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Abstract. Transfer functions are generally used to adjustAdjustments for the wind-induced undercatch of solid 

precipitationsnowfall measurements. These use transfer functions are derived based onto account for the variation expected 

reduction of the collection efficiency with increasing the wind speed for a particular catching-type of gauge, either using . 

Based on field experiments or based on numerical simulation. Most studies use the, collection efficiency curves as a function 20 

of wind speed alone, while others also include involve further explanatory variables such as surface air temperature and/or 

precipitation type to try to reduce the scatter . However, while the wind speed or wind speed and temperature approach is 

generally effective at reducing the measurement bias, it does not significantly reduce the Root Mean Square Error (RMSE) of 

the residuals at a given wind speed., implying that part of the variance is still unexplained. In this study, we propose the use of 

the measuredshow that using precipitation intensity to improve the effectiveness ofas the transfer function. 25 

explanatory variable significantly reduces the scatter of the residuals. This is achieved by applying optimized curve fitting toof 

field measurements from the Marshall field-test site (CO, USA). The use of ), using a non-gradient optimization algorithm 

ensuresto ensure optimal binning of experimental data according to the parameter under test. The results reveal that using 

precipitation intensity as an explanatory variable significantly reduce the scatter of the residuals. The scatter reduction as 

indicated by the Root Mean Square Error (RMSE) is confirmed by the . The analysis of thea recent quality -controlled 30 

datadataset from the WMO/SPICESolid Precipitation InterComparison Experiment campaign of the World Meteorological 

Organization confirms the scatter reduction, showing that this approach can be appliedis suitable to a variety of locations and 

catching-type gauges.  
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WeUsing Computational Fluid-Dynamics simulations, we demonstrate that the physical basis of the relationship between the 

collection efficiency and the measured reduction in RMSE is the correlation of precipitation intensity, due to the correlation 

of large particles with high intensities, by conducting a Computational Fluid-Dynamics (CFD) simulation. We use a Reynolds 

Averaged Navier-Stokes SST k-ω model coupled with a Lagrangian the particle-tracking model. Results validate the 

hypothesis of using the measured precipitation intensity as a key parameter to improve the correction of wind-induced 5 

undercatch. 

Findings size distribution. Overall, these findings have the potential to improve operational measurements since no additional 

instrument other than a improved adjustments only require the use of the wind sensor is required to apply the correction. This 

improves the accuracy of precipitation measurements without the additional cost of ancillary instruments such as particle 

countersspeed information. 10 

 

 

1 Introduction 

Precipitation In-situ liquid and solid precipitation measurements from commonly employ catching -type gauges are affected 

by instrumental and environmental errors. Amongto collect hydrometeors while approaching the environmental factorsground 15 

surface. Factors affecting the capability of the gauge to collect and measure the actual precipitation occurring at a given site 

include wind, wetting, splashing, etc. (WMO, 2014). For a given gauge, we define the Collection Efficiency (CE) as the ratio 

between the precipitation amount Pmeas (mm) measured by the gauge and the true precipitation Ptrue (mm): 

𝐶𝐸 =  
𝑃௦

𝑃௧௨

 

In case of analytical or numerical models, the true precipitation is known, while it is generally unknown in the field for real 20 

world measurements. In this second case, it is common to replace Ptrue with a reference value Pref obtained from high quality 

instruments and/or specific installations. 

In case of snowfall measurements, wind plays a dominant role byin reducing the gauge collection ability, especially in case of 

solid precipitation efficiency (Goodison et al,., 1998; Rasmussen et al., 2012). Nespor and Sevruk, 1999; Constantinescu et 

al.,  25 

Over the past two decades, 2006 used Computational Fluid-Dynamic (CFD) simulations have been used to evaluate the wind-

induced undercatch of traditional catching type gauges (rainfall.Nespor and Sevruk, 1999; Constantinescu et al., 2006; 

Thériault et al., . (2012).) used it for snowfall and compared the results with detailed observations of snow crystals. A recent 

analysis by Colli et al. (2015) showed good agreement between the collection efficiency predicted by time averaged models 

andof wind speed and particle trajectories and the field observations made at the NCAR/NOAA/FAA Marshall Field Test site 30 

(CO, USA, Rasmussen et al. 2012). InA shielded gauge in the latter case, the collection efficiency CE (-) is expressed as the 
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ratio between the precipitation amount measured by the tested gauge P (mm) and a Double Fence International Reference 

(DFIR) shielded gauge PDFIR (mmconfiguration provided the reference precipitation, since this reference system is designated 

as the international standard gauge shield configuration for snowfall measurement (Goodison et al. 1998). 

Given the systematic nature of this environmental error, correctionAdjustment methodologies (e.g. Yang et al., 1995) have 

been mainly based on establishingdeveloped and are typically algebraic relationships between CE and the mean wind speed 5 

Uw (msm s-1), also referred to as transfer functions. Thériault et al. (2012) and Colli et al. (2015a) specified collection efficiency 

variation withCE curves as a function of wind speed for different solid precipitation types (following Rasmussen et al., 1999) 

and particle size distributions. (PSD). Wolff et al. (2015) proposed a sigmoidal variation of the collection with wind 

speedfunction for the CE using the observations collected in Haukeliseter (Norway), which ). This relationship includes the 

environmentalair temperature T (°C) as an additional parameter to take into account for the effectlikely amount of water 10 

contained in the precipitation type. A recent paper by Kochendorfer et al. (2017a) describes a simplified inverse exponential 

formulation for the universal transfer function as follows: 

𝐶𝐸 = 𝑒ି(ೢ)൫ଵିൣ୲ୟ୬షభ൫(்)൯ା൧൯ (1) 

