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(DEM1m) was derived from 2009 aerial LiDAR data acquired by New York City Department 1 

of Environmental Protection (RACNE, 2011). This was resampled to create 3m, 10m and 30m 2 

resolution DEMs (DEM3m, DEM10m and DEM30m).  3 

DEMs were used to delineate the watershed, calculate flow paths, slopes, drainage areas, and 4 

compute gridded values of TI. Based on TI values, the watershed was divided into 10 wetness 5 

classes (Fig. 4). Wetness class 1 covering very small fraction of the watershed (0.59%) 6 

corresponds to the perennial stream network and is the “wettest” wetness class. We grouped 7 

50% of the watershed with the lowest TI values in the upland as the “driest” wetness class 8 

(wetness 10) because saturated areas never exceeded 50% of the watershed based on 9 

observations (Harpold et al., 2010) and predictions by other watershed models (SMR (Agnew 10 

et al., 2006), SWAT-VSA (Easton et al., 2008) and SWAT-WB (White et al., 2011). 11 

Subsequently, we divided the remaining areas into 8 wetness classes (wetness class 2 – 9) 12 

with approximately equal areas (~ 6% each) based on TI values. Applying the same procedure 13 

of wetness class division using four DEM resolutions, four SWAT-HS setups have 14 

approximately similar areal percentage of each wetness class. 15 

HRUs were created based on 10 wetness classes, 17 soil types, and 11 land use types. A single 16 

time series of daily precipitation and temperature data were interpolated from a 4km x 4km 17 

gridded PRISM climate dataset (Daly et al., 2008) using the inverse distance weighting 18 

method. Solar radiation data were derived as the average of airport stations at Albany and 19 

Binghamton supplied by the Northeast Regional Climate Center. Relative humidity and wind 20 

speed were generated by the built-in weather generator in SWAT. The procedure outlined 21 

above is similar to the SWAT-HS setup used by Hoang et al. (2017). 22 

Four SWAT-HS setups were run on a daily time step from 1998 – 2012. The first 3 years were 23 

used as the warming up period and the model was calibrated and validated for the periods 24 

2001-2007 and 2008-2012, respectively. We excluded the year 2011 from the validation period 25 

because there were two extreme events (Hurricane Irene and Tropical Storm Lee) in August 26 

2011 that the model could not capture well. The calibration was carried out in 2 stages, i.e. 27 

snowmelt calibration and flow calibration, and by applying Monte Carlo sampling method. 28 

1 2
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For snowmelt calibration, we calibrated 5 snowmelt related parameters in group (i) (Table 1) 1 

by generating randomly 10,000 parameter sets, running these sets using SWAT-HS, 2 

comparing the streamflow predictions with observations and choosing the best parameter set 3 

with the best fit to streamflow observations (highest value of daily Nash Sutcliffe Efficiency 4 

(NSE)) to use for the flow calibration stage. For flow calibration, 10,000 parameter sets of 9 5 

flow parameters in group (ii) (Table 1) were generated which were then run with SWAT-HS. 6 

The simulations in the flow calibration stage were used for uncertainty analysis. 7 

We evaluated the effect of DEM resolution on representing topographical characteristics of 8 

the watershed by comparing the statistical distributions of elevation, slope angle, upslope 9 

contributing area, and TI using DEMs with various spatial resolutions (1m, 3m, 10m and 10 

30m). Subsequently, to evaluate the effect of DEM resolution on model uncertainty, we 11 

compared the four SWAT-HS setups with different DEM resolutions based on: (i) the 12 

uncertainty in streamflow predictions using “good” performance parameter sets, (ii) 13 

predictions of saturated areas and their uncertainties, and (iii) uncertainty in parameter 14 

estimation. We used the Generalized Likelihood Uncertainty Estimation (GLUE) approach 15 

