10

15

20

25

30

Subseasonal hydrometeorological ensemble predictions in small- and
medium-size mountainous catchments: Benefits of the NWP
approach

Samuel Monhart'23, Massimiliano Zappa?, Christoph Spirig?, Christoph Schar®, and Konrad Bogner!

1Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Mountain Hydrology and Mass Movements,
Birmensdorf, Switzerland

2Federal Office of Meteorology and Climatology MeteoSwiss, Climate Prediction, Zurich-Airport, Switzerland

SETH Zurich, Institute for Atmospheric and Climate Science, Zurich, Switzerland

Correspondence to: Samuel Monhart (Samuel.Monhart@wsl.ch)

Abstract. Traditional Ensemble Streamflow Prediction systems (ESP) are known to provide a valuable baseline to predict
streamflows at the subseasonal to seasonal timescale. They exploit a combination of initial conditions and past
meteorological observations, and can often provide useful forecasts of the expected streamflow in the upcoming month. In
recent years, numerical weather prediction (NWP) models for subseasonal to seasonal timescales have made large progress
and can provide added value to such a traditional ESP approach. Before using such meteorological predictions two major
problems need to be solved: the correction of biases, and downscaling to account to increase the spatial resolution. Various
methods exist to overcome these problems, but the potential of using NWP information and the relative merit of the different
statistical and modeling steps remains open. To address this question, we compare a traditional ESP system with a
subseasonal hydrometeorological ensemble prediction system in three alpine catchments with varying hydroclimatic
conditions with areas between 80 and 1700 km?2. Uncorrected and corrected (pre-processed) temperature and precipitation
reforecasts from the ECMWEF subseasonal NWP model are used to run the hydrological simulations and the performance of
the resulting streamflow predictions is assessed with commonly used verification scores characterizing different aspects of
the forecasts (ensemble mean and spread). Our results indicate that the NWP based approach can provide superior prediction
than the ESP approach, especially at shorter lead times. In snow-dominated catchments the pre-processing of the
meteorological input further improves the performance of the predictions. This is most pronounced in late winter and spring
when snow melting occurs. Moreover, our results highlight the importance of snow related processes for subseasonal

streamflow predictions in mountainous regions.

1 Introduction

Subseasonal hydrometeorological predictions are of special interest for many different applications in the public and the

private sectors. For example to develop early warning systems for flood and drought preparedness for the general public
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(Bogner et al., 2018; Cloke and Pappenberger, 2009; Fundel et al., 2013a; Van Lanen et al., 2016; Schér et al., 2004; White
et al., 2017), to optimize the production of renewable energy sources such as wind (Beerli et al., 2017), solar (Inman et al.,
2013) and hydropower (Garcia-Morales and Dubus, 2007) or to ensure inland waterway transportation (MeiRner et al.,
2017).

In recent years the numerical weather prediction (NWP) systems have greatly evolved (Bauer et al., 2015). The ensemble
forecasting approach introduced two decades ago allows capturing the chaotic nature of the atmosphere in a probabilistic
sense and has extended the horizon to which weather predictions can provide valuable information. Hydrological prediction
systems, especially beyond the short-range lead times, benefit from such an ensemble approach (Demargne et al., 2014; Jaun
et al., 2008; Schaake et al., 2007; Verbunt et al., 2007). Ensemble hydrometeorological end-to-end prediction systems for the
subseasonal time scale, i.e. forecasts for lead times up to 4 to 6 weeks, are now being developed and investigated for
different parts in the world. Nowadays, different research initiatives (Hao et al., 2018; Robertson et al., 2015; Vitart et al.,
2017; Vitart and Robertson, 2018) set their focus on the assessment of predictability within this lead-time horizon. But still
this lead time between the medium-range forecasts and the seasonal predictions is a grey zone in both the meteorological and
hydrological forecasting communities.

However, ensemble prediction systems have extensively been used for short to medium-range forecasts and it could be
shown the resolution of the model plays an important role for a good performance of ensemble precipitation forecasts
(Marsigli et al., 2008; Montani et al., 2001, 2003). A higher resolution can be achieved by dynamically downscaling the
ensemble predictions, what led to a gain in predictability in ensemble precipitation forecast over the past years in the
medium-range time scale (Montani et al., 2011). From a hydrological perspective flood peaks can much better be predicted
using mesoscale ensemble forecast models compared to global models (Davolio et al., 2012). In such operational short to
medium-range forecasting systems, dynamical downscaling methods are a valuable tool to increase the resolution of the
forecasts but for long term predictions the computational demand of dynamical downscaling methods is a limiting factor and
it has been shown that similar results can be achieved with statistical downscaling methods (Diez et al., 2005; Manzanas et
al., 2018). In recent years, seasonal ensemble prediction systems have increasingly been used in the hydrological forecasting
context. At this time scale downscaling is usually included in statistical processing techniques that primarily aim at
correcting the bias of the meteorological forecast. Different statistical bias correction techniques can be used to improve the
skill of seasonal forecasts (Bohn et al., 2010; Crochemore et al., 2016; Kumar et al., 2014). An alternative approach for
seasonal streamflow prediction is the traditional ensemble prediction system (ESP) first introduced by Day (1985). In this
approach, observed historical meteorological conditions are used to generate the streamflow forecasts. Several studies have
shown that Ensemble Streamflow prediction (ESP) can provide skillful seasonal streamflow prediction (Harrigan et al.,
2017) and seasonal hydrometeorological prediction systems have difficulties to outperform the ESP beyond one month lead
time (Arnal et al., 2018; Lucatero et al., 2018). Irrespective of the methodology used, the performance of ensemble
streamflow forecasts depend to a large degree on the initial condition within the catchment especially for small catchments

(Van Dijk et al., 2013; Thirel et al., 2010). In subseasonal to seasonal hydrometeorological predictions, the memory of the
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river networks is predominately driven by the initial conditions of the land surface characteristics, i.e. soil moisture and snow
cover (Jorg-Hess et al.,, 2015a). It has been shown that these parameters play an important role for skillful
hydrometeorological forecasts using numerical weather prediction (NWP) inputs in hydrological models for streamflow
forecasting (Orth and Seneviratne, 2013b; Sinha and Sankarasubramanian, 2013). However, for small snow dominated
catchments the benefit of using pre-processed subseasonal NWP input has not yet been investigated. The three main reasons
for the lack of studies at smaller scales is the fact that the driving meteorological models are calculated on a global scale with
coarse resolution. Therefore, small catchments are often smaller than the nominal resolution of these models, making a pre-
processing step necessary to bias correct and downscale the meteorological forecasts to an adequate spatial resolution as an
input to the hydrological models. The second reason is that small catchments usually do not have a long temporal memory
and processes leading to runoff are rather quick and therefore the skill in early lead times do not extend into longer lead
times (Orth and Seneviratne, 2013a). As a consequence, the upper limits of the forecast skill at the subseasonal time scale
strongly depend on such catchment characteristics (Bogner et al., 2016, 2018). Finally, previous generations of subseasonal
to seasonal climate forecasts rapidly lost skill beyond the first 2 weeks (see for example Lavers et al., 2009).

