
 

Interactive discussion on «Subseasonal hydrometeorological ensemble predictions in 

small- to medium-size mountainous catchments: Benefits of the NWP approach» by 

Monhart et al. 

 

Anonymous Referee #1 

 

Review on the paper by Samuel Monhart et al. Subseasonal hydrometeorological ensemble 

predictions in small- and medium-size mountainous catchments: Benefits of the NWP 

approach Presented for the review is a paper dedicated to the evaluation of subseasonal 

streamflow forecasts performance in three mountainous catchments in Switzerland produced 

by the two approaches. Both approaches involve a regional hydrological process-based 

model PREVAH to account for the initial conditions in the catchment under consideration 

and the main concern of the paper is concentrated in the model driving for the forecast lead-

times. The first approach is the Ensemble Streamflow Prediction (ESP) framework as 

described by Day (1985), which uses the historical weather data to force the model for the 

forecast lead-time resulting in the ensemble of the streamflow hydrographs. The second 

approach is the Numerical Weather Prediction (NWP) framework that involves a 

meteorological large-domain model-based 5-member forecasts by the ECMWF IFS to force 

the hydrological model for the lead-time period. The authors use both the raw and bias-

corrected NWP forecasts in terms of meteorological and hydrological forecasting skill. The 

performance of the forecasting approaches is evaluated both for deterministic and 

probabilistic properties, e.g. the average characteristics are benchmarked by the MAE, NSE 

and NSElog criteria and the ensemble spread is evaluated by CRPSS metric, as well as the 

forecast spread to error ratio; the reliability of the forecasts is further examined by 

constructing the rank histograms. The overall importance of the study is crucial beyond 

doubt, as is very well described in the Introduction section – the ensemble forecasting 

methodology is now employed in many forecasting centers around the globe, yet the 

mentioned improvement in the NWP systems that hydrological prediction systems may benefit 

from is achieved mainly in Europe and North America, where the outstanding effort to it is 

applied. The case study catchments choice matches the research aims very well, as very 

diverse streamflow generation conditions are within the scope of the study – snowmelt-driven 

and fast-responding catchments are considered, which are an effort in constructing a well-

performing streamflow model, as well as reliable subseasonal forecast, especially for 

summer and fall rainy periods with short hydrological system memory. Still, the authors show 

good model evaluation metrics. The main findings in the paper are in different effects of NWP 

bias-correction on the forecast performance, which vary in terms of variable, space and time, 

e.g. pre-processing of the input forcing is evaluated for temperature and precipitation apart 

and combined, and discussed for the three catchments over several seasons. The forecasts 

performance is evaluated not only for the streamflow but for the snow water equivalent in the 

catchments, as well, which is very crucial for the understanding of the predictability of 

snowmelt runoff. The results show the NWP pre-processed temperature forecasts 

outperforming the ESP forecasts, which is a crucial finding, as well. 

 

 

My overall perception of the paper is that it presents an outstanding scientific effort, which is 

of critical importance to the modern hydrological forecasting systems research. The 

motivation is well described, the methods are concise and well referenced, the results are 

well documented and discussed and a number of very crucial statements on the topic are 

made. I would recommend minor revisions before the paper can be published. 



Specific replies: 

Anonymous Referee #1 

A few concerns that I would appreciate the authors to enhance in the paper. 

First is the statement in section 3.2 concerning the minor importance of such variables as 

relative humidity etc. on the model performance on such timescales. Hence, the authors state 

that the relative humidity values were taken from the forecasts without any pre-processing. I 

would not agree with the authors on the minor importance of the relative humidity, as the 

evaporation rate is highly dependent on the relative humidity, especially within the processes 

of evaporation from snow. Given that the temperature forecasts are pre-processed, 

the close relation of the relative humidity and temperature may influence the forecast 

performance. However, the assessment of this was beyond the scope of the study. 

 

Reply: 

As you mention, variables such as relative humidity play a crucial role regarding the 

evaporation rates. With our statement we do not intend to undervalue the effect of relative 

humidity on the hydrological forecast. We rather aim at highlighting that uncertainties at the 

subseasonal timescale which are already large in case of precipitation and temperature 

forecasts and their effect on the streamflow has not yet been investigated for the setup 

presented in this analysis. Hence, we believe that not pre-processing relative humidity (and 

other variables like sunshine duration) is justified within this analysis but should be further 

investigated in future studies. However, this will be a challenging task and it might be 

necessary to choose a different approach, as observational data at the grid scale is at least to 

date not available in Switzerland. 

Hence, we agree with your comments and reformulated the corresponding paragraph by 

mentioning the importance the additional variables and pointing out that a conclusive analysis 

of pre-processing additional variables such as relative humidity is be beyond the scope of this 

study.   

 

To account for this comment, we decide to weaken the statement in the revised manuscript.  

 

We replaced the sentence “In addition, these variables are of minor importance for the forecst 

time scale investigated in this study” with the following sentence: 
  

P7; L4-6 

“Although these parameters could influence the hydrological relevant processes, e.g. 

evaporation rates from snow based on the relative humidity, a thorough assessment of the 

effect of bias correcting and downscaling of these additional variables is out of scope of the 

current study.” 

 

Anonymous Referee #1 

In the SWE forecasts verification section 4.3.4 the forecasts are verified against the 

reference model run instead of the actual observation, yet I would appreciate if the 

reference model performance could be discussed at least within a few sentences. Another 

consideration is that the methodology of the SWE assessment should be placed 

in the corresponding subsection within section 2.  

 

Reply: 

We accounted for this by including a brief discussion of the findings presented in Jörg-Hess 

et al. (2014) where they found good agreement between the predicted SWE and the observed 

SWE maps for the entire 32 day forecast horizon.  



 

The new sentence read: 

 

P12; L 3-5 

“A verification of modelled SWE against a consistent and homogenized climatology of 

gridded SWE based on station information is given by Jörg-Hess et al. (2014). They have 

shown that the modelled SWE exhibit errors that are in the same order as natural variability. “ 

 

In addition, we now mention in section 2 that the verification is performed for both variables, 

streamflow and SWE. 

 

P5; L17-18 

The verification is performed for the two variables streamflow and snow water equivalent 

(SWE). 

 

Anonymous Referee #1 

 

Anonymous Referee #1 

Minor technical note: p. 13 l. 1 - 

“...seasonal meteorological...” must be followed with a noun, which is missing 

 

Reply: 

Done: “…seasonal meteorological predictions…” 

 

 

 

 

 

  



Anonymous Referee #2 

 

General comments This is an interesting and thorough assessment of an ensemble 

streamflow forecasting system in snow-affected mountainous catchments. The system 

pairs NWP forecasts with a distributed hydrological model that includes detailed 

accounting of cryogenic processes. The system is technically advanced and in my 

opinion of high interest to the readership of HESS. The study is well conceived and 

very clearly written. A particular strength of the study is the extensive and thorough 

verification of the forecasts, encompassing multiple appropriate measures of performance 

that are described and discussed in clear and interesting ways. In general, the 

authors’ conclusions are strongly supported by their analyses. I have one quibble with 

the use of QM as a means for downscaling meteorological forecasts, which amounts 

to a minor revision. Other than this, I have no hesitation in recommending this study 

for publication. 

 

 

General comments: 

 

Anonymous Referee #2 

It appears that the authors use QM to downscale NWP predictions from a coarse grid 

(_30/60 k) to a fine grid (_2 k). It’s well established that QM is not theoretically ideal for this 

practice, because of so-called variance inflation (Maraun 2013). The authors appear to be 

aware of this, as they discuss this issue in an accompanying paper (Monhart et al. 2018). 

However, it is more salient in this paper, because of the hydrological modelling that is 

carried out. Variance inflation is only an issue when quantile mapped/downscaled 

meteorological forecasts are spatially reaggregated, which is exactly what the hydrological 

model does. So it will not show up in the analyses carried out by Monhart et al. 2018 (where 

variables are not reaggregated), but it could well be an issue in this study.  

 

In addition, and as Maraun shows, the variance inflation problem is only strongly evident for 

extremes. Extremes are not the focus of the analysis carried out in this paper, which is fine. 

But this means it’s hard to tell if variance inflation is present in streamflow forecasts. As the 
forecasting system could be used for flood prediction, this may be a serious issue. 

Accordingly, I recommend two changes to the manuscript: 

 

1) The authors should clearly describe how they bridge the gap in spatial resolution 

from a _30/60 k horizontal grid (NWP forecasts) to a _2 k horizontal grid (observations). 

 

Reply: 

We now included a more concise description on how the gap between the coarse spatial 

resolution of the NWP predictions and the 2 km gridded observation is performed. To 

account for this concern, we expanded subsection 2.1 where the pre-processing step using 

QM is described. 

  

P4; L10-15 

“The pre-processing is performed for temperature and precipitation and involves not only a 

bias correction but also a downscaling because of the higher resolution of the gridded 

observation data used in this study. The observation and forecast data used in this study is 

described in more detail in the Section 3. However, it is worth mentioning here that the raw 

model resolution of 50 km is bias corrected with QM using gridded observations with a 



higher spatial resolution of 2km. This resolution corresponds to the meteorological input of 

the hydrological model, for which observations from station data are interpolated to 2 km 

grids (see section 3.2).” 

 

Anonymous Referee #2 

And if, as I’ve assumed, they use QM for this purpose:  
2) The authors should briefly acknowledge the issue of variance inflation in the discussion, 

including a discussion of possible implications for their system (perhaps alongside 

recommendations for dealing with these implications). 

 

Reply: 

As you correctly assume (and as we already answered in the short reply) we do use QM to 

downscale the predictions and we are aware of the variance inflation issue caused by this 

method. We now included a new paragraph in the discussion to highlight the limitations of 

QM related to the variance inflation. We acknowledge that the problem of variance inflation 

can influence the results and argue why we believe it is still justified to use QM for the 

downscaling within our study. As you suggested we now include reference that discuss the 

problem in more detail and propose alternative approaches that could be used in future 

studies. The added paragraph reads as follows: 

 

P13; L7-L21 

“An additional critical limitation of QM is the issue of variance inflation. Maraun ( 2013) 

emphasizes that the variance of the downscaled product strongly depends on the variance of 

the raw model grid box and QM does not introduce any small-scale variability. This is of 

particular importance for applications using local-scale information (such as distributed 

hydrological modelling) and if extremes are considered. In CH2018 (2018) these limitations 

of the QM method are highlighted for local climate change scenarios in Switzerland. In 

particular for convective precipitation events in summer the variance inflation issue can cause 

misinterpretation of data at the finer resolved scale. In the present study we are interested in 

the average streamflow throughout all season in the year for the upcoming 32 days and not in 

predicting extremes what reduces these implications, but still the spatial structure especially 

during convective situations in summer will likely be misrepresented and can influence the 

results. Different alternatives could be used depending on the specific application of the 

downscaled information, e.g. perfect prognosis approaches (Von Storch, 1999), the use of 

weather generators (e.g. Peleg et al., 2017) or in general stochastic methods (e.g. Volosciuk et 

al., 2017). However, such methods often require large computational resources. As the 

intention of this study is to pioneer the use of subseasonal hydrological predictions towards 

an operational use, we decided to use the QM technique despite its limitations. The results 

presented above and discussed in the following paragraphs legitimate our choice. 

