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Abstract 12 

Snow water equivalence (SWE) is typically computed from snow weight by the SNOTEL system in the 13 

US. However, a snow pillow, the main snow weight sensor used by SNOTEL, requires a large, open, flat 14 

area (at least 9 square meters) and substantial maintenance costs.  This article presents the snow water 15 

equivalence estimation (SWEE) algorithm that estimates the SWE evolution merely from continuous 16 

snow depth and temperature measurements using common sensors.  The key component is a depth-17 

averaged snow density model that is available in the literature, but is underutilized.  Here, we demonstrate 18 

that the snow density model can estimate mass exchanges (SWE changes due to snowfall, erosion, 19 

deposition, and snowmelt) as well as the SWE.  The SWEE algorithm can potentially increase the number 20 

of snow monitoring locations because snow depth and temperature sensors are considerably more 21 

accessible and economical than snow weighing sensor. 22 

1. Introduction 23 

Snow Water Equivalence (SWE) is important for seasonal forecasting of water resource because it is a 24 

direct indicator of snow water storage. The basic SWE calculation is snow depth multiplied by snow 25 

density. However, in general, it is not straightforward to estimate the season-long evolution of SWE 26 

because snow density is difficult to measure directly and without disturbing the snowpack. The snow 27 

pillow is a common method to weigh snowpack for SWE computation. This sensor requires a relatively 28 

large, open, flat area (3m x 3m, at least), labor-intensive installation, and high maintenance cost. SWE can 29 

also be estimated from the difference between passive, natural electromagnetic energy under and above 30 

snowpack (e.g. Campbell Scientific, CS725). In contrast, a snow depth measurement is easy to measure 31 

continuously using a ranging sensor, even in remote areas since the ranging sensor requires very low 32 

power consumption and minimal maintenance.  If a simple method to determine snow density is available, 33 

SWE could be estimated from the snow depth data without expensive snow pillow or electromagnetic 34 

sensors. 35 

Generally, there are two types of approaches for estimating snow density variation. One uses fitted 36 

equations, typically a function of time (e.g. Kelly et al., 2003; Jonas et al., 2009; Sturm et al., 2010; 37 

Bormann et al., 2014), and the other employs process-based differential equations (e.g. Anderson, 1976). 38 
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Kelly et al. (2003) fitted the snow density evolution by a simple logistic curve for processing remote 39 

sensing data. Jonas et al. (2009) and Sturm et al. (2010) modeled snow density by the multiple linear 40 

regressions and the exponential fitting to snow depth, respectively. Bormann et al. (2014) simply used a 41 

linear relationship between mean snow density and the day of year. On the other hand, the snowpack 42 

density and its densification rate may be modeled using more detailed empirical but process-based 43 

relationships (Kojima, 1967, Mellor, 1975, Anderson, 1976, and Lehning et al., 2002). De Michele et al. 44 

(2013) proposed one equation for calculating the bulk snow density, which includes the effects of 45 

compaction, metamorphisms, and snow events on snow density. Among others, one of the available 46 

models was developed by Kuchment et al. (1983), Motovilov (1986), Anderson (1976), Horne and 47 

Kavvas (1997), and completed by Ohara and Kavvas (2006).  Although these process-based snow density 48 

models are effective under the changing climate, they have not been used for SWE estimation to date.  49 

This article proposes a spreadsheet-friendly algorithm to extract more useful information from hourly 50 

snow depth and temperature record using the process-based snow density model.  51 

We selected the depth-integrated equation based on the series of the experimental studies on snow 52 

metamorphism processes (Bader et al., 1953; Yoshida, 1955; Kojima, 1967; Mellor, 1974,1975, and 53 

1977), summarized in the supplemental document of this article.  The experimental snow density 54 

evolution equation was integrated over a snowpack assuming that the snow density at 2/3 of snow 55 

thickness from the snow surface can represent the average snow density (von der Heydt, 1992). 56 

Accordingly, the depth-averaged snow density evolution may be described by the following ordinary 57 

differential equation,   58 

𝑑𝜌𝑠

𝑑𝑡
=

2

3𝜂𝑜
𝐷𝜌𝑠𝑒−0.04(𝑇𝑐−𝑇𝑠)𝑒−𝑘𝑜𝜌𝑠 −

(𝜌𝑠−𝜌𝑛𝑠)𝜌𝑤

𝐷𝜌𝑛𝑠
𝑠𝑛 .    (1) 59 

 60 

t = time (hour) 61 

D = snow depth (cm) 62 

ρs = snowpack density (g/cm3) 63 

ρns = new snow density (g/cm3) 64 

ρw = density of liquid water = 1.0 (g/cm3) 65 

Tc = critical temperature = 0°C 66 

Ts = snow surface temperature (°C) 67 

k0 = coefficient = 21.0 (cm3/g) (Kojima 1967, Anderson et al. 1976) 68 

η0 = viscosity coefficient, a constant at 0 °C = 15.0 ~ 38.0 (cm·hour) (Kojima 1967, 69 

