
Thank you for reviewing our manuscript.  The responses to the comments are inserted below in blue color. 

 

 

More complex snow model requires energy flux estimations, which typically functions of air temperature, 

humidity, radiation, wind speed, precipitation, soil temperature, etc., while this technique (SWEE 

algorithm) just estimates the SWE from the snow depth and temperature data.  They are not comparable 

in our opinion.  In fact, snow depth is one of the output variables of the complete snow model such as 

SnowPack model, which should be used when high-quality atmospheric forcing data are available.  

However, this simple technique is effective when the atmospheric data is insufficiently available in the 

historical sites.   

We do not think that additional application is required for this technical note article.  However, we 

applied it to four selected SNOTEL sites for 2016, 2017, and 2018 water years (total 12 years).  The sites 

were arbitrarily chosen from the US SNOTEL with snow pillow in four regions (Pacific Northwest, 

Central Sierra Nevada, Northeast, and Alaska).  The results are shown in the end of this reply document.  

Note that that all parameters except new snow density were kept the same for these computations.  The 

results indicate that the SWEE algorithm can sometimes get better than the other data-driven approaches 

depending on the data quality.   

 

We intend to show that the new snow density was very sensitive to the SWE estimation. Please note that 

the change of snow depth is the main part of the SWEE algorithm.   

 

This is an open question.  Combining this methodology and some accurate snowmelt estimation may 

provide an opportunity to separate erosion and melt. 



 

This is beyond the scope of this Technical Note article, which should be concise. 

 

Unfortunately, we do not have air temperature and snow surface temperature, concurrently.  So, we could 

not quantify it. 

 

The SWEE algorithm relies on the snow depth difference from the one time step prior.  So, the fluctuation 

in the snow depth data would affect the SWEE estimation.   

Assuming snow density is 0.30 g/cm
3
, 2 cm error in snow depth should result in 0.6 cm error in SWE.    

 

No matter what methodology you choose, the data cleaning/preprocessing is necessary.  Otherwise, we 

end up with the “garbage in, garbage out” situation.  To illustrate the case without exponential smoothing 

filter (α = 1.0), we adjusted the Figure 3 (see below).  We think that the treatment for snow depth using 

the filter is appropriate and effective. 

 



 

We computed the other methods in the NN.  The results are shown below.  We accordingly revised the 

text since the other models are as good as the SWEE algorithm.  

 

The same graph with longer period is shown below.  Due to the very large unrealistic variations in the 

snow depth measurement during the snow accumulation period, none of the models can accurately 

estimate the SWE change from this dataset except the snowmelt period.  

 

 

 



It is not surprising that the data driven approach (fitted regression model) shows better performance than a 

process-based model.  We believe that process-based models be effective in the cases when historical data 

are not available or these observed data contains too much noise.  

We updated the statistics as we found a minor error (the exponential smoothing filter was applied to the 

regression models by mistake).  The conclusions were unchanged from this update.    

Snow density model R2 NSME Note 

SWEE (this study) 0.864 0.816 Dynamic snow density model 

Jonas et al. 2009, Eqn.(1) 0.716 0.707 Regression with a power function 

Jonas et al. 2009, Eqn.(4) 0.931 0.926 
Regression with a linear function with monthly 
parameters 

Sturm et al. 2010, 
Eqn.(6) 

0.906 0.852 Regression with an exponential with day-of-year 

 

 

This is a great suggestion.  Thank you.  We added the SNOTEL density in Fig 1.  This addition line 

illustrates the advantage and disadvantage of the models.  This graph implies that the snow density model 

can describes the snow dynamics fairly well while new snow density in the spring seemed to be 

underestimated.  



 

 

As you described, ΔSWE denotes the change in SWE with respect to time.  We double checked them 

throughout. 

 

It has been corrected.  Thank you. 

 



We just name it SWEE for convenience.  We do not think that the name needs to be changed.  

----- 

Following pages show the additional computations for four other SNOTEL sites. 

Washington (PST) SNOTEL Site Cayuse Pass. (WY2018, ro_ns = 0.24 g/cm
3
) 

 

 

  

Snow density model R2 NSME Note

SWEE (this study) 0.989 0.957 Dynamic snow density model

Jonas et al. 2009, Eqn.(1) 0.909 0.905 Regression with a power function

Jonas et al. 2009, Eqn.(4) 0.956 0.870 Regression with a linear function with monthly paramters

Sturm et al. 2010, Eqn.(6) 0.973 0.959 Regression with an exponential with day-of-year



Washington (PST) SNOTEL Site Cayuse Pass. (WY2017, ro_ns = 0.24 g/cm
3
) 

 

 

  

Snow density model R2 NSME Note

SWEE (this study) 0.970 0.953 Dynamic snow density model

Jonas et al. 2009, Eqn.(1) 0.864 0.841 Regression with a power function

Jonas et al. 2009, Eqn.(4) 0.913 0.811 Regression with a linear function with monthly paramters

Sturm et al. 2010, Eqn.(6) 0.927 0.898 Regression with an exponential with day-of-year



Washington (PST) SNOTEL Site Cayuse Pass. (WY2016, ro_ns = 0.24 g/cm
3
) 

 

 

  

