Thank you, Dr. Jonas, for your valuable comments on our work. The responses to the comments are
inserted below in blue color.

This technical note reports on using an existing snow density model to derive SWE
from a temporally continuous record of snow depth. Given the effort required to operate
and maintain a snowpillow, being able to estimate SWE from alternative snow depth
measurements has its potential uses and merits, e.g. for gap filling purposes, or in
case other meteorological data being unavailable to run a full snowpack model.

Obviously the authors were not the first to come up with using a snow density model
in that particular context. The performance is similar (or in fact slightly worse) in com-
parison to two parametric models that were developed about 10 years ago with the
same application in mind. However, unlike those two alternative offerings the approach
presented here is capable of providing meaningful time series of SWE at high temporal
resolution (at the cost of requiring complete time series of snow depth and tempera-
ture input data). This would be a good selling point of the paper if it wasn't for other
publications that have already tackled this very aspect, see e.g. the excellent paper by
McCreight and Small from 2014 (doi.org/10.5194/tc-8-521-2014).

We included the McCreight and Small (2014) in the review section. The existing snow density models
referred in the comments (Kelly et al., 2003; Jonas et al., 2009; Sturm et al., 2010; Bormann et al., 2014;
McCreight and Small, 2014) are all data-driven approach. Meanwhile, the model proposed in this article
clearly belongs to a process-based approach as described in the supplement. | paste the derivation of the
model for your convenience. This model is accumulation of experimental works by snow scientists,
which have been largely ignored or not utilizes (to my view, N.Ohara).
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Derivation of snow compaction term
Yoshida (1955) formulated the snow density change due to gravity and snow metamorphism
effect.

ldp _ ws

pdt 7 (S’l)

ws=weight of snow above the layer in terms of SWE (cm)
n=viscosity coefficient, a constant for a given density and temperature (cm-hr)
p(z, t) = snow density at depth z at time t (g/cm°)

The viscosity coefficient includes two different effects.
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n =N (S-2)

n.=Vviscosity coefficient for gravitational compaction
n¢=Vviscosity coefficient for temperature change

Kojima (1967) obtained following expression from experiments:
Ne = Neo€Xp[kop] (S-3)

Mellor (1975) formulated viscosity coefficient for temperature change as follows.

A (T.~T
N = Neo€XP [;( o )] (S-4)

Anderson (1976) simplified it as,

N = Noexp[0.08(Tc — T)] (S-5)
Combining (S-1) through (S-5) yields,
%% = %exp[—O.OS(TC —T)]exp[—k,p] (S-6)
where
Mo = NcoMlto (S-7)

Assuming the depth averaged snow density pscorresponds at the 2/3 of the snow depth from
the surface (von der Heydt, 1992),

wg ==D (S-8)

The predictive ordinary differential equation form of the depth averaged snow density can
be obtained by the depth integration (Horne and Kavvas, 1997)

‘o = S exp[~0.08(T, — Dlexp[—kops] (5-9)
ps = depth averaged snow density
T = depth averaged snow density

Assuming a triangular temperature profile in a snowpack, which indicates snow surface
temperature T, = 2T, the compaction term in Equation (1) can be obtained.

Derivation of new snow term
When new snow sits on the snow surface, snow density must be modified as below:

Dps+ADpsy
ps +Aps = % (5-10)

ps = depth averaged snow density (g/cm®)
Ap,= snow density change (g/cm®)

D= snow depth (cm)

AD= snow depth change (cm)

psn, = New snow density (g/cm?)

Dps + ADps — ADps + ADpsy
AD +D

ps +Aps =



Dps + ADps  —ADps + ADpsy,
AD +D AD +D

(psn_ps)
AD + D

ps +Aps =

ps +Aps = ps + AD

_ (Psn—ps) _
Apg = AD Len=td (S-11)

Now, snow depth change can be expressed in terms of snowfall rate sn (cm/hr) as follows.

AD = At -sn- 2w (S-12)

Psn

Substituting Equation (S-12) to Equation (S-11) yields

— At - g - Pw (Psn=Ps) ~
Ap; = At - sn o (ADTD) (5-13)
% — P_w(psn_ps) sn (8_14)

At psn (AD+D)
When At is sufficiently small, and AD <« D, one can obtain,

% _ (Ps=Psn) Pw _
= op M (S-15)

Now the question arises, what then is the selling point of this paper? As a technical
note, it might suffice to present the method as an alternative approach — if the authors
manage to identify at least some differences to existing models. Better transferability
to other sites without recalibration maybe? And obviously, testing the model with data

from one season and one SNOTEL station only is not nearly enough.

Please refer to the previous response. This is essentially a different type of model from the “existing”
models.

Line 1: the title is somewhat misleading given that your model also requires tempera-
ture data as input

We revise the title:

Technical note: Snow Water Equivalence Estimation (SWEE) Algorithm from Snow Depth and
Temperature Time Series Using a Snow Density Model

Line 48-51: extend this into a convincing last paragraph of your introduction, which
highlights shortcomings of existing models a/o the merits of your approach (io be
demonstrated below)

Line 52: start method section here

Line 101: and the former?

We re-organized the sections accordingly. Thank you. That is a really good suggestion.



Line 117: while this assumption is what you often have to work with, it would be inter-
esting to also deploy your model at a site where you actually do have snow temperature
data to test, how big of a problem is this assumption?

Unfortunately, we do not have concurrent snow and air temperature data. Also, this is beyond the scope
of this small article.

Line 127: since you require temperature data as model input anyway, why not using a
new snow density formulation that is temperature dependent?

It is a good idea. We adjusted the snow density as a linear function of the temperature data.

Pns = Pnso + a@Tops

When p,,5,=0.167 (intersect) and a=0.0034 (slope), we obtained better comparison as shown below. This
analysis indicates that the depth averaged snow density model can describe the snow density evolution if
incoming snow density is correctly estimated. In this case, the SWEE algorithm performed better than the
other data-driven models, as shown below. This implies that the main source of our estimates is the
density of new snow. However, we do not intend to include it in the main article in order to keep this
technical note article simple.
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Snow density model R? NSME  |Note
SWEE (this study) 0.927 0.918 Dynamic snow density model
Jonas et al. 2009, Eqn.(1) 0.716 0.707 Regression with a power function
Jonas et al. 2009, Eqn.(4) 0.931 0.927 Regression with a linear function with monthly p
Sturm et al. 2010, Eqn.(6) 0.906 0.852 Regression with an exponential with day-of-year
Line 156: "... which is independent from climate ..."? You may have a point there, but

let’s first see what happens if you apply your model in Japan, Siberia, Lesotho; without
recalibration of course. You can refer to Matthew Sturm’s snow classification scheme
to back up your claim.

The process-based approach presented here is inherently such an attribute unlike the data-driven approach.
However, the purpose of this article is not proving it. We added some additional model applications in
Washington, California, Vermont, and Alaska in the response letter for the RC1. It shows that the SWEE



algorithm works okay and often great for these sites as well. We unfortunately could not secure
sufficient time/data for the regions you suggested.