Nevertheless, future studies should focus on the effect of variance inflation when QM is used 

to pre-process the predictions and alternative methods should be considered.” 

 

Anonymous Referee #2 

I also encourage the authors to consider measuring the impact of variance inflation on 

their system in future work. 

 

Reply: 

We will consider this issue in our future work by either choosing a different correction 

technique and/or a careful assessment of the effect resulting from the inflation issue.  

 



Anonymous Referee #2 

Specific comments 

Page 4 L7-9 "For a given target day of a reforecast the correction is derived from the 

distribution of all the reforecasts within a three weeks window around the same lead day and 

the corresponding observations, hence the correction depends both on the lead time and on 

the period of the years".  

Is the QM cross-validated in some way? 

 

Reply: 

Yes, the forecasts are cross-validated. The calibration of the hindcasts is performed in a 

leave-one-year-out cross-calibration framework. Hence in the verification the information of 

the year to be verified is not used in the calibration procedure i.e. cross-validated. We added 

the following statement to make that clear. 

 

P4; L8-9 

“This cross-calibration framework ensures a cross-validation described in subsection 

2.3.” 

 

Anonymous Referee #2 

How are zero values in precipitation handled in the QM? 

 

Reply: 

Zero values are not handled in a specific way. Because we do apply a multiplicative 

correction zero values will not cause an issue. Therefore, the QM does not artificially produce 

rain, i.e. in case zero precipitation is forecasted the corrected precipitation still has zero 

precipitation. In general, weather prediction models exhibit a drizzle effect due to their large 

grid sizes, meaning that raw model forecast generally predict too much rain compare to the 

observation (in case of very low precipitation rates). Hence, zero precipitation values do not 

need special treatment during the pre-processing.  

We now included an additional sentence to highlight that the in the multiplicative version of 

QM zero values do not need special treatment in the pre-processing step.  

 

P 4; L20-21 

“Using the multiplicative version of QM for temperature allows to include zero value 

without special treatment. Hence, no precipitation can be generated if the raw forecasts do not 

exhibit any rain.” 

 

Anonymous Referee #2 

Page 5 Section 2.4 For each score used, please note the range of values taken and 

the orientation of the score (e.g. -infinity to 1 for NSE, with 1 being perfect) This allows 

easy intepretation of, e.g., Figure 4. 

 

Reply: 

We now include the following statement in the figure caption. 

 

P31, L11-13 

“The NSE and the CRPSS span from -infinty to 1 with a perfect score being 1; a bias of zero 

indicates no forecast error with negative values indicating underestimation and positive 

values indicating overestimation of the flow; reliable forecasts exhibit a SprErr of 1 and 

lower values indicate overconfidence and greater values indicate overdispersion.” 



Anonymous Referee #2 

L16 "we use the spread to error ratio (SprErr) as an indicator for the forecast reliability" 

Please briefly describe how this is calculated. 

 

Reply: 

We now added a sentence to describe how the spread to error ratio is calculated: 

 

P5; L29-32 

“The SprErr is defined as the ratio between the variance of the forecast ensemble 

(forecast spread) and the mean squared error (MSE) of the ensemble forecast (forecast error). 

For reliable forecasts the spread and the error are equal, resulting in a SprErr of 1 whereas 

values below 1 indicate overconfidence (errors are larger compared to the spread) and values 

above 1 indicate overdispersion (the spread is larger compared to the error).” 

 

Anonymous Referee #2 

Page 8 L18 Figure 3. It’s very difficult to see the different colours in this figure, especially 

in the right hand panel - i.e., it’s not possible to distinguish QM from raw. Please 

replot so this is clearer (e.g., with different colours/box outlines, and/or perhaps restrict 

the vertical axis in the rh panel to [-0.2 0.3]). 

 

Reply: 

We change the figure according to your suggestions. 

 

Anonymous Referee #2 

L22-23 "After bias correction the skill is higher with positive CRPSS up to three weeks 

in winter and spring." From the figure, precip skill looks to be negligible in DJF after 

week 1. Skill scores will of course be a little noisy (in time, as well as in space; the authors 

have only considered spatial variation), so I don’t think the authors should describe 

forecasts as ’skillful’ if they have CRPSS values only very slightly above zero. 

 

 

Reply: 

We agree, the description is too optimistic. We considered this comment and only mention 

spring in this sentence. It now reads: 

 

P9; L19-20 

“After bias correction the skill is higher with positive CRPSS up to three weeks in MAM. In 

JJA the positive skill is only observed for 2 weeks lead time and in SON and DJF for the first 

week only.” 

 

Anonymous Referee #2 

L28 NSE, Bias - I assume these are calculated on the mean of the ensemble? Please 

state this in Section 2.4. 

 

Reply: 

Your assumption is correct. This will be included in Section 2.4 

 

Page 5; L23-24:  

“For both versions of the NSE and the bias the ensemble mean is used for the calculation. “ 

 



Anonymous Referee #2 

Page 9  

L7-8 "The negative biases of the ESP approach indicate an underestimation of 

the streamflows for all lead times in the Verzasca catchment." It’s not clear to me why 

ESP predictions would be biased. ESP forcings, by construction, are unbiased. As the 

bias in predictions is calculated against model climatology, there should be no bias, as 

occurs in the Thur. Please briefly explain what is going on here. 

 

Reply: 

We generally agree with your statement that ESP predictions are by construction unbiased. 

The historical meteorological observations used to run the hydrological simulations are a 

sample of the climatology and thus the resulting streamflow prediction should theoretically 

agree (i.e. be unbiased) with the climatological streamflow used for the verification. 

However, there are two effects that might lead to biases in the ESP prediction. First, if the 

initial conditions at the time of the forecast initialization strongly deviates from the 

climatology the ESP prediction will take more time until the streamflow converges with 

climatology, in particular in snow-dominated catchments as the Verzasca and the Klöntal 

catchment. Second, the meteorological input for the ESP predictions in our case is not an 

exact sample of the climatology. The meteorological observations from 1980 to 2014 are 

used, the streamflow climatology is based on the period 1994-2015. Hence, trends in the 

meteorological input might affect the streamflow prediction resulting in a bias. E.g. 

temperature exhibits a positive trend within this period, colder temperature in the beginning 

of the period might lead to negative biases (underestimation of the streamflow) because the 

storage of precipitation in snow is enhanced. Again, this effect is stronger in snow-dominated 

catchments.  

 

Anonymous Referee #2 

L15 "The spread error ratio of the ESP predictions is below 1 for all lead times indicating 

overconfidence." There are two issues here. First, as I already alluded to, it would be 

beneficial to readers unfamiliar with the spread-error ratio to offer a brief explanation of 

the range of values it can take, and which direction indicates over/under confidence in 

Section 2.4.  

 

Reply: 

We now adapted the description in the methodology. 

 

P5, L30-32: 

“For reliable forecasts the spread and the error are equal, resulting in a SprErr of 1 whereas 

values below 1 indicate overconfidence (errors are larger compared to the spread) and values 

above 1 indicate overdispersion (the spread is larger compared to the error).” 

 

 

Anonymous Referee #2 

Second, I can’t understand why the ESP forecasts are not reliable. ESP 

forcings are by construction reliable, so the spread-error ratio for the ESP forecasts 

should be close to 1. But this is not so in the two smaller catchments. Why is this? 

 

Reply: 

We suggest a similar explanation as in the answer to the comment related to the bias of the 

ESP (first answer on this page). In short, different time period of the meteorological forcing 



of the ESP (1980-2014) and the streamflow climatology (1994-2015) might affect the SprErr 

as well. The forecast in the longer period might lead to larger error what could lead to a 

reduced SprErr. In addition, the effect of initial conditions that are strongly deviating from 

the climatological state can lead to larger errors especially at early lead times until the 

predictions converge to the climatology. 

 

Anonymous Referee #2 

Page 10  

L26-27 "The rank histograms for the ESP predictions do provide more uniform 

rank histograms with a weak tendency of a negative bias." Again, I would be interested 

in a brief explanation of this bias in ESP forecasts. 

 

Reply: 

See answer to the comment above. 

 

Anonymous Referee #2 

Page 12  

L15 "QM indeed is able to provide reliable ensembles" To me this sounds 

as though QM is responsible for the reliable ensembles, and this isn’t really correct. 
QM can improve reliability to the extent that it is negatively impacted by bias (including 

conditional bias - i.e., biases at different points in the marginal distribution). You 

have shown (like Zhao et al.) that QM does not correct for overconfidence in short 

lead-time forecasts. This is because the underlying forecasts are overconfident - QM 

can’t correct this (by construction). At longer lead-times, the QM forecasts are reliable 

because the spread in the underlying forecasts is appropriate (notwithstanding conditional 

biases). The same goes for coherence (discussed in the accompanying Monhart 

et al. 2018 JGR paper evaluating the NWP forecasts) - QM is not capable of correcting 

negative skill wrt to climatology in forecasts, other than that due to bias (again, by 

construction). The forecasts presented in this study are coherent because the underlying 

(raw) forecasts appear to be neutrally skillful at long time scales. In other words, 

it is the combination of NWP model and the QM that create the reliable and coherent 

forecasts shown in this study, not just QM. I think it would be better to reword what’s 

written here to reflect this fact. 

 

Reply: 

We account for this comment and reworded the statement to make it clear that QM alone is 

not able to provide reliable forecasts if the underlying meteorological forecast are not 

reliable. 

The sentence now reads: 

 

P13; L4-7 

“To summarize, it was found that the combination of the NWP model with QM indeed is able 

to provide reliable ensembles for lead times beyond 10 days but at shorter lead times the 

ensembles tend to be overconfident because the spread in the underlying NWP forecasts 

tends to be inappropriate what cannot be corrected using QM.” 

  

Anonymous Referee #2 

P14  

L9-10 "to correct the errors and biases of the hydrological simulation" and, presumably, 

to account for additional uncertainty induced by the hydrological model in the ensemble? 



Reply: 

Thanks for this suggestion. We included this, and the sentence now reads: 

 

P15; L32-33 

“…to correct the errors and biases of the hydrological simulation and to account for 
additional uncertainty induced by the hydrological model in the ensemble.” 

 

Anonymous Referee #2 

P14 "To do so we verified the streamflows of the reference simulation of the PREVAH 

model against observations." One thing not discussed here is reliability. I assume 

when assessed against observations, the ensembles are highly overconfident because 

uncertainty in the hydrological model is not included in the ensemble (see, e.g., Bennett 

et al. 2014). This is especially true at very short lead times (perhaps <3 days), 

when hydrological model uncertainty may be the dominant source of uncertainty in the 

forecasts. This may be worth mentioning. 

