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Response to interactive comment on “The effect of input data complexity 

on the uncertainty in simulated streamflow in a humid, mountainous 

watershed” 

Suggested title based on the reviewer comment: “Effect of input data 

resolution and complexity on the uncertainty of hydrological predictions 

in a humid, vegetated watershed” 

Linh Hoang, Rajith Mukundan, Karen E. B. Moore2, Emmet M. Owens and Tammo S. 

Steenhuis 

 

Point by point response (indicated by ����) to reviewers’ comments 

Please note that the page and line numbers referred to here are from the revised 

manuscript. 

 

Anonymous Referee #2 

Review of the manuscript "The effect of input data complexity on the uncertainty in 

simulated streamflow in a humid, mountainous watershed“ by Hoang et al. 

Comment 

In this manuscript, Hoang et al. evaluated the effect of input resolution (digital elevation model) and 

input complexity (number of soil and land use classes) on model output uncertainty of the SWAT-HS 

model. Model output uncertainty is evaluated in terms of streamflow, saturated areas and parameter 

uncertainty. They conclude that uncertainty does not necessarily decrease when increasing input 

resolution or complexity. However, selecting parameter sets based on the combined information on 

streamflow and the spatial extend of saturated areas positively affected uncertainty. 

This is an interesting study and I like the clear and well described concept. The results are illustrated 

and described in detail for different model outputs and clearly support the conclusions. The main 

results are well discussed. To further improve the manuscript I have some suggestions listed below. 

Major comments address the potential calculation of additional streamflow criteria, the calculation of 

a complementary measure for the saturated areas, or a figure showing simulated hydrographs. I hope 

that the comments below will be helpful for the authors to improve their manuscript. 

Response 
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� Many thanks for the positive comment about the manuscript. Your comments are very 

helpful for us to improve the manuscript. We tried our best to respond to every comment 

and will revise the manuscript based on our responses to your comments. 

 

1. MAJOR COMMENTS: 

Comment 

P L4: The model you used in this study is called SWAT-Hillslope. For me the word hillslope implies 

that one is working at the hillslope scale of an undisturbed catchment. However, you use the model at 

a much larger scale and for a catchment that is probably highly influenced by human use (urban areas 

and lots of agricultural area). I think it would be helpful if you shortly reflect on that and give the 

reader a good reason for using SWAT-HS. 

Response 

� “Hillslope” in SWAT-Hillslope does not mean hillslope scale, but means hillslope 

hydrology that describes paths of water through hillslope into streams. The standard 

SWAT does not have the ability to represent hillslope hydrology because there is no 

interaction between modelling units (called Hydrological Response Units, HRUs) in a 

subbasin. In SWAT-HS, we enabled the interaction in flow and substance transport 

between upland areas and the valley bottom by creating a surface aquifer. More details 

can be found in (Hoang et al., 2017). We will also provide a general description of SWAT-

HS in supplementary materials that will be attached with the revised manuscript. 

In the revised manuscript, we edited the text to clarify the meaning of hillslope in SWAT-

HS as: 

“SWAT-Hillslope (SWAT-HS) (Hoang et al., 2017) is a modified version of the Soil and Water 

Assessment Tool (SWAT) that improves the simulation of saturation-excess runoff and creates 

interaction in flow and substance transport between the upland areas and the valley bottom.” 

 

Comment 

P5 L25-P6L8: It would be interesting to have some more information or numbers about human 

disturbances within the catchment: are there any major water withdrawals for agricultural use? Is 

there a reservoir that is used to guarantee the drinking water supply for NY in dry spells? How are 

these human influences affecting your model assumptions, such as a closed water balance? 

Response 
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� We added some information about the Cannonsville Reservoir that the Town Brook 

watershed is part of the drainage area. There is no major water withdrawal for 

agricultural use. There is also no effort to change the hydrology in this watershed. There 

are a lot of activities on watershed protection programs on farms area implemented by 

New York City Department of Environmental Protection (NYCDEP) that helps to 

improve water quality, particularly phosphorus, such as cattle fencing in pastures, 

manure storage installation, upgrades of WWTPs. Because this manuscript only focuses 

on hydrology, we think it is not necessary to add these information. We will provide this 

information in our upcoming paper. 

