
Comments to the Author: 

I have received three reviews of the manuscript.  

The first Referee provided no substantial comments on the paper. Both the second and the third Referees provided 

extensive comments and recommended re-considering the manuscript after major revisions.  

A few comments were properly addressed by the authors in their responses. However, major criticism in the 

Referees’ reports was answered by the authors in a rather formal manner. I fully agree with the major criticism.  

First of all, I would recommend the authors to pay attention to the Referees’ concern regarding the used SWAT 

model applicability to the impact study and to provide more convincing evidence of the model performance on the 

basis of the historical data. In fact, the calibration statistics are poor, inconsistent response in simulated river runoff 

to the increasing precipitations looks questionable, etc.  

Second, major problem is the selection of meteorological forcing data used in the study. I share the all Referees 

concern about the lack of comparison between the observed and GCMs-based data, regarding the selection of the 

GCM models, etc.  

Overall, I recommend the authors to consider the principle criticisms and re-submit the revised manuscript for the 

Editor's review and final decision on opportunity of publication in HESS. 

Response to editor: We appreciate the editor’s effort put into this manuscript and give our 

opportunity to revise this manuscript. The comments and suggestions provided by editor really 

helpful for us to improve the current manuscript. We have attempted to address every point raised 

by the editor which also the major criticism in the Referees’ reports in our revised manuscript and 

hope we have the opportunity of publication in HESS.  

The followings are summary for response to the key concerns, and details showed in the revsided 

manuscript:  

1. The application of SWAT.  

In this study, SWAT hydrological model were calibrated based on SWAT-CUP (SWAT 

Calibration and Uncertainty Programs) to improve the fit between simulated and observed 

discharge. However, the auto-calibration didn’t result in satisfactory performance of the 

hydrological model in the SYR and the CBR. It is thought that this is because there are some 

model-observation divergences within the 1961–1990 calibration period that are simply too large 

to be resolved by an auto-calibration routine. Following the unsuccessful application of 

auto-calibration routines, a more extensive manual calibration was undertaken by manually 

varying the six most sensitive parameters in the SWAT. Following manual calibration of model 

parameters, a relative satisfactory fit between observed and simulated monthly river flow was 

obtained in the SYR and the CBR.  

 

In general, the model simulation is considered acceptable when the Ens values are greater than 0.5, 

R
2
 should exceed 0.6, and the Pbias less than ±20%. Model performance statistics over the 

calibration and validation periods were all found “satisfactory” for the four basins. The 



performance statistics Ens and R
2 

were both > 0.8 and considered highly acceptable for the two 

basins in southern China (i.e., the HHR and the FJR) for both the calibration and the validation 

periods. The same performance statistics were considered reasonably acceptable for the two basins 

in northern China (i.e., the SYR and the CBR) with efficiencies in the range 0.58~0.82. The 

percentage bias was generally less than 20% (excepted for the Baihe River for the calibration 

period) in the four rivers. 

 

Furthermore, we evaluated the performance of discharge simulation of SWAT by comparing the 

graphical plots including monthly time series which reflects the month to-month sequencing 

(added as Figure S3), and flow duration curve which shows the frequency distributions of 

discharge (Fig.S4) in the revised manuscript. The two kind of graphical plots comparison well 

matching between the observed and simulated discharge during 1961-2001, details in Section 3.1 

and Figure S3 and Figure S4 in the revised manuscript. 

2. Inconsistent response in simulated river runoff to increasing precipitation. 

We fully understand the argument about inconsistent response in simulated river runoff to 

increasing precipitation in the four river basins.  

 

We added a section 5.1 Climate change impact on runoff to compare our result with previous 

studies (Chen et al. 2014; Liu et al., 2012; Ma et al., 2008). The four river basins in this study 

represent climate from dry to wet, and the response of runoff to precipitation change also 

coincided with the previous findings that more increase in precipitation need to maintain runoff in 

drier basins.  

Considering evapotranspiration (ET) is the main output of surface water resources, we added the 

simulated change in ET (added Figure 4). The results showed that a general increase in simulated 

ET in all four basins accompanied with global warming, however, the magnitude of the simulated 

change of ET varies across the basins, i.e., it is larger in the two basins in north China than in the 

two basins in south China. For the two rivers located in northern China, the simulated change of 

ET in the SYR shows increase of 21% and 13%, while that of the CBR shows increase of 4% and 

6% under 1.5 °C and 2.0 °C warming, respectively, which implies the increase in simulated ET 

contributes most to the decrease in simulated annual runoff in the SYR. 

 

Reference: 

Ma, Z., Kang, S., Zhang, L., et al.: Analysis of impacts of climate variability and human activity on 

streamflow for a river basin in arid region of northwest China, J. Hydrol., 352, 239-249, 

https://doi.org/10.1016/j.jhydrol.2007.12.022, 2008. 

Liu, M., Tian, H., Lu, C., et al.: Effects of multiple environment stresses on evapotranspiration and 

runoff over eastern China, J. Hydrol., 426-427, 39-54, https://doi.org/10.1016/j.jhydrol.2012.01.009, 

2012. 

Chen, J., Xia, J., Zhao, C., et al.: The mechanism and scenarios of how mean annual runoff varies with 

climate change in Asian monsoon areas, J. Hydrol., 517, 595-606, 

https://doi.org/10.1016/j.jhydrol.2014.05.075, 2014. 

3. the selection of meteorological forcing data used in the study 



(1) We compared the WFD with climate observation based on meteorological station for annual 

mean and monthly mean temperature and precipitation (Table S1 and Figure S1). WFD 

showed slight difference in the two river basins in Southern China, with about 1.3% and 2.1% 

lower in mean annual precipitation and 0.1 ℃ and 0.9℃ lower in mean annual temperature 

in the HHR and the FJR respectively. While in the two river basins in Northern China, there 

less 20% difference in mean annual precipitation (14.6% larger and 20% lower than observed 

meteorological observations), and 2.5℃ and 4.1℃ lower in mean annual temperature in the 

SYR and the CBR. The monthly distribution showed general coherence in the seasonal pattern 

in temperature and precipitation between WFD and meteorological observation.  

(2) Forcing hydrological model with WFD and observed climate data result in different 

parameterization, and has limited impact on performance of runoff simulation. Previous 

researchers found that Ens and R2 forced by WFD are slightly larger than those forced by 

observed climate in both the Huaihe River and in the Xijiang River, and Pbias is smaller in the 

Huaihe River while larger in the Xijiang River compared with forced by observed climate 

(Liu et al., 2012, Liu et al, 2018; Wang et al., 2018).  

 

(3) To reducing the uncertainties of hydrological model parameterization caused by inconsistent 

climate forcing, we calibrated and validate SWAT with WFD, because climate model output 

was corrected based on WFD in the frame of ISI-MIP, then was used to force the calibrated 

SWAT model in the hydrological scenarios modeling for the four rivers.  

 

We have compared the WFD with meteorlogial observation inSection2.2, and clarified the reason 

using WFD force SWAT in Section 3.1 in the revised manuscript. 

 

Reference: 

Liu, L.; Jiang, T.;Xu, J.; Luo, Y.. Research on the hydrological processes using multi-GCMs and 

multi-scenarios. J. Hydral. Eng., 2012, 43 (12), 1413-1421. 
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https://doi.org/10.3390/w10070883. 

Wang, S.; Xu, H;, Liu, L; Wang, Y.; Song, A. Projection of the Impacts of GlobalWarming of 1.5℃ 
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4. the lack of comparison between the observed and GCMs-based data 

(1) In this study, WFD data was used as the observation-based reference dataset for bias-correct 

for the output of GCMs. The trend-preserving bias correction method that were derived during 

the reference period are applied to the simulation data in the past, present and future 

(allocation period 1950-2099).  

(4) We added the comparison of WFD with the historical run of GCMs for 1961-2001 (Table S2.  

and Figure S2). The downscaling climate data from GCMs showed very good coherence with 

WFD for the historical period 1961-2001 in the four river basins in this study, with slight 

difference in temperature and larger precipitation.  