Small and medium sized catchments in mountainous regions such as the Alps are often snow dominated, hence the
streamflow, and especially the forecasts thereof, depends to a large degree to snowmelt processes that are driven by
temperature (Hock, 2003; Ohmura, 2001; Zappa et al., 2003). Monhart et al. (2018) have shown that the statistically
corrected subseasonal temperature forecasts exhibit positive skill compared to the climatological reference of up to 3 three
weeks, whereas positive skill of precipitation forecasts is restricted to the first 10 days. Hence, the question arises if and to
what extent the positive skill of temperature forecasts in meteorological prediction models does further progress to the
streamflow forecasts. Skillful streamflow forecasts might not directly be related to the skill in temperature forecasts but
rather in an appropriate sampling of the initial conditions and the actual snow cover (snow water equivalent) at initialization
(Jorg-Hess et al., 2015a). Therefore, the skill of the streamflow forecasts will not solely depend on the quality of temperature
forecasts alone. To investigate this question, ensemble streamflow prediction can be used to evaluate the importance of the
initial conditions. The comparison of the skill of an ESP forecast and the skill of actual hydrometeorological predictions can
indicate the relative importance of using physically consistent meteorological forecasts to produce skillful streamflow
predictions. After presenting the methods used for the pre-processing and the verification of the different forecasts in section
2, the meteorological and hydrological data is described in section 3. The results obtained are presented in detail in section 4

followed by a discussion (section 5) to put the results in the current scientific context.

2 Methods

The conceptual framework used in this study is presented in Figure 1. The hydrological model is run with different

meteorological forcings to provide ensemble streamflow predictions. A traditional ESP approach using 34 years of
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meteorological observations provides the baseline forecasts. A second input is based on the reforecasts from the ECMWF
subseasonal prediction system as described in section 3.1. Along this chain four different configurations are used to feed the
hydrological model and generate streamflow predictions: the raw reforecasts for both temperature and precipitation, the raw
precipitation reforecast and pre-processed temperature reforecasts and vice versa, and both parameters pre-processed.

2.1 Pre-processing in the hydrometeorological model chain

In the pre-processing step a quantile mapping (QM) technique is applied in a leave-one-year-out setup to correct each re-
forecast year separately. The corrections are applied in a lead-time dependent manner. A description of the pre-processing
setup can be found in Monhart et al. (2018). This cross-calibration framework ensures a cross-validation described in
subsection 2.3. In contrast to the site-specific pre-processing setup used in Monhart et al. (2018), a gridded observational
product is used here. The pre-processing is performed for temperature and precipitation and involves not only a bias
correction but also a downscaling because of the higher resolution of the gridded observation data used in this study. The
observation and forecast data used in this study is described in more detail in the Section 3. However, it is worth mentioning
here that the raw model resolution of 50 km is bias corrected with QM using gridded observations with a higher spatial
resolution of 2km. This resolution corresponds to the meteorological input of the hydrological model, for which observations
from station data are interpolated to 2 km grids (see section 3.2). The QM technique is a simple and widely used method for
pre-processing hydrometeorological forecasts (e.g. Kang et al., 2010; Lucatero et al., 2018; Verkade et al., 2013). For a
given target day of a reforecast the correction is derived from the distribution of all the reforecasts within a three weeks
window around the same lead day and the corresponding observations, hence the correction depends both on the lead time
and on the period of the years. For temperature an additive correction and for precipitation a multiplicative correction is
applied. Using the multiplicative version of QM for temperature allows to include zero value without special treatment.

Hence, no precipitation can be generated if the raw forecasts do not exhibit any rain.

2.2 Ensemble Streamflow Prediction (ESP)

The Ensemble streamflow predictions follow the established procedure first proposed by Day (1985). Many studies have
shown the potential of this method to provide skillful streamflow predictions at the subseasonal to seasonal time scale in
Europe (e.g. Arnal et al., 2018; Harrigan et al., 2017). The basic principle behind the ESP is to create an ensemble of
streamflows based on known initial conditions and forced by historic climate sequences. The historical record used in this
study covers the period from 1980 to 2014 resulting in 34 members for each forecast. As in the hydrometeorological model
chain, the ESP approach is set up in a leave one year out manner to ensure that the information of the year to be verified is
not part of the forecasts itself. ESP predictions can be skillful especially in catchments where the predictability is mainly
driven by the initial conditions, although the quality of the predictions depends on the seasons and hydroclimatic

characteristics (Wood and Lettenmaier, 2008).
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2.3 Hydrological Simulations

The hydrological simulations are performed with the Precipitation-Runoff-Evapotranspiration-Hydrotope model (PREVAH)
(Gurtz et al., 1999; Viviroli et al., 2009a; Zappa et al., 2003). In this study, the distributed model version which requires
gridded input data is used as described in Speich et al. (2015) and first applied in a hydrological study by Schattan et al.
(2013). The model requires spatial information (land use, aspect and elevation) and gridded meteorological variables.
Besides the statistically corrected temperature and precipitation predictions, relative humidity, sunshine duration, surface
albedo and solar radiation are needed to run PREVAH. For the initialization of the model the required fields (i.e. soil
moisture, groundwater storages, snow cover) are used from a reference simulation driven with the gridded meteorological
observation dataset as described in subsection 3.4. The distributed hydrological model is run at a resolution of 200 m x 200
m, hence the same model internal procedures are used to further downscale the meteorological inputs for all different
experiments. Namely, an interpolation based on inverse distance weighting (IDW) and different height and terrain specific
correction are applied to the input variables (adiabatic lapse rate correction; aspect and slope corrections) as described in
Zappa et al. (2003). A more extensive description of the model and a comparison to the HRU based version of the model can
be found in (Jorg-Hess et al., 2015a).

2.4 Verification

To verify the predictions various metrics are used to assess the forecast performance according to different characteristics or
attributes of the forecasts respectively. The verification is performed for the two variables streamflow and snow water
equivalent (SWE). For the selection of verifications metrics we follow the procedures presented in Brown et al. (2010) and
we combine deterministic and probabilistic measures of skill to assess the forecast performance. More detailed reviews of
ensemble forecast verification can be found in Jolliffe and Stephenson (2012) and Wilks (2006). Besides the Nash-Sutcliffe
efficiency (NSE) (Nash & Sutcliffe, 1970) widely used to assess the performance of hydrological models and the logarithmic
version thereof (NSE log), which is more sensitive to low flows (Krause et al., 2005), we use the ensemble mean error (bias)
and the mean absolute error (MAE). For both versions of the NSE and the bias the ensemble mean is used for the calculation.
Although these metrics can describe the average characteristics of the ensemble forecasts it has been shown that it is crucial
to consider the spread of the ensemble forecast as well to properly asses the forecast performance in particular at the
subseasonal to seasonal time scale (Kumar et al., 2014). Therefore the continuous ranked probability skill score (CRPSS)
with the extension proposed by Ferro (2014) to account for small ensemble sizes is used to characterize the performance of
the full ensemble (Hersbach, 2000; Muller et al., 2005). In addition, we use the spread to error ratio (SprErr) as an indicator
for the forecast reliability (Hopson, 2014). The SprErr is defined as the ratio between the variance of the forecast ensemble
(forecast spread) and the mean squared error (MSE) of the ensemble forecast (forecast error). For reliable forecasts the
spread and the error are equal, resulting in a SprErr of 1 whereas values below 1 indicate overconfidence (errors are larger