 

where a, b and c are coefficients derived by fitting the field data. The analysis of Kochendorfer et al. (2017a,b) is based on 

measurements collected at the Marshall field site and highlighted that, while a transfer function can reduce the gauge’s bias to 15 

near zero, a large RMSE still remains. Theriault et al (2012) suggest that the large RMSE is due to variability in the particle 

type and size distribution of solid precipitation. Another recent experiment conducted in Formigal (Spain) within the 

framework of the World Meteorological Organization (WMO) SPICE - Solid Precipitation InterComparison Experiment (Nitu 

et al., 2012) showed that “the impact of temperature and snowfall intensity on the catch ratio was less important than wind 

speed, but still noticeable (…)” (Buisan et al., 2016). 20 

Colli et al. (2015) presented dry snow CE estimations for an unshielded and a single Alter (Alter, 1934) shielded gauges based 

on data from the Marshall field site. The comparison of CFD simulations and the observations (Figure 8 of Colli et al., 2015) 

highlights that a large part of the CE variability for a given wind speed is explained by the particle size distribution. Thériault 

et al. (2012 and 2015) reported that the catching performance of a shielded gauge is also significantly related to the vertical 

velocity of the particles approaching the gauge. The particle size distribution and vertical velocity contribute to the calculation 25 

of the measured snowfall intensity SI (mmh-1) as follows: 

𝑆𝐼 = 𝛼 න 𝑁(𝐷)
ೌೣ



∙ 𝑤(𝐷) ∙ 𝐷ଷ𝑑𝐷 (2) 

 

where D is the particle diameter (mm), N(D) the number of particles with diameter D, wp(D) their vertical velocity (m s-1) and 

α a factor that accounts for the shape of the snowflake.  

Given the challenges to decrease the RMSE of the collection efficiency variation with wind speed, the goal of this study is to 30 

show the dependence of the gauge collection efficiency on snowfall intensity. Previous studies (e.g. Folland, 1988; Nespor 
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and Sevruk, 1998), focused on liquid precipitation, specified the functional relationships between wind-induced undercatch 

and Uw for different rainfall rate classes. Following a similar approach, the here investigated formulation of CE is a modified 

version of the relationship proposed by Kochendorfer et al. (2017) obtained by substituting the air temperature with SI as 

follows: 

𝐶𝐸 = 𝑒ି(ೢ)൫ଵିൣ୲ୟ୬షభ൫(ௌூ)൯ା൧൯ (3) 

 5 

where a,b and c are numerical best-fit coefficients. 

This approach is first developed by considering snow gauge data collected at the Marshall (CO, USA), CARE (Canada) and 

Haukeliseter (Norway) field-test sites. Second, the results are compared with CFD modelling.  

The measurements and the data processing method used to perform the field data analysis are presented in section 2.  Section 

3 reports on the observed correlation between CE and either the measured snowfall intensity or the environmental temperature. 10 

A description of the data binning optimization according to SI is also included. The influence of the chosen time-average 

period for measurement on the collection efficiency is described in section 4. In section 5 the dependency between the CE and 

the measured snowfall intensity is investigated using CFD simulations with the aim of providing a physical basis for the 

correlation observed in section 3. 

2 Methodology of field data analysis 15 

2.1 Field data processing 

The development and testing of new methodologies to retrieve the CE requires the availability of quality controlled 

meteorological measurements at high time resolution from a properly instrumented test bed. The solid precipitation 

measurements used in this study were collected by a single Alter and a DFIR shielded Geonor T200B with a 6-second sampling 

time at the Marshall field site (CO, USA, Rasmussen et al., 2012).  This period covers the WMO SPICE data collection period 20 

and is characterized by the availability of ancillary data to support investigation into factors such as wind speed and 

precipitation intensity as well as high levels of data scrutiny and quality control.  Ancillary data are collected every minute. 

The single Alter (SA) Geonor T200B gauge measurements are compared to those made by the DFIR shielded Geonor T200B 

gauge that was defined as the working automated reference for WMO-SPICE (Kochendorfer et al., 2017c). 

Wind speed is measured at 2-m above the surface using a propeller anemometer (Model 05103 Wind Monitor, RM Young) 25 

whereas the temperature is at 1.5 m above the surface using a fan-aspirated (Model 076B Radiation Shield, Met One 

Instruments) platinum resistance thermometers (Model CS500-L, Campbell Scientific).  

GEONOR weighing gauges are based on vibrating wire technology. Noise in the output is due to environmental factors that 

cause oscillations of the measuring bucket. These effects have been limited by post-processing the 6-sec gauge time series 

with a Gaussian Linear Time Invariant (LTI) filter characterized by a filtering window equal to 2 min and a standard deviation 30 

equal to 1 min.  A correction of the vibrating wires sensitivity to the environmental temperature has been applied as well. In 
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addition, an automatic quality control has been performed to check the occurrence of missing data, decreasing trends or jumps 

in the precipitation time series and in-consistent records among by the three vibrating wires of the Geonor T200B gauges 

(Reverdin, 2016).  