We have clarified the comparison of WFD with GCMs-based data in Section 2.2 in the 

revised manuscript. 

5. the selection of the GCM models. 

(1) GCM selection would introduce uncertainty and influence the range of climate change impact 

assessment (Todd et al., 2011). The five GCMs used in this study, which captured 50 to 90% 

of the full range of future projections of 36 CMIP5 GCMs for temperature and 40 to 90% of 

the full range of future projections for precipitation in the four river basins (Fig.1 in 

McSweeney and Jones 2016).  

(2) Furthermore, Liu et al. (2017) compared the changes of precipitation and temperature by five 

GCMs used in this study with those of other 19 CMIP5 GCMs. The results showed that the 

five GCMs covered the range of GCMs from CIMP5 well for global mean precipitation and 

temperature during 2020-2050 for RCP2.6 and RCP4.5. (Fig.S1 in Liu et al., 2017)  

(3) The information indicates the importance for reducing uncertainty associated with the choice 

of an applied GCM. At the basin scale, prioritising or weighting GCMs may be considered on 

the basis of detailed analyses of the ability of an individual GCM to represent a specific 

characteristic of regional climate of interest (e.g., multi-annual or decadal variability). 
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Abstract: To quantify climate change impact and difference on basin-scale river runoff under the limiting global warming 15 

thresholds of 1.5 °C and 2.0 °C, this study examined four river basins covering a wide hydroclimatic setting. We analyzed 

projected climate change in four basins, quantified climate change impact on annual and seasonal runoff based on the Soil 

Water Assessment Tool, and estimated the uncertainty constrained by the global circulation models (GCMs) structure and 

the Representative Concentration Pathways (RCPs). All statistics for the two river  basins (the Shiyang River (SYR) and the 

Chaobai River (CBR)) located in northern China indicated generally warmer and wetter conditions, whereas the two river 20 

basins (The Huaihe River (HHR) and the Fujiang River (FJR)) located in southern China projected less warming and were 

inconsistent regarding annual precipitation change. The simulated changes in annual runoff were complex; however, there 

was no shift in seasonal runoff pattern. The 0.5 °C global warming difference caused 0.7 °C and 0.6 °C warming in basins in 

northern and southern China, respectively. This led to projected precipitation increase by about 2% for the four basins, and to 

a decrease in simulated annual runoff of 8% and 1% in the Shiyang SYR and Huaihe riversthe HHR, respectively, but to an 25 

increase of 4% in the Chaobai CBR and the Fujiang riversFJR. The uncertainty in projected annual temperature was 

dominated by the GCMs or the RCPs; however, that of precipitation was constrained mainly by the GCM. The 0.5 °C 

difference decreased the uncertainty both in the annual precipitation projection and the annual and monthly runoff simulation. 

Keywords: 1.5 °C and 2.0 °C warming; runoff; Shiyang River; Chaobai River; Huaihe River; Fujiang River 
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1 Introduction  

In addition to changes in other variables of the climate system, global temperature has shown warming of 0.85 °C during 

1880–2012 and further increase of 2.0–4.0 °C is projected over the next 100 years (IPCC, 2013). The observed changes in 

climate have affected both natural and human systems in recent decades. The level of climate change risk at 1.0 °C or 2.0 °C 

global warming is thought considerable, while that associated with an increase of ≥4.0 °C global warming is considered high 5 

to very high (IPCC, 2014). The target goal of 1.5 °C and 2.0 °C global warming relative to the preindustrial climate has been 

proposed as a threshold which to avoid the dangerous effects of anthropogenic climate change might be limited (UNFCCC, 

2015). The observed changes in climate have affected both natural and human systems in recent decades. The level of 

climate change risk at 1.0 °C or 2.0 °C global warming is thought considerable, while that associated with an increase of 

≥4.0 °C global warming is considered high to very high (IPCC, 2014). Significant progress has been achieved in 10 

comprehensive quantitative assessments of aggregate global climate impact (Schellnhuber et al., 2014). However, climate 

research is also challenged to provide more robust information on the impact of climate change under different scenarios of 

global warming (particularly at local and regional scales) to assist the development of sound scientific adaptation and 

mitigation measures (Huber et al., 2014). For example, a number of areas have been identified with severe projected impacts 

of warming at 2.0 °C (Schleussner et al., 2016). 15 

Observed climate change has caused changes in global hydrological cycle, and this is expected to have considerable impact 

on multiple scale freshwater availability (Schmied et al., 2016). Most regional changes in precipitation can be attributed 

either to internal variability of the atmospheric circulation or to global warming. Climate change over the 21
st
 century is 

projected to reduce renewable surface water significantly in most dry subtropical regions, while water resources are 

projected to increase at high latitudes (IPCC, 2014). At the global scale, the extreme rainfall is projected to more frequency 20 

under both 1.5 °C and 2.0 °C warming until around 2070; however, the increase is expected to be higher under 2 °C warming 

after the late 2030s (Zhang and Villarini, 2017). Furthermore, global warming of 2.0 °C is anticipated to affect natural runoff 

in river basins around the world and to dominate runoff changes, even considering human impact (Haddeland et al., 2014). 

Global warming of 2.0 °C will enhance water scarcity in areas projected to experience severe water resources reduction, 

although uncertainties exist in the projected changes in discharge and in the spatial heterogeneity depending on the 25 

contributions from global hydrological models and global climate models (Schewe et al., 2014). For the most region with 

simulated water resource declined, the uncertainties in simulated runoff usually constrained by global hydrological models, 

which suggests the necessity for improvement of regional- or local-scale hydrological projections (Su et al., 2017). 

Comparison of the performance of global and regional hydrological models indicates that regional hydrological models are 

better able to represent the long-term average seasonal dynamics (Hattermann et al., 2017; Gosling et al., 2017).  30 

Within the context of the global temperature increase, China has experienced robust warming that is characterized by the 

greatest rate of annual mean temperature increase (i.e., more than 0.3 °C/10a during 1961–2012) in northern areas (Third 

National Assessment Report for Climate Change, 2015). River runoff has decreased consistently in the Yellow, Liao, and 
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Songhua rivers but increased in the Pearl River because of increased precipitation in southern China and decreased 

precipitation in northern China combined with human activities (Xu et al., 2010a). The runoff of rivers located in northern 

China, in areas with arid and semiarid climate, is more sensitive to precipitation than in southern China (Xie et al., 2018). 

The 2.0 °C warming threshold will be exceeded under two Representative Concentration Pathways (RCPs), averaged across 

China, will be around 2033 ± 15a under RCP4.5 and 2029 ± 10a under RCP8.5 (Chen and Zhou, 2016). Simulations suggest 5 

that the Yiluo River in northern China will have reduced annual runoff but with a wetter flood season under both 1.5 °C and 

2.0 °C warming, while the Beijiang River in southern China will have a slight increase in annual runoff with a drier flood 

season (Liu et al., 2017). The simulated runoff changes of the Yangtze River decrease under 1.5 °C warming; however, it 

shows opposite changes under 2.0 °C global warming (Chen et al., 2017). 

The objectives involved in this paper address the following: (1) to detect the level of warming and the change in precipitation 10 

in four river basins with differing hydroclimatic characteristics under limiting global warming thresholds of 1.5 °C and 

2.0 °C, (2) to simulate the changes in river runoff under 1.5 °C and 2.0 °C warming among the four basins, (3) to estimate 

the uncertainty constrained by global circulation models (GCMs) and RCPs, and (4) to quantify the difference in projected 

climate changes and simulated changes of river runoff in relation to 0.5 °C global warming difference among the four basins. 

To achieve these objectives, firstly, we analyze the projected changes in mean annual temperature and precipitation in the 15 

selected four basins at the annual scale under 1.5 °C and 2.0 °C warming. Secondly, we investigate the changes in simulated 

annual and monthly river runoff in the four river basins based on validated Soil Water Assessment Tool (SWAT). Finally, 

we quantify the uncertainties in climate change impacts on river runoff based on five GCMs under four RCPs. 