compared to the spread) and values above 1 indicate overdispersion (the spread is larger compared to the error). Finally, rank
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histograms are used to visually examine the reliability of the forecasts (Anderson, 1996; Talagrand et al., 1997; Hamill &
Colucci, 1997). In each of these scores the reforecasts are compared to observations (ME and MAE) and the climatology of
the reference simulation is used as a reference climatology for NSE and CRPSS. In this study we use pseudo observations
from a reference simulation to substitute real observations for the streamflow forecast verification. This is done to separate
the effect on the performance of the hydrological predictions resulting from either different meteorological input forecasts or
from the deficits in the hydrological model to simulate low flows. The setup of the reference simulation to generate the

pseudo observations is described in the data subsection 3.4.

3 Data
3.1 Meteorological reforecast data

We obtained the subseasonal reforecasts from the ECMWEF Integrated Forecasting System (IFS) version CY40rl. This
version was operational from 19 November 2013 to 12 May 2015. This is a unique dataset because no system change
occurred for nearly one and a half years (http://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-
model/cycle-40rl/cycle-40rl for the documentation of IFS CY40rl). Routinely the model is updated more frequently within
one year and therefore changes in the system, e.g. changes to the horizontal and vertical resolution or changes in the
parametrization of physical processes affect the skill of the forecast over the course of the year. The same data set is used as
in the study presented by Monhart et al. (2018) and can be referred to for a more detailed description of the forecast system
and for an extensive verification of these meteorological forecasts.

In this study the historical 5-member reforecasts (i.e. hindcasts) are used to drive the hydrological simulations. These
meteorological reforecasts are run for all forecasts issued on Thursdays using ERA-interim analysis for the initialization
(ECMWEF, 2014) covering the period from April 1994 to March 2014 resulting in a total of 1040 individual reforecasts that
are analyzed within this study. These reforecasts are essential for the post-processing of the meteorological forecasts (i.e.
pre-processing from a hydrological point of view). The bias of the forecasting system can be estimated using the reforecasts

and future forecasts can be corrected (or as in this analysis the reforecasts itself).

3.2 Meteorological observational data

We use gridded observation data sets at 2 km x 2 km resolution for daily temperature and precipitation to pre-process the
meteorological reforecasts and for the verification thereof (Frei, 2014; Isotta et al., 2014; Meteoswiss, 2016; MeteoSwiss,
2016). These products are based on surface observations and are often used in climatological studies for Switzerland (e.g.
Addor et al., 2016; Begert and Frei, 2018, Orth et al. (2015) for a hydrological model study with the same model version we
use in this study). Nevertheless such gridded observational products exhibit limitations especially in complex terrain with
high mountain peaks because of the interpolation errors and errors induced by natural variability (Frei, 2014; Addor &

Fischer, 2015). Despite these limitations the analysis benefits by using the gridded version because of the scarcity of
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meteorological stations available in the catchment areas. The additional meteorological variables (relative humidity,
sunshine duration, surface albedo and solar radiation) needed to run the hydrological model PREVVAH are directly used from
the (raw) meteorological forecasts and are inherently downscaled with the PREVAH internal methodology. Although these
parameters could influence the hydrological relevant processes, e.g. evaporation rates from snow based on the relative
humidity which could change after a downscaling, a thorough assessment of the effect of bias correcting and downscaling of

these additional variables is out of scope of the current study.

3.3 Catchment characteristics and hydrological data

The experiments analyzed in this study are performed for three alpine catchments with various hydro-climatic
characteristics. This allows identifying the underlying processes that lead to skillful subseasonal streamflow predictions. The
selection of the catchments is a compromise between the intended applications of our results within hydropower
optimization in the Alpine region and to adequately meet the requirements of a scientific analysis. Hence, the Kléntal and the
Verzasca catchment both are selected because of existing hydropower installation in these watersheds and the Thur
catchment was chosen as a representative catchment with different hydroclimatic characteristics and because this catchment
is often considered in hydrological research in Switzerland. An overview of the catchment characteristics can be found in
Table 1.

The Verzasca catchment located in the Southern part of the Alps is snow dominated in the cold seasons and more
precipitation dominated in warm seasons (W&hling et al., 2006). The average height of the catchment is 1651 m a.s.l. with a
maximum height of 2864 m a.s.l. and a minimum height at the gauging station of 490 m a.s.l.. Despite this height difference
the catchment is of medium size only with a total of 185 km? The runoff in this catchment is low in winter due to
accumulation of snow in elevated regions and highly dynamical in late spring to early autumn because the area is prone to
heavy thunderstorm activity (Bogner et al., 2018; Liechti et al., 2013). The data used for calibration of the hydrological
model and for the verification of the reference simulation is provided by the Federal Office for the Environment (FOEN) for
the gauging station Lavertezzo.

The Kléntal catchment, located in the Northern part of the Alps, is mainly snow dominated and inherits a glaciated area of
about 3 km? (< 5%). The maximum height is 2883m a.s.l. and the minimum height, corresponding to the height of lake
Klontal, is 847 m a.s.l. with a catchment area 83 km? categorized as a small catchment. The lake is used for hydropower
generation. The data provided by the hydropower operator is used for calibration of the hydrological model and the
verification of the streamflow reforecasts. Due to the absence of gauging stations, this data is an estimate of the streamflow
at the lake outlet and deduced from the water balance of historical lake levels. Hence, the quality of the data is lower
compared to the other two catchments and therefore the interpretation especially under low flow condition should be treated
with care.

The third catchment under investigation is the pre-alpine Thur catchment. This catchment is of medium size with 1696 km?

and mainly precipitation dominated. The highest elevation is 2505 meter, the lowest elevation at the gauging station in
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Andelfingen provided by the FOEN is at 356 m, and the mean catchment height is 770 m a.s.l.. This catchment has
frequently been analyzed in literature (Bogner et al., 2016; Fundel et al., 2013b; Jérg-Hess et al., 2015b).

3.4 Hydrological pseudo observations: the reference simulation

For all three catchments described above, the reference simulation is generated using an observed gridded meteorological
data set for the meteorological variables (temperature, precipitation, relative humidity, sunshine duration, surface albedo and
solar radiation) to run the hydrological model PREVAH (see section 2.3) in the same setting as used for different previous
studies (Orth et al., 2015; Schattan et al., 2013; Speich et al., 2015). The gridding of all the meteorological variables makes
use of elevation-based de-trending and inverse distance based interpolation as detailed in the baseline publication on
PREVAH and its tools (Viviroli et al., 2009a) and also used for application of other hydrological models (e.g. Melsen et al.,
2016). The reference simulation is a single time series starting in 1992 (after a spin up period of three years) and ending in
2015. The spin up period ensures the stability of the streamflow simulations and is of particular importance to fill low
frequency storages for baseflow and snow (Viviroli et al., 2009b). In addition the spin-up times highly vary across
catchments depending on the hydroclimatic characteristics and catchment size (Rahman et al., 2016; Seck et al., 2015). The
climatology of the reference simulation is referred to as reference climatology and is used as reference for the computation of

skill scores.

