Thank you for reviewing our manuscript. The responses to the comments are inserted below in blue color.

Overall, | think the idea has merit and could be a useful tool when a more complex
computational model is not appropriate. However, | think that the manuscript in it's
current form lacks enough validation or error analysis for the presentation of a new
method. The comparison of the method to a single station for a single year is not
enough; | would really like to see multiple locations with varying conditions and snow
years to be convinced. Furthermore, | think that the comparisons to other models is

lacking. While | am happy to see the comparisons to Jonas et al., 2009 and Sturm et
al., 2010, much has been done in the past 8-9 years. Perhaps a comparison to a more
complex model like SnowPack in addition to what is already shown. That could provide
evidence that if all you need are bulk properties that this new approach could be just
as good and computationally easier.

More complex snow model requires energy flux estimations, which typically functions of air temperature,
humidity, radiation, wind speed, precipitation, soil temperature, etc., while this technique (SWEE
algorithm) just estimates the SWE from the snow depth and temperature data. They are not comparable
in our opinion. In fact, snow depth is one of the output variables of the complete snow model such as
SnowPack model, which should be used when high-quality atmospheric forcing data are available.
However, this simple technique is effective when the atmospheric data is insufficiently available in the
historical sites.

We do not think that additional application is required for this technical note article. However, we
applied it to four selected SNOTEL sites for 2016, 2017, and 2018 water years (total 12 years). The sites
were arbitrarily chosen from the US SNOTEL with snow pillow in four regions (Pacific Northwest,
Central Sierra Nevada, Northeast, and Alaska). The results are shown in the end of this reply document.
Note that that all parameters except new snow density were kept the same for these computations. The
results indicate that the SWEE algorithm can sometimes get better than the other data-driven approaches
depending on the data quality.

| appreciate the listing of 7 possible reasons for the errors, but these should really be
better quantified in magnitude of error and some can actually be directly addressed
with the available data.

For example: 1. snow density of newly fallen snow: The authors show the sensitivity
of the equation to this parameter, but that doesn’'t mean this parameter is the reason
for the error. Furthermore, enough information is available to compare what the SWEE
estimation is to the Snotel new snow density (depth change during storm and SWE
increase can be used to determine new snow density).

We intend to show that the new snow density was very sensitive to the SWE estimation. Please note that
the change of snow depth is the main part of the SWEE algorithm.

2. snow erosion and abrasion affect snow depth: By how much? what is the impact on
the estimation (quantify)

This is an open question. Combining this methodology and some accurate snowmelt estimation may
provide an opportunity to separate erosion and melt.



3. Snow pillow measurement error - again, how much? There is literature on this, it will
depend on the time of the season, etc. but how will this impact your comparison? To
this end, more snow pit observations would go quite far in this study.

This is beyond the scope of this Technical Note article, which should be concise.
4. air temperature substitution - how much does this impact your results?

Unfortunately, we do not have air temperature and snow surface temperature, concurrently. So, we could
not quantify it.

6. Accuracy of snow depth - this can be addressed a couple of ways. First there
is literature on this and/or manufacturer defined accuracies that should be taken into
account. Second, quantification of the theoretical error from this could easily be done.
If the depth is off by 2 cm, how much does that change the SWEE result? Is this
different for shallow or deep snowpacks?

The SWEE algorithm relies on the snow depth difference from the one time step prior. So, the fluctuation
in the snow depth data would affect the SWEE estimation.

Assuming snow density is 0.30 g/cm®, 2 cm error in snow depth should result in 0.6 cm error in SWE.

7. Treatment for snow depth is inappropriate - If this is the case, first quantify the
effects, then second why not change the treatment? When applying a new method like
this | think the data pre-processing can be huge. If your input is bad then your output
will be bad. So why do you think the treatment may be inappropriate and how can you
change it? Then do this to prove the presented method.