We revised the text in our manuscript as: 

“The 37 km2 Town Brook watershed is located in the Catskill Mountains, Delaware County, New 

York State (Fig. 1) and is the headwater of the Cannonsville Reservoir watershed which is the one 

of four reservoir watersheds in the New York City’s Delaware system.” 

 

Comment 

P6 chapter 2.2: I am not very familiar with the SWAT model and when reading the second paragraph 

of chapter 2.2 it was not clear to me how the structure or the combination of subbasins, wetness classes 

and HRUs look like. Would it be an option to include a schematic of the model structure to visually 

support what you are writing? 

Response 

� Thank you for the comment that reminds us about the need to provide sufficient 

information to non-SWAT modelers. We will provide a more detailed description of 

SWAT-HS setup which will include maps of input data as supplementary materials which 

will be attached with the revised manuscript. 

 

Comment 

P9 L2: I like the idea of using the principle of GLUE the select behavioral parameter sets. However, I 

am not sure if I would agree in using a Nash-Sutcliffe efficiency of 0.65 as a threshold for good 

simulations. How do you know that 0.65 is a good model result for your catchment? Nash-Sutcliffe is 

known to be high in catchments with a high discharge variability and model efficiencies also tend to be 

better for humid catchments than for dry catchments. Shouldn’t good efficiencies for a catchment like 

yours be around 0.8 (I know this is a bit provocative)? Why did you decide to take a fix efficiency 

threshold and not just the best 10? 



4 

 

 Response 

� Figure 5a and figure 10a show the maximum daily NSE values in all our SWAT-HS setup 

which range from 0.68 to 0.69. Therefore, it is impossible to set the threshold at 0.8. From 

our results, daily streamflow predictions with daily NSE higher than 0.65 results in 

monthly streamflow prediction with monthly NSE higher than 0.8. Based on guidelines 

for model performance evaluation by Moriasi et al. (2007) which suggested that good 

model performance for streamflow corresponding to monthly NSE higher than 0.75. 

Therefore, we are confident that our choice of daily NSE higher than 0.65 as good model 

performance is a reasonable choice. 

We decided to take a fixed efficiency threshold and not just the best 10 parameter sets in 

each setup because we would like to know how many parameter sets in each setup can 

give good performance above the threshold. The ratio of the number of good parameter 

sets of a setup to the total number of Monte Carlo parameter set (10,000 in this case) can 

tell us the probability of the setup to get a good model performance, which we use as one 

of the criteria to compare the setups. 

 

Comment 

P9 L2: Linked to using GLUE: it would be interesting to also see the simulated and observed 

hydrographs with the confidence intervals. 

Response 

� As the reviewer suggested, we will add the two figures below, which show the 

comparison between observations and simulated streamflows from all SWAT-HS setups 

with 90% confidence intervals, in the supplementary material that will be attached with 

the revised manuscript. We chose to show the comparison by plotting flow duration 

curves because it is very difficult to see in daily streamflow plots.  
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Figure 1: Uncertainty in streamflow predictions by SWAT-HS using different DEM 

resolutions  

 

  

DEM1m DEM3m 

DEM10m DEM30m 
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Figure 2: Uncertainty of streamflow predictions by SWAT-HS using different degrees of 

complexity  

 

Comment 

P9 L5: Your final goal is to make some recommendation about the appropriate model input complexity 

and resolution based on streamflow, saturated areas and parameter uncertainty. Evaluating the 

streamflow simulations on a single efficiency measure has therefore a strong impact on your final 

recommendations. After all the discussion on the use of Nash-Sutcliffe (e.g. Do Nash values have value 

from Schaefli and Gupta, 2007; Decomposition of the mean squared error and NSE performance 

TB1 TB2 TB3 

TB4 TB5 TB6 

TB7 TB8 TB9 
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criteria: Implications for improving hydrological modelling from Gupta et al., 2009) I would suggest 

that you calculate one or two additional efficiency criteria for streamflow simulations. This could for 

example be a criteria representing low flow or discharge volume. 