(Beven and Binley, 1992) to estimate the uncertainty in streamflow and saturated area 16 

predictions caused by parameter uncertainty. For each model setup, “good” simulations were 17 

identified as those with a Nash-Sutcliffe Efficiency (NSE) greater than 0.65 for use in 18 

uncertainty estimation of streamflow. Subsequently, from these “good” simulations, we 19 

compared predictions of saturated areas with our available field observations of saturated 20 

areas to re-select the “good” parameter sets for both simulated streamflow and saturated 21 

areas, to estimate the uncertainty in predicted saturated areas. Six observations of saturated 22 

areas (28, 29, 30 April 2006, 12 April 2007, 7 June 2007, and 2 August 2007) are available for 23 

small area in the headwaters of the Town Brook watershed.  24 

2.3.2. Effect of soil and land use complexity 25 

We built nine SWAT-HS setups ranging from simple (fewer soil types/land use classes/fewer 26 

HRUs) to complex (more soil types/ land use classes, more HRUs) based on three soil maps 27 

1
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and three land use maps. In all nine setups, the 10m DEM was used based on its performance 1 

as the best predictor of saturated areas (see discussion).  2 

Three soil maps were created with increasing levels of complexity (Fig. 2). The simplest map 3 

(TBsoil_1) had a homogenous soil type, which was created using area-weighted average soil 4 

data from the 4 dominant soil types (Hcc, LhB, OeB, WmB) in Town Brook. The second soil 5 

map TBsoil_2 has a unique soil type for each wetness class and was created by area-weighted 6 

averaging of dominant soil properties in the corresponding wetness class. The most complex 7 

soil map TBsoil_3 consisted of all 17 soil types.   8 

Three land use maps with increasing levels of complexity were created (Fig. 2). The simplest 9 

land use map (TBlanduse_1), had agriculture as the representative land use for the watershed 10 

because it is one of the dominant land uses and potentially has a more significant impact on 11 

water quality than other land use types. The more complex land use map (TBlanduse_2) 12 

classifies Town Brook into 3 diverse land use types: agriculture, forest and urban areas. The 13 

most complex one (TBlanduse_3) contains all 11 land use types. 14 

HRUs were generated based on a wetness map (10 classes), soil map, land use and slope 15 

maps. We assumed that slope does not have an impact on HRU discretization to simplify the 16 

set up. We also set a threshold of 1% for soil and 1% for land use to eliminate minor soil types/ 17 

land uses that cover only less than 1% of the sub-basin area.  18 

The nine model setups are categorized in 3 groups: (i) simple: the setups that use either the 19 

simplest soil or land use (TB1-TB5), (ii) intermediate: the setups that use the average 20 

complexity for maps of either soil or land use (TB6 – TB8); and (iii) complex: the setup that 21 

uses the most complex maps (TB9) (Table 2). 22 

To evaluate the effect of soil and land use data complexity on model uncertainty, we 23 

compared the nine SWAT-HS setups using the same methodology used to evaluate the effect 24 

of DEM resolution on model uncertainty that is described above.  25 

1
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differences in SWAT-HS performance on streamflow using different DEMs implying the 1 

insignificant effect of DEM resolution on streamflow simulation and the uncertainty of 2 

streamflow outputs. 3 

Although the effect of DEMs on streamflow prediction is minor, the setups using coarser 4 

resolution DEM10m and DEM30m are slightly better and preferred for application. These 5 

two setups give higher NSE value ranges and significantly higher mean NSE values resulted 6 

from all random combinations of parameters than the finer resolution setups. These two 7 

setups also have more “good” parameter sets indicating higher probability to get “good” 8 

representation of the modeled watershed. This implies better streamflow prediction by these 9 

two setups even without calibration. 10 

3.1.3. Effect on the prediction of saturated areas 11 

The probabilities of saturation in 10 wetness classes were compared among four DEM 12 

resolution setups using only “good” parameter sets for both streamflow and saturated area 13 

predictions (Fig. 6). The probability of saturation, which indicates the number of days in the 14 