Anderson et al. 1976) 70 

sn = rate of incoming snow (cm/hour)  71 

The exponential term in the right hand side describes the gravitational compaction-snow metamorphism, 72 

and the second term expresses the density change created by the new snow deposit.  Note that the unit 73 

system was restricted in the gram-centimeter-hour system by the original empirical relationships in the 74 

literature.  Here, we adopt this convenient depth-integrated equation because it sufficiently covers the 75 

major snow densification processes as well as being simple.   76 

2. Method 77 

First, the snow density equation, Equation (1), can be rewritten as 78 
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𝑑𝜌𝑠

𝑑𝑡
= 𝐺(𝐷, 𝜌𝑠, 𝑇 ) + 𝐹(𝐷, 𝜌𝑠, 𝑠𝑛 ),    (2) 79 

where  80 

𝐺(𝐷, 𝜌𝑠, 𝑇 ) =
2

3𝜂𝑜
𝐷𝜌𝑠𝑒0.04𝑇𝑠𝑒−𝑘𝑜𝜌𝑠,     (3) 81 

𝐹(𝐷, 𝜌𝑠, 𝑠𝑛 ) = −
(𝜌𝑠−𝜌𝑛𝑠)𝜌𝑤

𝐷𝜌𝑛𝑠
𝑠𝑛.     (4) 82 

The SWE change per unit time, ∆𝑆𝑊𝐸 (cm/hour), can be estimated as the difference of Snow Water 83 

Equivalences (SWEs) at future time and present time.  That is, 84 

∆𝑆𝑊𝐸 = 𝑆𝑊�̂�𝑖+1 − 𝑆𝑊𝐸𝑖,     (5) 85 

where the superscript denotes time step, and variable with hat is  predicted quantity without SWE 86 

deposition or abrasion. The SWE at the present time i can be computed as, 87 

𝑆𝑊𝐸𝑖 = 𝐷𝑖 𝜌𝑠
𝑖

𝜌𝑤
.       (6) 88 

Similarly, the SWE at the one time step ahead i+1 can be computed as, 89 

𝑆𝑊�̂�𝑖+1 = 𝐷𝑖+1 𝜌�̂�
𝑖+1

𝜌𝑤
,      (7) 90 

where the predicted snow density due only to gravitational compaction may be obtained from Equation 91 

(3) 92 

𝜌�̂�
𝑖+1 = 𝜌𝑠

𝑖 + ∆𝑡 ∙ 𝐺(𝐷𝑖, 𝜌𝑠
𝑖 , 𝑇𝑠

𝑖 ).    (8) 93 

When the change ∆𝑆𝑊𝐸 is negative, the snowpack loses its mass by snowmelt, wind erosion, or 94 

sublimation. If the change ∆𝑆𝑊𝐸 is positive, the snowpack received snowfall or snowdrift.  In this case, 95 

the depth integrated snow density must be adjusted with new snow density. 96 

{
𝜌𝑠

𝑖+1 = 𝜌�̂�
𝑖+1 + ∆𝑡 ∙ 𝐹(𝐷𝑖, 𝜌𝑠

𝑖, ∆𝑆𝑊𝐸 )                   ; ∆𝑆𝑊𝐸 > 0

𝜌𝑠
𝑖+1 = 𝜌�̂�

𝑖+1                                                                 ; ∆𝑆𝑊𝐸 ≤ 0 
    .   (9) 97 

Note that this algorithm requires two assumptions: 1) no snowmelt occurs during snow fall; 2) the density 98 

of new snow and drifted snow are the same. 99 

Additionally, snow depth data must be preprocessed by following two steps: 1) removing the 100 

measurement oriented abrupt jumps and 2) removing the random noise in the ranging sensor.  The latter 101 

data process can be performed by either moving average or exponential smoothing filter.  In this study, 102 

exponential smoothing filter was selected because filtering factor can be easily adjusted even in a 103 

spreadsheet. The exponential smoothing filter may be expressed as,  104 

𝐷𝑓
𝑖 = 𝛼𝐷𝑖 + (1 − 𝛼)𝐷𝑓

𝑖−1,    (10) 105 
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where 𝐷𝑓
𝑖is the filtered snow depth data at the present time i, and  𝛼 is the smoothing factor between 0 and 106 

1.  The smoothing factor may be selected depending on the data error or noise level, and will be discussed 107 

in the following section.  108 

3. Results and Discussion 109 

We applied the SWEE algorithm to data collected at the Brooklyn Lake SNOTEL site (41.3666 N, 110 

106.2333W, 3122 m ASL) in the Snowy Range, Medicine Bow National Forest, Wyoming.   Figure 1 111 

shows the time series of the observed snow depth (upper panel), the model-estimated snow density 112 