 

Reply: 

Here we discuss the performance of the reference simulation verified against observations. 

The reference simulation is a single timeseries and thus no ensembles can be verified. But for 

the ensemble predictions verified against the observation we indeed find a pronounced 

overconfidence at short lead times. Hence the results confirm what you mention in your 

comment. Although we decide not to include any additional figures we mention this aspect in 

the discussion.  

 

P16, L13-L18: 

“An example of such a deficiency is the uncertainty resulting from the hydrological 

modelling that result in stronger overconfidence especially at short lead times when the 

hydrological model uncertainty may be the dominant source of uncertainty as discussed for 

example in Bennett et al., (2014). To illustrate this for the prediction used in this study, the 

verification was repeated with the real runoff observations. The skill in most seasons (MAM, 

JJA, SON) exhibit the same behavior with high skill at early lead times and decreasing skill 

at longer lead times and generally higher overconfidence at short lead times is observed what 

confirms the findings by Bennett et al. (2014).” 

 

 

Typos/Grammar Page  

1 L14 "Prior of" should be "Prior to" or more simply "Before" 

Done 

 

Page 2 L11 "both," delete comma 

Done 

 

Page 5  

L2 "comparison of to" delete "of"  

Done 

 

L28 "year" should be "years" 

Done 

 

Page 7 L3 "station" should be "stations" 



Done 

 

Page 8 L9 "evaluate of operational" delete "of" 

Done 

 

Page 9 L9 "and reach" should be "and reaches"  

Done 

 

L11 "enhance" should be "enhances" 

Done 

 

L11 "elongates positive up" I think "skill" is missing here - i.e. "elongates positive skill 

up"  

Done 

 

L27 "are shown" should be "is shown" 

Done 

 

 

Page 13 L1 "in seasonal meteorological can" I think this should be "in seasonal 

meteorological forecasts can" 

Done 

 

Page 14 L11 "prediction" should be "predictions"  

Done 

 

L23 "exhibit" should be "exhibits" 

Done 

 

Page 15 L14 "enhance" should be "enhances"  

Done 

 

L24 "EPS" should be "ESP"  

Done 

 

L25 "both, temperature" delete comma 

Done 

 

Page 27 L5 "whereas" should be "where" 

Done 
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Anonymous Referee #3 

General comments.  

 

The main motivation of this study is to fill the gap in small scale 

researches in determination of the propagation positive skill extent in meteorological 

prediction models further into the streamflow forecasts. To address this problem, a 

traditional 

ESP approach was compared with prediction driven by ECMWF subseasonal 

ensemble system in three alpine catchments with varying hydroclimatic conditions. To 

emphasis the effect of applying pre-processing (QM-based) of NWP output, prediction 

verification was done against the reference simulation (pseudo observations). Thus 

hydrological model errors were excluded from the analysis.  

Summary.  

There was in-depth discussion on hydroclimatic variability and predictability, the role of 

forcing and model parameters’ uncertainty. The verification metrics used were relevant and 
applied in a logical manner. The results well supported the conclusions. Some sections 

recommend recompiling for better logically organized and easy follow. 

 

I recommend publishing the manuscript but encourage the authors: 

 

1) Give a more justification on choice of these watersheds for sub-seasonal forecasting. 

Initially, it can be supposed that the study is a part of a large numerical experiment 

where the results were confirmed only for the three arbitrary watersheds.  

 

Reply: 

The choice of the watersheds was driven by the application of the forecast and the diversity in 

a hydroclimatic sense. Within the larger umbrella project, we aim at analysing and 

quantifying the benefit of using subseasonal forecasts for the optimization of hydropower 

operations to increase their revenues in Switzerland. Therefore, watersheds with installed 

hydropower operations were selected first (the Klöntal and the Verzasca catchment, 

representing snow dominated and partially glaciated catchments). To broaden the scientific 

value of our analysis and better quantify the effect of snow, we included as well the Thur 

catchment which is precipitation dominated. Hence, the watersheds are not an arbitrary 

choice from a large numerical experiment but rather a reasonable compromise between 

further use of the results for our intendent application and a scientific in-depth analysis of the 

forecast performance considering different hydroclimatic regimes. 

We account for this by explaining the motivation for the choice of the watersheds in section 

3.3 of the analysis. 

 

P7; L10-15 

“The selection of the catchments is a compromise between the intended applications of our 

results within hydropower optimization in the Alpine region and to adequately meet the 

requirements of a scientific analysis. Hence, the Klöntal and the Verzasca catchment both are 

selected because of existing hydropower installation in these watersheds and the Thur 

catchment was chosen as a representative catchment with different hydroclimatic 

characteristics and because the catchment is often considered in hydrological research in 

Switzerland.” 

 

 

 



Anonymous Referee #3 

2) Add meteorological observations network on fig. 2 and give some comments explaining the 

good modeling quality (tab. 1) when using the grid product obtained at a low observations 

network density.  

 

Reply: 

As mentioned in the manuscript, the grid product is often used in climate related research in 

Switzerland. The relevant publication on the gridded product, including verification studies 

of the gridded product are given in the manuscript. An overlay of the station used to produce 

the gridded data set is in our opinion an over overkill for the present study as the information 

can be found in in the given references. Therefore, we decide not to include the observational 

stations in figure 2. The good modelling quality, speaking of the performance of the 

streamflow predictions indicate that the gridded product does provide a good baseline for pre-

processing subseasonal hydrological predictions. 

 

We included the following sentence in the discussion: 

P14, L1-3: 

“Furthermore, the improvements in performance of the streamflow predictions by pre-

processing suggests that the gridded observational dataset provide a good baseline for this 

purpose, despite the difficulties involved in producing a gridded product based on a limited 

number of observational stations.” 

 

Anonymous Referee #3 

3) Give a number of predictions made for evaluation.  

 

Reply: 

For the verification we use a total number of 1040 reforecasts with 5 members each. This 

number results from the dataset which provides 1 reforecast per week for the 20-year period 

(1994-2014). For the seasonal aggregation a total of 260 reforecasts is used for the 

verification. 

 

We added this in the section 3.1. the sentence now reads: 

 

P6; L20-21 

“… covering the period from April 1994 to March 2014 resulting in a total of 1040 individual 
reforecasts that are analyzed within this study.” 

 

Anonymous Referee #3 

4) Comment on how the processing of only temperature and precipitation affects and 

propagate through the hydrological simulation.  

 

Reply: 

The results clearly show that pre-processing both temperature and precipitation is important 

to provide well performing hydrological simulation. Hence, pre-processing temperature only 

does have a large impact on the performance of the streamflow predictions but if precipitation 

is pre-processed as well, the rank histograms indicate more reliable forecasts. This subject is 

addressed in the results section 4.3.  

 

 

 



Anonymous Referee #3 

5) Specify if the ESP method can outperform the NWP if ensemble takes not all but only 

individual years guided by a certain criterion for the similarity of the initial conditions.  

 

Reply: 

As you mention, the performance of the ESP predictions could be enhanced based on a 

selection of years where the initial conditions show high similarity with present conditions. 

E.g. Crochemore et al. (2017) showed that seasonal forecasts can benefit by conditioning 

climatology. However, a thorough assessment of conditioning the ESP predictions is beyond 

the scope of the present study but could be considered for further studies within this area. 

 

We widened the discussion to make the reader aware of this potential. 

 

P14, L4-7: 

“In addition, the performance of the ESP predictions could potentially be enhanced if not all, 

but only individual years are taken into account.  A certain guidance based on a selection of 

years with similar initial conditions could be taken into account. Crochemore et al. (2017)  

have shown that seasonal prediction based on ESP can benefit from condition the forecasts on 

climatology. However, an evaluation of such an approach is out of scope of the present 

study.” 

 

Anonymous Referee #3  

6) Recompile the sections 2 and 3 referred to each other to make them more consistent. 

 

Reply: 

As a result of including the comments of the all three reviewers, some changes have been 

made to section 2 and 3 as well. Both sections should now be more consistent. 

 

Specific comments.  

P.13, L5. The upper (reads like nested) Thur subcatchment Halden (1750 km2) is little 

bit bigger then Thur watershed itself (1696 km2). 

 

Reply: 

You are right, the Thur subcatchment Halden is 1085 km2. We changed this accordingly. 
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Abstract. Traditional Ensemble Streamflow Prediction systems (ESP) are known to provide a valuable baseline to predict 

streamflows at the subseasonal to seasonal timescale. They exploit a combination of initial conditions and past 

meteorological observations, and can often provide useful forecasts of the expected streamflow in the upcoming month. In 

recent years, numerical weather prediction (NWP) models for subseasonal to seasonal timescales have made large progress 

and can provide added value to such a traditional ESP approach. Prior ofBefore using such meteorological predictions two 15 

major problems need to be solved: the correction of biases, and downscaling to account to increase the spatial resolution. 

Various methods exist to overcome these problems, but the potential of using NWP information and the relative merit of the 

different statistical and modeling steps remains open. To address this question, we compare a traditional ESP system with a 

subseasonal hydrometeorological ensemble prediction system in three alpine catchments with varying hydroclimatic 

conditions with areas between 80 and 1700 km2. Uncorrected and corrected (pre-processed) temperature and precipitation 20 

reforecasts from the ECMWF subseasonal NWP model are used to run the hydrological simulations and the performance of 

the resulting streamflow predictions is assessed with commonly used verification scores characterizing different aspects of 

the forecasts (ensemble mean and spread). Our results indicate that the NWP based approach can provide superior prediction 

than the ESP approach, especially at shorter lead times. In snow-dominated catchments the pre-processing of the 

meteorological input further improves the performance of the predictions. This is most pronounced in late winter and spring 25 

when snow melting occurs. Moreover, our results highlight the importance of snow related processes for subseasonal 

streamflow predictions in mountainous regions. 

 

1 Introduction 

Subseasonal hydrometeorological predictions are of special interest for many different applications in the public and the 30 

private sectors. For example to develop early warning systems for flood and drought preparedness for the general public 
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(Bogner et al., 2018; Cloke and Pappenberger, 2009; Fundel et al., 2013a; Van Lanen et al., 2016; Schär et al., 2004; White 

et al., 2017), to optimize the production of renewable energy sources such as wind  (Beerli et al., 2017), solar (Inman et al., 

2013) and hydropower (García-Morales and Dubus, 2007) or to ensure inland waterway transportation (Meißner et al., 

2017).  

In recent years the numerical weather prediction (NWP) systems have greatly evolved (Bauer et al., 2015). The ensemble 5 

forecasting approach introduced two decades ago allows capturing the chaotic nature of the atmosphere in a probabilistic 

sense and has extended the horizon to which weather predictions can provide valuable information. Hydrological prediction 

systems, especially beyond the short-range lead times, benefit from such an ensemble approach (Demargne et al., 2014; Jaun 

et al., 2008; Schaake et al., 2007; Verbunt et al., 2007). Ensemble hydrometeorological end-to-end prediction systems for the 

subseasonal time scale, i.e. forecasts for lead times up to 4 to 6 weeks, are now being developed and investigated for 10 

different parts in the world. Nowadays, different research initiatives (Hao et al., 2018; Robertson et al., 2015; Vitart et al., 

2017; Vitart and Robertson, 2018) set their focus on the assessment of predictability within this lead-time horizon. But still 

this lead time between the medium-range forecasts and the seasonal predictions is a grey zone in both, the meteorological 

and hydrological forecasting communities.  

