
Thank you, Dr. Jonas, for your valuable comments on our work. The responses to the comments are 

inserted below in blue color. 

 

We included the McCreight and Small (2014) in the review section.  The existing snow density models 

referred in the comments (Kelly et al., 2003; Jonas et al., 2009; Sturm et al., 2010; Bormann et al., 2014; 

McCreight and Small, 2014) are all data-driven approach.  Meanwhile, the model proposed in this article 

clearly belongs to a process-based approach as described in the supplement. I paste the derivation of the 

model for your convenience.  This model is accumulation of experimental works by snow scientists, 

which have been largely ignored or not utilizes (to my view, N.Ohara).  
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Derivation of snow compaction term 
Yoshida (1955) formulated the snow density change due to gravity and snow metamorphism 

effect. 
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𝑑𝜌

𝑑𝑡
=

𝑤𝑠

𝜂
      (S-1) 

𝑤𝑠=weight of snow above the layer in terms of SWE (cm) 

𝜂=viscosity coefficient, a constant for a given density and temperature (cm·hr) 

𝜌(z, t) = snow density at depth z at time t (g/cm
3
) 

The viscosity coefficient includes two different effects. 
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𝜂 = 𝜂𝑐𝜂𝑡     (S-2) 

𝜂𝑐=viscosity coefficient for gravitational compaction 

𝜂𝑡=viscosity coefficient for temperature change 

Kojima (1967) obtained following expression from experiments: 

𝜂𝑐 = 𝜂𝑐𝑜exp⁡[𝑘𝑜𝜌]      (S-3) 

Mellor (1975) formulated viscosity coefficient for temperature change as follows. 

𝜂𝑡 = 𝜂𝑡𝑜exp⁡[
𝐴

𝑅

(𝑇𝑐−𝑇)

𝑇𝑇𝑐
]     (S-4) 

Anderson (1976) simplified it as, 

𝜂𝑡 = 𝜂𝑡𝑜exp⁡[0.08(𝑇𝑐 − 𝑇)]     (S-5) 

Combining (S-1) through (S-5) yields, 
1

𝜌

𝑑𝜌

𝑑𝑡
=

𝑤𝑠

𝜂𝑜
exp⁡[−0.08(𝑇𝑐 − 𝑇)]exp⁡[−𝑘𝑜𝜌]    (S-6) 

where 

𝜂𝑜 = 𝜂𝑐𝑜𝜂𝑡𝑜     (S-7) 

Assuming the depth averaged snow density 𝜌𝑠corresponds at the 2/3 of the snow depth from 

the surface (von der Heydt, 1992), 

𝑤𝑠 =
2

3
𝐷     (S-8) 

The predictive ordinary differential equation form of the depth averaged snow density can 

be obtained by the depth integration (Horne and Kavvas, 1997)   

 
𝑑𝜌𝑠

𝑑𝑡
=

2𝐷𝜌𝑠

3𝜂𝑜
exp⁡[−0.08(𝑇𝑐 − 𝑇̅)]exp⁡[−𝑘𝑜𝜌𝑠]     (S-9) 

𝜌𝑠 = depth averaged snow density  

𝑇̅ = depth averaged snow density 

Assuming a triangular temperature profile in a snowpack, which indicates snow surface 

temperature 𝑇𝑠 = 2𝑇̅, the compaction term in Equation (1) can be obtained. 

Derivation of new snow term  
When new snow sits on the snow surface, snow density must be modified as below: 

𝜌𝑠 + Δ𝜌𝑠 =
𝐷𝜌𝑠+∆𝐷𝜌𝑠𝑛

∆𝐷+𝐷
      (S-10) 

𝜌𝑠 = depth averaged snow density (g/cm
3
) 

Δ𝜌𝑠= snow density change (g/cm
3
) 

𝐷= snow depth (cm) 

∆𝐷= snow depth change (cm) 

𝜌𝑠𝑛 = new snow density (g/cm
3
) 

 