The measured CE is expressed as the ratio between the precipitation amount measured by the tested gauge and a Double Fence 

International Reference (DFIR). For the sake of highlighting any dependency between the collection efficiency and the 5 

snowfall intensity measured by the uncorrected gauge, the analysis reported in Section 3 is focused on a subset of 30 min 

measurements made at the Marshall field site that have been selected and quality controlled by the WMO SPICE procedures 

described in Reverdin (2016) and Kochendorfer et al. (2017b). This time period is short enough to represent the time variability 

of precipitation type, temperature and wind speed, and not too long to exclude changes in meteorological conditions 

(Kochendorfer et al., 2017). On the other hand, the 30-min time period is considered long enough to accumulate snowfall 10 

amounts that can be measured by the snow gauges. Furthermore, the sample is composed exclusively by measurements 

performed when the reference (DFIR) precipitation amount is higher or equal to 0.25 mm over the 30 min interval to reduce 

the effects of measurement noise.  The period considered by such dataset starts from October 2013 and ends on April 2015 

and is composed by a total of 72 days of precipitation. A threshold for the environmental temperature at -2°C has been adopted 

to avoid the occurrence of liquid precipitation (Colli et a., 2015) resulting in a dataset of 183 solid precipitation data.  15 

The 30-min WMO SPICE measurements of the shielded gauges and ancillary sensors obtained at CARE (Canada) and 

Haukeliseter (Norway) have been processed as well. At the CARE field site, the wind speed and temperature measured at 2-

m above ground were measured by a NWS425 anemometer and HMP155 thermometer (Vaisala). At the Haukeliseter field 

site,  wind speed measurements performed at a 10 m level above the ground have been performed by a WindObserver II 

anemometer manufactured by Gill Instruments and environmental temperature is measured by a PT100 platinum resistance 20 

thermometer sensor. In order to study the CE trend as a function of the wind speed, we adopted the Kochendorfer et al. (2017a) 

approach that estimates the wind speed at the gauge height equal to U10m x 0.71 by assuming a  log wind vertical profile (Thom, 

1975).  

Because the snowfall type, particle size distribution and terminal velocity at a given location highly vary in time, shorter time 

periods were also tested. These are 1-min, 5-min, 10-min and 20-min time interval. The Meteorological Services (Matrosov et 25 

al.,2009; Gergely and Garrett, 2016) usually use 30-min or 60-min intervals. To investigate the influence of the sampling 

interval on the CE variation with wind speed, the 1-min datasets at the Marshall test site from January 2013 to April 2015 was 

aggregated to obtained the 5-min, 10-min and 20-min time intervals. The environmental temperature of -2C was used as well 

to account for solid precipitation only. The wind speed and temperature datasets were also averaged over the same time 

intervals. A lower snowfall rate measured by the DFIR was set to SIDFIR<0.5 mm/h to avoid cases of light snow occurring at 30 

some of the sites. Under these conditions, the total dataset is composed of 29 precipitation events for a total of 6943 minutes 

of precipitation. 

Finally, the field data are compared to CFD simulations performed by imposing the same wind speed and precipitation intensity 

conditions. This provides an independent confirmation of the conclusions obtained from the field measurements analysis. 
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2.2 CFD simulation framework 

2.2.1 Airflow modelling 

The flow field is generated basing on the airflow dataset computed and described by Colli et al. (2015) to solve the three 

dimensional equations for the airflow around the single Alter GEONOR T200B gauge system. The spatial domain of the 

shielded gauge was subdivided into 10.0 million hexahedral and polyhedral cells with different degrees of refinements close 5 

to the gauge/shield surface to reach numerical convergence. The time-averaged air velocity, turbulent kinetic energy and 

pressure fields were solved by means of a Reynolds Averaged Navier-Stokes k-ω SST model. A direct comparison between 

the single Alter shielded and an unshielded configurations (Figure 3 of Colli et al., 2015) confirmed the advantage of using a 

single Alter shield. This gauge-shield configuration reduces the velocity magnitude in the region contained within the fence 

and hence the exposure of the gauge to the wind.   10 

Note that the calculation assumes uniform and steady air velocity profiles upstream of the gauge.  The role of boundary layer 

turbulence on CE is currently being analysed with more accurate time-dependent models, such as Large Eddy Simulation, and 

preliminary results have been presented in Colli et al. (2016b). 

 

2.2.2 Collection efficiency modelling 15 

The trajectories of dry and wet snow particles in the flow field past the single Alter and unshielded GEONOR gauge using wet 

and dry particle definitions in Rasmussen et al. (2001) were computed for wind speeds between 1 and 8 m/s with a Lagrangian 

model (Colli et al. 2015).  

The influence of the particle size distribution on the CE scattering was analysed by simulating several particle sizes. The 

particle size distribution of solid precipitation can be described using the gamma distribution as shown by Brandes et al. (2006): 20 

 

𝑁(𝐷) = 𝑁 ∙ 𝐷ఓ ∙ 𝐷ିఒ∙ (4) 

 

where N0 is the scale parameter, µ characterizes the curvature and λ the slope of the distribution.  According to Brandes et al. 

(2006) µ can be estimated by the following expression:  µ=-0.00499 λ2+0.798 λ-0.666. In this work we adopted a general 

intercept value equal to N0= 1.5 106 mm-1m-3 and a variable slope parameter between 0.5 mm-1 < λ < 1.5 mm-1 (Brandes et 25 

al.,2006; Theriault et al.,2012). The estimation of CE is based on the particle counting technique described in Colli et al. 

(2016b), which adopts the following integral expression: 

 

𝐶𝐸(𝑈௪) =
∫ 𝑉௪(𝑑)𝐴௦ௗ(𝑑, 𝑈௪)𝑁(𝑑)𝑑

ௗೌೣ



∫ 𝑉௪(𝑑)𝐴௨𝑁(𝑑)𝑑
ௗೌೣ



 (5) 
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where Ainside(dp,Uw) is the effective collecting area associated with the number of particles collected by the gauge and 

Agauge(dp,Uw) is the area associated with the entering particles in case of undisturbed airflow and Vw(dp) the equivalent water 

volume.  