However, ensemble prediction systems have extensively been used for short to medium-range forecasts and it could be 15 

shown the resolution of the model plays an important role for a good performance of ensemble precipitation forecasts 

(Marsigli et al., 2008; Montani et al., 2001, 2003). A higher resolution can be achieved by dynamically downscaling the 

ensemble predictions, what led to a gain in predictability in ensemble precipitation forecast over the past years in the 

medium-range time scale (Montani et al., 2011). From a hydrological perspective flood peaks can much better be predicted 

using mesoscale ensemble forecast models compared to global models  (Davolio et al., 2012). In such operational short to 20 

medium-range forecasting systems, dynamical downscaling methods are a valuable tool to increase the resolution of the 

forecasts but for long term predictions the computational demand of  dynamical downscaling methods is a limiting factor and 

it has been shown that similar results can be achieved with statistical downscaling methods (Díez et al., 2005; Manzanas et 

al., 2018). In recent years, seasonal ensemble prediction systems have increasingly been used in the hydrological forecasting 

context. At this time scale downscaling is usually included in statistical processing techniques that primarily aim at 25 

correcting the bias of the meteorological forecast.  Different statistical bias correction techniques can be used to improve the 

skill of seasonal forecasts (Bohn et al., 2010; Crochemore et al., 2016; Kumar et al., 2014). An alternative approach for 

seasonal streamflow prediction is the traditional ensemble prediction system (ESP) first introduced by Day (1985). In this 

approach, observed historical meteorological conditions are used to generate the streamflow forecasts. Several studies have 

shown that Ensemble Streamflow prediction (ESP) can provide skillful seasonal streamflow prediction (Harrigan et al., 30 

2017) and seasonal hydrometeorological prediction systems have difficulties to outperform the ESP beyond one month lead 

time (Arnal et al., 2018; Lucatero et al., 2018). Irrespective of the methodology used, the performance of ensemble 

streamflow forecasts depend to a large degree on the initial condition within the catchment especially for small catchments 

(Van Dijk et al., 2013; Thirel et al., 2010). In subseasonal to seasonal hydrometeorological predictions, the memory of the 
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river networks is predominately driven by the initial conditions of the land surface characteristics, i.e. soil moisture and snow 

cover (Jörg-Hess et al., 2015a). It has been shown that these parameters play an important role for skillful 

hydrometeorological forecasts using numerical weather prediction (NWP) inputs in hydrological models for streamflow 

forecasting (Orth and Seneviratne, 2013b; Sinha and Sankarasubramanian, 2013). However, for small snow dominated 

catchments the benefit of using pre-processed subseasonal NWP input has not yet been investigated. The three main reasons 5 

for the lack of studies at smaller scales is the fact that the driving meteorological models are calculated on a global scale with 

coarse resolution. Therefore, small catchments are often smaller than the nominal resolution of these models, making a pre-

processing step necessary to bias correct and downscale the meteorological forecasts to an adequate spatial resolution as an 

input to the hydrological models. The second reason is that small catchments usually do not have a long temporal memory 

and processes leading to streamflows runoff are rather quick and therefore the skill in early lead times do not extend into 10 

longer lead times (Orth and Seneviratne, 2013a). As a consequence, the upper limits of the forecast skill at the subseasonal 

time scale strongly depend on such catchment characteristics (Bogner et al., 2016, 2018). Finally, previous generations of 

subseasonal to seasonal climate forecasts rapidly lost skill beyond the first 2 weeks (see for example Lavers et al., 2009).  

Small and medium sized catchments in mountainous regions such as the Alps are often snow dominated, hence the 

streamflow, and especially the forecasts thereof, depends to a large degree to snowmelt processes that are driven by 15 

temperature (Hock, 2003; Ohmura, 2001; Zappa et al., 2003). Monhart et al. (2018) have shown that the statistically 

corrected subseasonal temperature forecasts exhibit positive skill compared to the climatological reference of up to 3 three 

weeks, whereas positive skill of precipitation forecasts is restricted to the first 10 days. Hence, the question arises if and to 

what extent the positive skill of temperature forecasts in meteorological prediction models does further progress to the 

streamflow forecasts. Skillful streamflow forecasts might not directly be related to the skill in temperature forecasts but 20 

rather in an appropriate sampling of the initial conditions and the actual snow cover (snow water equivalent) at initialization 

(Jörg-Hess et al., 2015a). Therefore, the skill of the streamflow forecasts will not solely depend on the quality of temperature 

forecasts alone. To investigate this question, ensemble streamflow prediction can be used to evaluate the importance of the 

initial conditions. The comparison of the skill of an ESP forecast and the skill of actual hydrometeorological predictions can 

indicate the relative importance of using physically consistent meteorological forecasts to produce skillful streamflow 25 

predictions. After presenting the methods used for the pre-processing and the verification of the different forecasts in section 

2, the meteorological and hydrological data is described in section 3. The results obtained are presented in detail in section 4 

followed by a discussion (section 5) to put the results in the current scientific context.  

 

2. Methods 30 

The conceptual framework used in this study is presented in Figure 1. The hydrological model is run with different 

meteorological forcings to provide ensemble streamflow predictions. A traditional ESP approach using 34 years of 



4 

 

meteorological observations provides the baseline forecasts. A second input is based on the reforecasts from the ECMWF 

subseasonal prediction system as described in section 3.1. Along this chain four different configurations are used to feed the 

hydrological model and generate streamflow predictions: the raw reforecasts for both temperature and precipitation, the raw 

precipitation reforecast and pre-processed temperature reforecasts and vice versa, and both parameters pre-processed.  

2.1 Pre-processing in the hydrometeorological model chain 5 

In the pre-processing step a quantile mapping (QM) technique is applied in a leave-one-year-out setup to correct each re-

forecast year separately. The corrections are applied in a lead-time dependent manner. A description of the pre-processing 

setup can be found in Monhart et al. (2018). This cross-calibration framework ensures a cross-validation described in 

subsection 2.3. In contrast to the site-specific pre-processing setup in that studyused in Monhart et al. (2018), a gridded 

observational product is used here. The pre-processing is performed for temperature and precipitation and involves not only 10 

a bias correction but also a downscaling because of the higher resolution of the gridded observation data used in this study. 

The observation and forecast data used in this study is described in more detail in the Section 3. However, it is worth 

mentioning here that the raw model resolution of 50 km is bias corrected with QM using gridded observations with a higher 

spatial resolution of 2km. This resolution corresponds to the meteorological input of the hydrological model, for which 

observations from station data are interpolated to 2 km grids (see section 3.2). The QM technique is a simple and widely 15 

used method for pre-processing hydrometeorological forecasts (e.g. Kang et al., 2010; Lucatero et al., 2018; Verkade et al., 

2013). For a given target day of a reforecast the correction is derived from the distribution of all the reforecasts within a 

three weeks window around the same lead day and the corresponding observations, hence the correction depends both on the 

lead time and on the period of the years. For temperature an additive correction and for precipitation a multiplicative 

correction is applied. Using the multiplicative version of QM for temperature allows to include zero value without special 20 

treatment. Hence, no precipitation can be generated if the raw forecasts do not exhibit any rain.  

2.2 Ensemble Streamflow Prediction (ESP)  

The Ensemble streamflow predictions follow the established procedure first proposed by Day (1985). Many studies have 

shown the potential of this method to provide skillful streamflow predictions at the subseasonal to seasonal time scale in 

Europe (e.g. Arnal et al., 2018; Harrigan et al., 2017). The basic principle behind the ESP is to create an ensemble of 25 

streamflows based on known initial conditions and forced by historic climate sequences. The historical record used in this 

study covers the period from 1980 to 2014 resulting in 34 members for each forecast. As in the hydrometeorological model 

chain, the ESP approach is set up in a leave one year out manner to ensure that the information of the year to be verified is 

not part of the forecasts itself. ESP predictions can be skillful especially in catchments where the predictability is mainly 

driven by the initial conditions, although the quality of the predictions depends on the seasons and hydroclimatic 30 

characteristics (Wood and Lettenmaier, 2008). 
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2.3 Hydrological Simulations 

The hydrological simulations are performed with the Precipitation-Runoff-Evapotranspiration-Hydrotope model (PREVAH) 

(Gurtz et al., 1999; Viviroli et al., 2009a; Zappa et al., 2003). In this study, the distributed model version which requires 

gridded input data is used as described in Speich et al. (2015) and first applied in a hydrological study by Schattan et al. 

(2013). The model requires spatial information (land use, aspect and elevation) and gridded meteorological variables. 5 

Besides the statistically corrected temperature and precipitation predictions, relative humidity, sunshine duration, surface 

albedo and solar radiation are needed to run PREVAH. For the initialization of the model the required fields (i.e. soil 

moisture, groundwater storages, snow cover) are used from a reference simulation driven with the gridded meteorological 

observation dataset as described in subsection 3.4. The distributed hydrological model is run at a resolution of 200 m x 200 

m, hence the same model internal procedures are used to further downscale the meteorological inputs for all different 10 

experiments. Namely, an interpolation based on inverse distance weighting (IDW) and different height and terrain specific 

correction are applied to the input variables (adiabatic lapse rate correction; aspect and slope corrections) as described in 

Zappa et al. (2003). A more extensive description of the model and a comparison of to the HRU based version of the model 

can be found in (Jörg-Hess et al., 2015a). 

2.4 Verification 15 

To verify the streamflow predictions various metrics are used to assess the forecast performance according to different 

characteristics or attributes of the forecasts respectively. The verification is performed for the two variables streamflow and 

snow water equivalent (SWE). For the selection of verifications metrics we follow the procedures presented in Brown et al. 