No matter what methodology you choose, the data cleaning/preprocessing is necessary. Otherwise, we
end up with the “garbage in, garbage out” situation. To illustrate the case without exponential smoothing
filter (a = 1.0), we adjusted the Figure 3 (see below). We think that the treatment for snow depth using

the filter is appropriate and effective.
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line 153: the authors state that "However, this could lead to better SWE change esti-
mation" talking about the thought that SWEE may be better than the other regression
models to estimate melt, then the manuscript compares the new method to lysimeter
data, but not the other models. With a claim that the new method may be better, it
should really be shown because you have the data to test this statement.

We computed the other methods in the NN. The results are shown below. We accordingly revised the
text since the other models are as good as the SWEE algorithm.
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The same graph with longer period is shown below. Due to the very large unrealistic variations in the
snow depth measurement during the snow accumulation period, none of the models can accurately
estimate the SWE change from this dataset except the snowmelt period.
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According to table 1, there are two other methods that work better and are simpler to
apply, please argue convincingly as to what the best method is and why (with data).



It is not surprising that the data driven approach (fitted regression model) shows better performance than a
process-based model. We believe that process-based models be effective in the cases when historical data
are not available or these observed data contains too much noise.

We updated the statistics as we found a minor error (the exponential smoothing filter was applied to the
regression models by mistake). The conclusions were unchanged from this update.

Snow density model R’ NSME | Note
SWEE (this study) 0.864 0.816 Dynamic snow density model

Jonas et al. 2009, Egn.(1) | 0.716 0.707 Regression with a power function
Regression with a linear function with monthly
parameters

Jonas et al. 2009, Eqn.(4) | 0.931 0.926

Sturm et al. 2010,

Eqn.(6) 0.906 0.852 Regression with an exponential with day-of-year

Fig. 1 - labeling each panel would help a lot. Why is the SNOTEL density not included
in the density panel? This could help show how much better/worse each method is for

estimating density.
This is a great suggestion. Thank you. We added the SNOTEL density in Fig 1. This addition line
illustrates the advantage and disadvantage of the models. This graph implies that the snow density model

can describes the snow dynamics fairly well while new snow density in the spring seemed to be
underestimated.
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Throughout the paper the authors use "change [delta]SWE", but the [delta] symbol is
generally used to denote "change in". Is it supposed to be something different here,
please double check.

As you described, ASWE denotes the change in SWE with respect to time. We double checked them
throughout.

please correct "Strum et al." in figure 1 to "Sturm et al."

It has been corrected. Thank you.

the term "SWEE" is confusing to me, especially when the wording went back and forth
with SWE observations comparing to SWEE. Perhaps changing it to "estimation of
SWE (eSWE) to help the reader.



We just name it SWEE for convenience. We do not think that the name needs to be changed.

Following pages show the additional computations for four other SNOTEL sites.

Washington (PST) SNOTEL Site Cayuse Pass. (WY2018, ro_ns = 0.24 g/cm?)
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Snow density model R? NSME  |Note
SWEE (this study) 0.989 0.957 Dynamic snow density model
Jonas et al. 2009, Egn.(1) 0.909 0.905 Regression with a power function
Jonas et al. 2009, Eqgn.(4) 0.956 0.870 Regression with a linear function with monthly p
Sturm et al. 2010, Egn.(6) 0.973 0.959 Regression with an exponential with day-of-year




Washington (PST) SNOTEL Site Cayuse Pass. (WY2017, ro_ns = 0.24 g/cm?)
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Regression with a linear function with monthly p

Sturm et al. 2010, Eqn.(6) 0.927
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Regression with an exponential with day-of-year




Washington (PST) SNOTEL Site Cayuse Pass. (WY2016, ro_ns = 0.24 g/cm?)
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Snow density model R2 NSME Note
SWEE (this study) 0.976 0.973 Dynamic snow density model
Jonas et al. 2009, Eqn.(1) 0.893 0.855 Regression with a power function
Jonas et al. 2009, Eqn.(4) 0.923 0.791 Regression with a linear function with monthly p
Sturm et al. 2010, Eqn.(6) 0.961 0.910 Regression with an exponential with day-of-year




California (PST) SNOTEL Site Ward Creek #3 (WY2018, ro_ns = 0.167 g/cm?)
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Jonas et al. 2009, Eqn.(4) 0.884 0.862 Regression with a linear function with monthly p
Sturm et al. 2010, Eqn.(6) 0.882 0.791 Regression with an exponential with day-of-year