2 Study basins and available data 

2.1 Basins 20 

Four basins that span a wide hydroclimatic gradient from dry to wet were selected as case studies in this research. The 

locations as well as the physical and hydroclimatic characteristics of the selected basins are presented in Fig. 1 and Table 

Table 1. 

The Shiyang River (SYR) basin is one of three inland river basins in Northwest China. The basin is dominated by a 

continental temperate arid climate and variable topography. The Shiyang RiverSYR has eight tributaries that originate in the 25 

Qilian Mountains, the total drainage in mountain area of which (1.1 × 10
4
 km

2
) was selected as the study area. River 

discharge is derived mainly from precipitation and snow melt water in summer and from groundwater in winter. Of the eight 

tributaries in the Shiyang River basin, five have decreasing trends in annual streamflow, mainly because of reduced 

precipitation (Ma et al., 2008). The basin has lost much of its natural vegetation and it has undergone gradual desertification 

due to limited water resources, inappropriate human activities, and the arid climate, which together pose considerable threat 30 

to sustainable agricultural development (Zhu and Li, 2014).  
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The Chaobai River (CBR) basin is located on the North China Plain and it is a tributary of the Haihe River. The basin is 

dominated by a continental temperate monsoon climate. The CBRChaobai River originates from the Yanshan Mountain via 

two tributaries: the Chaohe River and the Baihe riverRvers. The total area of the basin above the Xiahui and Zhangjiafen 

gauging stations (about 1.4× 10
4
 km

2
) was selected as the study area. This watershed is the source of more than half the 

water supplied to Beijing. Its runoff has declined considerably during 1956-2004 because of climate change, land use and 5 

land cover change, and increased water consumption (Xu et al., 2014; Yang and Tian, 2009).  

The Huaihe River (HHR) basin is an extensive flat plain located in a transition zone between the climates of North and South 

China. The basin is dominated by a warm temperate monsoon semihumid climate. The upper region of the HHRHuaihe 

River basin above the Wujiadu gauging station, which has a drainage area of about 12.1 × 10
4
 km

2
, was selected as the study 

area. Climate change has led to severe storms, reduced and intense droughts in Huaihe RiverHHR Basin (Zhang et al., 2015). 10 

The Fujiang River (FJR) is the tributary of the Yangtze River and originates from Min Mountain located in Southwest China. 

The FJRujiang River basin is dominated by a humid subtropical climate. The area above the Xiaoheba gauging station, 

which has a drainage area of 2.9 × 10
4
 km

2
, was selected as the study area. Because of the high population density, intensive 

agricultural practices, and decreasing precipitation, the observed river discharge has a decreasing trend; however, high-

intensity and long-duration precipitation in this area frequently results in floods and associated landslides (Gao et al., 2017).  15 

2.2 Available data 

The consistent spatial dataset, such as the digital elevation model of China generated from topographic map with 1:250,000 

scale, the harmonized world soil database with 30 arcsecond resolution (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2008), and the  

digital land use map of China with 1:500, 000 were used for the parameterization of SWAT.  

The observed discharge data were provided by the local authorities based on the Water Year Books. Monthly discharge 20 

records for selected gauging stations in the four basins (listed in Table 2) for the period of 1961–2001 were used for SWAT 

evaluation. The daily climate dataset (WATCH Forcing Data: WFD) (Weedon et al., 2010) with the resolution of 0.5 degree 

covered the period of 1958-2001 was obtained from the Water and Global Change Program. The WFD was used for driving 

SWAT hydrological model for the historical period, and also was used for the basis for GCMs output downscaling. Gridded 

reanalysis climate datasets have been use for hydrological modeling widely, and the WFD is considered an acceptable 25 

dataset for forcing hydrological models in comparison with gridded observation database (Essou et al., 2016). Furthermore, 

WFD has been widely used in climate change impact assessment at regional or catchment scale in China (Hao et al., 2018; 

Liu et al., 2017; Chen et al, 2017; Su et al., 2017).  The comparison of mean annual and monthly temperature and 

precipitation based on WFD and meteorological observations in the four river basins showed in Table S1 and Fig. S1. WFD 

showed slight difference in the two river basins in Southern China, with about 1.3% and 2.1% lower in mean annual 30 

precipitation and 0.1 ℃ and 0.9℃ lower in mean annual temperature in the HHR and the FJR respectively. While in the two 

river basins in Northern China,  there were less 20% difference in mean annual precipitation (14.6% larger and 20% lower 
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than observed meteorological observations),  and 2.5℃ and 4.1℃ lower in mean annual temperature in the SYR and the 

CBR. The monthly distribution showed general coherence in the seasonal pattern in temperature and precipitation between 

WFD and meteorological observation.appears to be appropriate for application to hydrologicalmodeling in this study, and 

the comparison of mean annual and monthly temperature and precipitation based on WFD and meteorological observations 

showed in Table S1 and Figure S1. 5 

GCMs outputs were derived from the Inter-Sectoral Impact Model Intercomparison Project for five GCMs (HadGEM2-ES, 

IPSL-CM5A-LR, MIROC-ESM-CHEM, GFDL-ESM2M and NorESM1-M) under four RCPs (RCP2.6, RCP4.5, RCP6.0 

and RCP8.5) (Warszawski et al., 2014). These models were selected to span GMT change and relative precipitation change 

as effectively as possible (Warszawski et al. 2014). The FRC index (Fractional range coverage) of the five GCMs in ISI-MIP 

project is 0.75 and 0.59, respectively, which is better than the five GCMs randomly selected from CMIP5, and can 10 

reasonably represent the changes of regional average temperature and precipitation (McSweeny and Jones, 2016). These 

climate model outputs are spatially interpolated into 0.5° resolution and corrected using trend-preserving bias correction 

approach based on WFD for the period 1950–2005 for historical simulation and 2006-2099 for future projection under 

(Hempel et al., 2013). The downscaling climate data from GCMs showed very good coherence with WFD in for the 

historical period 1961-2001 in the four river basins in this study (Table Table S2 and Figure Fig. S2). There were slight 15 

differences in annual mean, maximum and minimum temperature in the four river basins, with less than 0.1℃ difference in 

the SYR, CBR and HHR, and 0.3℃ larger in the FJR. All five GCMs‟ historical downscaling data showed insistent well 

agreement in temperature compared with WFD. For the annual precipitation, there was general wetter condition based on the 

five GCMs‟ historical downscaling data, with the magnitude less than 15%. The five GCMs‟ historical downscaling data 

could reproduce the monthly distribution of temperature and precipitation well. These models were selected to span GMT 20 

change and relative precipitation change as effectively as possible (Warszawski et al. 2014). The FRC index (Fractional 

range coverage) of the five GCMs in ISI-MIP project is 0.75 and 0.59, respectively, which is better than the five GCMs 

randomly selected from CMIP5, and can reasonably represent the changes of regional average temperature and precipitation 

(McSweeny and Jones, 2016). Such a subset can provide climate information that can improve the understanding of both the 

total uncertainty of future climate impacts and the uncertainty constrained by the use of different GCMs and RCPs.  25 

3 Methodology 

3.1 Application of SWAT  

The SWAT is a process-based semi-distributed hydrological model, which can simulate the river flow, water balance and 

nutrient transport at basin scale (Gassman et al., 2007). As an open and free tool, the SWAT is applied worldwide under 

various climatic conditions and hydrologic regime (Xu and Luo., 2015Arnold et al., 2012). 30 
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The simulations using the SWAT model were forced by WFD climate data at a daily time step, and they were spunwarm-up 

for the period 1958–1960. The SWAT models were then calibrated for the 1961–1990 and validated for 1991–2001 using 

monthly river runoff data from the gauging stations of the four basins.  Forcing SWAT by WFD mainly based on the 

consideration of reducing the uncertainties of hydrological model parameterization caused by inconsistent climate forcing. 