4 Results
4.1 Performance of the reference simulation

The reference simulation is analysed over the full 20-year period of the reforecasts. The verification of the reference
simulation against observations, summarized in Table 2, generally shows high agreement of the simulation with the
corresponding observations.

The Nash-Sutcliffe efficiency coefficient (NSE) for the entire analysis period (FullYear) exhibits values above 0.84 for all
catchments. Best performance can be observed in spring and lowest performance in winter when low flows dominate. The
logarithmic form of the NSE (NSE log) shows a similar picture with better performance in the Thur catchment. Some
difficulties occur in DJF in the Verzasca catchment and in DJF and SON in the Kldntal catchment. In the Verzasca and the
Kloéntal catchment the MAE and the absolute bias are constant over the course of the year except in winter. But compared to
the mean annual flows of the specific catchments largest relative biases are observed during DJF. The Thur catchment
exhibits smallest relative biases except in JJA when low flows occur because of the absence of snow in this catchment.
Various applications do not focus on low flows but rather on flow volumes, e.g. hydropower operations are more interested
in forecasts about the total upcoming flow volume to adapt and optimize their production. Therefore, we here focus on the

standard Nash-Sutcliffe coefficient instead of the logarithmic form thereof.
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We hereafter verify streamflow predictions against the reference simulation to focus on analyzing the effect of the different
meteorological input forecasts. This allows to solely assess the effect of the pre-processing on the hydrological predictions
by supressing the hydrological errors itself and is often done to evaluate operational forecasting systems (Alfieri et al.,
2014), to assess the contributions of uncertainty on the hydrological forecasts (Voisin et al., 2011), or for a comparison of the
skill of different forecasting systems (Pappenberger et al., 2015). Such an evaluation against a reference simulation also
minimizes the influence of the deficits of the hydrological model under low flow conditions on the verification analysis as
found for the reference simulation described above. However, the effect of pre-processing on the performance if real
observations are used for the verification reveals interesting aspects of the deficits of the hydrological simulations and will

be discussed in section 5.

4.2 Skill of the meteorological input

The raw and bias corrected temperature and precipitation reforecasts used to drive the hydrological predictions are verified
against the gridded observations in the Verzasca domain. In Figure 3, the CRPSS for the raw and the bias corrected
temperature and precipitation reforecasts is shown. Raw temperature reforecasts mainly exhibit negative CRPSS values,
indicating essentially no skill compared to climatology. After bias correction using the quantile mapping technique the
reforecasts exhibit positive CRPSS up to 18-24 lead days in all seasons but spring (MAM). Raw precipitation reforecasts
exhibit positive skill for lead days 5-11 in all seasons and negative CRPSS for longer lead times. After bias correction the
skill is higher with positive CRPSS up to three weeks in MAM. In JJA the positive skill is only observed for 2 weeks lead
time and in SON and DJF for the first week only. Similar results are obtained for the Klontal and the Thur catchment (not

shown).

4.3 Streamflow prediction performance
4.3.1 Prediction performance

The performance of the reforecasts is analysed for all available reforecast dates within the period 1994-2014. In Figure 4 the
resulting scores (NSE, Bias, CRPSS and the spread-error-ratio) for all three catchments are presented indicating the skill of
the prediction system against the reference simulation, i.e. the expected performance of the system for any date throughout
the year.

For the Verzasca catchment, the skill in terms of the NSE from the ESP predictions suddenly drops after the initialization of
the forecasts whereas the prediction system using meteorological reforecasts provides positive NSE up to 7 days. Pre-
processing of precipitation generally even lowers the NSE indicating positive skill only for 5 lead days. Pre-processing of
temperature does enhance the skill with positive NSE up to 13 days lead time. If both variables (precipitation and
temperature) are pre-processed the positive effect of the temperature pre-processing on NSE is diminished by the negative

effect of precipitation pre-processing.
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The negative biases of the ESP approach indicate an underestimation of the streamflows for all lead times in the Verzasca
catchment. Raw forecasts show even stronger underestimation. After pre-processing either precipitation or temperature this
underestimation is lower and reaches similar biases as the ESP predictions. If both parameters are pre-processed the biases
are close to 0 or slightly positive indicating that the streamflows are neither under- nor overestimated.

The overall performance characterized by the CRPSS indicates positive skill for the ESP predictions up to 15 days lead time
for the Verzasca, but the skill drops quickly after the initialization of the forecasts as in the NSE. Raw forecasts only show a
positive CRPSS for the first 5 lead days. Pre-processing of precipitation increases the CRPSS at short lead times.
Temperature pre-processing enhances the skill at early lead times and in addition elongates positive skill up to 15 days lead
time. This is even more pronounced if both variables are pre-processed.

The spread error ratio of the ESP predictions is below 1 for all lead times indicating overconfidence. For the NWP-Hydro-
chain the overconfidence is even higher for raw and temperature-only pre-processed (ppT) reforecasts. Pre-processed
precipitation (ppP) reforecasts can partly correct the overconfidence of the streamflow reforecasts and if both variables are
pre-processed (ppTP), the spread error ratio indicates reliable forecasts.

These skill signatures are similar in the other two catchments analyzed in this study (Figure 4), although not in an absolute
sense. In the small, semi-glaciated Klontal catchment the absolute skill generally is higher, and the skill of the predictions
extends to longer lead times. In particular the raw and temperature-only pre-processed reforecasts (ppT) show positive skill
in terms of the NSE throughout all lead times. In the Thur catchment the skill of the raw reforecasts outperforms the ESP

predictions as well, but in contrast to both other catchments, the effect of pre-processing is negligibly small.

4.3.2 Seasonal variations in skill

The prediction skill of the different approaches does not only vary across catchments but as well across seasons. In Figure 5
the performance in the Verzasca catchment for the four seasons DJF, MAM, JJA and SON is shown. The general
characteristics are similar as observed for the entire year, i.e. the ESP based predictions exhibit a sudden drop in the NSE
after initialization and most benefits (positive skill to longer lead times) are obtained if temperature-only is pre-processed
(ppT). In DJF and MAM this skillful horizon is extended by ppT, from 5 (3) days to up to 16 (9) days in MAM (DJF) and
the bias is reduced.