(second panel), the observed and computed SWE, and the computed SWE fluxes.  The snow density 113 

model described above was calibrated using three parameters (𝜌𝑛𝑠, 𝜂𝑜, and 𝛼) for the snow density data 114 

by the snow pit survey, denoted in the dot in the second panel of Figure 1, and for the SWE estimates of 115 

the SNOTEL.   The parameters selected for this demonstrative application were: 𝜌𝑛𝑠 = 0.18 (g/cm3), 𝜂𝑜  = 116 

21 (cm·hour), 𝛼 = 0.1.  The snow temperature was approximated by the hourly air temperature record in 117 

this application.  The SNOTEL SWE data, denoted by SWE obs., which were computed from the snow 118 

depth and snow pillow data by the Natural Resources Conservation Service (NRCS) with the standard 119 

procedure, was considered to be “ground truth” in this article.  120 

The SWEE algorithm output, denoted by SWE est., was comparable to the SNOTEL SWE, denoted by 121 

SWE obs., from the third panel of Figure 1 (Nash–Sutcliffe model efficiency [NSME] = 0.864 and R2 = 122 

0.854) (Nash and Sutcliffe, 1970).  We find that the timing and magnitude of noticeable changes in SWE 123 

is well represented.  However, there was some discrepancy in the SWE comparison, including over-124 

prediction of SWE before 18 March 2015 and under-prediction of SWE after 18 March 2015.  We pose 125 

seven possible reasons for these departures from measured values: 126 

1. Snow density of newly fallen snow 𝜌𝑛𝑠 is time dependent 127 

2. Snow erosion and abrasion by wind affect the snow depth observation 128 

3. Snow pillow measurement brings error into the SWE obs.  129 

4. Air temperature substitution for snow temperature is questionable 130 

5. The depth-averaged snow density model is overly simplified 131 

6. Accuracy of the snow depth measurement is poor 132 

7. Treatment for the snow depth data is inappropriate   133 

There could be different reasons that lead to the discrepancy; however, we found that the most important 134 

one may be the new snow density effect (item no.1).  Figure 2 shows the sensitivity analysis result for 135 

three main model parameters.  The NSME coefficient for the SWE was used for the model performance 136 

evaluation here.  Clearly, new snow density 𝜌𝑛𝑠 is the most sensitive parameter among three parameters 137 

(𝜌𝑛𝑠, 𝜂𝑜 , 𝛼).  It makes sense that new snow density varies from early winter storms to spring snow events 138 

(e.g. Susong et al., 1999).  This means that, if accuracies of the all observed data are ensured, it might be 139 

possible to analyze the density variation of newly fallen snow using this algorithm in theory. The effect of 140 

the air temperature substation for snow temperature (item no.4) could not be evaluated due to lack of the 141 

suitable sensor.  On the other hand, the SWE estimation was found to be surprisingly insensitive to the 142 

exponential smoothing factor 𝛼.  143 
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Figure 1 also includes the selected regression model estimates using a power function fitting (Equation 144 

(1) in Jonas et al., 2009), multiple linear fittings (Equation (4) in Jonas et al., 2009), and a time adjusted 145 

exponential function fitting (Equation (6) in Sturm et al., 2010).  The computed statistics, R2 and NSME, 146 

to on the SWE are tabulated in Table 1.  It was found that the regression models can capture the mean of 147 

the SWE dynamics well while the rapid changes of the snow density after the snow accumulation events 148 

could not be expressed.  The SWEE algorithm was able to reproduce the overall shape of the SWE time 149 

series although the SWE estimation by the SWEE was less accurate than those by the regression models.  150 

This is because the SWEE algorithm relies on the predictive snow density change model; therefore, the 151 

prediction error of each time step accumulates in the SWE estimate.  However, this could lead to the 152 

better SWE change estimation (snow accumulation and abrasion) than the regression models during the 153 

snow storms because the snow density estimates of the regression models tend to represent the longer 154 

period average. More importantly, the SWEE algorithm is based on the process-based snow density 155 

model, which is independent from climate, weather, and region. 156 

To further test the performance of the SWEE algorithm, was applied at the Noname (NN) Creek research 157 

site (41.3437 N, 106.2121W, 2950 m ASL).  The model was recalibrated using a snow density 158 

measurement by a snowpit survey on 9 April 2018 near the site, and the parameters were determined as: 159 

𝜌𝑛𝑠 = 0.22 (g/cm3), and 𝜂𝑜  = 21 (cm·hour).  The site was instrumented with a snow lysimeter, ranging 160 

snow depth sensor, and snow surface temperature, but there is no snow pillow at the NN Creek research 161 

site.  More detailed information regarding this site is available in Pleasants et al. (2017), Thayer et al. 162 