California (PST) SNOTEL Site Ward Creek #3 (WY2017, ro_ns = 0.167 glcm®)
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SWEE (this study) 0.924 0.699 Dynamic snow density model
Jonas et al. 2009, Eqn.(1) 0.876 0.817 Regression with a power function
Jonas et al. 2009, Eqn.(4) 0.912 0.766 Regression with a linear function with monthly p
Sturm et al. 2010, Eqn.(6) 0.947 0.878 Regression with an exponential with day-of-year




California (PST) SNOTEL Site Ward Creek #3 (WY2016, ro_ns = 0.167 glcm®)
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Snow density model R? NSME  |Note
SWEE (this study) 0.949 0.756 Dynamic snow density model
Jonas et al. 2009, Eqn.(1) 0.886 0.680 Regression with a power function
Jonas et al. 2009, Eqn.(4) 0.942 0.635 Regression with a linear function with monthly p
Sturm et al. 2010, Egn.(6) 0.960 0.786 Regression with an exponential with day-of-year




Vermont (AST) SCAN Site Lye Brook (WY2018, ro_ns = 0.24 g/cm?)
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SWEE (this study) 0.734 0.784 Dynamic snow density model
Jonas et al. 2009, Eqn.(1) 0.732 0.582 Regression with a power function
Jonas et al. 2009, Eqn.(4) 0.700 0.529 Regression with a linear function with monthly p
Sturm et al. 2010, Egn.(6) 0.753 0.664 Regression with an exponential with day-of-year




Vermont (AST) SCAN Site Lye Brook (WY2017, ro_ns = 0.24 g/cm?)
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SWEE (this study) 0.734 0.784 Dynamic snow density model
Jonas et al. 2009, Eqn.(1) 0.732 0.582 Regression with a power function
Jonas et al. 2009, Eqn.(4) 0.700 0.529 Regression with a linear function with monthly p
Sturm et al. 2010, Egn.(6) 0.753 0.664 Regression with an exponential with day-of-year




Vermont (AST) SCAN Site Lye Brook (WY2016, ro_ns = 0.24 g/cm?)
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SWEE (this study) 0.388 0.352 Dynamic snow density model
Jonas et al. 2009, Eqn.(1) 0.399 0.301 Regression with a power function
Jonas et al. 2009, Eqn.(4) 0.417 0.274 Regression with a linear function with monthly p
Sturm et al. 2010, Egn.(6) 0.439 0.355 Regression with an exponential with day-of-year




Alaska (YST) SNOTEL Site Bettles Field (WY2018, ro_ns = 0.14 g/cm?)
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SWEE (this study) 0.976 0.971 Dynamic snow density model
Jonas et al. 2009, Eqn.(1) 0.846 0.798 Regression with a power function
Jonas et al. 2009, Eqn.(4) 0.937 0.889 Regression with a linear function with monthly p
Sturm et al. 2010, Eqn.(6) 0.930 0.630 Regression with an exponential with day-of-year




Alaska (YST) SNOTEL Site Bettles Field (WY2017, ro_ns = 0.14 g/cm?)
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SWEE (this study) 0.843 0.338 Dynamic snow density model
Jonas et al. 2009, Eqn.(1) 0.690 -0.032 Regression with a power function
Jonas et al. 2009, Eqn.(4) 0.823 -0.063 Regression with a linear function with monthly p
Sturm et al. 2010, Eqn.(6) 0.798 -0.825 Regression with an exponential with day-of-year




Alaska (YST) SNOTEL Site Bettles Field (WY2016, ro_ns = 0.14 g/cm?)
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Snow density model R? NSME  |Note
SWEE (this study) 0.747 -4.715 Dynamic snow density model
Jonas et al. 2009, Eqn.(1) 0.604 -5.885 Regression with a power function
Jonas et al. 2009, Eqn.(4) 0.753 -4.961 Regression with a linear function with monthly p
Sturm et al. 2010, Eqn.(6) 0.755 -8.290 Regression with an exponential with day-of-year