Snow density model R2 NSME Note

SWEE (this study) 0.976 0.973 Dynamic snow density model

Jonas et al. 2009, Eqn.(1) 0.893 0.855 Regression with a power function

Jonas et al. 2009, Eqn.(4) 0.923 0.791 Regression with a linear function with monthly paramters

Sturm et al. 2010, Eqn.(6) 0.961 0.910 Regression with an exponential with day-of-year



California (PST) SNOTEL Site Ward Creek #3 (WY2018, ro_ns = 0.167 g/cm
3
) 

 

 

Snow density model R2 NSME Note

SWEE (this study) 0.937 0.909 Dynamic snow density model

Jonas et al. 2009, Eqn.(1) 0.835 0.802 Regression with a power function

Jonas et al. 2009, Eqn.(4) 0.884 0.862 Regression with a linear function with monthly paramters

Sturm et al. 2010, Eqn.(6) 0.882 0.791 Regression with an exponential with day-of-year



California (PST) SNOTEL Site Ward Creek #3 (WY2017, ro_ns = 0.167 g/cm
3
) 

 

 

  

Snow density model R2 NSME Note

SWEE (this study) 0.924 0.699 Dynamic snow density model

Jonas et al. 2009, Eqn.(1) 0.876 0.817 Regression with a power function

Jonas et al. 2009, Eqn.(4) 0.912 0.766 Regression with a linear function with monthly paramters

Sturm et al. 2010, Eqn.(6) 0.947 0.878 Regression with an exponential with day-of-year



California (PST) SNOTEL Site Ward Creek #3 (WY2016, ro_ns = 0.167 g/cm
3
) 

 

 

  

Snow density model R2 NSME Note

SWEE (this study) 0.949 0.756 Dynamic snow density model

Jonas et al. 2009, Eqn.(1) 0.886 0.680 Regression with a power function

Jonas et al. 2009, Eqn.(4) 0.942 0.635 Regression with a linear function with monthly paramters

Sturm et al. 2010, Eqn.(6) 0.960 0.786 Regression with an exponential with day-of-year



Vermont (AST) SCAN Site Lye Brook (WY2018, ro_ns = 0.24 g/cm
3
) 

 

 

  

Snow density model R2 NSME Note

SWEE (this study) 0.734 0.784 Dynamic snow density model

Jonas et al. 2009, Eqn.(1) 0.732 0.582 Regression with a power function

Jonas et al. 2009, Eqn.(4) 0.700 0.529 Regression with a linear function with monthly paramters

Sturm et al. 2010, Eqn.(6) 0.753 0.664 Regression with an exponential with day-of-year



Vermont (AST) SCAN Site Lye Brook (WY2017, ro_ns = 0.24 g/cm
3
) 

 

 

  

Snow density model R2 NSME Note

SWEE (this study) 0.734 0.784 Dynamic snow density model

Jonas et al. 2009, Eqn.(1) 0.732 0.582 Regression with a power function

Jonas et al. 2009, Eqn.(4) 0.700 0.529 Regression with a linear function with monthly paramters

Sturm et al. 2010, Eqn.(6) 0.753 0.664 Regression with an exponential with day-of-year



Vermont (AST) SCAN Site Lye Brook (WY2016, ro_ns = 0.24 g/cm
3
) 

 

 

  

Snow density model R2 NSME Note

SWEE (this study) 0.388 0.352 Dynamic snow density model

Jonas et al. 2009, Eqn.(1) 0.399 0.301 Regression with a power function

Jonas et al. 2009, Eqn.(4) 0.417 0.274 Regression with a linear function with monthly paramters

Sturm et al. 2010, Eqn.(6) 0.439 0.355 Regression with an exponential with day-of-year



Alaska (YST) SNOTEL Site Bettles Field (WY2018, ro_ns = 0.14 g/cm
3
) 

 

 

  

Snow density model R2 NSME Note

SWEE (this study) 0.976 0.971 Dynamic snow density model

Jonas et al. 2009, Eqn.(1) 0.846 0.798 Regression with a power function

Jonas et al. 2009, Eqn.(4) 0.937 0.889 Regression with a linear function with monthly paramters

Sturm et al. 2010, Eqn.(6) 0.930 0.630 Regression with an exponential with day-of-year



Alaska (YST) SNOTEL Site Bettles Field (WY2017, ro_ns = 0.14 g/cm
3
) 

 

 

  

Snow density model R2 NSME Note

SWEE (this study) 0.843 0.338 Dynamic snow density model

Jonas et al. 2009, Eqn.(1) 0.690 -0.032 Regression with a power function

Jonas et al. 2009, Eqn.(4) 0.823 -0.063 Regression with a linear function with monthly paramters

Sturm et al. 2010, Eqn.(6) 0.798 -0.825 Regression with an exponential with day-of-year



Alaska (YST) SNOTEL Site Bettles Field (WY2016, ro_ns = 0.14 g/cm
3
) 

 

 

Snow density model R2 NSME Note

SWEE (this study) 0.747 -4.715 Dynamic snow density model

Jonas et al. 2009, Eqn.(1) 0.604 -5.885 Regression with a power function

Jonas et al. 2009, Eqn.(4) 0.753 -4.961 Regression with a linear function with monthly paramters

Sturm et al. 2010, Eqn.(6) 0.755 -8.290 Regression with an exponential with day-of-year