calibration period when the wetness class is saturated, shows no significant difference among 15 

the four setups indicating that DEM resolution does not have an impact on the probability of 16 

saturation. It is important to note that we tried to keep the areal percentage of each wetness 17 

class approximately the same in the four setups using different DEMs. The ‘good’ parameter 18 

sets in four setups should give comparable predictions of streamflow, percentage of 19 

watershed area that is saturated, and the time that each wetness class was saturated, which 20 

results in similar probability of saturation. Wetness classes 7 to 10 are predicted to be mostly 21 

dry, implying that almost 70% of the watershed is rarely saturated. Wetness class 1 has a high 22 

probability of saturation (80-100%) because its soil water storage capacity is very low, i.e., the 23 

wetness class is prone to saturation whenever there is precipitation. The probability of 24 

saturation decreases in the more upslope wetness classes: 60-80% in wetness class 2, 30 – 50% 25 

in class 3, 5 – 22% in class 4, 1 – 9% in class 5, 0-3% in class 6, 0-1% in class 7, 0-0.3% in class 26 

8, 0-0.08% in class 9, and 0% in class 10. We also observed that the uncertainty of saturation 27 

1
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probability of the more upslope wetness classes is lower because they only respond to high 1 

rainfall events.  2 

The results of the probability of saturation correspond well with the uncertainty of 3 

percentage of saturated areas shown in Figure 7. The four model setups do not have 4 

significant differences in the percentage of saturated areas in the watershed. The maximum, 5 

minimum, and interquartile range indicated by the top and bottom values of the four box 6 

plots are slightly different because of minor differences in division of wetness classes in the 7 

watershed. For the majority of the time, no more than approximately 25% of the total 8 

watershed area is saturated. The watershed can be saturated up to more than 50% in extreme 9 

events that are shown as outliers in the boxplots. The median percentage of saturated areas 10 

in the watershed is only around 7-8%. 11 

Although the statistical distributions of saturated areas in four DEM setups are relatively 12 

similar, the spatial distributions of saturated areas simulated in a small headwater area (Fig.1) 13 

on specific days (28-30 April 2006) when observations are available appeared to be different 14 

as shown in Figure 8. In Figure 8, the saturated areas simulated in four DEM setups 15 

correspond to the saturation of wetness classes 1, 2 and 3. Saturated areas cover 16 

approximately equal areas of the watershed for the different DEM resolutions, but differ 17 

significantly in spatial distribution. The saturated areas resulting from DEM1m and DEM3m 18 

are scattered, not well connected, and broadly distributed. For coarser resolution DEM10m 19 

and DEM30m, saturated areas connect well with each other and with the areas concentrated 20 

near streams. The percentages of simulated saturated areas that intersect with observations 21 

increase with coarser resolution DEMs: 34% (DEM1m), 53% (DEM3m), 85% (DEM10m) and 22 

90% (DEM30m). Therefore, based on visual comparison with observations and our 23 

calculation, the coarser resolution DEMs give better fits to observed saturated areas than the 24 

higher resolution DEMs. Among the four DEMs, DEM10m provides the most realistic 25 

representation of saturated areas and reasonable fit to observations.  26 

1 2
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Figure 12 shows the relationships of TI with slope angle, upslope contributing area and 1 

elevation using two representative DEM resolutions: 1m and 10m. It is evident that DEM 1m 2 

can capture a significantly wider range of slopes than DEM 10m because of its finer 3 

resolution. Also, the percentage of grids that have low values of TI is significantly higher in 4 

DEM 1m than in DEM 10m (Figure 12 uses red lines for reference), which also can be seen in 5 

Figure 3d. Low TI values are usually found in grids with steep slopes or with low upslope 6 

contributing areas (according to Equation 1). Because DEM 1m captures steep slopes at a local 7 

scale and has a high number of grids with low upslope contributing area (Fig. 3c), the 8 

percentage of low TI values in DEM 1m is much higher. If we look at the relationship between 9 