Because climate model output was corrected based on WFD in the frame of ISI-MIP, and was used to force the calibrated 5 

SWAT model in the hydrological scenarios modeling. Forcing hydrological model with gridded climate/reanalysis climate 

data, and observed climate data result in different parameterization (Xu et al., 2010b), and has limited impact on 

performance of runoff simulation (Liu et al., 2012a; Liu et al., 2018, Wang et al., 2018). 

Using sensitivity analysis procedures embed in SWAT resulted in the six most sensitive parameters (Table Table S3) in the 

hydrological model for each of the four rivers. There were two consistent sensitive parameters “CN2” and “GWQMN” 10 

among all four river basins which control the runoff process and soil water moving process respectively. However, there was 

consistent sensitive parameter for the two river basins located in northern China and southern China respectively, such as in 

the two river basins located in northern China, the common sensitive parameter was “ALPHA_BF” which reflect the 

groundwater flow response to changes in recharge. There were specific sensitive parameters for each river basin, such as the 

temperature related parameters for snow “SMTMP” and “TIMP” in the Shiyang RiverSYR basin. The definition of 15 

parameters showed in Table Table S4. The SWAT hydrological model were calibrated based on SWAT-CUP (SWAT 

Calibration and Uncertainty Programs) (Abbaspour., et al, 2007) to improve the fit betweebn simulated and observed 

discharge. For the Shiyang RiverSYR, the observed monthly streamflow at the Jiutiaoling gauging station for the Xiyinghe 

tributary was used for model calibration and validation, while the parameterization was used for the entire the Shiyang 

SYRRiver. For the Chaobai RiverBR, the observed monthly streamflow at the Xiahui gauging station for the Chaohe 20 

RChaohe Riveriver and at the Zhangjiafen gauging station for the Baihe RBaihe Riveriver were available for hydrological 

model calibration and validation separately (Hao et al., 2018). For the HHR and the FJR, the observed monthly discharge in 

the main stream at guaing station Wujiangdu and Xiaoheba respectively was used for model calibration and validation. 

However, the auto-calibration didn‟t result in satisfactory performance of the hydrological model in the SYR and the CBR. 

More extensive manual calibration was undertaken by manually varying the six most sensitive parameters in the SWAT 25 

which resulted in improvement in model performance, and a relative satisfactory fit between observed and simulated 

monthly river flow was obtained in the SYR and the CBR. 

The coefficient of determination (R
2
), Nash–Sutcliffe efficiency (Ens) were used to measures the goodness-of-fit, and 

percentage of bias (Pbias) was used to assess systematic over- or under estimation and when the absolute value is applied it 

shows the magnitude (Green and van Griensven, 2008).  In general, the model simulation is considered acceptable when the 30 

Ens values are greater than 0.5, R
2
 should exceed 0.6, and the Pbias less than ±2520% (Moriasi et al., 2007).  Furthermore, the 

performance of discharge simulation of SWAT was also compared by the graphical plots including monthly time series 

which reflects the month to-month sequencing, and flow duration curve which shows the frequency distributions of 

discharge.  



7 

 

Model performance statistics over the calibration and validation periods were all found “satisfactory” for the four basins 

(Table Table. 2). The performance statistics Ens and R
2
 were both > 0.8 and considered highly acceptable for the two basins 

in southern China (i.e., the Huaihe HHR and the Fujiang riversFJR) for both the calibration and the validation periods. The 

same performance statistics were considered reasonably acceptable for the two basins in northern China (i.e., the Shiyang 

SYR and the Chaobai riversCBR) with efficiencies in the range 0.58–~0.82.  The percentage bias was generally less than 20% 5 

(excepted for the Baihe River for the calibration period) in the four rivers. The monthly time series for discharge during the 

calibration and validation period (Fig. S3) showed apparently well month to-month sequencing in the four rivers with 

general underestimate in monthly discharge in dry season in the two rivers located in northern China, and underestimate for 

flooding season in occasion years in the CBR. This was also reflected in the flow duration curve (Fig.S4), with large 

underestimate for the medium/lower and very high flow for the CBR. Oppositely, there was overestimate in medium/lower 10 

flow in both the two river located in the Southern China, however, underestimate in higher flow in FJR.   

Although, there was a few cases showed that SWAT could be used in snowmelt-dominated streamflow (Wang and Melesse, 

2005; Tolston and Shoemaker, 2007; Grusson et al., 2015), a few previous researches have indicate that SWAT model did 

not adequately predict winter flows or snowmelt-dominated runoff in several watershed (Peterson and Hamlett, 1998; 

Srivastava et al., 2006; Chanasyk et al., 2003; Benaman et al., 2005), , which could be one reason that the low values of the 15 

Nash-Sutcliffe efficiency for the Shiyang and Chaobai rivers in the northern China with cold winter.  It can be summarized 

that appears to capture successfully the underlying hydrology of the four river basins evaluated by the three statistic metrics 

and compared by the monthly discharge series, and flow duration curve.  The successful application of the SWAT in 

different climate regions is considered adequate verification of the suitability of the model for future climate change impact 

on runoff in the four selected basins.  20 

3.2 Climate change projection and runoff simulation  

The future scenarios for limiting global warming thresholds of 1.5 °C and 2.0 °C were derived based on 30-year running 

mean of global mean temperature (GMT) followed the methodology of Liu et al. (2017) for each one of the 20 combinations 

under four RCPs and five GCMs of the climate projection subset. Tab.le S5 showed the averaged middle year of the 30-year 

samples for all GCMs under each RCPs of 1.5 °C and 2.0 °C global warming. There were 18 scenarios under the threshold 25 

of 1.5 °C above preindustrial levels and 16 scenarios under the threshold of 2.0 °C. These scenarios were used to quantify 

the difference in the changes of the projected annual temperature and precipitation in the four river basins by comparing with 

the baseline period (1976-2005).  

To indicate the overall magnitude and difference of the climate change projection under limiting global warming thresholds 

of 1.5 °C and 2.0 °C, the projected changes in mean annual temperature and annual precipitation were quantified by the 30 

value of ensemble mean under all climate scenarios (Ave.), and the projected changes in maximum and minimum annual 

temperature and annual precipitation (Max. and Min.) among all climate scenarios. The uncertainty caused by RCPs was 

estimating using standard deviation of the mean of all GCMs under 1.5℃ and 2.0℃ global warming respectively, and the 



8 

 

uncertainty constrained by GCMs was estimated using standard deviations of all RCPs under the two threshold of global 

warming, whereas the all source of uncertainty of climate change scenarios was estimating using the standard deviation of all 

the 18 and 16 climate scenarios under  1.5℃ and 2.0℃ global warming. 

The hydrological simulation adopted the climate projection subset for the downscaling climate data, and the future climate 

scenarios from five GCM and validated SWAT models s in the four basins, and projected the impact of climate change on 5 

river discharges. Generally, the hydrological simulations based on downscaling climate data from five GCMs for baseline 

period compared well with those based on WFD, and were acceptable subsequent hydrological projection (Table Tab. S6 

and Figure Fig. S3).The changes in averages of the annual and monthly runoff were compared based on the simulated runoff 

under all climate scenarios and with the simulated runoff based on the baseline period (1976-2005) from the five GCMs 

rather than the actual observed discharge data or simulated discharge forcing by WFD.  10 

The simulated changes in mean annual runoff were quantified by the value of ensemble mean annual runoff of all climate 

scenarios under 1.5℃ and 2.0℃ global warming, and mean annual runoff under RCP 2.6, RCP4.5, RCP6.0 and RCP8.5 

respectively, and mean annual runoff under GCM GFDL-ESM2M, HaDGem2, IPSL_CM5A-LR, MIROC-ESM-CHEM, and 

NorESM1-M respectively. The simulated changes in monthly runoff were analysis by the proportion of monthly runoff in 

annual runoff using the mean of baseline period for 5 GCMs, and ensemble mean, maximum and minimum of simulated 15 

monthly runoff under all combined climate scenarios of GCMS and RCPs for 1.5℃ and 2.0℃ global warming, respectively. 