Response 

� Thank you very much for the reviewer’s comment. We agree with your suggestion. 

Therefore, we calculated two additional efficiency criteria: (i) NSElog: logarithm of Nash 

Sutcliffe Efficiency which is a good indicator for low flows, and (ii) KGE: Kling Gupta 

Efficiency. We added the calculated values in table 3 and 4. We showed our edits in table 

3 as an example here. 

Table 3: Statistical criteria to compare the effect of DEM resolution on model uncertainty 

 DEM1m DEM3m DEM10m DEM30m 

Calibration period: based on 10,000 Monte Carlo parameter sets 

Number of “good” parameter sets (%) for 

streamflow 

1362 1890 2180 2293 

Number of “good” parameter sets (%) for 

both streamflow and saturated areas 

27 49 66 67 

NSE Max 0.69 0.69 0.69 0.69 

 Mean 0.09 0.05 0.33 0.34 

NSElog Max 0.82 0.82 0.82 0.83 

 Mean 0.43 0.41 0.56 0.59 

KGE Max 0.81 0.81 0.81 0.81 

 Mean 0.53 0.53 0.59 0.59 

Validation period: based on “good” parameter sets from calibration 

NSE Max 0.66 0.66 0.66 0.66 

 Mean 0.60 0.62 0.62 0.62 

NSElog Max 0.82 0.82 0.82 0.82 

 Mean 0.70 0.70 0.69 0.71 

KGE Max 0.79 0.78 0.79 0.79 

 Mean 0.70 0.70 0.70 0.71 
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Comment 

P14 L1: If I understand correctly, you evaluate the model simulations by the percentage of simulated 

areas that intersect with the observed areas (purple color in Fig. 8). This corresponds to my 

interpretation to the percentage of correct classifications. To me it seems logical that the DEM30m 

performs best, because it cannot be too wrong due to its coarse resolution. Therefore, I think that 

evaluating the percentage area of misclassification (percentage of simulated area that does not intersect 

with the observation green color in Fig. 8) would give additional and important information for the 

evaluation of the various DEM resolutions. 

Response 

� We confirm that the reviewer understood correctly that we evaluated the model 

simulation by comparing the percentage of simulated areas that intersects with the 

observed areas. We also think that it is logical that DEM30m has the highest percentage 

due to its coarse resolution. However, the most important reason is that the coarse 

resolution DEMs (DEM 10m and DEM 30m) gave a realistic distribution of topographic 

index (TI) values with the high TI grids well compatible to the stream network. Thus, with 

the classification of wetness classes based on TI values, coarse resolution DEMs also 

provide a better distribution of wetness classes with the highest TI wetness classes ( which 

supposed to be ‘wet’) locating in the downslope, near-stream areas while the lowest TI 

wetness classes (‘dry’ wetness classes) being in the upslope areas. 

In our opinion, we would like to focus on the percentage of simulated areas that intersects 

with the observed areas (the correct classification) rather than the percentage that does 

not intersect with observation (the misclassification) to evaluate the model simulation. 

We think that the correct classification reflects the model performance which we are 

evaluating. The misclassification is easily to calculate by deducting the correct 

classification from 100%.  

We will provide a proper explanation the reason why coarser resolution gave a better 

prediction of saturated areas in the revised version. 

 

Comment 

P18 L2: In the discussion you provide some good reasons why a relatively coarse DEM resolution 

(DEM 10) can lead to good/ acceptable results. However, I don’t understand why a better resolution 

does not result in even better results. Could you maybe write a few sentences that elaborate on that? 

Response 
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� Same as our response to your previous comment, a relatively coarse DEM resolution 

(DEM 10m) can lead to a better performance it gives a more realistic distribution of 

topographic index (TI) values which results in a better distribution of wetness classes. The 

reason is explained as below.  