TI and elevation, we can see that the distribution of TI values in DEM 1m spread out wider 10 

than in DEM10m at all elevations. This explains why the distribution of TI values in DEM1m 11 

has a more complex pattern while DEM10m has a more coherent pattern with high TI grids 12 

well matched to the stream network (Fig. 13). Realistically, the highest TI value grids should 13 

be located in downslope, near-stream, low elevation areas while the lowest TI value grids 14 

should be in upslope, high elevation areas. Therefore, in this case study, the coarser DEMs 15 

(DEM10m and 30m) give a better and more realistic representation of the landscape than the 16 

finer DEMs (DEM1m and 3m). This is possibly the reason why the coarser DEMs setups have 17 

higher probabilities for  good performance (i.e., a higher number of ‘good’ parameter sets) 18 

and have better performance in all aspects as compared with the finer DEMs. 19 

Our findings are in agreement with Lane et al. (2004) who used a high resolution LiDAR 2m 20 

DEM with TOPMODEL, which simulates hydrology based on TI. TOPMODEL predicted the 21 

widespread existence of disconnected saturated zones that expanded within an individual 22 

storm event but which did not necessarily connect with the drainage network. They found 23 

that using the LiDAR 2m DEM, TI has a complex pattern, associated with small areas of both 24 

low and high values of the TI, leading to the appearance of disconnected saturated areas. 25 

After remapping the topographic data at progressively coarser resolutions by spatial 26 

averaging of elevations within each cell, they found that as the topographic resolution is 27 

1
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coarsened, the number and extent of unconnected saturated areas were reduced and the 1 

catchments displayed more coherent patterns, with saturated areas more effectively 2 

connected to the channel network. Moreover, Quinn et al. (1995) showed how progressively 3 

refining model resolution from 50 m to 5 m reduces the kurtosis in the distribution of TI 4 

values and increases quite substantially the number of very low index values. Wolock and 5 

Price (1994) showed that hydrological predictions are affected by DEM resolutions in 6 

TOPMODEL. 7 

Our results show that DEM10m is the best choice among four DEMs tested because of its 8 

slightly better performance for streamflow and more importantly, its good fit to observations 9 

of saturated areas. Although DEM30m also gives very good results for streamflow and 10 

distribution of saturated areas, we did not choose DEM30m because its coarse cell size may 11 

overestimate the extent of actual saturated areas. Therefore, DEM10m is the preferred choice 12 

to scale-up the application of SWAT-HS to larger watersheds in the New York City water 13 

supply system for future applications. Our choice of DEM10m is in agreement with Kuo et 14 

al. (1999) who evaluated the effect of DEM grid sizes ranging from 10-400m on runoff and 15 

soil moisture for a variable-source area hydrology model and observed that by using the 16 

10x10m grid cells, the overall pattern of simulated wet areas showed a close correspondence 17 

with the poorly drained areas defined in the soil survey. Zhang and Montgomery (1994), in 18 

a study that evaluated grid size effect using TOPMODEL, also suggested that a 10m grid size 19 

presents a rational compromise between increasing resolution and data volume for 20 

simulating geomorphic and hydrological processes. In contrast, Thomas et al. (2017) 21 

indicated that LiDAR DEM 1-2 m is optimal for modeling hydrologically sensitive areas 22 

(runoff generating areas) and is far better than the radar based DEM 5m. However, their case 23 

study is a complex agricultural catchment dominated by micro-topographic features, which 24 

can only be captured using high resolution DEMs. Our choice of DEM10m is in contrast to 25 