4 Results 

4.1 Projected climate change  

The statistics of the projected climate change for the four basins from the 16 18 scenarios under 1.5°C warming and the 18 

16 scenarios under 2.0 °C warming are were shown in Table Table. 3. The results show substantial warming for all four 20 

basins under two thresholds global warming. The projected changes in ensemble mean annual temperature show 1.5°C 

increase under 1.5°C global warming and 2.2°C increase under 2.0 °C warming for the SYRhiyang and the Chaobai 

riversCBR. While, the projected changes in ensemble mean annual precipitation show 3% and 5% increase under 1.5 °C 

warming, and 5% and 8% increase under 2.0 °C warming for the Shiyang SYR and the Chaobai riversCBR, respectively. 

The projected changes in ensemble mean annual temperature show 1.1 °C and 1.2 °C increase under 1.5 °C warming, and 25 

1.8 °C increase under 2.0 °C warming for the Huaihe HHR and the Fujiang riversFJR. The projected changes in ensemble 

mean annual precipitation are minor for the Huaihe HHR and Fujiang riversFJR (i.e., <±3%). All statistics for the two basins 

in northern China indicate generally warmer and wetter conditions in future compared with the „present day.‟ The two basins 

in southern China are projected to have less warming and no consistent change in the projected ensemble mean annual 

precipitation.  30 
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The greatest range in projected changes in annual mean temperature occurs in the HHRHuaihe River, with the warming 

range of 0.3–~1.6 °C under 1.5°C warming and that of 0.7–~2.3 °C under 2.0 °C warming among all projection scenarios. 

The projected range in annual temperature is also large for the Shiyang SYRiver, with change in the range of warming 0.9–

~2.4 °C under 1.5 °C warming and that of 1.7–~2.9 °C under 2.0°C warming, respectively. There is no consistency in the 

direction of range in projected annual precipitation change among the four river basins, with increases ranged 10% to 20% 5 

and decreases ranged −6% to −11%. For the two river basins in southern China, the range in projected change in annual 

precipitation is less than for the two basins in northern China.  

The uncertainty is substantial in annual precipitation projection compared with that associated with annual temperature 

projection, with considerable dispersion among the scenarios. Comparing the uncertainty under limiting global warming 

under thresholds of 1.5 °C  and 2.0 °C, the former has larger uncertainties for the projected change in annual precipitation 10 

than that under the later; however, it is the opposite for the projected change in annual temperature. 

There is generally larger uncertainty constrained by the GCMs (i.e., about 1–~3 times) than associated with the RCPs for the 

projected annual precipitation for all four river basins. However, the uncertainty in annual temperature projection associated 

with the RCPs is larger in the Shiyang SYR River (about 2 times) and in the Huaihe RiverHR (about 1.5–~3.0 times) than 

constrained with the GCMs. All these findings show the uncertainty in the projection of annual precipitation mainly 15 

constrained by GCM structure across the four river basins, whereas the dominance of the uncertainty associated with either 

the GCMs or the RCPs in the projection of annual mean temperature is dependent on the basin.  

4.2 Simulated annual river runoff 

Figure 2 shows the simulated ensemble mean annual river runoff based on all combined climate scenarios, and the average 

simulated annual river runoff of the four RCPs and the average of the five GCMs. The simulated ensemble mean annual 20 

runoff decreases for the Shiyang RiverYR by about 25% and 33% under 1.5 °C and 2.0 °C warming, respectively, and the 

simulated change for the Fujiang RiverJR shows a decrease of about 4% under 1.5 °C warming. The simulated ensemble 

mean annual river runoff shows an increase with magnitude of about 8% and 12% for the Chaobai RiverBR and about 8% 

and 7% for the Huaihe RiverHR under 1.5 °C and 2.0 °C warming, respectively. 

The decrease in the simulated annual river runoff for the Shiyang RiverYR occurs across all the combined scenarios, ranging 25 

ranged from 0% to −72% under 1.5 °C warming and from −11% to −63% under 2.0 °C warming. For the other three river 

basins, the change in simulated annual river runoff ranges from an increase of 57% to a decrease of 34%. The smallest range 

occurs in the Fujiang RiverJR, with a change in simulated annual river runoff in the ranged 10% to −17% and 11% to −11% 

under 1.5 °C and 2.0 °C warming, respectively. The largest range occurs in the Huaihe RiverHR, with a change in simulated 

annual river runoff in the ranged from 57% to −34% under 1.5 °C warming and from 38% to −32% under 2.0 °C warming. 30 

The simulated change in annual river runoff in the Chaobai RiverBR is in the ranged from 37% to −34% under 1.5 °C 

warming and from 39% to −20% under 2 °C warming. 
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The simulated change in annual river runoff for the mean of the four RCPs and the five GCMs shows consistent decrease in 

the range −61% to −14% under 1.5 °C warming and −56 to −18% under 2.0 °C warming for the Shiyang RiverYR, with the 

largest decrease occurring under RCP2.6. The simulated annual river runoff under the mean of the four RCPs for the 

Chaobai River BR shows consistent increase in the range 3% to 13% under 1.5 °C warming and 6% to 19% under 2.0 °C 

warming. For the Huaihe RiverHR, the simulated annual river runoff under RCP2.6 shows reduction of −33% and −25% 5 

under 1.5 °C and 2.0 °C warming, respectively, whereas it increases under the other scenarios by 6% to 20% and 10% to 

17%, respectively. For the Fujiang RiverFJR, the simulated annual river runoff shows reduction for all RCPs under 1.5 °C 

warming, but an increase for RCP4.5 and RCP6.0 under 2.0 °C warming.  

The simulated annual river runoff for the Chaobai RiverBR under HaDGem2 for the mean of the four RCPs shows decrease 

of about −9% and −2% under 1.5 °C and 2.0 °C warming, respectively, while that of the Huaihe RiverHR under NorESM 10 

shows decrease of about −12%. However, for the Fujiang RiverJR, most GCMs show reduction for the simulated annual 

river runoff in the ranged of from 0% to −14% under 1.5 °C warming and from 0% to −5% under 2.0 °C warming, while any 

increase is no larger than 3%. 

There is less uncertainty in the simulated annual river runoff among all the scenarios under 2.0 °C than that of 1.5 °C 

warming when quantified by standard derivation. The uncertainties associated with the RCPs are 1.3–~2.6 times with those 15 

constrained by the GCMs for the Shiyang SYR and the FJRujiang rivers, while for the Chaobai RiverBR, the uncertainties 

constrained by the GCMs are 2–~3 times those associated with the RCPs. For the Huaihe RiverHR, the uncertainties 

associated with the RCPs are the largest under 1.5 °C warming, whereas those constrained with the GCMs are the largest 

under 2.0 °C warming.  

4.3 Simulated seasonal river runoff 20 

Figure 3 shows the change in the proportion (mean monthly percentage of annual runoff) of maximum, average, and 

minimum simulated river runoff based on all combined scenarios. For the Shiyang SYR and Fujiang riversJR, the proportion 

shows no substantial change (i.e., <1.0%). For the Chaobai RiverBR, a decrease occurs during May–July with magnitude of 

about 1.0% to 2.0%, and an increase occurs mainly in September and October with magnitude of <2.0% under 1.5 °C 

warming. Similarly, a decrease occurs during May–August with magnitude of 0.4% to 2.3% and an increase occurs in 25 

September with magnitude of about 2.0% under 2.0 °C warming. While, a decrease occurs mainly during June–August for 

the Huaihe RiverHR, with magnitude of about 1.0% to 3.5% and 1.2% to 3.4%, while an increase occurs in May with 

magnitude of about 2.0% and in September with magnitude of <5% under 1.5 °C and 2.0 °C warming, respectively.  