The overall performance (CRPSS) for the ESP predictions is better than the reference climatology for all lead times in MAM
and clearly outperforms the raw reforecasts and precipitation-only pre-processed reforecasts (ppP) in MAM and DJF. For the
temperature-only pre-processed reforecasts (ppT) and if both variables are pre-processed (ppTP), the predictions in these
seasons (DJF and MAM) outperform the ESP forecasts for lead times up to 12 to 15 days and are equal for longer lead times.
In JJA (and SON, not shown) the ESP predictions only exhibit a positive CRPSS up to 5 and 9 days, whereas the raw
reforecasts (i.e. without any pre-processing) indicate positive skill up to lead times of 10 up to 15 days. However, in contrast
to DJF and MAM the influence of the pre-processing on the performance is negligible in JJA. Furthermore, in JJA the bias

and the spread error ratio are only better if the pre-processing includes precipitation.
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The seasonal variation in performance holds true as well for the other catchments, i.e. reforecasts initiated in winter and
spring show highest benefits over the reference climatology. In contrast to the Verzasca catchment, the raw and precipitation
only pre-processed reforecasts show higher streamflows than the reference climatology in MAM and the raw and
temperature pre-processed reforecast show a positive NSE up to 30 lead time days (Figure 6, left).

Less seasonal variation is observed in the Thur catchment although the general signatures are evident as well. In MAM
(Figure 6, right) all methods perform better than the reference simulation (positive CRPSS) over the full forecast range.
Generally worst performance is found for the ESP. The effect of the pre-preprocessing is limited and can mainly be noticed
if precipitation is pre-processed, resulting in smaller biases and a Spread to error ratio closer to 1, indicating a reduction in

overconfidence.

4.3.3. Reliability of the ensembles

An additional important forecast characteristic is the reliability of the predictions, which cannot directly be deduced from the
metrics shown above. Therefore, the rank histogram for the full period (Full year) and MAM reforecasts in the Verzasca
catchment for all model configurations is shown in Figure 7 to assess the reliability of the streamflow forecasts. As an
example we focus on the rank histograms of the full period (Full year) and the MAM reforecasts, because of its
representativeness for the seasonality of performance. In MAM, both versions, raw and precipitation-only pre-processed
reforecasts, show an underestimation of the flows (negative bias) indicating that most reforecast members tend to be lower
than the corresponding observations. The strong negative bias is reduced if temperature-only pre-processed reforecasts (ppT)
are used. But still a U-shape is evident in the histograms that indicates overconfidence and thus confirms the conclusions
from the spread error ratio.

If both temperature and precipitation is pre-processed (ppTP) the resulting rank histograms become more uniform, in
particular for longer lead times indicating a reduction of the overconfidence. But shorter lead times still exhibit some
overconfidence. The rank histograms for the ESP predictions do provide more uniform rank histograms with a weak
tendency of a negative bias. Although slight differences can be observed between different seasons, the main characteristics
are similar for the full period.

The rank histograms for the Kléntal and Thur catchments (supplementary material) exhibit the same general behaviour
regarding the reliability, but improvements by pre-processing are less pronounced for the Thur catchment and the rank

histograms still indicate overconfidence even if both variables are pre-processed.

4.3.4 Snow water equivalent verification

To generate skillful streamflow predictions in mountainous catchments, the snow in the catchment is a crucial variable.
Therefore, the snow water equivalent (SWE) in the hydrological model is analyzed according to different elevation regions.
For the verification we analyze the SWE at elevations above and below 1500 m a.s.l.. As in the verification of the

streamflow reforecasts, the SWE is verified against the SWE of the reference simulation to replace the observations. A
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verification of modelled SWE against a consistent and homogenized climatology of gridded SWE based on station
information is given by Jorg-Hess et al. (2014). They have shown that the modelled SWE exhibit errors that are in the same
order as natural variability.

In MAM, raw and precipitation-only pre-processed (ppP) reforecasts highly overestimate the SWE in areas above 1500 m
a.s.l. indicated by the MAE and the bias in Figure 8. The predictive skill in terms of the CRPSS is lost after 9 days lead time.
In contrast, the reforecasts in DJF show stronger overestimation in areas below 1500 m a.s.l. and a total loss of predictive
skill after 15 days lead time in this area. Lowest biases and highest skill (in terms of the CRPSS) is evident for reforecasts
with pre-processed temperature and precipitation (ppTP), followed by temperature-only pre-processed (ppT) both
outperforming the ESP predictions.

For all versions of the meteorological reforecasts (raw and pre-processed) the resulting SWE reforecasts tend to be
overconfident, with least overconfidence if precipitation-only is pre-processed according to the spread error-ratio. The ESP
predictions exhibit less overconfidence for both seasons and regions and exhibit similar levels in terms of MAE and the bias
and slightly less overall skill (CRPSS) compared to ppT and ppTP reforecast versions.

The rank histograms confirm the conclusion drawn above. Raw and precipitation-only pre-processed reforecasts (ppP)
exhibit largest positive biases throughout all lead times. In case of temperature-only (ppT) and temperature and precipitation
pre-processed reforecasts (ppTP) the rank histograms indicate overconfidence in the beginning which is reduced for longer
lead times.

The SWE verification in the Kldntal catchment shows a similar behavior with negative biases and largest MAE for the raw
and precipitation-only pre-preprocessed (ppP) reforecasts. In contrast to the Verzasca catchment the CRPSS stays positive
for all versions and for all lead times. A similar behavior is observed in the Thur catchment with positive skill for all lead
times but smaller negative biases (the corresponding figures for the Klontal and the Thur catchment can be found in the

supplementary material).

5 Discussion

For a proper evaluation of the effect of pre-processing on the hydrological streamflow predictions the following discussion
considers the verification against the reference simulation. The meteorological input reforecasts highly benefit from the pre-
processing procedure applied. The skill found for the pre-processed temperature and precipitation reforecast is comparable to
the skill found in Monhart et al. (2018). In contrast to the present analysis, our earlier study used a station wise post-
processing of the raw forecasts using the same setup as in the present study. Similarly, different studies emphasize the
benefit of pre-processing precipitation (Crochemore et al., 2016) and temperature forecasts (Lucatero et al., 2017) at
catchments at various spatial scales. The QM method used here is a popular pre-processing method for hydrometeorological
ensemble forecasts (e.g. Kang et al., 2010; Lucatero et al., 2018; Verkade et al., 2013) but does not come without limitations.

In particular Zhao et al. (2017) point out the inability of QM to provide fully reliable ensembles for post-processing GCM
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precipitation. However, an extensive discussion of the reliability issue of the pre-processed meteorological input data used in
this study can be found in Monhart et al. (2018). To summarize, it was found that the combination of the NWP model with
QM indeed is able to provide reliable ensembles for lead times beyond 10 days but at shorter lead times the ensembles tend
to be overconfident because the spread in the underlying NWP forecasts tends to be inappropriate what cannot be corrected
using QM. An additional critical limitation of QM is the issue of variance inflation. Maraun (2013) emphasizes that the
variance of the downscaled product strongly depends on the variance of the raw model grid box and QM does not introduce
any small-scale variability. This is of particular importance for applications using local-scale information (such as distributed
hydrological modelling) and if extremes are considered. In CH2018 (2018) these limitations of the QM method are
highlighted for local climate change scenarios in Switzerland. In particular for convective precipitation events in summer the
variance inflation issue can cause misinterpretation of data at the finer resolved scale. In the present study we are interested
in the average streamflow throughout all season in the year for the upcoming 32 days and not in predicting extremes what
reduces these implications, but still the spatial structure especially during convective situations in summer will likely be
misrepresented and can influence the results. Different alternatives could be used depending on the specific application of
the downscaled information, e.g. perfect prognosis approaches (Von Storch, 1999), the use of weather generators (e.g. Peleg
et al., 2017) or in general stochastic methods (e.g. Volosciuk et al., 2017). However, such methods often require large
computational resources. As the intention of this study is to pioneer the use of subseasonal hydrological predictions towards
an operational use, we decided to use the QM technique despite its limitations. The results presented above and discussed in
the following paragraphs legitimate our choice. Nevertheless, future studies should focus on the effect of variance inflation
when QM is used to pre-process the predictions and alternative methods should be considered.