Buchanan et al. (2014) who preferred DEM3m rather than DEM10m because of the better fit 26 

with the observed patterns of soil moisture collected in five different agricultural field sites. 27 
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The difference in scale of case studies (field scale vs. watershed scale) and characteristics of 1 

case studies (agricultural fields vs. a mixture of forest and agriculture) between Buchanan et 2 

al. (2014) and our study may have resulted in different conclusions on choice of the 3 

appropriate DEM resolution. Therefore, the sensitivity of DEM resolution may depend on 4 

the scale and characteristics of the watershed. The dominant hydrological process in the 5 

watershed may have a big impact on the sensitivity of DEM on hydrological prediction. In 6 

our watershed, lateral flow is a dominant flow component and saturation-excess runoff is a 7 

dominant type of surface runoff, thus, topography is the most important factor. 8 

Consequently, the DEM that represents a realistic distribution of TI with high TI area 9 

compatible with the main stream network gave a better model performance. This also 10 

explains why the coarser DEM (10m and 30m) setups have higher probabilities for good 11 

performance than the finer DEMs (1m and 3m). In a field-scale watershed, finer DEM 12 

resolution is probably better because it can capture a more detailed and realistic 13 

representation of TI distribution. In an agricultural area dominated by tile drainage, DEM 14 

resolution may not be sensitive. 15 

It should be noted here that all four DEMs in this study are derived from the same source of 16 

2009 aerial LiDAR data with 1 meter resolution. The coarser DEMs (DEM3m, DEM10m and 17 

DEM30m) are resampled products from DEM1m. Therefore, the four different DEM 18 

resolutions carry similar information, but differ in topographic smoothing. A comparison of 19 

various resolution DEMs from different sources may not yield the same results.  20 

4.2. What is the appropriate complexity of the distributed soil and land use inputs? 21 

From our comparison of nine SWAT-HS setups in three groups of complexity (simple, 22 

intermediate and complex), we found that with all randomly generated parameter values, the 23 

intermediate and complex groups are better than the simple group based on slightly higher 24 

mean NSE values and a higher probability of good performance based on randomly 25 

generated parameter values. The TB3 setup, which was built from the most complex soil map 26 

(17 soil types) and the simplest land use map (1 land use) and the simplest setup TB1 are the 27 

1
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and the wetness conditions of areas in the watershed are more important than land use in 1 

water quantity modeling. Moreover, SWAT-HS uses TI as the basis for hydrological 2 

modeling, thus, the effect of DEM resolution on hydrological predictions is dominant. 3 

Therefore, when the appropriate DEM resolution is used, soil and land use information 4 

become less sensitive to hydrological predictions. We think that this finding is applicable to 5 

watersheds where application of SWAT-HS is suitable, i.e., watersheds dominated by 6 

saturation-excess runoff. This finding may be also valid in applications of other topography-7 

based watershed models including: TOPMODEL (Quinn and Beven, 1993;Beven and Kirkby, 8 

1979), SWAT-VSA (Easton et al., 2008), SWAT-WB (White et al., 2011). These results may not 9 

be applicable in water quality modeling. Since land use information controls the inputs of 10 

nutrients and information of other human activities that affect water quality, the water 11 

quality prediction is expected to be very sensitive to the details of land use. 12 

4.3. How does input complexity affect parameter uncertainty and model output 13 

uncertainty? 14 

Our results show that regardless of the level of detail of input data, we obtained numerous 15 

sets of parameter values that give equally good performance for streamflow and saturated 16 

area predictions. Modifying the level of detail in input data changes the number of “good” 17 

parameter sets, but the ranges of “good” parameter values and the shape of their distributions 18 

remain the same. The number of randomly generated Monte Carlo parameter sets is 19 

sufficiently high to give a good coverage of parameter space. Although different inputs result 20 

in varied numbers of “good” parameter sets, those numbers in all setups are adequate to 21 

represent the distribution of ‘good’ parameter which reflects their sensitivities to hydrological 22 

prediction. Therefore, we conclude that for this case study and the particular model SWAT-23 

HS, using higher resolution DEM or adding complex information on soil or land use does not 24 

reduce parameter uncertainty or solve the equifinality problem. This statement may not be 25 

valid for other areas that are characterized by numerous land uses and complex variations in 26 
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