For all months, there are generally larger ranges for the mean monthly percentage of annual runoff for 1.5 °C warming. 

These results indicate the uncertainties in simulated monthly runoff are larger under 1.5 °C warming than under 2.0 °C 30 

warming. 
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5 Discussion and conclusion 

5.1 DiscussionClimate change impact on runoff 

Chen et al. (2014) analyzed the effects of climate change on runoff in the Asian monsoon region. They indicated that 

different basins respond differently to the same climate change scenario. For example, they found that the change in runoff 

of the Haihe River basin in northern China is highly sensitive to precipitation and temperature. It was established that a 5 

considerable increase in precipitation (about 4%) would be required to keep runoff unchanged in this semi-humid basin in 

Northeast China, while a smaller precipitation increase (about 2.8%) would be required to maintain runoff in wetter basins in 

South China. Precipitation is the main input of surface water resources and evapotranspiration (ET) is the main output. 

Previous studies have explored the climatic impacts of ET and runoff in China. For example, Liu et al. (2012) analyzed the 

environmental stress on ET and runoff over eastern China for 1961–2005. They found ET increased in most river basins, 10 

while runoff increased in the Pearl River and the southeast river basins in southern China but it decreased in the basins of the 

Haihe and Huaihe rivers in northern China. It was determined that climate change was the dominant factor governing the 

long-term trend of ET and runoff in southern China. Ma et al. (2008) indicated that decreased precipitation and increased 

potential ET contribute most to the observed reduction of streamflow in SYR in northwest China.  

The four river basins in this study represent climate from dry to wet, and the response of runoff to precipitation change also 15 

coincided with the previous findings (Chen et al., 2014) that more increase in precipitation need to maintain runoff in drier 

basins. In this study, a smaller precipitation change (±3%) would cause a change in runoff of about 7% and 8% in the HHR 

and of about 0% and −4% in the FJR under 1.5 °C and 2.0 °C warming in the wetter area; while, for the CBR in a semi-

humid climate area, an increase in precipitation of about 5% and 7% would cause an increase in runoff of about 8% and 12% 

under 1.5 °C and 2.0 °C warming. Moreover, in SYR in the arid climate region, an increase in precipitation of about 5% and 20 

7% companied with a decrease in runoff of about −33% and −25% in the SYR.  Further analysis of ET simulation (Fig.4) 

indicated a general increase in simulated ET in all four basins. However, the magnitude of the simulated change of ET varies 

across the basins, i.e., it is larger in the two basins in north China than in the two basins in south China. For the two rivers 

located in northern China, the simulated change of ET in the SYR shows increase of 21% and 13%, while that of the CBR 

shows increase of 4% and 6% under 1.5 °C and 2.0 °C warming, respectively, which implies the increase in simulated ET 25 

contributes most to the decrease in simulated annual runoff in the SYR.  

5.2 Uncertainties in the quantitative assessment 

Precipitation is the main input of surface water resources and evapotranspiration (ET) is the main output. Previous studies 

have explored the climatic impacts of ET and runoff in China. For example, Liu et al. (2012) analyzed the environmental 

stress on ET and runoff over eastern China for 1961–2005. They found ET increased in most river basins, while runoff 30 

increased in the Pearl River and the southeast river basins in southern China but it decreased in the basins of the Haihe and 

Huaihe rivers in northern China. It was determined that climate change was the dominant factor governing the long-term 
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trend of ET and runoff in southern China. Ma et al. (2008) indicated that decreased precipitation and increased potential ET 

contribute most to the reduction of streamflow in northwest China. In this study, the simulated changes in annual river runoff 

showed opposing characteristics with decrease in the Shiyang River in northwest China and increase in the Chaobai River in 

north China, although the annual precipitation projection in the two river basins increased consistently. Figure 4 shows 

change in simulated ET in the four river basins based on the SWAT. The results indicate a general increase in simulated ET 5 

in all four basins. However, the magnitude of the simulated change of ET varies across the basins, i.e., it is larger in the two 

basins in north China than in the two basins in south China. The simulated change of ET in the Shiyang River shows 

increase of 21% and 13%, while that of the Chaobai River shows increase of 4% and 6% under 1.5 °C and 2.0 °C warming, 

respectively, which implies the increase in simulated ET contributes most to the decrease in simulated annual runoff in the 

Shiyang River.  10 

Chen et al. (2014) analyzed the effects of climate change on runoff in the Asian monsoon region. They indicated that 

different basins respond differently to the same climate change scenario. For example, they found that the change in runoff 

of the Haihe River basin is highly sensitive to precipitation and temperature. It was established that a considerable increase 

in precipitation (about 4%) would be required to keep runoff unchanged in this semihumid basin in Northeast China, while a 

smaller precipitation increase (about 2.8%) would be required to maintain runoff in wetter basins in South China. As 15 

mentioned in Section 2.1, the four river basins in this study are located in different climatic zones and they have different 

hydrological processes. For the Chaobai River in a semihumid climate area, an increase in precipitation of about 5% and 7% 

would cause an increase in runoff of about 8% and 12% under 1.5 °C  and 2.0 °C warming. However, a smaller precipitation 

increasing (±3%) would cause a change in runoff of about 7% and 8% in the Huaihe River and of about 0% and −4% in the 

Fujiang River under 1.5 °C and 2.0 °C warming. While, an increase in precipitation of about 5% and 7% caused a decrease 20 

in runoff of about −33% and −25% in the Shiyang River. Li et al. (2016) indicated that frozen soil meltwater accounted for 

about 20% of river runoff during the flood season, while glacier meltwater contributed only about 3% in the Shiyang River. 

However, the glacier meltwater process was not considered in SWAT-based simulations in this study, which would have 

also contributed to the decrease in simulated annual runoff in the Shiyang River.  

This study followed the top-down methodology that common used in IPCC AR4 and AR5 WGII report. Within the IPCC 25 

AR 4 and AR5 water sector, most hydrological projection studies use the precipitation and temperature downscaled from 

GCMs to driven hydrological models. This study adopted climate projection information derived from Inter-Sectorial Impact 

Model Intercomparison Project (ISIMIP). Climate outputs are spatially interpolated into 0.5°×0.5° resolution and corrected 

using trend-preserving bias correction approach based on reanalysis dataset WFD. The WFD was also the climate forcing to 

calibrate and validate of SWAT hydrological model. There were multi sources of uncertainties in climate change impact 30 

assessment in this study. Considering the challenge to address uncertainties for all sources, which we only focus on the 

uncertainties constrained by GCMs and RCPs. Certain uncertainty source were not investigated, such as the climate forcing, 

hydrological model structure and parameterization, GCM structure. 
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Climate forcing is one of major uncertainty in quantitative assessment of climate change impact (Müller Schmied et al., 

2014). However, tThe he complexcomplex terrain in different the four river basins makes it difficult for reanalysis dataWFD to 

reach very satisfactory agreement with station based observation. TOhe comparison of WFD with climate observation from 

meteorological station showed reasonable agreement (Fig. S1 and Table S1), but, there wasur study show both underestimation and 

overestimation in precipitation and temperature based on WFD. . TThis could induce the uncertainty in the river runoff 5 

hydrological simulation, such as difference in the ET simulation in SYR (Fig. S5).  However, previous research indicates that the 

gridded climate dataset can be used in hydrological modeling, and the performance of hydrological model will improve by model 

calibration and validation (Xu et al., 2011). Furthermore, the validated SWAT hydrological model calibrated and validated based 

on WFD, then driven by downscaling climate data from GCMs for baseline period and climate scenarios under 1.5℃ and 2.0℃ 

global warming. Although, the method used for estimated the projected changes in runoff could avoid systematic errors that the 10 

SWAT model would introduce in comparing the projection period with the baseline period. However, This uncertainty in runoff 

simulation would spread to the runoff assessment could also induce the uncertainty in the river runoff simulation. 