𝜌𝑠 + Δ𝜌𝑠 =
𝐷𝜌𝑠 + ∆𝐷𝜌𝑠 − ∆𝐷𝜌𝑠 + ∆𝐷𝜌𝑠𝑛

∆𝐷 + 𝐷
 



𝜌𝑠 + Δ𝜌𝑠 =
𝐷𝜌𝑠 + ∆𝐷𝜌𝑠
∆𝐷 + 𝐷

+
−∆𝐷𝜌𝑠 + ∆𝐷𝜌𝑠𝑛

∆𝐷 + 𝐷
 

𝜌𝑠 + Δ𝜌𝑠 = 𝜌𝑠 + ∆𝐷
(𝜌𝑠𝑛−𝜌𝑠)

∆𝐷 + 𝐷
 

Δ𝜌𝑠 = ∆𝐷
(𝜌𝑠𝑛−𝜌𝑠)

∆𝐷+𝐷
     (S-11) 

Now, snow depth change can be expressed in terms of snowfall rate 𝑠𝑛 (cm/hr) as follows. 

∆𝐷 = ∆𝑡 ∙ 𝑠𝑛 ∙
𝜌𝑤

𝜌𝑠𝑛
     (S-12) 

Substituting Equation (S-12) to Equation (S-11) yields 

Δ𝜌𝑠 = ∆𝑡 ∙ 𝑠𝑛 ∙
𝜌𝑤

𝜌𝑠𝑛

(𝜌𝑠𝑛−𝜌𝑠)

(∆𝐷+𝐷)
     (S-13) 

∆𝜌𝑠

∆𝑡
=

𝜌𝑤

𝜌𝑠𝑛

(𝜌𝑠𝑛−𝜌𝑠)

(∆𝐷+𝐷)
𝑠𝑛     (S-14) 

When ∆𝑡 is sufficiently small, and⁡∆𝐷 ≪ 𝐷, one can obtain, 

𝑑𝜌𝑠

d𝑡
= −

(𝜌𝑠−𝜌𝑠𝑛)𝜌𝑤

𝜌𝑠𝑛D
𝑠𝑛     (S-15) 

 

 

Please refer to the previous response.  This is essentially a different type of model from the “existing” 

models. 

 

We revise the title: 

Technical note: Snow Water Equivalence Estimation (SWEE) Algorithm from Snow Depth and 

Temperature Time Series Using a Snow Density Model 

 

We re-organized the sections accordingly.  Thank you.  That is a really good suggestion. 



 

Unfortunately, we do not have concurrent snow and air temperature data.  Also, this is beyond the scope 

of this small article. 

 

 

It is a good idea. We adjusted the snow density as a linear function of the temperature data.   

𝜌𝑛𝑠 = 𝜌𝑛𝑠𝑜 + 𝑎𝑇𝑜𝑏𝑠 

When 𝜌𝑛𝑠𝑜=0.167 (intersect) and 𝑎=0.0034 (slope), we obtained better comparison as shown below.  This 

analysis indicates that the depth averaged snow density model can describe the snow density evolution if 

incoming snow density is correctly estimated.  In this case, the SWEE algorithm performed better than the 

other data-driven models, as shown below.  This implies that the main source of our estimates is the 

density of new snow. However, we do not intend to include it in the main article in order to keep this 

technical note article simple.   



 

 

 

 

The process-based approach presented here is inherently such an attribute unlike the data-driven approach.  

However, the purpose of this article is not proving it.  We added some additional model applications in 

Washington, California, Vermont, and Alaska in the response letter for the RC1. It shows that the SWEE 

Snow density model R2 NSME Note

SWEE (this study) 0.927 0.918 Dynamic snow density model

Jonas et al. 2009, Eqn.(1) 0.716 0.707 Regression with a power function

Jonas et al. 2009, Eqn.(4) 0.931 0.927 Regression with a linear function with monthly paramters

Sturm et al. 2010, Eqn.(6) 0.906 0.852 Regression with an exponential with day-of-year



algorithm works okay and often great for these sites as well.   We unfortunately could not secure 

sufficient time/data for the regions you suggested. 

 

 

 