Note that the basic equation for topographic index is TI = ln (contributing area/slope 

angle) 

The below figure shows the relationships of TI with slope angle, upslope contributing 

area and elevation using 2 representative DEM resolutions: 1m and 10m. It is clearly 

observed that DEM 1m can capture a significantly wider range of slope than DEM 10m 

because of its finer resolution. Also, the percentage of grids that has low values of TI is 

significantly higher in DEM 1m than in DEM 10m (in figure below use red lines for 

reference), which also can be seen in figure 3d in the main manuscript. Low TI values are 

usually found in grids with steep slope or with low upslope contributing areas. Because 

DEM 1m captures steep slope at local scale and has a high number of grids with low 

upslope contributing area (figure 3c in the main manuscript), the percentage of low TI 

values in DEM 1m is much higher. If we look at the relationship between TI and elevation, 

we can see that the distribution of TI values in DEM 1m spread out wider than in 

DEM10m at all elevations. This explains why the distribution of wetness classes in 

DEM1m has a more complex pattern with every wetness class spread-out while DEM10m 

has a more coherent pattern with high TI wetness class well compatible with the stream 

network (Figure 4 in the main manuscript). 

Our findings are in agreement with Lane et al. (2004) who used high resolution LiDAR 

2m DEM in the TOPMODEL which simulates hydrology based on topographic index. The 

TOPMODEL predicted the widespread existence of disconnected saturated zones that 

expand within an individual storm event but which do not necessarily connect with the 

drainage network. They found that using the LiDAR 2m DEM, the topographic index has 

a complex pattern, associated with small areas of both low and high values of the 

topographic index, leading to the appearance of disconnected saturated areas. After 

remapping the topographic data are remapped at progressively coarser resolutions by 

spatial averaging of elevations within each cell, they found that as the topographic 

resolution is coarsened, the number and extent of unconnected saturated areas are 

reduced: the catchments display more coherent patterns, with saturated areas more 

effectively connected to the channel network. Moreover, in another study, Quinn et al. 

(1995) showed how progressively fining model resolution from 50 m to 5 m reduces the 
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kurtosis in the distribution of topographic index values and increases quite substantially 

the number of very low index values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Relationship of topographic index with slope, upslope contributing area and 

elevation with two resolution of DEM: 1m and 10m 

 

Comment 

Table 3 and 4: I agree that the number of parameter sets and the median efficiency values are 

interesting. However, I would recommend to add the values directly to the corresponding figures to 

have the information where it is relevant. I think that max and min efficiency values can also be seen/ 

guessed from the figures and are not that important that they need to be in a table. 

Response 

DEM 1m DEM 1m DEM 1m 

DEM 10m DEM 10m DEM 10m 
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� Based on your previous suggesting to add more efficiency criteria, we added the values 

of maximum and mean NSElog and KGE in these two tables. We removed median NSE 

because the readers can read those values from figure 5 and 10. 

 

2. MINOR COMMENTS: 

Comment 

P1 L1: After reading the manuscript I would suggest to adapt the title, because is only addresses part 

of the actual analysis. I am also not sure if the study catchment can be considered as mountainous. So 

maybe the title could be adapted to something similar as: Effect of input data resolution and complexity 

on simulation uncertainty for a simple runoff model. 

Response 

� Thank you for the comment. We will revise our title as: “Effect of input data resolution 

and complexity on the uncertainty of hydrological predictions in a humid, vegetated 

watershed  

 

Comment 

P1 L11: I would be careful with using the term “water quality” in the very first sentence of the abstract 

as it suggests that the study is about water quality, which is not the case. 

Response 

� We agree with the reviewer. In the revised manuscript, we removed the term “water 

quality” as: 

“Uncertainty in hydrological modelling is of significant concern due to its effects on prediction 

and subsequent application in watershed management.”  

 

Comment 

P2 L4: The nine model setups not only had a similar effect on parameter uncertainty, but also on 

streamflow simulation. 

Response 
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� In this sentence, we mentioned about the effect of input data complexity first while the 

following sentence is about the effect on streamflow simulation. Therefore, we did not 

make any edit regarding this comment in the revised manuscript. 

 

Comment 

P2 L7: The term spatial input details was a bit confusing to me. I would rather use the same terms as 

before: input resolution and complexity. 