Meanwhile, the application SWAT in four river basins covered various climate and environmental condition may result in 

uncertainty constrained by hydrological model structure and parameterization. Li et al. (2016) indicated that frozen soil meltwater 

accounted for about 20% of river runoff during the flood season, while glacier meltwater contributed about 3% in the SYR. There 15 

was a few cases showed that SWAT could be used in snowmelt-dominated streamflow (Wang and Melesse, 2005; Tolston 

and Shoemaker, 2007; Grusson et al., 2015), a few previous researches have indicate that SWAT model did not adequately 

predict winter flows or snowmelt-dominated runoff in several watershed (Peterson and Hamlett, 1998; Srivastava et al., 2006; 

Chanasyk et al., 2003; Benaman et al., 2005) , which could be one reason that the low values of Ens for the SYR and the 

CBR in the northern China with cold and dry winter.  This also could induce the uncertainty in the river runoff simulation. 20 

Furthermore, the glacier meltwater process was not considered in SWAT-based simulations in this study, which would enlarge the 

uncertainty in runoff assessment. 

Moreover, GCM selection would introduce uncertainty and influence the range of climate change impact assessment (Todd 

et al., 2011). The five GCMs used in this study, which captured 50 to 90% of the full range of future projections of 36 

CMIP5 GCMs for temperature and 40 to 90% of the full range of future projections for precipitation in the four river basins 25 

(Fig. 1 in McSweeney and Jones 2016). Furthermore, Liu et al. (2017) compared the changes of precipitation and 

temperature by five GCMs used in this study with those of other 19 CMIP5 GCMs. The results showed that the five GCMs 

covered the range of GCMs from CIMP5 well for global mean precipitation and temperature during 2020-2050 for RCP2.6 

and RCP4.5. The information indicates the importance for reducing uncertainty associated with the choice of an applied 

GCM. At the basin scale, prioritising or weighting GCMs may be considered on the basis of detailed analyses of the ability 30 

of an individual GCM to represent a specific characteristic of regional climate of interest (e.g., multi-annual or decadal 

variability). 



14 

 

 

5.2 6 Conclusion 

The 2.0 °C warming scenario caused more substantial warming than the 1.5 °C warming scenario in all four studied basins. 

For the two basins located in northern China, the 0.5 °C global warming difference caused warming of 0.7 °C in the local 

ensemble mean temperature; however, in southern China, this difference caused warming of 0.6 °C. The 0.5 °C global 5 

warming difference will cause consistently wetter conditions, with projected precipitation amounts about 2% greater for the 

four basins, although the projected changes in annual precipitation are minor in southern China compared with the increases 

in northern China. 

The 2.0 °C warming caused a decrease of 8% and 1% in the simulated ensemble mean annual runoff in the Shiyang SYR and 

the HHRHuaihe rivers compared with 1.5 °C warming, while it caused 4% increasing in the Chaobai CBR and the 10 

FJRFujiang rivers. Climatic–hydrological interaction increases the complexity of changes in simulated annual runoff; 

however, the 0.5 °C global warming difference will cause a “wet-get-wetter” and “dry-get-drier” response in the two basins 

in northern China, and it will moderate the simulated annual runoff in the two basins in southern China. There is no shift in 

seasonal runoff pattern attributable to the effects of projected changes in climate under 1.5 °C  and 2.0 °C warming; however, 

the monthly runoff percentage does change in the Chaobai CBR and the HHRHuaihe rivers in some months. 15 

The range of projected annual temperature is largest for the Huaihe RiverHHR and the Shiyang RiverSYR, with the 

uncertainties dominated mainly by the RCPs. Conversely, the ranges are smallest in the Chaobai River basinCBR and the 

Fujiang River basinFJR, with the uncertainties mainly constrained by the GCMs. Although, the range in the projected change 

in annual precipitation is smaller in the two basins in southern China than in the two basins in northern China, the GCMs 

constitute the major source of the uncertainties in the projection of annual precipitation for the four river basins. Even under 20 

the limiting global warming thresholds of 1.5 °C and 2.0 °C, the uncertainties in the projected annual temperature at local or 

regional scale are dominated by either the GCMs or the RCPs; however, the uncertainties in local and regional projected 

annual precipitation are mainly constrained by GCM structure. The 0.5 °C global warming difference will generally reduce 

the uncertainties in the projected change in annual precipitation. 

There is less uncertainty in the simulated change in runoff among all scenarios under 2.0 °C warming compared with 1.5 °C 25 

warming. This is consistent with the uncertainty in the projected annual precipitation. However, the uncertainties, dominated 

by the GCMs for the Chaobai River and constrained by the RCPs for the Shiyang SYR and the FJRFujiang rivers, limit 

confidence in the projected annual runoff for the four studied river basins. Generally, there are less uncertainties in the 

simulated monthly runoff under the 2.0 °C warming.  
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Figure 1. Locations and average monthly precipitation/runoff of the four selected basins in China. 15 

 

Figure 22. Changes in simulated annual river runoff: (a) SYRhiyang River, (b) CBRhaobai River, (c) HHRuaihe River, and 

(d) FJRujiang River under 1.5 °C and 2 °C global warming. (Baseline: 1976–2005; columns represent the simulated river 

runoff for all combined scenarios of GCMs and RCPs ; hollow circles colored dark blue, red, green, blue, and purple 

represent the GCMs: GFDL-ESM2M, HaDGem2, IPSL_CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M, respectively; 20 

solid circles colored dark blue, red, green, and purple represent the RCPs: RCP2.6, RCP4.5, RCP6.0, and RCP8.5, 

respectively). 
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Fujiang FJRRiver 
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Figure 33.  Simulated proportion of monthly river runoff in annual runoff: (a) SYhiyang River, (b) Chaobai CBRiver, (c) 

Huaihe HHRiver, and (d) Fujiang FJRiver under 1.5 and 2.0 °C global warming. (Baseline: 1976–2005; dotted line: mean of 

baseline for 5 GCMs, bars colored black and yellow show the maximum and minimum values of all simulated monthly 5 

runoff for all combined climate change scenarios of GCMs and RCPs; black diamonds and yellow crosses represent the 

mean values for monthly runoff for all combined climate change scenarios of GCMs and RCPs) . 

 

Figure 44. Same as in Figure 2 but for change in simulated annual ET. 
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Table 1. Hydroclimatic characteristics of the four selected basins. 

Basin 
Total Area 

(Km
2
) 

Study Area 

(Km
2
) 

Altitude(m) 1961-2000 Average(mm) 

Max Mean Min Precipitation Runoff 

Shiyang 

RiverSYR 
41,600 11,000 5090 2448 1398 498 180 

Chaobai 

RiverCBR 
19,354 13,846  2266  930  38 469 53 

Huaihe 

RiverHHR 
144,900 121,330 2099 106 11 910 203 

Fujiang 

RiverFJR 
36,400 29,488 5541 1027 242 964 481 

Table 2. Goodness of fit of SWAT simulations for monthly runoff of the ShiyangSYR, ChaobaiCBR, HuaiheHHR, and 

Fujiang riversFJR.  

Basin 
Calibrated area Calibration (1961-1990) Validation (1991-2001) 

River   gauging Area (km
2
) R

2
 Ens Pbias R

2
 Ens Pbias 

SYR Xiyinghe Jiutiaoling 1,077 0.65 0.82 1% 0.71 0.58 7% 

CBR 
Chaohe Xiahui 5,340 0.63 0.63 1% 0.68 0.65 8% 

Baihe Zhangjiafeng 8,506 0.60 0.56 25% 0.77 0.61 -2% 

HHR Huaihe Wujiadu 121,330 0.88 0.87 16% 0.86 0.81 8% 

FJR Fujiang Xiaoheba 29,488 0.94 0.87 1% 0.93 0.87 5% 

Table 3. Projected changes in annual mean temperature and annual precipitation for the four basins under 1.5 °C and 2.0 °C 5 

global warming.  