(2018), and He et al. (2018). Figure 3 shows the computed SWE change ∆𝑆𝑊𝐸 during the snowmelt 163 

season of 2018, which includes the lysimetric snowmelt water flux at the bottom of snowpack, denoted in 164 

the blue-shaded area. The effect of the smoothing factor 𝛼 on the SWEE method output can be visualized.  165 

When the snow depth data is under-smoothed with 𝛼=0.8, unrealistic snow gains during the night 166 

appeared throughout the snowmelt period, probably due to measurement error.  This suggests that the 167 

snow ranging sensor has been influenced by local atmospheric conditions affecting ultrasonic wave 168 

propagation.  On the other hand, the over-smoothed case with 𝛼=0.1 resulted in continuous snowmelt 169 

even during the night time, which is unrealistic, because the lysimetric snow water flux had higher peaks 170 

than the SWEE snowmelt rate.  Clearly, SWE change estimates, a byproduct of the SWEE algorithm, are 171 

highly dependent on the smoothing factor, 𝛼, although the SWE estimation was not very sensitive to 𝛼.  172 

Thus, the smoothing filter is required for snow depth data by a conventional sonic ranging sensor (such as, 173 

SR50A-L, Campbell Scientific) in order to eliminate false SWE gains, especially for computing daily-174 

total snowmelt rate.   175 

Additionally, the phase of the peaks can be analyzed using this SWEE change estimate.  It is rational to 176 

have larger phase difference between the snow lysimenter data and snowmelt (SWE change) in the early 177 

snowmelt season because of the thicker snowpack.  However, the phase differences were found to be 178 

irregular from day to day suggesting that the snow percolation process extremely complicated due to 179 

thermal and water flow effects on the snow matrix.   180 

4. Conclusions 181 

This article described the SWEE algorithm that uses the relatively reliable time series data of snow depth 182 

and temperature.  This method does not rely on snow energy flux computations or empirical snowmelt 183 

equation (e.g. temperature index equation), which required significantly more measurements, assumptions, 184 
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and often model calibrations.  As such, the SWEE algorithm has fewer uncertainties than full snow 185 

modeling. The small data requirements make this algorithm particularly effective for situations were data 186 

is scarce and is a useful tool for quality verification of the existing snow pillow measurements at the 187 

SNOTEL sites. The SWE change, which is byproduct of this algorithm, can potentially quantify wind 188 

snow erosion, deposition, and sublimation at a very local scale after careful snow density model tuning.  189 

To avoid unrealistic SWE exchanges when integrating over a long period, an exponential smoothing filter 190 

is recommended to correct the long term mass balance estimates.  However, the choice of the parameter 191 

of the exponential smoothing filter must depend on the purpose of the analysis. We recommend additional 192 

snow surveys (e.g. snow pit, snow course) that provide model calibration opportunities and some 193 

confidence in the SWE and SWE change estimations.   194 

Lastly, approximation of snow surface temperature by air temperature may not be suitable depending on 195 

the energy flux fraction.  Thus, this study suggests that snow surface temperature be added to any snow 196 

monitoring system because it is more appropriate than air temperature for SWE estimation. 197 
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Table 1 – Statistics of the model fittings with respect to SWE at the Brooklyn Lake SNOTEL site during the 257 
water year 2015 258 

Snow density model R2 NSME Note 

SWEE (this study) 0.864 0.816 Process-based snow density model 

Jonas et al. 2009, 
Eqn.(1) 

0.726 0.718 Regression to snow depth with a power function 
with a single parameter 

Jonas et al. 2009, 
Eqn.(4) 

0.937 0.933 Regression to snow depth with a linear function 
with monthly parameters 

Sturm et al. 2010, 
Eqn.(6) 

0.911 0.859 Regression to snow depth with an exponential 
function with day-of-year adjustment 
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Figure 1 - SWEE application example at the Brooklyn Lake SNOTEL site during the water year 2015.  Three 

regression models (Strum et al., 2010; Jonas et al., 2009) are included in the snow density and SWE graphs in 

the middle two panels.  
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Figure 2 - Sensitivity analysis of the snow density model for SWE estimation 

  

0

0.2

0.4

0.6

0.8

1

15 20 25 30 35

N
SM

E

Viscosity coefficient,  o

0

0.2

0.4

0.6

0.8

1

0.10 0.15 0.20 0.25 0.30

N
SM

E

Density of new snow, ρns

0

0.2

0.4

0.6

0.8

1

0.0 0.1 0.2 0.3

N
SM

E

Smoothing factor, α

11
  

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-451
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 24 October 2018
c© Author(s) 2018. CC BY 4.0 License.



 

 

Figure 3 - SWE change computed by the SWEE algorithm and corresponding the lysimetric snowmelt water 

flux at the bottom of the snowpack in the NN research site 
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