 

3 Results from the field data analysis 5 

The empirical CE for the single Alter shielded gauge as a function of wind speed, when the snow accumulation is aggregated 

over a 30 min time interval, is shown in Figure 1. The two panels show the same CE data calculated from field measurements 

but colour coded according to the air temperature T (panel a) and to the snowfall intensity SISA, as measured by the single Alter 

shielded gauge (panel b). The clustering of the CE according to the SISA is evident. It is observed that, for a given wind speed 

Uw, different CE = PSA /PDFIR ratios may occur according to a specific SISA, with higher collection efficiency values observed 10 

when the gauge collects an higher snowfall intensity. This trend becomes more evident when the mean horizontal wind speed 

is higher than 2 m/s with a more relevant clustering of the data according to SISA. 
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Figure 1: Collection efficiency CE=PSA/PDFIR for the 30 min single Alter gauge measurements from the Marshall field site in the 
period October 2013 to April 2015. Data points are colour coded according to the air temperature T (panel a) and the measured 
snowfall intensity SISA (panel b) showing the clustering of the measurements. 

 5 

One explanation of the larger CE yielded by higher SISA of this trend is that the particles sizes are larger for higher snowfall 

intensities and, hence, less prone to be deflected by the deformed airflow above the gauge collector (Colli et al. 2016a,b). 

Thériault et al. (2012,2015) and Colli et al. (2015) showed a correlation between the slope parameter of the particle size 

distribution observed outside the tested gauge and its collection efficiency. Since low values of the slope mean larger particle 

sizes, this is consistent with the above suggestion.    10 
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In the following, the collection efficiency analysis is focused on the SPICE quality controlled 30 min dataset as used by 

Kochendorfer et al. (2017). A least squares regression of the inverse exponential function of CE(Uw,SISA) presented in equation 

3 has been performed for the single Alter shielded gauge basing on the Marshall field site dataset together with the best fit 

obtained by equation 1 where the collection efficiency is expressed as a function of Uw and T. The coefficients obtained by the 

best-fit analysis are listed in Table 1. 5 

 

 

 

Table 1: CE inverse exponential function coefficients (a, b and c), number of periods available (n) and linear correlation coefficient 
(r) for 30 min measurements made by the single Alter gauge at the Marshall (USA), CARE (Canada) and Haukeliseter (Norway) 10 
field sites from October 2013 to April 2015. The regression coefficients are calculated and compared for both CE(Uw,SISA) and 
CE(Uw,T) at each field site. 

Field site CE formulation a b c n r 

Marshall (USA) 

 

CE(Uw,SISA) 0.6737 12.8976 0.6589 183 0.91 

CE(Uw,T) 0.0520 0.1874 1.4971 183 0.82 

CARE (Canada) 

 

CE(Uw,SISA) 3.4531 107.4708 0.5835 234 0.85 

CE(Uw,T) 0.2892 0.0126 -0.7551 234 0.75 

Haukeliseter (Norway) 

 

CE(Uw,SISA) 0.4217 7.6856 0.7372 485 0.87 

CE(Uw,T) 0.5650 0.0198 -0.6711 485 0.75 

       

The two regressions are presented in Figure 2. These are the CE(Uw,SISA) (panel a) and CE(Uw,T) (panel b) surfaces together 

with the field measurements (red points). The CE surfaces are colored according to the collection efficiency value and the 

CE(Uw,SISA) regression (panel b) shows a relevant dependency on the measured snowfall intensity together with the wind 15 

speed. Having selected a solid precipitation dataset according to the T<-2°C threshold, the CE(Uw,T) regression represented in 

panel a shows a weak dependency to the environmental temperature T. 
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Figure 2: Collection efficiency CE=PSA/PDFIR of the 30-min single Alter gauge measurements made at the Marshall field site (red 
dots) and best-fit surfaces. Two regressions have been performed by expressing CE as a function of the wind speed Uw and either 
the air temperature T (panel a) or the measured snowfall intensity SISA (panel b). 

In order to highlight the observed dependency between the CE and the snowfall intensity measured by the uncorrected gauge, 5 

Figure 3 presents CE(Uw,SISA) plots for smaller subsets of field data selected according to the SI class. A non-gradient multi-

objective genetic optimization algorithm, implemented in the DAKOTA open source toolkit (Eldred et al., 2007), was used to 

retrieve the best SI class limits (namely 0.0<SISA<=0.4 mm h-1, 0.4<SISA<=0.6 mm h-1, 0.6<SISA<=1.0 mm h-1 and 

1.0<SISA<=1.5 mm h-1). The optimization objectives were to maintain a significant sample size for each bin and to minimize 

the scatter of the CE values around their best fit curves (represented by the standard deviation of the residuals). The results 10 

show that each intensity category has a different fit to the sigmoid, with the lowest rates having the steepest decrease in 

collection efficiency with wind speed.  This result is consistent with the highest intensities having the largest particles and 

therefore the smallest collection efficiency drops with wind speed.  
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Figure 3: Empirical CE=PSA/PDFIR from measurements made by the single Alter snow gauge at the Marshall field site as a 

function of wind speed with a 30-min sampling interval. The solid line in each panel is the sigmoid best fit to the data. Each 

panel represents a different range of snow intensity (SISA) as indicated by the key in the upper right of each panel and contains 5 

an evaluation of the RMSE of the residuals. 