Response 

� We changed the term “increasing spatial input details” to “improving input resolution 

and complexity”. 

 

Comment 

P2 L16-17: Is data used to calibrate the model (e.g. discharge data) included in your list? For me it 

would be a fourth point called output data uncertainty. 

Response 

� In this study, we do not consider measurement error as uncertainty. Model uncertainty 

from the three components (model structure, input data and model parameters) that we 

mentioned are caused by assumptions or simplifications made for model structure, 

averaging impact or lack of data in input data and the effect of equifinality on model 

parameters. We assumed that all available measurements for input data and data used 

for calibration are true. Therefore, measured data uncertainty is not in the list. Moreover, 

this categorization of model uncertainty is not our own but based on Lindenschmidt et 

al. (2007). 

 

Comment 

P5 L12-22: I recommend to reorganize this paragraph. Having two listings in a row makes it more 

difficult to understand what the focus of your study is. 

Response 

� We reorganized the paragraph and hope the focus of the study is clear now.  

The text was edited in the revised version as: 
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“The two main objectives of this paper are to evaluate: (i) the effect of DEMs of various spatial 

resolution (1, 3, 10, and 30 m) on the uncertainty of streamflow and saturated area predictions, 

and (ii) the impact of combinations of soil and land use data with various degrees of complexity 

on the uncertainty in model simulation. In both analyses, we not only investigate the effect on 

model prediction/output uncertainty but also discuss their effect on the uncertainty in parameter 

estimation. Through this study we seek to answer specific questions including identifying the 

suitable DEM resolution in order to get good model performance, and the appropriate complexity 

of the distributed input data. Answers to these research questions will be the basis for reducing 

decision uncertainty on model input selection in our future applications of SWAT-HS in the NYC 

water supply system.” 

 

Comment 

P7 L4: I recommend to mention the concept of “hydrological connectivity”, which is the argument for 

you lateral surface aquifer. 

Response 

� We agree with the reviewer. We will provide a more detailed description of SWAT-HS 

which includes the explanation of the ‘”hydrological connectivity“ concept in more detail 

as supplementary material attached to the revised manuscript. 

 

Comment 

P7 L20: Please add the reference for the LiDAR data. 

Response 

� We added the reference for the LiDAR data in the revised manuscript as: 

“The 1m DEM (DEM1m) was derived from 2009 aerial LiDAR data acquired by New York 

City Department of Environmental Protection (RACNE, 2011).” 

 

Comment 

P7 L25. I would refer to Figure 4. (“: : :divided into 10 wetness classes (Fig. 4)) 

Response 

� We edited the text as:  

“Based on TI values, the watershed was divided into 10 wetness classes (Figure 4).” 
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Comment 

P8 L 9: Please add the reference for the solar radiation data. 

Response 

� We added the reference for the solar radiation data and revised the text as: 

“Solar radiation data was derived as the average of airport stations at Albany and Binghamton 

as supplied from the Northeast Regional Climate Center.” 

 

Comment 

P8 L21: Using a model with a snow routine I would mention the percentage of precipitation falling as 

snow in the section where you describe the catchment. 

Response 

� We added the information of percentage of precipitation falling as snow in the case 

study description as: 

“Approximately 1/3 of the total precipitation in the region fall as snow (Pradhanang et al., 2011). 

 

Comment 

P8 L19: Why do make 10’000 MC runs and not 100’000? Do you think your parameter distributions 

would look differently with more random parameter sets? Please give some reasons for your choice. 

Response 

� The calibration procedure in this manuscript is based on our previous study (Hoang et 

al., 2017). Our calibration procedure includes 2 stages: snowmelt calibration (5 

parameters) and flow calibration (9 parameters among which 1 parameter, ALPHA_BF, 

is not very sensitive based on our previous study). In each stage, we generated 10,000 

parameter sets which were run with SWAT-HS and the results were compared with 

observations. 

We assume that we generate 1 random sample in at least high, middle, and low range for 

each parameter. In the stage of snow melt calibration, with 5 parameters involved, 3^5 = 

243 is the minimum number of MC parameter sets required to cover the parameter space. 