(2010) and we combine deterministic and probabilistic measures of skill to assess the forecast performance. More detailed 

reviews of ensemble forecast verification can be found in Jolliffe and Stephenson (2012) and Wilks (2006). Besides the 20 

Nash-Sutcliffe efficiency (NSE) (Nash & Sutcliffe, 1970) widely used to assess the performance of hydrological models and 

the logarithmic version thereof (NSE log), which is more sensitive to low flows (Krause et al., 2005), we use the ensemble 

mean error (bias) and the mean absolute error (MAE). For both versions of the NSE and the bias the ensemble mean is used 

for the calculation. Although these metrics can describe the average characteristics of the ensemble forecasts it has been 

shown that it is crucial to consider the spread of the ensemble forecast as well to properly asses the forecast performance in 25 

particular at the subseasonal to seasonal time scale (Kumar et al., 2014). Therefore the continuous ranked probability skill 

score (CRPSS) with the extension proposed by Ferro (2014) to account for small ensemble sizes is used to characterize the 

performance of the full ensemble (Hersbach, 2000; Müller et al., 2005). In addition, we use the spread to error ratio (SprErr) 

as an indicator for the forecast reliability (Hopson, 2014). The SprErr is defined as the ratio between the variance of the 

forecast ensemble (forecast spread) and the mean squared error (MSE) of the ensemble forecast (forecast error). For reliable 30 

forecasts the spread and the error are equal, resulting in a SprErr of 1 whereas values below 1 indicate overconfidence (errors 

are larger compared to the spread) and values above 1 indicate overdispersion (the spread is larger compared to the error). 
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and Finally, rank histograms are used to visually examine the reliability of the forecasts (Anderson, 1996; Talagrand et al., 

1997; Hamill & Colucci, 1997). In each of these scores the reforecasts are compared to observations (ME and MAE) and the 

climatology of the reference simulation is used as a reference climatology for NSE and CRPSS. In this study we use pseudo 

observations from a reference simulation to substitute real observations for the streamflow forecast verification. This is done 

to separate the effect on the performance of the hydrological predictions resulting from either different meteorological input 5 

forecasts or from the deficits in the hydrological model to simulate low flows. The setup of the reference simulation to 

generate the pseudo observations is described in the data subsection 3.4.   

3. Data 

3.1 Meteorological reforecast data 

We obtained the subseasonal reforecasts from the ECMWF Integrated Forecasting System (IFS) version CY40r1. This 10 

version was operational from 19 November 2013 to 12 May 2015. This is a unique dataset because no system change 

occurred for nearly one and a half years (http://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-

model/cycle-40r1/cycle-40r1 for the documentation of IFS CY40r1). Routinely the model is updated more frequently within 

one year and therefore changes in the system, e.g. changes to the horizontal and vertical resolution or changes in the 

parametrization of physical processes affect the skill of the forecast over the course of the year. The same data set is used as 15 

in the study presented by Monhart et al. (2018) and can be referred to for a more detailed description of the forecast system 

and for an extensive verification of these meteorological forecasts. 

In this study the historical 5-member reforecasts (i.e. hindcasts) are used to drive the hydrological simulations. These 

meteorological reforecasts are run for all forecasts issued on Thursdays using ERA-interim analysis for the initialization 

(ECMWF, 2014) covering the period from April 1994 to March 2014 resulting in a total of 1040 individual reforecasts that 20 

are analyzed within this study. These reforecasts are essential for the post-processing of the meteorological forecasts (i.e. 

pre-processing from a hydrological point of view). The bias of the forecasting system can be estimated using the reforecasts 

and future forecasts can be corrected (or as in this analysis the reforecasts itself).  

3.2 Meteorological observational data 

We use gridded observation data sets at 2 km x 2 km resolution for daily temperature and precipitation to pre-process the 25 

meteorological reforecasts and for the verification thereof (Frei, 2014; Isotta et al., 2014; Meteoswiss, 2016; MeteoSwiss, 

2016). These products are based on surface observations and are often used in climatological studies for Switzerland (e.g. 

Addor et al., 2016; Begert and Frei, 2018, Orth et al. (2015) for a hydrological model study with the same model version we 

use in this study). Nevertheless such gridded observational products exhibit limitations especially in complex terrain with 

high mountain peaks because of the interpolation errors and errors induced by natural variability (Frei, 2014; Addor & 30 

Fischer, 2015). Despite these limitations the analysis benefits by using the gridded version because of the scarcity of 
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meteorological stations available in the catchment areas. The additional meteorological variables (relative humidity, 

sunshine duration, surface albedo and solar radiation) needed to run the hydrological model PREVAH are directly used from 

the (raw) meteorological forecasts and are inherently downscaled with the PREVAH internal methodology. Thus, no 

observations are needed for these variables. Although these parameters could influence the hydrological relevant processes, 

e.g. evaporation rates from snow based on the relative humidity which could change after a downscaling, a thorough 5 

assessment of the effect of bias correcting and downscaling of these additional variables is out of scope of the current study. 

In addition, these variables are of minor importance for the forecast time scales investigated in this study. 

3.3 Catchment characteristics and hydrological data 

The experiments analyzed in this study are performed for three alpine catchments with various hydro-climatic 

characteristics. This allows identifying the underlying processes that lead to skillful subseasonal streamflow predictions. The 10 

selection of the catchments is a compromise between the intended applications of our results within hydropower 

optimization in the Alpine region and to adequately meet the requirements of a scientific analysis. Hence, the Klöntal and the 

Verzasca catchment both are selected because of existing hydropower installation in these watersheds and the Thur 

catchment was chosen as a representative catchment with different hydroclimatic characteristics and because this catchment 

is often considered in hydrological research in Switzerland. An overview of the catchment characteristics can be found in 15 

Table 1. 

The Verzasca catchment located in the Southern part of the Alps is snow dominated in the cold seasons and more 

precipitation dominated in warm seasons (Wöhling et al., 2006). The average height of the catchment is 1651 m a.s.l. with a 

maximum height of 2864 m a.s.l. and a minimum height at the gauging station of 490 m a.s.l.. Despite this height difference 

the catchment is of medium size only with a total of 185 km2. The runoff in this catchment is low in winter due to 20 

accumulation of snow in elevated regions and highly dynamical in late spring to early autumn because the area is prone to 

heavy thunderstorm activity (Bogner et al., 2018; Liechti et al., 2013). The data used for calibration of the hydrological 

model and for the verification of the reference simulation is provided by the Federal Office for the Environment (FOEN) for 

the gauging station Lavertezzo. 

The Klöntal catchment, located in the Northern part of the Alps, is mainly snow dominated and inherits a glaciated area of 25 

about 3 km2 (< 5%). The maximum height is 2883m a.s.l. and the minimum height, corresponding to the height of lake 

Klöntal, is 847 m a.s.l. with a catchment area 83 km2 categorized as a small catchment. The lake is used for hydropower 

generation. The data provided by the hydropower operator is used for calibration of the hydrological model and the 

verification of the streamflow reforecasts. Due to the absence of a gauging stations, this data is an estimate of the streamflow 

at the lake outlet and deduced from the water balance of historical lake levels. Hence, the quality of the data is lower 30 

compared to the other two catchments and therefore the interpretation especially under low flow condition should be treated 

with care.  
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The third catchment under investigation is the pre-alpine Thur catchment. This catchment is of medium size with 1696 km2 

and mainly precipitation dominated. The highest elevation is 2505 meter, the lowest elevation at the gauging station in 

Andelfingen provided by the FOEN is at 356 m, and the mean catchment height is 770 m a.s.l.. This catchment has 

frequently been analyzed in literature (Bogner et al., 2016; Fundel et al., 2013b; Jörg-Hess et al., 2015b).  

 5 

3.4 Hydrological pseudo observations: the reference simulation 

For all three catchments described above, the reference simulation is generated using an observed gridded meteorological 

data set for the meteorological variables (temperature, precipitation, relative humidity, sunshine duration, surface albedo and 

solar radiation) to run the hydrological model PREVAH (see section 2.3) in the same setting as used for different previous 

studies (Orth et al., 2015; Schattan et al., 2013; Speich et al., 2015). The gridding of all the meteorological variables makes 10 

use of elevation-based de-trending and inverse distance based interpolation as detailed in the baseline publication on 

PREVAH and its tools (Viviroli et al., 2009a) and also used for application of other hydrological models (e.g. Melsen et al., 

2016). The reference simulation is a single time series starting in 1992 (after a spin up period of three years) and ending in 

2015. The spin up period ensures the stability of the streamflow simulations and is of particular importance to fill low 

frequency storages for baseflow and snow (Viviroli et al., 2009b). In addition the spin-up times highly vary across 15 

catchments depending on the hydroclimatic characteristics and catchment size (Rahman et al., 2016; Seck et al., 2015). The 

climatology of the reference simulation is referred to as reference climatology and is used as reference for the computation of 

skill scores. 

4. Results 

4.1 Performance of the reference simulation 20 

The reference simulation is analysed over the full 20-year period of the reforecasts. The verification of the reference 

simulation against observations, summarized in Table 2, generally shows high agreement of the simulation with the 

corresponding observations. 

The Nash-Sutcliffe efficiency coefficient (NSE) for the entire analysis period (FullYear) exhibits values above 0.84 for all 

catchments. Best performance can be observed in spring and lowest performance in winter when low flows dominate. The 25 

logarithmic form of the NSE (NSE log) shows a similar picture with better performance in the Thur catchment. Some 

difficulties occur in DJF in the Verzasca catchment and in DJF and SON in the Klöntal catchment. In the Verzasca and the 

Klöntal catchment the MAE and the absolute bias are constant over the course of the year except in winter. But compared to 

the mean annual flows of the specific catchments largest relative biases are observed during DJF. The Thur catchment 

exhibits smallest relative biases except in JJA when low flows occur because of the absence of snow in this catchment. 30 

Various applications do not focus on low flows but rather on flow volumes, e.g. hydropower operations are more interested 



9 

 

in forecasts about the total upcoming flow volume to adapt and optimize their production. Therefore, we here focus on the 

standard Nash-Sutcliffe coefficient instead of the logarithmic form thereof. 

We hereafter verify streamflow predictions against the reference simulation to focus on analyzing the effect of the different 

meteorological input forecasts. This allows to solely assess the effect of the pre-processing on the hydrological predictions 

by supressing the hydrological errors itself and is often done to evaluate of operational forecasting systems (Alfieri et al., 5 

2014), to assess the contributions of uncertainty on the hydrological forecasts (Voisin et al., 2011), or for a comparison of the 

skill of different forecasting systems (Pappenberger et al., 2015). Such an evaluation against a reference simulation also 

minimizes the influence of the deficits of the hydrological model under low flow conditions on the verification analysis as 

found for the reference simulation described above. However, the effect of pre-processing on the performance if real 

observations are used for the verification reveals interesting aspects of the deficits of the hydrological simulations and will 10 

be discussed in section 5. 

4.2 Skill of the meteorological input 

The raw and bias corrected temperature and precipitation reforecasts used to drive the hydrological predictions are verified 

against the gridded observations in the Verzasca domain. In Figure 3, the CRPSS for the raw and the bias corrected 

temperature and precipitation reforecasts is shown. Raw temperature reforecasts mainly exhibit negative CRPSS values, 15 

indicating essentially no skill compared to climatology. After bias correction using the quantile mapping technique the 

reforecasts exhibit positive CRPSS up to 18-24 lead days in all seasons but spring (MAM). Raw precipitation reforecasts 

exhibit positive skill for lead days 5-11 in all seasons and negative CRPSS for longer lead times. After bias correction the 

skill is higher with positive CRPSS up to three weeks in winter and springMAM. In JJA the positive skill is only observed 

for 2 weeks lead time and in SON and DJF for the first week only. Similar results are obtained for the Klöntal and the Thur 20 

catchment (not shown). 