Wolff et al. (2015) and Colli et al. (2016b) showed that the influence of the type of precipitation on the catch performance of 

precipitation gauges could be taken into account by specifying the CE values according to the air temperature when considering 

the transition from snow to rain. The air temperature is an efficient indicator to recognizedetermine the type of precipitation 

such as rainfall (T>2°C) from), wet snow (-2°C<T<+2°C) and dry snow (T<-2°C) cases but it). However, this is not 10 

representative of the large variety of dry snow crystal types neitherand the rimed snowdegree of riming (Rasmussen et al., 

1999 and Thériault et al., 2012). Figure 4 shows clearly that the scatter in the data is better represented by the SI rather than 

the air temperature. The four CE(Uw,T) curves show similar trends and nearly overlap each other demonstrating that there is 
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no significant correlation between the dry snow wind-induced undercatch and temperature below -2° C. In contrast, the curves 

show a distinct separation when categorized by snowfall intensity for the 30-min dataset (Fig. 4, solid lines). 

Recently, Kochendorfer et al. (2017a,b) described a simplified inverse exponential formulation for the universal transfer 

function using wind speed and air temperature. Their analysis is based on measurements collected at the Marshall field site 

and highlighted that a large Root Mean Square Error (RMSE) still remain even though a transfer function can reduce the 5 

gauge’s bias to near zero. Thériault et al (2012) suggest using observations and simulations that the RMSE is due to the large 

variability in the particle type and size distribution of snowfall. The temperature can help determining the phase of the 

precipitation but not the size of hydrometeors, which helps explain the small impact of air temperature on the RMSE. Large 

uncertainties are also observed in the DFIR (Thériault et al., 2015) based on CFD simualtions. 

Further numerical simulations were conducted to study the fundamental processes leading to the large scatter in the data for a 10 

given wind speed. Colli et al. (2015) presented dry snow CE estimations for an unshielded and a Single Alter (SA) shielded 

gauges (Alter, 1934) based on data from the Marshall field site. The comparison of CFD simulations with the observations 

(Thériault et al., 2012; Colli et al., 2015) showed that a large part of the CE variability for a given wind speed is explained by 

the particle size distribution. Thériault et al. (2012; 2015) reported that the catch performance of a shielded gauge is also related 

to the particle’s fall speed in the vicinity of the gauge.  15 

These studies suggest that the particle type, size and the wind field can affect the gauge collection efficiency. To explore this 

further, we note that it is possible to represent the size distribution of precipitation particles by an inverse exponential function 

(Marshall and Palmer, 1948) that depends on two parameters, the slope and the intercept of its logarithmic representation. 

Pruppacher and Klett (1997) show that the slope of the PSD is closely related to the precipitation rate. As the precipitation rate 

increases, the slope of the size distribution decreases, leading to a higher concentration of large particles. Previous studies (e.g. 20 

Folland, 1988; Nespor and Sevruk, 1998), focusing on liquid precipitation only, specified the functional relationships between 

wind-induced undercatch and wind for different rainfall rate classes. Therefore, we suggest that the precipitation rate, i.e. 

snowfall intensity (SI), can be used to improve adjustments based on the CE curves. Such possibility is explored in this paper 

and shows to significantly reduce the RMSE.  

Our method of investigation first considers precipitation gauge data collected at the Marshall (CO, USA), CARE (Canada) and 25 

Haukeliseter (Norway) field-test sites. Second, using CFD simulations, different PSDs are numerically tested and the CE is 

evaluated based on the associated precipitation intensity. This allowed testing the proposed hypothesis in a simplified 

environment where the noise that is typical of experimental datasets is avoided. The results show a good agreement of the CE 

values with field data and a clear dependency on the SI. 
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The measurements and the data processing method used to perform the field data analysis are presented in section 2.    

 

Figure 4: CE(Uw) curves ofSection 3 reports on the observed correlation between CE and the measured SI or the environmental 

temperature. A description of the data binning optimization according to SI is also included. The influence of the chosen 

temporal aggregation of measurements on the derived CE is described in section 4. In section 5, the dependency between the 5 

CE and the measured SI is investigated using CFD simulations with the aim of providing a physical basis for the correlation 

observed in section 3. 

2 Methodology of field data analysis 

2.1 Field data processing 

The development and testing of new methodologies to retrieve the CE requires the availability of quality controlledmade by 10 

the single Alter snow, high frequency meteorological measurements from a properly instrumented test bed. The snowfall 

measurements used in this study were collected by two weighing gauge systems, one consisting of a Single Alter (SA) shield 
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surrounding a Geonor T200B weighing gauge with a 6-second sampling frequency and the second a DFIR shielded Geonor 

T200B. Both systems were co-located at the Marshall field site (CO, USA, Rasmussen et al., 2012) during 2013-2015 as part 

of the Solid Precipitation InterComparison Experiment program (SPICE) by WMO (Nitu et al., 2018). Ancillary data was also 

collected at the Marshall Field site every minute to support investigation into factors that might affect the CE. The SA Geonor 

T200B gauge measurements are compared to those made by the DFIR shielded Geonor T200B gauge, which was defined as 5 

the working automated reference for WMO-SPICE (Kochendorfer et al., 2017c). 

Wind speed is measured 2 m above the ground surface using a propeller anemometer (Model 05103 Wind Monitor, RM 

Young) whereas the temperature was measured 1.5 m above the ground surface using a fan-aspirated (Model 076B Radiation 

Shield, Met One Instruments) platinum resistance thermometer (Model CS500-L, Campbell Scientific).  