Our results show that subseasonal streamflow predictions in mountainous catchments can be skillful for the full 32 days lead
time horizon in winter and spring. The traditional ESP approach clearly provides skillful predictions for all three catchments
analyzed in this study, in terms of the overall skill (CRPSS) and the reliability. This is in agreement with the findings from
Arnal et al. (2018) comparing the skill the of an ESP and a seasonal forecasting system across many regions in Europe. They
found that the ESP approach can be outperformed mainly in the first month in terms of the CRPSS. Nevertheless, if scores
evaluating the mean characteristics are considered (NSE and bias) we observe worse performance than suggested by the
CRPSS. This indicates that the ESP predictions can capture the future evolution of the streamflow in a probabilistic sense.
Furthermore, the substantial decrease in skill within the first days suggest that the ESP predictions are not able to capture the
exact evolution but can rather be used to estimate the general behavior within the upcoming weeks. This is in agreement with
the exponential decay in skill with increasing lead time found for ESP forecasts in UK catchments (Harrigan et al., 2017). If
the NWP predictions are used to predict the streamflows, the skill can clearly be enhanced but in most cases only if the
driving meteorological predictions are pre-processed. This indicates that the knowledge of the synoptic conditions plays an
important role to enhance the skill of the streamflow predictions at early lead times and that biases in these driving
predictions need to be corrected prior to make these predictions useful. Furthermore, the improvements in performance of

the streamflow predictions by pre-processing suggests that the gridded observational dataset provide a good baseline for this
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purpose, despite the difficulties involved in producing a gridded product based on a limited number of observational stations.
In addition, the performance of the ESP predictions could potentially be enhanced if not all, but only individual years are
taken into account. A certain guidance based on a selection of years with similar initial conditions could be taken into
account. Crochemore et al. (2017) have shown that seasonal prediction based on ESP can benefit from condition the
forecasts on climatology. However, an evaluation of such an approach is out of scope of the present study.

The effect of pre-processing is even more pronounced for the SWE verification. In the NWP chain the SWE is highly
overestimated if temperature is not pre-processed (raw and ppP). Hence, the hydrological model inherent downscaling of
temperature using an adiabatic laps rate leads to low skill in terms of CRPSS at longer lead times. Although, temperature
lapse rate corrections have been found to be important for reproducing streamflows simulation based on regional climate
model outputs in mountainous snow- and glacial dominated catchments (Butt and Bilal, 2011; Rahman et al., 2014) our
study suggest that at least in a subseasonal forecasting context such corrections are not sufficient. Similarly, Tobin et al.
(2011) have shown for flood forecasting framework constant lapse rate corrections even if seasonally-derived are unable to
capture the dynamics of temperature changes during an event. At lower elevations this effect is even more crucial because
the SWE is smaller and temperature biases accelerate melting processes in the model. If temperature pre-processing is
included, these large errors can be avoided, and the skill of the SWE predictions is substantially increased. This effect
underlines the importance of pre-processing the subseasonal forecast in snow dominated catchments. The importance of the
SWE initial conditions for subseasonal forecasts has been shown by Jérg-Hess et al., (2015). They conclude that a better
representation of snow melt process by improved states of the snow storage can greatly improve the predictions of
streamflow volumes. The influence of initial conditions of SWE on seasonal streamflow predictions in the US is shown by
Wood et al. (2016) in an idealized experiment. Furthermore, they stress that limited skill in seasonal meteorological
predictions can be amplified in streamflow prediction skill. Our study suggests that an additional pre-processing of the
meteorological forecasts is necessary to maintain the benefit of the initial conditions and confirms the findings of amplified
skill in the streamflow predictions if the forecasts exhibit some skill. Otherwise, low skill in performance of the (raw)
forecasts and the loss in skill to predict the SWE over longer lead times directly translates into low skill of the streamflow
forecasts.

The comparison of the performance in the three different catchments analyzed gives further insight in the predictability of
streamflows in alpine catchments and strengthens the picture drawn above which shows the importance of the complex
interactions between precipitation, temperature and SWE at the subseasonal forecast time scale. In the Thur catchment, the
largest catchment in the analysis, which is mainly precipitation dominated, the difference in skill between the ESP
predictions and the NWP based prediction is smallest. Similarly, the differences between raw and pre-processed experiments
are marginal. Only in spring, if precipitation is pre-processed (ppP and ppTP) a small improvement in the CRPSS can be
observed at early lead times coinciding with the lead times where pre-processed precipitations still exhibit skill. Hence the
initial conditions of the model and skillful precipitation predictions at early lead times determine to a large degree the skill of

the reforecasts and the negligible snow-covered area within the catchment does marginally affect the performance of the
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runoff predictions. In the Thur catchment two additional subcatchments in the upper Thur catchment (at the runoff stations
Halden and Murg) have been verified to identify the influence of hilliness and catchment size on the forecast performance.
Although the size of the Murg (212 km?) and the Halden catchment (1085 km?) varies significantly, the hilliness in both is
comparable, while the lower part of the Thur catchment (station Andelfingen, 1696 km?) is a typical lowland region. For all
three stations the skill is very similar (supplementary material Figure S4) and pre-processing does not vary either. This
suggest that neither hilliness nor catchment size does significantly influence the performance of the forecast. In the snow
dominated and partially glaciated Klontal catchment, the smallest catchment in this analysis, the high skill in terms of the
NSE indicates a good performance of the ensemble mean but in terms of the overall skill (CRPSS) the NWP prediction are
only skillful if temperature pre-processing is considered. This superiority in the mean is most likely the effect of melting
processes. On the other hand, the Verzasca catchment is snow dominated in elevated regions, but rain dominated at lower
elevations due to its large gradient of elevations. Therefore, snow-melt processes tend to occur more often and are more
diverse due to the higher elevation gradient within the catchment. The NSE does indicate skill up to 13 days lead time for the
temperature-only pre-processed forecast (ppT) but precipitation pre-processing even lowers the skill despite an increase in
skill of the corresponding precipitation inputs. This counterintuitive behavior of lowering the skill (in terms of NSE) in the
streamflow prediction despite the use of improved precipitation inputs underlines that for a profound assessment of the skill
of ensemble forecasts, verification metrics focusing on mean flows can be insufficient and misleading.