4.3 Streamflow prediction performance 

4.3.1 Prediction performance 

The performance of the reforecasts is analysed for all available reforecast dates within the period 1994-2014. In Figure 4 the 

resulting scores (NSE, Bias, CRPSS and the spread-error-ratio) for all three catchments are presented indicating the skill of 25 

the prediction system against the reference simulation, i.e. the expected performance of the system for any date throughout 

the year. 

For the Verzasca catchment, the skill in terms of the NSE from the ESP predictions suddenly drops after the initialization of 

the forecasts whereas the prediction system using meteorological reforecasts provides positive NSE up to 7 days. Pre-

processing of precipitation generally even lowers the NSE indicating positive skill only for 5 lead days. Pre-processing of 30 

temperature does enhance the skill with positive NSE up to 13 days lead time. If both variables (precipitation and 
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temperature) are pre-processed the positive effect of the temperature pre-processing on NSE is diminished by the negative 

effect of precipitation pre-processing.  

The negative biases of the ESP approach indicate an underestimation of the streamflows for all lead times in the Verzasca 

catchment. Raw forecasts show even stronger underestimation. After pre-processing either precipitation or temperature this 

underestimation is lower and reaches similar biases as the ESP predictions. If both parameters are pre-processed the biases 5 

are close to 0 or slightly positive indicating that the streamflows are neither under- nor overestimated. 

The overall performance characterized by the CRPSS indicates positive skill for the ESP predictions up to 15 days lead time 

for the Verzasca, but the skill drops quickly after the initialization of the forecasts as in the NSE. Raw forecasts only show a 

positive CRPSS for the first 5 lead days. Pre-processing of precipitation increases the CRPSS at short lead times. 

Temperature pre-processing enhances the skill at early lead times and in addition elongates positive skill up to 15 days lead 10 

time. This is even more pronounced if both variables are pre-processed.  

The spread error ratio of the ESP predictions is below 1 for all lead times indicating overconfidence. For the NWP-Hydro-

chain the overconfidence is even higher for raw and temperature-only pre-processed (ppT) reforecasts. Pre-processed 

precipitation (ppP) reforecasts can partly correct the overconfidence of the streamflow reforecasts and if both variables are 

pre-processed (ppTP), the spread error ratio indicates reliable forecasts. 15 

These skill signatures are similar in the other two catchments analyzed in this study (Figure 4), although not in an absolute 

sense. In the small, semi-glaciated Klöntal catchment the absolute skill generally is higher, and the skill of the predictions 

extends to longer lead times. In particular the raw and temperature-only pre-processed reforecasts (ppT) show positive skill 

in terms of the NSE throughout all lead times. In the Thur catchment the skill of the raw reforecasts outperforms the ESP 

predictions as well, but in contrast to both other catchments, the effect of pre-processing is negligibly small. 20 

4.3.2 Seasonal variations in skill 

The prediction skill of the different approaches does not only vary across catchments but as well across seasons. In Figure 5 

the performance in the Verzasca catchment for the four seasons DJF, MAM, JJA and SON isare shown. The general 

characteristics are similar as observed for the entire year, i.e. the ESP based predictions exhibit a sudden drop in the NSE 

after initialization and most benefits (positive skill to longer lead times) are obtained if temperature-only is pre-processed 25 

(ppT). In DJF and MAM this skillful horizon is extended by ppT, from 5 (3) days to up to 16 (9) days in MAM (DJF) and 

the bias is reduced.  

The overall performance (CRPSS) for the ESP predictions is better than the reference climatology for all lead times in MAM 

and clearly outperforms the raw reforecasts and precipitation-only pre-processed reforecasts (ppP) in MAM and DJF. For the 

temperature-only pre-processed reforecasts (ppT) and if both variables are pre-processed (ppTP), the predictions in these 30 

seasons (DJF and MAM) outperform the ESP forecasts for lead times up to 12 to 15 days and are equal for longer lead times. 

In JJA (and SON, not shown) the ESP predictions only exhibit a positive CRPSS up to 5 and 9 days, whereas the raw 

reforecasts (i.e. without any pre-processing) indicate positive skill up to lead times of 10 up to 15 days. However, in contrast 
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to DJF and MAM the influence of the pre-processing on the performance is negligible in JJA. Furthermore, in JJA the bias 

and the spread error ratio are only better if the pre-processing includes precipitation.  

The seasonal variation in performance holds true as well for the other catchments, i.e. reforecasts initiated in winter and 

spring show highest benefits over the reference climatology. In contrast to the Verzasca catchment, the raw and precipitation 

only pre-processed reforecasts show higher streamflows than the reference climatology in MAM and the raw and 5 

temperature pre-processed reforecast show a positive NSE up to 30 lead time days (Figure 6, left).  

Less seasonal variation is observed in the Thur catchment although the general signatures are evident as well. In MAM 

(Figure 6, right) all methods perform better than the reference simulation (positive CRPSS) over the full forecast range. 

Generally worst performance is found for the ESP. The effect of the pre-preprocessing is limited and can mainly be noticed 

if precipitation is pre-processed, resulting in smaller biases and a Spread to error ratio closer to 1, indicating a reduction in 10 

overconfidence. 

4.3.3. Reliability of the ensembles 

An additional important forecast characteristic is the reliability of the predictions, which cannot directly be deduced from the 

metrics shown above. Therefore, the rank histogram for the full period (Full year) and MAM reforecasts in the Verzasca 

catchment for all model configurations is shown in Figure 7 to assess the reliability of the streamflow forecasts. As an 15 

example we focus on the rank histograms of the full period (Full year) and the MAM reforecasts, because of its 

representativeness for the seasonality of performance. In MAM, both versions, raw and precipitation-only pre-processed 

reforecasts, show an underestimation of the flows (negative bias) indicating that most reforecast members tend to be lower 

than the corresponding observations. The strong negative bias is reduced if temperature-only pre-processed reforecasts (ppT) 

are used. But still a U-shape is evident in the histograms that indicates overconfidence and thus confirms the conclusions 20 

from the spread error ratio. 

If both temperature and precipitation is pre-processed (ppTP) the resulting rank histograms become more uniform, in 

particular for longer lead times indicating a reduction of the overconfidence. But shorter lead times still exhibit some 

overconfidence. The rank histograms for the ESP predictions do provide more uniform rank histograms with a weak 

tendency of a negative bias. Although slight differences can be observed between different seasons, the main characteristics 25 

are similar for the full period. 

The rank histograms for the Klöntal and Thur catchments (supplementary material) exhibit the same general behaviour 

regarding the reliability, but improvements by pre-processing are less pronounced for the Thur catchment and the rank 

histograms still indicate overconfidence even if both variables are pre-processed. 

4.3.4 Snow water equivalent verification 30 

To generate skillful streamflow predictions in mountainous catchments, the snow in the catchment is a crucial variable. 

Therefore, the snow water equivalent (SWE) in the hydrological model is analyzed according to different elevation regions. 



12 

 

For the verification we analyze the SWE at elevations above and below 1500 m a.s.l.. As in the verification of the 

streamflow reforecasts, the SWE is verified against the SWE of the reference simulation to replace the observations. For an 

evaluation of the SWE against real observation the reader is referred to A verification of modelled SWE against a consistent 

and homogenized climatology of gridded SWE based on station information is given by Jörg-Hess et al. (2014). They have 

shown that the modelled SWE exhibit errors that are in the same order as natural variability.  5 

In MAM, raw and precipitation-only pre-processed (ppP) reforecasts highly overestimate the SWE in areas above 1500 m 

a.s.l. indicated by the MAE and the bias in Figure 8. The predictive skill in terms of the CRPSS is lost after 9 days lead time. 

In contrast, the reforecasts in DJF  show stronger overestimation in areas below 1500 m a.s.l. and a total loss of predictive 

skill after 15 days lead time in this area. Lowest biases and highest skill (in terms of the CRPSS) is evident for reforecasts 

with pre-processed temperature and precipitation (ppTP), followed by temperature-only pre-processed (ppT) both 10 

outperforming the ESP predictions.  

For all versions of the meteorological reforecasts (raw and pre-processed) the resulting SWE reforecasts tend to be 

overconfident, with least overconfidence if precipitation-only is pre-processed according to the spread error-ratio. The ESP 

predictions exhibit less overconfidence for both seasons and regions and exhibit similar levels in terms of MAE and the bias 

and slightly less overall skill (CRPSS) compared to ppT and ppTP reforecast versions.  15 

The rank histograms confirm the conclusion drawn above. Raw and precipitation-only pre-processed reforecasts (ppP) 

exhibit largest positive biases throughout all lead times. In case of temperature-only (ppT) and temperature and precipitation 

pre-processed reforecasts (ppTP) the rank histograms indicate overconfidence in the beginning which is reduced for longer 

lead times. 

The SWE verification in the Klöntal catchment shows a similar behavior with negative biases and largest MAE for the raw 20 

and precipitation-only pre-preprocessed (ppP) reforecasts. In contrast to the Verzasca catchment the CRPSS stays positive 

for all versions and for all lead times. A similar behavior is observed in the Thur catchment with positive skill for all lead 

times but smaller negative biases (the corresponding figures for the Klöntal and the Thur catchment can be found in the 

supplementary material). 

5. Discussion 25 

For a proper evaluation of the effect of pre-processing on the hydrological streamflow predictions the following discussion 

considers the verification against the reference simulation. The meteorological input reforecasts highly benefit from the pre-

processing procedure applied. The skill found for the pre-processed temperature and precipitation reforecast is comparable to 

the skill found in Monhart et al. (2018). In contrast to the present analysis, our earlier study used a station wise post-

processing of the raw forecasts using the same setup as in the present study. Similarly, different studies emphasize the 30 

benefit of pre-processing precipitation (Crochemore et al., 2016) and temperature forecasts (Lucatero et al., 2017) at 

catchments at various spatial scales. The QM method used here is a popular pre-processing method for hydrometeorological 
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ensemble forecasts (e.g. Kang et al., 2010; Lucatero et al., 2018; Verkade et al., 2013) but does not come without limitations. 