Geonor weighing gauges are based on vibrating wire technology. Noise in the output is typically due to environmental factors 10 

that cause oscillations of the measuring bucket. These effects have been reduced by post-processing the 6 s raw time series 

with a Gaussian linear time-invariant filter characterized by a filtering window equal to 2 min and a standard deviation equal 

to 1 min.  A correction of the vibrating wires sensitivity to the environmental temperature has been applied as well. In addition, 

an automatic quality control was performed to check the occurrence of missing data, decreasing trends or jumps in the 

precipitation time series and inconsistent data from the three vibrating wires of the Geonor T200B gauge (Reverdin, 2016).  15 

The measured CE, already defined in Section 1, is now better specified as the ratio between the precipitation amount measured 

by the SA shielded gauge (PSA) and the one measured by the DFIR shielded gauge (PDFIR), as follows: 

𝐶𝐸 =  
𝑃ௌ

𝑃ிூோ

 

As for the Marshall field test site, we focused on the WMO-SPICE 30-min quality controlled site event data sets (SEDS), 

according to the procedure described in Reverdin (2016) and Kochendorfer et al. (2017b). Only 30-min data with reference 20 

precipitation (PDFIR) larger or equal to 0.25 mm were considered, for a total of 72 days of precipitation recorded from October 

2013 to April 2015. The dataset was further reduced to consider events with an environmental temperature less than -2°C, to 

avoid the occurrence of liquid precipitation (Colli et a., 2015), resulting in a final dataset of 213 30-min intervals (A-SEDS in 

Table 1). 

The SEDSs from CARE (Canada) and Haukeliseter (Norway) were processed in a similar way and denoted B-SEDS and C-25 

SEDS respectively in Table 1. At the CARE field site, the wind speed and temperature measured at 2-m above ground was 

measured by a NWS425 anemometer and HMP155 thermometer (Vaisala). At the Haukeliseter field site, wind speed 

measurements were made at 10 m level above the ground by a WindObserver II anemometer manufactured by Gill Instruments 

and a PT100 platinum resistance thermometer sensor measured the environmental temperature. We adopted the Kochendorfer 

et al. (2017a) approach to converting 10-m wind to 2-m gauge height wind.  This entails correcting the 10 meter wind by a 30 

factor of 0.71; U10m x 0.71, assuming a logarithmic vertical profile of wind speed (Thom, 1975).  
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Table 1: Location, measurement period, time interval and data consistency of SEDS (site event data set) considered in the analysis 

 

Because the snowfall type, particle size distribution and terminal velocity at a given location are highly variable in time, shorter 

time intervals were also tested. Most meteorological services (Matrosov et al.,2009; Gergely and Garrett, 2016) use 30-min or 

60-min intervals. To investigate the influence of the sampling interval on the CE variation with wind speed, the original 1-min 5 

dataset from the Marshall test site from January 2013 to April 2015 was aggregated to 5-min, 10-min and 20-min time intervals. 

The wind speed and temperature datasets were averaged over the same time intervals. A lower snowfall rate measured by the 

DFIR was set to SIDFIR = 0.5 mm/h to avoid cases of very light snow. Under these conditions, the total dataset – indicated as A 

in Table 1 – is composed of a total of 6943 one-minute samples recorded during 29 different precipitation events. 

 10 

2.3 Data analysis method 

We analyse the CE as a function of wind speed and air temperature, as suggested by Wolff et al (2015) and Korchendorfer et 

al. (2017a), then we investigate the role of SI as an alternative explanatory variable. The SI is linked to the PSD and the vertical 

velocity of particles by the following equation:  

𝑆𝐼 = 𝛼 න 𝑁(𝐷)
ೌೣ



∙ 𝑤(𝐷) ∙ 𝐷ଷ𝑑𝐷 (1) 

where D is the particle diameter (mm), N(D) the number of particles with diameter D, wp(D) the vertical velocity (m s-1) and 15 

α is a factor that accounts for the shape of the snowflakes.  

The CE function suggested by Korchedoffer et al. (2017a) as a function of wind and the air temperature is expressed as: 

𝐶𝐸 = 𝑒ି(ೢ)൫ଵିൣ୲ୟ୬షభ൫(்)൯ା൧൯ (2) 

where Uw is wind velocity, T is the air temperature, while a, b and c are empirical coefficients.  

The role of the SI is tested using the following equation:  

𝐶𝐸 = 𝑒ି(ೢ)൫ଵିൣ୲ୟ୬షభ൫(ௌூ)൯ା൧൯ (3) 

where a, b and c are numerical best-fit coefficients. Equation (2) takes into account the precipitation phase while equation (3) 20 

takes into account the size of the hydrometeors.  

 

Dataset Location Period Time interval N. of 30-min data 

A Marshall (CO-USA) Jan. 2013 – Apr. 2015 1 min 6943 

A-SEDS Marshall (CO-USA) Oct. 2013 – Apr. 2015 30 min 213 

B-SEDS CARE (Canada) Nov. 2013 – Apr. 2015 30 min 234 

C-SEDS Haukeliseter (Norway) Nov. 2013 – Apr. 2015 30 min 485 
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3 Results from the field data analysis 

grouped by the environmental temperature T (dashed lines) and the measured The empirical CE for the SA shielded gauge as 

a function of wind speed is shown in Figure 1 using the 30-min dataset A-SEDS. In the two panels, CE data are colour coded 

according to the air temperature T (panel a) and to the snowfall intensity SISA (panel b). No significant correlation is visually 

evident in panel a, while panel b shows a distinct cluster of low precipitation rates at low CE. While for any given wind speed, 5 

different CE may occur depending on the SISA, there is a higher CE observed when the gauge collects the higher SI. This trend 

becomes more evident when the mean horizontal wind speed is higher than 2 m/s. 

 

Figure 1: Collection efficiency CE=PSA/PDFIR for the 30 min SA shielded gauge measurements from the Marshall field site in the 
period October 2013 to April 2015. Data are colour coded according to the air temperature T (panel a) and the measured snowfall 10 
intensity SISA (panel b). 
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One explanation of the larger CE is related to larger particle sizes having trajectories that are less prone to deflection by the 

deformed airflow above the gauge collector (as detailed in Thériault et al., 2012 for different crystal types and by Colli et al. 

