncertainty 1 

 DEM1m DEM3m DEM10m DEM30m 

Calibration period: based on 10,000 Monte Carlo parameter sets 

Number of “good” parameter sets (%) for 

streamflow 

1362 1890 2180 2293 

Number of “good” parameter sets (%) for 

both streamflow and saturated areas 

27 49 66 67 

NSE Max 0.69 0.69 0.69 0.69 

 Mean 0.09 0.05 0.33 0.34 

NSElog Max 0.82 0.82 0.82 0.83 

 Mean 0.43 0.41 0.56 0.59 

KGE Max 0.81 0.81 0.81 0.81 

 Mean 0.53 0.53 0.59 0.59 

Validation period: based on “good” parameter sets from calibration 

NSE Max 0.66 0.66 0.66 0.66 

 Mean 0.60 0.62 0.62 0.62 

NSElog Max 0.82 0.82 0.82 0.82 

 Mean 0.70 0.70 0.69 0.71 

KGE Max 0.79 0.78 0.79 0.79 

 Mean 0.70 0.70 0.70 0.71 

 2 

  3 
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Table 4: Statistical criteria to compare the effect of input complexity on model uncertainty 

Statistical criteria/Setup 

Simple Intermediate Complex 

TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 

Calibration period: based on 10,000 Monte Carlo parameter sets 

Number of “good” parameter sets (%) for streamflow 1254 1917 1510 1753 1722 2194 2144 2258 2180 

Number of “good” parameter sets (%) for both 

streamflow and saturated areas 

76 99 88 60 61 64 61 59 66 

NSE Max  0.68 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 

 Mean 0.26 0.30 -0.08 0.30 0.30 0.34 0.33 0.34 0.33 

NSElog Max 0.80 0.80 0.80 0.82 0.82 0.82 0.82 0.82 0.82 

 Mean 0.55 0.55 0.37 0.58 0.57 0.56 0.56 0.55 0.56 

KGE Max 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 

 Mean 0.59 0.59 0.51 0.59 0.59 0.59 0.59 0.59 0.59 

Validation period: based on “good” parameter sets from calibration 

NSE Max  0.65 0.66 0.65 0.66 0.66 0.66 0.66 0.66 0.66 

 Mean 0.60 0.61 0.60 0.60 0.60 0.62 0.62 0.62 0.62 

NSElog Max 0.79 0.80 0.79 0.81 0.81 0.82 0.82 0.82 0.82 

 Mean 0.70 0.70 0.57 0.71 0.71 0.69 0.69 0.68 0.68 

KGE Max 0.77 0.78 0.78 0.79 0.79 0.78 0.78 0.78 0.79 

 Mean 0.72 0.71 0.72 0.72 0.72 0.71 0.70 0.70 0.70 
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