In particular Zhao et al. (2017) point out the inability of QM to provide fully reliable ensembles for post-processing GCM 

precipitation. However, an extensive discussion of the reliability issue of the pre-processed meteorological input data used in 

this study can be found in Monhart et al. (2018). To summarize, it was found that the combination of the NWP model with 

QM indeed is able to provide reliable ensembles for lead times beyond 10 days but at shorter lead times the ensembles tend 5 

to be overconfident because the spread in the underlying NWP forecasts tends to be inappropriate what cannot be corrected 

using QM. An additional critical limitation of QM is the issue of variance inflation. Maraun (2013) emphasizes that the 

variance of the downscaled product strongly depends on the variance of the raw model grid box and QM does not introduce 

any small-scale variability. This is of particular importance for applications using local-scale information (such as distributed 

hydrological modelling) and if extremes are considered. In CH2018 (2018) these limitations of the QM method are 10 

highlighted for local climate change scenarios in Switzerland. In particular for convective precipitation events in summer the 

variance inflation issue can cause misinterpretation of data at the finer resolved scale. In the present study we are interested 

in the average streamflow throughout all season in the year for the upcoming 32 days and not in predicting extremes what 

reduces these implications, but still the spatial structure especially during convective situations in summer will likely be 

misrepresented and can influence the results. Different alternatives could be used depending on the specific application of 15 

the downscaled information, e.g. perfect prognosis approaches (Von Storch, 1999), the use of weather generators (e.g. Peleg 

et al., 2017) or in general stochastic methods (e.g. Volosciuk et al., 2017). However, such methods often require large 

computational resources. As the intention of this study is to pioneer the use of subseasonal hydrological predictions towards 

an operational use, we decided to use the QM technique despite its limitations. The results presented above and discussed in 

the following paragraphs legitimate our choice. Nevertheless, future studies should focus on the effect of variance inflation 20 

when QM is used to pre-process the predictions and alternative methods should be considered.  

Our results show that subseasonal streamflow predictions in mountainous catchments can be skillful for the full 32 days lead 

time horizon in winter and spring. The traditional ESP approach clearly provides skillful predictions for all three catchments 

analyzed in this study, in terms of the overall skill (CRPSS) and the reliability. This is in agreement with the findings from 

Arnal et al. (2018) comparing the skill the of an ESP and a seasonal forecasting system across many regions in Europe. They 25 

found that the ESP approach can be outperformed mainly in the first month in terms of the CRPSS. Nevertheless, if scores 

evaluating the mean characteristics are considered (NSE and bias) we observe worse performance than suggested by the 

CRPSS. This indicates that the ESP predictions can capture the future evolution of the streamflow in a probabilistic sense. 

Furthermore, the substantial decrease in skill within the first days suggest that the ESP predictions are not able to capture the 

exact evolution but can rather be used to estimate the general behavior within the upcoming weeks. This is in agreement with 30 

the exponential decay in skill with increasing lead time found for ESP forecasts in UK catchments (Harrigan et al., 2017). If 

the NWP predictions are used to predict the streamflows, the skill can clearly be enhanced but in most cases only if the 

driving meteorological predictions are pre-processed. This indicates that the knowledge of the synoptic conditions plays an 

important role to enhance the skill of the streamflow predictions at early lead times and that biases in these driving 
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predictions need to be corrected prior to make these predictions useful. Furthermore, the improvements in performance of 

the streamflow predictions by pre-processing suggests that the gridded observational dataset provide a good baseline for this 

purpose, despite the difficulties involved in producing a gridded product based on a limited number of observational stations. 

In addition, the performance of the ESP predictions could potentially be enhanced if not all, but only individual years are 

taken into account.  A certain guidance based on a selection of years with similar initial conditions could be taken into 5 

account. Crochemore et al. (2017)  have shown that seasonal prediction based on ESP can benefit from condition the 

forecasts on climatology. However, an evaluation of such an approach is out of scope of the present study.    

The effect of pre-processing is even more pronounced for the SWE verification. In the NWP chain the SWE is highly 

overestimated if temperature is not pre-processed (raw and ppP). Hence, the hydrological model inherent downscaling of 

temperature using an adiabatic laps rate leads to low skill in terms of CRPSS at longer lead times. Although, temperature 10 

lapse rate corrections have been found to be important for reproducing streamflows simulation based on regional climate 

model outputs in mountainous snow- and glacial dominated catchments (Butt and Bilal, 2011; Rahman et al., 2014) our 

study suggest that at least in a subseasonal forecasting context such corrections are not sufficient. Similarly, Tobin et al. 

(2011) have shown for flood forecasting framework constant lapse rate corrections even if seasonally-derived are unable to 

capture the dynamics of temperature changes during an event. At lower elevations this effect is even more crucial because 15 

the SWE is smaller and temperature biases accelerate melting processes in the model. If temperature pre-processing is 

included, these large errors can be avoided, and the skill of the SWE predictions is substantially increased. This effect 

underlines the importance of pre-processing the subseasonal forecast in snow dominated catchments. The importance of the 

SWE initial conditions for subseasonal forecasts has been shown by Jörg-Hess et al., (2015). They conclude that a better 

representation of snow melt process by improved states of the snow storage can greatly improve the predictions of 20 

streamflow volumes. The influence of initial conditions of SWE on seasonal streamflow predictions in the US is shown by 

Wood et al. (2016) in an idealized experiment. Furthermore, they stress that limited skill in seasonal meteorological 

predictions can be amplified in streamflow prediction skill. Our study suggests that an additional pre-processing of the 

meteorological forecasts is necessary to maintain the benefit of the initial conditions and confirms the findings of amplified 

skill in the streamflow predictions if the forecasts exhibit some skill. Otherwise, low skill in performance of the (raw) 25 

forecasts and the loss in skill to predict the SWE over longer lead times directly translates into low skill of the streamflow 

forecasts.  

The comparison of the performance in the three different catchments analyzed gives further insight in the predictability of 

streamflows in alpine catchments and strengthens the picture drawn above which shows the importance of the complex 

interactions between precipitation, temperature and SWE at the subseasonal forecast time scale. In the Thur catchment, the 30 

largest catchment in the analysis, which is mainly precipitation dominated, the difference in skill between the ESP 

predictions and the NWP based prediction is smallest. Similarly, the differences between raw and pre-processed experiments 

are marginal. Only in spring, if precipitation is pre-processed (ppP and ppTP) a small improvement in the CRPSS can be 

observed at early lead times coinciding with the lead times where pre-processed precipitations still exhibit skill. Hence the 
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initial conditions of the model and skillful precipitation predictions at early lead times determine to a large degree the skill of 

the reforecasts and the negligible snow-covered area within the catchment does marginally affect the performance of the 

runoff predictions. In the Thur catchment two additional subcatchments in the upper Thur catchment (at the runoff stations 

Halden and Murg) have been verified to identify the influence of hilliness and catchment size on the forecast performance. 

Although the size of the Murg (212 km2) and the Halden catchment (1750 1085 km2) varies significantly, the hilliness in 5 

both is comparable, while the lower part of the Thur catchment (station Andelfingen, 1696 km2) is a typical lowland region. 

For all three stations the skill is very similar (supplementary material Figure S4) and pre-processing does not vary either. 

This suggest that neither hilliness nor catchment size does significantly influence the performance of the forecast. In the 

snow dominated and partially glaciated Klöntal catchment, the smallest catchment in this analysis, the high skill in terms of 

the NSE indicates a good performance of the ensemble mean but in terms of the overall skill (CRPSS) the NWP prediction 10 

are only skillful if temperature pre-processing is considered. This superiority in the mean is most likely the effect of melting 

processes. On the other hand, the Verzasca catchment is snow dominated in elevated regions, but rain dominated at lower 

elevations due to its large gradient of elevations. Therefore, snow-melt processes tend to occur more often and are more 

diverse due to the higher elevation gradient within the catchment. The NSE does indicate skill up to 13 days lead time for the 

temperature-only pre-processed forecast (ppT) but precipitation pre-processing even lowers the skill despite an increase in 15 

skill of the corresponding precipitation inputs. This counterintuitive behavior of lowering the skill (in terms of NSE) in the 

streamflow prediction despite the use of improved precipitation inputs underlines that for a profound assessment of the skill 

of ensemble forecasts, verification metrics focusing on mean flows can be insufficient and misleading.  

The combination of pre-processed subseasonal meteorological prediction with hydrological simulations can outperform a 

traditional ESP approach in small to medium-sized alpine catchment. Especially in snow dominated and (semi-) glaciated 20 

catchments such a prediction chain brings large benefits in the forecast performance. But temperature (and precipitation) 

from the NWP model needs to be pre-processed prior to be used in hydrological models to achieve better performance than 

an ESP approach. In precipitation dominated catchment the pre-processing does only show a marginal improvement in skill, 

but the NWP chain clearly outperforms ESP predictions. Hence, such systems can be of interest for application when 

accurate and reliable runoff predictions are desired, especially in snow-dominated catchments. Furthermore, Frei et al., 25 

(2018) have shown that a general decrease of snow fall is expected in future climate change scenarios, while at higher 

elevation the signal shows a slight increase in heavy snowfall events, due to a shift of climatological cold areas into a 

temperature interval which favor higher snowfall intensities in combination with a general increase in winter precipitation. 

Especially regarding future scenarios which expect an increase in hydro power production due to melt water in the period 

from October to April (Weingartner et al., 2013) such systems might become a valuable tool for optimizing hydropower 30 

production in mountainous areas. Future work should include statistical post-processing techniques (of the hydrological 

output) to correct the errors and biases of the hydrological simulation and to account for additional uncertainty induced by 

the hydrological model in the ensemble. 
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The discussion above focused on the effect of pre-processing hydrometeorological predictions and therefore only the 

verification against the reference simulation was considered and hydrological model errors are thus excluded from the 

analysis. However, to estimate the real world performance the hydrological model errors need to be taken into account. To 

do so we verified the streamflows of the reference simulation of the PREVAH model against observations. The evaluation 

presented in section 4.1 revealed the good performance of the hydrological model with NSE above 0.8 in most seasons. 5 

Largest difficulties are observed in seasons with low flow conditions (in DJF in the Verzasca, and in SON and DJF in the 

Klöntal catchment). This is particularly evident in the logarithmic version of the NSE, in which flood peaks are flattened to 

better asses the performance under low-flow conditions, the difficulties of the model remain. These deficits of the 

hydrological model need to be considered in the verification of the predictions and are the reason for verifying the 

reforecasts against the pseudo observations from the reference simulation. Otherwise, if the predictions are verified against 10 

real streamflow observations the hydrological model deficiencies dominate the skill characteristics of the predictions and 

possibly impede the identification of the effect of pre-processing. An example of such a deficiency is the uncertainty 

resulting from the hydrological modelling that result in stronger overconfidence especially at short lead times when the 

hydrological model uncertainty may be the dominant source of uncertainty as discussed for example in Bennett et al. (2014). 