Basin 

Global 

warming 

Annual mean temperature Annual precipitation 

Changes (°C) Uncertainty Changes (%) Uncertainty 

Ave. Max. Min. All GCMs RCPs Ave. Max. Min. All GCMs RCPs 

SYRShiy

ang 

River 

1.5°C  1.5  2.4  0.9  0.36 0.16  0.38  3  18  -11  7.0  6.6 5.0  

2.0°C 2.2  2.9  1.7  0.32 0.13  0.29  5  15  -6  6.0  4.7 2.1  

CBR 

Chaobai 

River 

1.5°C  1.5  1.8  1.1  0.22 0.20  0.02  5  17  -11  7.3  6.0 2.2  

2.0°C 2.2  2.8  1.7  0.33 0.15  0.06  7 20  -8  6.3  3.6 2.0  
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HHRHu

aihe 

River 

1.5°C  1.1  1.6  0.3  0.35 0.21  0.30  0  13  -9  6.3  4.4 4.3  

2.0°C 1.8  2.3  0.7  0.38 0.12  0.35  3  13  -9  6.3  3.7 3.7  

FJRFuji

ang 

River 

1.5°C 1.2  1.7  0.8  0.23 0.24  0.06  -2  12  -10  5.6  5.0 3.8  

2.0°C 1.8  2.2  1.3  0.28 0.17  0.10  

0  10  -6  

4.6  4.1 2.1  

 

Supplement 

    

 

Figure S1. The differences in monthly mean temperature and monthly precipitation based on WFD and meteorological 5 

observations in (a) SYR, (b) CBR, (c) HHR, and (d) FJR during 1961-2001. 
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Figure S2. The agreements in monthly mean temperature and mean precipitation based on WFD and downscaling climate 

data from five GCMs in (a) SYR, (b) CBR, (c) HHR, and (d) FJR for during 1961-2001 for the four river basins. 

 

 5 

Figure S3. Observed and simulated monthly discharge during calibration period (1961-1990) and validation period (1991-

2001) for (a) SYR, (b) Chaohe River, (c) Baihe River, (d) HHR, and (e) FJR. 

 

 

Figure S4. Observed and simulated flow duration curve based on monthly discharge during 1961-2001 for (a) SYR, (b) 10 

Chaohe River, (c) Baihe River, (d) HHR, and (e) FJR. 
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Figure S53. The agreements in simulated mean monthly runoff and mean monthly evapotranspiration based on WFD and 

downscaling climate data from 5 GCMs during 1961-2001 for the four river basins.  

  5 
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Table S1. The differences in annual mean temperature and precipitation based on WFD and meteorological observations 

during 1961-2001 for the four river basins. 

River 
Annual precipitation Annual mean temperature 

OBS(mm) WFD (mm) Difference (%) OBS(℃) WFD(℃) Difference (℃) 

ShiyangSYR 246.1 282.1 14.6 5.2 2.7 -2.5 

ChaobaiCBR 570.7 476.5 -20.0 9.2 5.1 -4.1 

HuaiheHHR 917.6 898.7 -2.1 14.9 14.8 -0.1 

FujiangFJR 906.0 894.6 -1.3 16.5 15.6 -0.9 

Table S2. The agreements in annual mean, maximum and minimum temperature, and mean annual precipitation based on 

WFD and downscaling climate data from five GCMs for during 1961-2001 for the four river basins. 

River GFDL-

ESM2M 

HadGEM2-

ES 

IPSL-

CM5A-

LR 

MIROC-

ESM-

CHEM 

NorESM1-M 

Difference in mean annual temperature (℃) 

SYR  

Shiyang 

-0.01  -0.03  0.02  -0.00  -0.03  

CBRChao

bai 

-0.01  -0.02  0.08  -0.03  -0.01  

HHRHuai

he 

-0.01  0.01  0.07  -0.03  -0.05  

FJRFujian

g 

0.31  0.31  0.36  0.33  0.29  

River Difference in mean annual maximum temperature (℃) 

SYRShiya

ng 

0.00  0.07  0.04  0.02  0.04  

CBRChao

bai 

0.02  0.10  -0.02  0.00  0.02  

HHRHuai

he 

0.07  0.13  0.03  0.01  0.06  

FJRFujian

g 

0.24  0.29  0.25  0.23  0.27  

 Difference in mean annual minimum temperature (℃) 

SYRShiya

ng 

-0.01  0.03  0.01  -0.01  0.01  

CBRChao

bai 

-0.03  0.08  -0.02  -0.01  0.00  
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HHRHuai

he 

0.00  0.05  -0.05  -0.07  -0.04  

FJRFujian

g 

0.37  0.41  0.39  0.34  0.35  

River Difference in mean annual precipitation (%) 

SYRShiya

ng 

14.8  7.8  13.3  6.3  5.2  

CBRChao

bai 

9.7  8.2  9.1  8.0  6.3  

HHRHuai

he 

4.9  5.4  5.3  3.9  4.8  

FJRFujian

g 

11.0  5.6  8.7  10.4  7.2  

Table S3. Sensitivity results for pre-define parameters by SWAT for the four river basins 

Rank Shiyang 

RiverSYR 

Chaobai 

RiverCBR 

Huaihe 

RiverHHR 

Fujiang 

RiverFJR 

1 ALPHA_BF CN2 CN2 CN2 

2 GWQMN ALPHA_BF GWQMN ESCO 

3 TIMP GW_DELAY RCHRG_DP SOL_AWC 

4 CN2 ESCO ESCO CANMX 

5 SMTMP GWQMN SOL_AWC GWQMN 

6 SOL_AWC CH_N GW_REVAP RCHRG_DP 

Table S4. Definition of identified sensitive parameters in SWAT hydrological model for the four river basins 

Parameters Definition Processes 

ALPHA_BF Baseflow recession constant (days) Groundwater 

CANMX Maximum canopy storage (mm H2O) Runoff 

CH_N Manning coefficient value Channel 

CN2 SCS runoff curve number for moisture condition II Runoff 

ESCO Soil evaporation compensation factor Evaporation 

GW_DELAY Delay time for aquifer recharge (days) Groundwater 

GW_REVAP Groundwater “Revap” coefficient (days) Groundwater 

GWQMN Threshold water level in shallow aquifer for base 

flow (mm) 

Soil 
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RCHRG_DP Deep aquifer percolation coefficient (fraction) Groundwater 

SMTMP Threshold temperature for snow melt (°C) Snow 

SOL_AWC Soil available water capacity (mm/mm soil) Soil 

TIMP Snow temperature lag factor Snow 

Table S5.The mean of middle-year of the 30-year samples for all GCMs under RCPs and under 1.5℃ or 2℃ global warming 

scenarios. 

threshold RCP2.6 RCP4.5 RCP6.0 RCP8.5 

1.5℃ 2029 2030 2032 2025 

2.0℃ × 2049 2053 2038 

Table S6. The agreements in mean annual runoff and evapotranspiration based on WFD and downscaling climate simulation 

from 5 GCMs for during 1961-2001 for the four river basins. 

River GFDL-

ESM2M 

HadGEM2-

ES 

IPSL-

CM5A-

LR 

MIROC-

ESM-

CHEM 

NorESM1-M 

Difference in mean annual runoff (%) 

SYRShiya

ng 

16.2  25.3  16.6  14.4  12.7  

CBRChao

bai 

-19.3  21.5  0.5  -9.1  -2.3  

HHRHuai

he 

-7.2  23.7  9.3  6.3  3.8  

FJRFujian

g 

-6.2  -16.7  6.3  0.0  -4.3  

River Difference in mean annual evapotranspiration (%) 

SYRShiya

ng 

-3.3  -37.7  -4.7  -19.8  -17.6  

CBRChao

bai 

12.4  -0.5  6.6  7.5  3.2  

HHRHuai

he 

-1.8  -8.1  0.8  3.2  4.8  

FJRFujian

g 

15.5  13.4  4.7  11.7  12.7  

 5 
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