The combination of pre-processed subseasonal meteorological prediction with hydrological simulations can outperform a
traditional ESP approach in small to medium-sized alpine catchment. Especially in snow dominated and (semi-) glaciated
catchments such a prediction chain brings large benefits in the forecast performance. But temperature (and precipitation)
from the NWP model needs to be pre-processed prior to be used in hydrological models to achieve better performance than
an ESP approach. In precipitation dominated catchment the pre-processing does only show a marginal improvement in skill,
but the NWP chain clearly outperforms ESP predictions. Hence, such systems can be of interest for application when
accurate and reliable runoff predictions are desired, especially in snow-dominated catchments. Furthermore, Frei et al.,
(2018) have shown that a general decrease of snow fall is expected in future climate change scenarios, while at higher
elevation the signal shows a slight increase in heavy snowfall events, due to a shift of climatological cold areas into a
temperature interval which favor higher snowfall intensities in combination with a general increase in winter precipitation.
Especially regarding future scenarios which expect an increase in hydro power production due to melt water in the period
from October to April (Weingartner et al., 2013) such systems might become a valuable tool for optimizing hydropower
production in mountainous areas. Future work should include statistical post-processing techniques (of the hydrological
output) to correct the errors and biases of the hydrological simulation and to account for additional uncertainty induced by
the hydrological model in the ensemble.

The discussion above focused on the effect of pre-processing hydrometeorological predictions and therefore only the
verification against the reference simulation was considered and hydrological model errors are thus excluded from the

analysis. However, to estimate the real world performance the hydrological model errors need to be taken into account. To
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do so we verified the streamflows of the reference simulation of the PREVAH model against observations. The evaluation
presented in section 4.1 revealed the good performance of the hydrological model with NSE above 0.8 in most seasons.
Largest difficulties are observed in seasons with low flow conditions (in DJF in the Verzasca, and in SON and DJF in the
Klontal catchment). This is particularly evident in the logarithmic version of the NSE, in which flood peaks are flattened to
better asses the performance under low-flow conditions, the difficulties of the model remain. These deficits of the
hydrological model need to be considered in the verification of the predictions and are the reason for verifying the
reforecasts against the pseudo observations from the reference simulation. Otherwise, if the predictions are verified against
real streamflow observations the hydrological model deficiencies dominate the skill characteristics of the predictions and
possibly impede the identification of the effect of pre-processing. An example of such a deficiency is the uncertainty
resulting from the hydrological modelling that result in stronger overconfidence especially at short lead times when the
hydrological model uncertainty may be the dominant source of uncertainty as discussed for example in Bennett et al. (2014).
To illustrate this for the prediction used in this study, the verification was repeated with the real runoff observations. The
skill in most seasons (MAM, JJA, SON) exhibits the same behavior with high skill at early lead times and decreasing skill at
longer lead times and generally higher overconfidence at short lead times is observed what confirms the findings by Bennett
et al. (2014). But during low flow condition (in DJF in the Verzasca catchment and in DJF and SON in the Klontal
catchment), strong negative peaks in skill (in terms of the CRPSS) are present at short lead times, with increasing skill at
longer lead times (supplementary material). The corresponding input data revealed that this behavior can be associated with
predicted snow melt events that coincide with observed “no melt” events. During such events, all members of the
experiments including pre-processed temperatures (ppT ad ppTP) overestimate the observed runoff peak. The comparison of
the meteorological input data from the reforecast with data from an observational station shows an overestimation in both
temperature and precipitation. The temperature observations for this event were clearly below freezing, whereas the raw
forecast data is close to 0° C, and the pre-processed temperature is positive. Hence, the melt-affected area is too large leading
to an overestimation of the runoff contribution. In addition, overestimated precipitation will further contribute to runoff and
less deposition of solid precipitation will occur. Similarly, the reference simulation does overestimate the runoff peak
because of an overestimation of the temperature in the gridded data used to run the hydrological model. It is known that
gridded observations do inherit errors due to interpolation (Freudiger et al., 2016) and do have difficulties in resolving small-
scale features, such as for example cold pools in alpine valleys (Frei, 2014). This can partly explain this behavior. Another
potential explanation is an insufficient formulation of the discrimination between rain and snow in the hydrological model.
In the version of PREVAH used for this study, the formulation follows a threshold based method in combination with a
linear range as described in Zappa et al. (2003). This linear transition range is set between the threshold values -1.5°C and
+1.5°C as determined by the hydrological calibration. The threshold itself and the corresponding linear range highly depends
on the hydroclimatic characteristics and thus can strongly vary in space (Liu et al., 2018). It has been shown that more
sophisticated approaches using logistic regression for characterizing this range can provide better results (Frei, 2016). In

principle such an approach could be included into the hydrological model, but such an implementation is out of scope of this
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analysis. Alternatively, it has been shown that such errors of the hydrological model can be corrected by additionally post-
processing the hydrological output using neuronal networks or logistic regressions (e.g. Bogner et al., 2016; Sharma et al.,
2018).

6 Conclusion and outlook

Recent advances in subseasonal meteorological ensemble models makes it feasible to develop hydrometeorological
prediction systems driven by such NWP forecasts. We developed an end-to-end hydrometeorological prediction system
driven with reforecasts from the subseasonal prediction system from the ECMWF. A pre-processing procedure based on QM
is used to bias correct and downscale the meteorological predictions prior to the hydrological model. The performance of the
resulting streamflow forecasts is assessed for three small to medium size alpine catchments using various verification metrics
to assess different attributes of the reforecasts. Our study demonstrates the potential of ensemble streamflow predictions in
small mountainous catchments. Moreover, the benefits of combining NWP predictions and hydrological models has been
shown. The analysis indicates the need for pre-processing of the driving meteorological prediction especially in small snow-
dominated catchments in alpine regions.

Decent skill of traditional ESP predictions compared to climatological reference can extend up to the entire 32 days. The
NWP approach outperforms the ESP predictions in all catchments and most seasons in particular at short lead times up to
about day 5. In snow dominated catchments, an additional pre-processing step of both temperature and precipitation is
crucial to further enhance the skill and the reliability of the forecasts. While pre-processing precipitation-only is not
sufficient to enhance the forecast performance, it is crucial in the combination with temperature preprocessing to improve the
forecast reliability. Again, it is noted here that the verification is done against the reference simulation as replacement of real
observations. Hence, the performance cannot directly be interpreted as the prediction performance in an absolute sense,
because in our approach the deficits of the hydrological model are not fully taken into account. However, the relative
benefits of using NWP output as forcing for the hydrological simulations and the improvements after pre-processing is
expected to hold true as well with real observations.