To illustrate this for the prediction used in this study, the verification was repeated with the real runoff observations. The 15 

skill in most seasons (MAM, JJA, SON) exhibits the same behavior with high skill at early lead times and decreasing skill at 

longer lead times and generally higher overconfidence at short lead times is observed what confirms the findings by Bennett 

et al. (2014). But during low flow condition (in DJF in the Verzasca catchment and in DJF and SON in the Klöntal 

catchment), strong negative peaks in skill (in terms of the CRPSS) are present at short lead times, with increasing skill at 

longer lead times (supplementary material). The corresponding input data revealed that this behavior can be associated with 20 

predicted snow melt events that coincide with observed “no melt” events. During such events, all members of the 

experiments including pre-processed temperatures (ppT ad ppTP) overestimate the observed runoff peak. The comparison of 

the meteorological input data from the reforecast with data from an observational station shows an overestimation in both 

temperature and precipitation. The temperature observations for this event were clearly below freezing, whereas the raw 

forecast data is close to 0° C, and the pre-processed temperature is positive. Hence, the melt-affected area is too large leading 25 

to an overestimation of the runoff contribution. In addition, overestimated precipitation will further contribute to runoff and 

less deposition of solid precipitation will occur. Similarly, the reference simulation does overestimate the runoff peak 

because of an overestimation of the temperature in the gridded data used to run the hydrological model. It is known that 

gridded observations do inherit errors due to interpolation (Freudiger et al., 2016) and do have difficulties in resolving small-

scale features, such as for example cold pools in alpine valleys (Frei, 2014). This can partly explain this behavior. Another 30 

potential explanation is an insufficient formulation of the discrimination between rain and snow in the hydrological model. 

In the version of PREVAH used for this study, the formulation follows a threshold based method in combination with a 

linear range as described in Zappa et al. (2003). This linear transition range is set between the threshold values -1.5°C and 

+1.5°C set to +/-1.5°C as determined by the hydrological calibration. The threshold itself and the corresponding linear range 
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highly depends on the hydroclimatic characteristics and thus can strongly vary in space (Liu et al., 2018). It has been shown 

that more sophisticated approaches using logistic regression for characterizing this range can provide better results (Frei, 

2016). In principle such an approach could be included into the hydrological model, but such an implementation is out of 

scope of this analysis. Alternatively, it has been shown that such errors of the hydrological model can be corrected by 

additionally post-processing the hydrological output using neuronal networks or logistic regressions (e.g. Bogner et al., 5 

2016; Sharma et al., 2018). 

6 Conclusion and outlook 

Recent advances in subseasonal meteorological ensemble models makes it feasible to develop hydrometeorological 

prediction systems driven by such NWP forecasts. We developed an end-to-end hydrometeorological prediction system 

driven with reforecasts from the subseasonal prediction system from the ECMWF. A pre-processing procedure based on QM 10 

is used to bias correct and downscale the meteorological predictions prior to the hydrological model. The performance of the 

resulting streamflow forecasts is assessed for three small to medium size alpine catchments using various verification metrics 

to assess different attributes of the reforecasts. Our study demonstrates the potential of ensemble streamflow predictions in 

small mountainous catchments. Moreover, the benefits of combining NWP predictions and hydrological models has been 

shown. The analysis indicates the need for pre-processing of the driving meteorological prediction especially in small snow-15 

dominated catchments in alpine regions.  

Decent skill of traditional ESP predictions compared to climatological reference can extend up to the entire 32 days. The 

NWP approach outperforms the EPSP predictions in all catchments and most seasons in particular at short lead times up to 

about day 5. In snow dominated catchments, an additional pre-processing step of both, temperature and precipitation, is 

crucial to further enhance the skill and the reliability of the forecasts. While pre-processing precipitation-only is not 20 

sufficient to enhance the forecast performance, it is crucial in the combination with temperature preprocessing to improve the 

forecast reliability. Again, it is noted here that the verification is done against the reference simulation as replacement of real 

observations. Hence, the performance cannot directly be interpreted as the prediction performance in an absolute sense, 

because in our approach the deficits of the hydrological model are not fully taken into account. However, the relative 

benefits of using NWP output as forcing for the hydrological simulations and the improvements after pre-processing is 25 

expected to hold true as well with real observations.  

The benefits of the NWP approach and the pre-processing step is most pronounced in winter and spring when snow melt 

processes dominate. This demonstrates the importance of snow for the predictability of streamflows at the subseaonal 

timescale. Hence the deficits in the hydrological model with respect to snow related processes (in particular the distinction 

between solid and liquid precipitation) should receive further attention to enhance the forecast performance. Alternatively, 30 

post-processing techniques applied to the streamflow forecasts can be applied to correct such hydrological model deficits. 

This would allow assessing the skill of the forecasts with respect to real observations and can potentially further increase the 



18 

 

performance of the forecasts. Hence, if post-processing techniques are able to account for the deficits of the reference 

simulation, the combination of both pre- and post-processing could provide skillful lead streamflow predictions in snow and 

glacial dominated catchment in mountainous terrain at the subseasonal forecast horizon. 

Furthermore, technical improvements of the NWP models related to the ensemble size, frequency of issuing reforecasts and 

improvements in the representation of physical processes, can be expected to have a positive effect on the resulting 5 

streamflow performance. In our setup we use a rather simple statistical bias correction technique to pre-process the 

hydrometetroloigcal prediction. More sophisticated pre-processing techniques could be applied to analyze their capability to 

enhance the streamflow performance. Since ensemble hydrometeorological predictions are of interest for specific 

applications the forecasts should further be analyzed according to their economic value. For example to optimize the 

revenues of existing hydropower plants in alpine regions or for early better preparedness of hydrological droughts.  10 

 

Data availability:  

ECMWF forecast data are accessible through the MARS archive: http:/ /apps.ecmwf.int/archive-catalogue/, observation 

records used in this study are available from the following website: https://gate.meteoswiss.ch/idaweb/more.do 

(SwissMetNet). Streamflow series and catchment boundaries are provided by the Swiss Federal Office for the Environment 15 

(FOEN). 
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Figure 1: Conceptual design of the NWP-Hydro-chain with and without pre-processing (left) and the ESP chain (right). 
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Figure 2: Location and extent of the three selected catchments and their corresponding streamflow and SWE climatology. The 

Verzasca catchment in the south, Klöntal catchment in the center and the Thur catchment in the north east. 
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Verzasca Klöntal Thur 

Catchment area [km2]   185 83 1696 

altitude range [m] maximum elevation 2864 2883 2505 

  average elevation 1651 1704NA 770 

  minimum elevation 490 847 356 

dominant hydroclimatic 

regime   snow snow and glacial precipitation 
Table 1: Overview of the catchment characteristics for the three catchments analysed. 

Verzasca   Klöntal   Thur   

NSE FullYear 0.85 0.84   0.84   

  DJF 0.38   0.39   0.83   

  MAM 0.88 0.82 0.85   

  JJA 0.82   0.75   0.79   

  SON 0.84 0.75 0.86   

NSE log FullYear 0.87   0.68   0.87   

  DJF 0.44   -0.14   0.82   

  MAM 0.90 0.84 0.87   

  JJA 0.86   0.78   0.85   

  SON 0.89 0.43 0.88   

MAE [m3/s] ([%]) FullYear 2.84 (25.9) 1.19 (26.6) 10.54 (22.5) 

  DJF 1.35 (36.1) 0.73 (50.7) 10.89 (25.2) 

  MAM 3.16 (18.7) 1.20 (19.1) 11.53 (16.2) 

  JJA 3.40 (33.9) 1.63 (26.7) 11.30 (28.7) 

  SON 3.45 (23.1) 1.21 (39.6) 8.50 (23.9) 

Bias [m3/s] ([%]) FullYear 0.28 (2.5) 0.26 (5.9) -0.42 (-0.9) 

  DJF 1.07 (28.7) 0.39 (27.2) 2.49 (5.8) 

  MAM -0.06 (-0.4) -0.01 (-0.2) -1.47 (-2.1) 

  JJA 0.23 (2.3) 0.04 (0.6) -4.41 (-11.2) 

  SON -0.11 (-0.7) 0.66 (5.9) 1.74 (4.9) 

Table 2: Verification of the reference simulation with corresponding observations for the Verzasca catchment, the Klöntal 

catchment and the Thur catchment. In each catchment the Nash-Sutcliffe coefficient (NSE), the Nash-Sutcliffe coefficient using 

logarithmic input values (NSE log), the bias and the mean absolute error are shown. The verification is done for the full simulation 

period (FullYear: 1994-2014) and the individual seasons within the full period (DJF, MAM, JJA, SON). A perfect simulation 5 
would have NSE=1, and positive values of NSE indicated better skill than the reference climatology 
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Figure 3: Overview of the CRPSS for weekly mean temperatures (left) and weekly precipitation sums (right) in 1994-2014 

reforecasts grouped by season (DJF, MAM, JJA and SON) for all grid points within the Verzasca catchment. The shading of the 5 
boxes denotes lead time, whereas week 1 corresponds to day 5-11, week 2 to days 12-18 and so on. Grey shading for raw forecast 

and blue shading for pre-processed reforecasts. An individual box shows the distribution of the CRPSS for all grid points within 

the catchment averaged over all 13 reforecast initialization dates within one season. The boxes depict the interquartile range, the 

mean is indicated by the horizontal line and the whiskers span the length of 1.5 x standard deviation of the data. A perfect forecast 

has CRPSS=1, and positive values indicate better skill than the reference climatology. 10 
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Figure 4: Verification of the streamflow forecasts for the Verzasca (left), the Klöntal (middle) and the Thur catchment (right) 5 
considering all forecasts within the reforecast period. The Nash-Sutcliffe coefficient (NSE) in the upper most panel, the mean bias 

(Bias) in second, the CRPSS in the third, and the Spread-Error relationship (SprErr) in the lowest panel. For each score the 5 

different setups are shown. The first row corresponds to the ESP approach (esp), the second row to the reforecasts using both pre-

processed temperature and precipitation (ppTP), the third row to the pre-processed temperature-only (ppT), fourth row to the 

pre-processed precipitation-only (ppP) and the fifth row to the reforecasts using the raw meteorological input reforecasts (raw). 10 
The NSE and the CRPSS span from -infinty to 1 with a perfect score being 1; a bias of zero indicates no forecast error with 

negative values indicating underestimation and positive values indicating overestimation of the flow; reliable forecasts exhibit a 

SprErr of 1 and lower values indicate overconfidence and greater values indicate overdispersion.  
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Figure 5: Same as Figure 4 but seasonally aggregated (DJF, MAM, JJA and SON) for the Verzasca catchment. 
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Figure 6: Same as Figure 4 but for the Klöntal and the Thur catchment in MAM. 
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Figure 7: Rank histograms for all four configurations (raw, ppP, ppT, ppTP) and the ESP predictions for the full analysis period 

(Full year) and MAM in the Verzasca catchment. The basic principle in the rank histograms the assumption that the ensemble 

members determine bins in which the corresponding observation can be ranked. For a reliable forecast, the observations are 5 
equally distributed across all different bins resulting in a uniform shape of the rank histograms. If for example the frequency in 

the lowest (rank 0) and the highest bin (rank 6) is much higher, the observation tends to be more frequently either higher than all 

ensemble members or lower than all ensemble members but less often in between the ensemble members. This specific U-shape 

indicates that the forecast spread is too narrow and thus the forecasts generally overconfident. In contrast, if the observations tend 

to be more often in between the ensemble members (e.g. rank 2 and 3) the rank histogram exhibit a convex shape and thus the 10 
forecast spread is too large indicating overdispersive forecasts.  
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Figure 8: Same as in Figure 5 but for SWE in DJF and MAM in the Verzasca catchment.   

 