2016a,b). Colli et al. (2015) showed a correlation between the slope parameter of the PSD outside the tested gauge and its CE 

by means of CFD analysis and the results were supported by disdrometers field data. Larger particles are associated with lower 

slope of the PSD and therefore higher SI (Pruppacher and Klett, 1997).  5 

A least squares regression was performed on the inverse exponential function of the CE based on wind speed and temperature 

(Eq. 2) and the one based on wind speed and SI (Eq. 3). The coefficients obtained from the best-fit analysis are listed in Table 

2. 

Table 2: Best-fit coefficients a, b and c of the inverse exponential function, number of 30-min intervals used (n) and linear correlation 
coefficient (R) based on measurements made by the SA shielded gauge at the Marshall (USA), CARE (Canada) and Haukeliseter 10 
(Norway) field test sites from October 2013 to April 2015. Coefficients are calculated for both the CE(Uw,SISA) and CE(Uw,T) at each 
field test site. 

Field test site CE formulation a b c n R 

Marshall (USA) 

 

CE(Uw,SISA) 0.6737 12.8976 0.6589 213 0.91 

CE(Uw,T) 0.0520 0.1874 1.4971 213 0.82 

CARE (Canada) 

 

CE(Uw,SISA) 3.4531 107.4708 0.5835 234 0.85 

CE(Uw,T) 0.2892 0.0126 -0.7551 234 0.75 

Haukeliseter (Norway) 

 

CE(Uw,SISA) 0.4217 7.6856 0.7372 485 0.87 

CE(Uw,T) 0.5650 0.0198 -0.6711 485 0.75 

 

The two regressions are presented in Figure 2. These are the CE(Uw,SISA) (panel a) and CE(Uw,T) (panel b) surfaces together 

with the field measurements (red solid lines) with a 30-min accumulation timedots). The CE surfaces are colour-coded. The 15 

CE(Uw,SISA) regression (panel b) shows a relevant dependency on the measured snowfall intensity. In contrast, the CE(Uw,T) 

regression represented in panel a shows a weaker dependency to the environmental temperature T than with the SI. 
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Figure 2: Best-fit CE surfaces for the 30-min SA shielded snow gauge measurements made at the Marshall field test site (red dots). 
Two regressions are shown by expressing CE as a function of the wind speed and either the air temperature T (panel a) or the 
measured snowfall intensity SISA (panel b). 

To ensure optimal regression of the observed dependency between the CE and the SI measured by the uncorrected gauge, a 

non-gradient multi-objective genetic optimization algorithm, implemented in the DAKOTA open source toolkit (Eldred et al., 5 

2007), was used to retrieve the best SI class limits. The following classes were obtained: 0.0<SISA<=0.4 mm h-1, 0.4<SISA<=0.6 

mm h-1, 0.6<SISA<=1.0 mm h-1 and 1.0<SISA<=1.5 mm h-1. The optimization objectives were to maintain a significant sample 

size for each bin and to minimize the scatter (RMSE) of the residuals. Figure 3 presents CE(Uw,SISA) plots for smaller subsets 

of field data according to the optimised SI classes. The results show that each intensity category has a different fit to a sigmoid 

function, with the lowest SI class having the steepest decrease in CE with increasing wind speed. This is again explained by 10 

the highest intensities being associated with the largest particles, therefore slowly decreasing their CE with wind speed.  

 

 

Figure 3: Empirical CE for the 30-min SA shielded snow gauge measurements made at the Marshall field test site as a function of 
wind speed. The solid line in each panel is the sigmoidal best fit to the data. Each panel represents a different SI range as defined in 15 
the legends and reports the RMSE of the residuals. 
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Figure 4 compares best-fit CE curves computed as a function of wind speed and either temperature or the SI. It shows that 

there is evidence of much stronger dependence on the SI classification (solid lines) than on temperature (dotted lines). The 

four CE(Uw,T) curves (dashed lines) show similar trends and are very close to each other, demonstrating that there is no 

significant correlation of the CE with temperature below -2° C. In contrast, the curves show a distinct separation when 

categorized by SI for the 30-min dataset (solid lines).  5 

 

Figure 4: Best-fit CE curves of the 30-min measurements made by the SA shielded snow gauge at the Marshall field test site using 
either the air temperature T (dashed lines) or the measured SI (solid lines). SI curves are the same as in Figure 3. 

An evaluation of the improvement to theimproved snowfall accumulation estimates when using the intensitySI dependent 

curve fit is shown in Figure 5a, which represents where the corrected CE is shown and the associated root mean square error 10 

(RMSE). The field data fall about a CE) of 1.0 and the residuals is reported. The residual scattering is quantified by a RMSE 

equal to 0.10. The and the colour coded distribution ofbased on the environmental temperature on the corrected CE appears 

quite random. A larger scatter (RMSE=0.14) is observed when the measurements are corrected by using wind speed and 

temperature (Fig.Figure 5b, traditional approach). Note that Figure 5b shows a colour separated dependence of the residuals 
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on the SI, indicating that notwithstanding the CE(Uw,T) correction some form of dependency persists between the SA shielded 

gauge undercatch and the characteristics of precipitation.  
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Figure 5: Residuals of CE=PSA/PDFIRobtained after correcting the 30 -min single AlterSA shielded snow gauge measurements from 
the Marshall field test site using Equation 3 (top panel) and Equation 12 (bottom panel), with the associated RMSE values. Residuals 
are colour coded according to the environmental temperature T (top panel) and the snowfall intensity SISA (bottom panel). 