In the flow calibration stage, with 8 sensitive parameters involved, 6561 combinations are 
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the minimum number required. Therefore, we think that using 10,000 MC parameter sets 

for each stage of calibration is sufficient.   

 

Comment 

P10 chapter 3.1.1: You could think about moving this chapter to the methods part. 

Response 

� We would like to keep this section in the Results part because this is a part of our analysis 

which is the basis to explain the effect of DEMs on prediction of saturated areas. In the 

Methodology part in the revised manuscript, we mentioned about this work as: 

“We evaluated the effect of DEM resolution on representing topographical characteristics of the 

watershed by comparing the statistical distributions of elevation, slope angle, upslope 

contributing area, and TI using DEMs with various spatial resolutions (1m, 3m, 10m and 30m).”  

 

Comment 

P13 L7: Could you briefly explain what the percentage of saturated areas is? It would then also become 

clearer what / how many data points the corresponding boxplots (Fig. 7) contain.  

Response 

� The percentage of saturated areas is defined as the percentage of the watershed area that 

is saturated in the simulated day. The number of data points for each DEM in figure 7 

equals to the number of days in the calibration period (2556 days) multiplying the number 

of good parameters for both streamflow and saturated areas in each DEM setup. 

 

Comment 

Fig. 1: Could you increase the resolution of this figure? Because it is not sharp when printing it out 

on A4. 

Response 

We provided a high resolution figure for figure 1 in the revised manuscript (see Figure 1). 
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Comment 

Fig. 5 and 10: I recommend to adapt the y axis scales to better use the available space. And I also 

suggest to use the same style/ content of figure caption for Fig. 5 and Fig. 10. 

Response 

� Thanks the reviewer for the detailed comment. 

We edited the caption for Figure 5a and 5b and the general caption of figure 5 to be 

consistent with figure 10 (see figure 5). Moreover, we also adjusted the y axis scales of 

plots in figure 5 and 10 as the reviewer’s suggestion (see Figure 5 and Figure 10).  

 

Comment 

Fig. 6: Again, I recommend to adapt the y axis scales to better use the available space. Additionally, I 

would add the information that only the good parameter sets for both streamflow and saturated areas 

are used in this plot to the figure caption. 

Response 

� We would like to keep this figure as it is. The reason is that this figure does not only show 

variations of probability of saturation in each wetness class using different DEMs, it also 

aims at comparing the difference of these variations between wetness classes. Therefore, 

we purposely kept similar value ranges for y axis in all plots. 

As the reviewer suggested, we changed the caption of figure 6 to: Probability of saturation 

of wetness classes in SWAT-HS set ups with different DEM resolutions using good parameters 

for both streamflow and saturated areas 

 

Comment 

Fig. 9 and 11: It is almost impossible to see the distributions of the good parameter sets for both 

streamflow and saturated areas. Why don’t you scale the y axis differently? 

Response 

� We agree with the reviewer. We changed the y axis of figure 9 and 11 to logarithmic 

scale. The new figure 9 is shown below as an example of our edits. 
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Figure 9: Distribution of “good” parameters for streamflow (in green) and for both 

streamflow and saturated areas (in blue) with log y axis in four SWAT-HS setups using 

different DEM resolutions 

 

Comment 

Table 1: What is the difference between latA and latB? It is not clear since the definitions are identical. 

Response 

� The lateral flow in SWAT-HS is generated as the following equation using the linear (latA) 

and exponential (latB) coefficients : 

latBSlatAlatQ ^* 1=   

where ( latQ ) is lateral flow for the sub-basin, 1S  is the amount of water stored in the 

surface aquifer, latA and latB  are constant coefficients.  

The equation can be found in Hoang et al. (2017). We also added a description of SWAT-

HS in the supplementary material attached to the revised manuscript. 

 

Comment 

Generally: I suggest to use the HESS guidelines for making references and also for formatting units. 
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Response 

� We edited our manuscript to follow the HESS requirement of units and reference style. 
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