The benefits of the NWP approach and the pre-processing step is most pronounced in winter and spring when snow melt
processes dominate. This demonstrates the importance of snow for the predictability of streamflows at the subseaonal
timescale. Hence the deficits in the hydrological model with respect to snow related processes (in particular the distinction
between solid and liquid precipitation) should receive further attention to enhance the forecast performance. Alternatively,
post-processing techniques applied to the streamflow forecasts can be applied to correct such hydrological model deficits.
This would allow assessing the skill of the forecasts with respect to real observations and can potentially further increase the
performance of the forecasts. Hence, if post-processing techniques are able to account for the deficits of the reference
simulation, the combination of both pre- and post-processing could provide skillful lead streamflow predictions in snow and

glacial dominated catchment in mountainous terrain at the subseasonal forecast horizon.
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Furthermore, technical improvements of the NWP models related to the ensemble size, frequency of issuing reforecasts and
improvements in the representation of physical processes, can be expected to have a positive effect on the resulting
streamflow performance. In our setup we use a rather simple statistical bias correction technique to pre-process the
hydrometetroloigcal prediction. More sophisticated pre-processing techniques could be applied to analyze their capability to
enhance the streamflow performance. Since ensemble hydrometeorological predictions are of interest for specific
applications the forecasts should further be analyzed according to their economic value. For example to optimize the

revenues of existing hydropower plants in alpine regions or for early better preparedness of hydrological droughts.

Data availability:

ECMWEF forecast data are accessible through the MARS archive: http:/ /apps.ecmwf.int/archive-catalogue/, observation
records used in this study are available from the following website: https://gate.meteoswiss.ch/idaweb/more.do
(SwissMetNet). Streamflow series and catchment boundaries are provided by the Swiss Federal Office for the Environment
(FOEN).
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Verzasca Klontal Thur
Catchment area [km2] 185 83 1696
altitude range [m] maximum elevation 2864 2883 2505
average elevation 1651 1704 770
minimum elevation 490 847 356
dominant hydroclimatic
regime snow snow and glacial precipitation

Table 1: Overview of the catchment characteristics for the three catchments analysed.

Verzasca Klontal Thur
NSE FullYear 0.85 0.84 0.84
DJF 0.38 0.39 0.83
MAM 0.88 0.82 0.85
JA 0.82 0.75 0.79
SON 0.84 0.75 0.86
NSE log FullYear 0.87 0.68 0.87
DJF 0.44 -0.14 0.82
MAM 0.90 0.84 0.87
JA 0.86 0.78 0.85
SON 0.89 0.43 0.88
MAE [m3/s] ([%]) FullYear 2.84 (25.9) 1.19 (26.6) 10.54 (22.5)
DJF 1.35 (36.1) 0.73 (50.7) 10.89 (25.2)
MAM 3.16 (18.7) 1.20 (19.1) 11.53 (16.2)
JA 3.40 (33.9) 1.63 (26.7) 11.30 (28.7)
SON 3.45 (23.1) 1.21  (39.6) 8.50 (23.9)
Bias [m3/s] ([%]) FullYear 0.28 (2.5) 0.26 (5.9) -0.42 (-0.9)
DJF 1.07 (28.7) 0.39 (27.2) 2.49 (5.8)
MAM -0.06  (-0.4) -0.01  (-0.2) -1.47 (-2.1)
JA 0.23 (2.3) 0.04 (0.6) -4.41  (-11.2)
SON -0.11  (-0.7) 0.66 (5.9) 1.74 (4.9)

Table 2: Verification of the reference simulation with corresponding observations for the Verzasca catchment, the Klontal
catchment and the Thur catchment. In each catchment the Nash-Sutcliffe coefficient (NSE), the Nash-Sutcliffe coefficient using
logarithmic input values (NSE log), the bias and the mean absolute error are shown. The verification is done for the full simulation
period (FullYear: 1994-2014) and the individual seasons within the full period (DJF, MAM, JJA, SON). A perfect simulation
would have NSE=1, and positive values of NSE indicated better skill than the reference climatology
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Pre-processing
Using gridded meteorological observations for:

Figure 1: Conceptual design of the NWP-Hydro-chain with and without pre-processing (left) and the ESP chain (right).
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Figure 2: Location and extent of the three selected catchments and their corresponding streamflow and SWE climatology. The
Verzasca catchment in the south, Kléntal catchment in the center and the Thur catchment in the north east.
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Figure 3: Overview of the CRPSS for weekly mean temperatures (left) and weekly precipitation sums (right) in 1994-2014
reforecasts grouped by season (DJF, MAM, JJA and SON) for all grid points within the Verzasca catchment. The shading of the
boxes denotes lead time, where week 1 corresponds to day 5-11, week 2 to days 12-18 and so on. Grey shading for raw forecast and
blue shading for pre-processed reforecasts. An individual box shows the distribution of the CRPSS for all grid points within the
catchment averaged over all 13 reforecast initialization dates within one season. The boxes depict the interquartile range, the mean
is indicated by the horizontal line and the whiskers span the length of 1.5 x standard deviation of the data. A perfect forecast has

CRPSS=1, and positive values indicate better skill than the reference climatology.
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5 Figure 4: Verification of the streamflow forecasts for the Verzasca (left), the Kléntal (middle) and the Thur catchment (right)
considering all forecasts within the reforecast period. The Nash-Sutcliffe coefficient (NSE) in the upper most panel, the mean bias
(Bias) in second, the CRPSS in the third, and the Spread-Error relationship (SprErr) in the lowest panel. For each score the 5
different setups are shown. The first row corresponds to the ESP approach (esp), the second row to the reforecasts using both pre-
processed temperature and precipitation (ppTP), the third row to the pre-processed temperature-only (ppT), fourth row to the

10 pre-processed precipitation-only (ppP) and the fifth row to the reforecasts using the raw meteorological input reforecasts (raw).
The NSE and the CRPSS span from -infinty to 1 with a perfect score being 1; a bias of zero indicates no forecast error with
negative values indicating underestimation and positive values indicating overestimation of the flow; reliable forecasts exhibit a
SprErr of 1 and lower values indicate overconfidence and greater values indicate overdispersion.
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Figure 5: Same as Figure 4 but seasonally aggregated (DJF, MAM, JJA and SON) for the Verzasca catchment.
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Figure 6: Same as Figure 4 but for the Klontal and the Thur catchment in MAM.
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Figure 7: Rank histograms for all four configurations (raw, ppP, ppT, ppTP) and the ESP predictions for the full analysis period
(Full year) and MAM in the Verzasca catchment. The basic principle in the rank histograms the assumption that the ensemble
members determine bins in which the corresponding observation can be ranked. For a reliable forecast, the observations are
equally distributed across all different bins resulting in a uniform shape of the rank histograms. If for example the frequency in
the lowest (rank 0) and the highest bin (rank 6) is much higher, the observation tends to be more frequently either higher than all
ensemble members or lower than all ensemble members but less often in between the ensemble members. This specific U-shape
indicates that the forecast spread is too narrow and thus the forecasts generally overconfident. In contrast, if the observations tend
to be more often in between the ensemble members (e.g. rank 2 and 3) the rank histogram exhibit a convex shape and thus the
forecast spread is too large indicating overdispersive forecasts.
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Figure 8: Same as in Figure 5 but for SWE in DJF and MAM in the Verzasca catchment.
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