 5 

Note that Figure 5b shows a colour separated dependence on wind speed, indicating that the CE(Uw,T) approach does not 

exploit all the forms of dependency between the accumulated precipitation measured by the single Alter shielded gauge and 

the characteristics of the precipitation events.  

The best fit coefficientcoefficients of the collection efficiency regression obtained with the CARE and Haukeliseter datasets 

are reported in Table 12 for both the CE(Uw,T) and CE(Uw,SISA) formulations. The correction of the measurements based on 10 

such transfer functions is shown on Figurein Figures 6 and 7. The RMSEs of the residuals for the CARE measurements are 

equal to 0.09 in the case of CE(Uw,SISA) and 0.12 in the case of CE(Uw,T) while the residuals for the Haukeliseter measurements 

show RMSEs that are equal respectively to 0.16 and 0.22. These RMSE results confirm that a correctionthe approach based 
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on the wind speed and precipitation intensitySI leads to a higher precision an improved correction of the solid precipitation 

measurements compared to when only the wind speed and. The results of the field data analysis suggest that the environmental 

temperature arecan be used to provide an approximated criterion to recognize the precipitation phase (liquid, mixed or solid) 

while the SI is a more efficient explanatory variable since it is directly related to the PSD. 

 5 
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Figure 6: Residuals of CE=PSA/PDFIRobtained after correcting the 30 -min single AlterSA shielded snow gauge measurements from 
the CARE (Canada) field test site using Equation 3 (top panel) and Equation 12 (bottom panel), with the associated RMSE values. 
Residuals are colour coded according to the environmental temperature T (top panel) and the snowfall intensity SISA (bottom panel). 
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Figure 7: Residuals of CE=PSA/PDFIRobtained after correcting the 30 -min single AlterSA shielded snow gauge measurements from 
the Haukeliseter (Norway) field test site using Equation 3 (top panel) and Equation 12 (bottom panel), with the associated RMSE 
values. Residuals are colour coded according to the environmental temperature T (top panel) and the snowfall intensity SISA (bottom 
panel). 5 

 

 

4 Sensitivity to the time aggregation 

The analysis of field data proposed in section 3 has been repeated on the 1-min measurements performed by the single AlterSA 

shielded gauge at the Marshall field test site from January 2013 to April 2015 and aggregated over time intervals equal to 5, 10 

10, 30 and 60 min. The regression coefficients obtained by applying the inverse exponential lawsfunctions described by 

equations 12 and 3 are reported in Table 23. Figure 8 shows the CE specifiedcurves calculated for different measured snowfall 
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intensities SISA and time resolutions Δt.  In all cases, a strong CE dependency on SISA draws distinct variations with wind speed, 

which do not overlap with each other. On the other hand, measurements made with a 30-min sampling interval provide CE 

curves that are closer to each other, and hence slightly less influenced by the measured snowfall intensitySI, but still 

significantly different. This is partially explained by the fact that SISA is strongly timeaggregation dependent and when the 

intensity measurements are averaged over a large time interval they become less representative of the internal variability.  5 

The representativeness of the proposed CE(Uw,T) transfer functions (represented by their linear correlation coefficient r in 

Table 23) with respect to the field measurements decreases sharply below 5 minutes for temperature, while it doesn’t for 

CE(Uw,SISA), suggesting that the T dependence becomes weaker at high resolution while the SISA dependence not so much. A 

similar behaviour is reported byin Table 34 in terms of RMSE, where the transition between the 5-min and the 1-min 

aggregation intervals yields the larger RMSE increase for the CE(Uw,T) formulation. Therefore, the SISA dependence on SISA  10 

is more robust with respect to time aggregation. As shown in section 3, WMO-SPICE used a 30-min periodaggregation interval 

to assess the CE, which still show significant variability at aany given wind speed.  

 

Table 23: Coefficients (a, b and c) of the inverse exponential function fitted at various aggregation intervals for the CE(Uw,T) and 
CE(Uw,SISA) formulations, with the associated linear correlation coefficient (r), and number of periodsdata available (n). The 15 
calculation used measurements made by single Alterthe SA shielded gauge at the Marshall field test site from January 2013 to April 
2015. 

 CE(Uw,T)  CE(Uw,SISA)   

Δt a bB c r a b c r n 

(min) (-) (-) (-)  (-) (-) (-)   

1 0.0588 0.6575 1.0502 0.60 18.0058 213.0772 0.5717 0.87 6943 

5 0.0539 0.7155 1.1036 0.75 1.8436 27.9843 0.5957 0.90 1405 

10 0.0500 1.1350 1.1648 0.81 0.4372 6.5754 0.6851 0.91 697 

30 0.0555 0.9313 0.8761 0.85 0.3141 4.8702 0.7596 0.94 226 

60 0.0539 1.0996 0.9338 0.87 0.2985 4.6410 0.7649 0.95 115 
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Figure 8: Collection efficiencyBest-fit CE(Uw,SI) curves of the single AlterSA shielded snow gauge at the Marshall field site at 1, 5, 
10, 30 and 60 -min sampling intervals (different line types) grouped by the measured snowfall intensity SI (different line colors). 

 

Figure 8 demonstrates that the 10 -min time interval may represent a trade-off point between the availability of correlated SISA 5 

and CE observations and the need of accumulating significant amounts of snowfall when loweraggregating the measurement 

over a longer interval during low precipitation intensities occurintensity. An evaluation of the impact of the data integration 

time on the correction of the PSA observations was made by considering snowfall accumulations computed fromat different 

periods.aggregation intervals. Table 34 shows that a larger dispersion of the CE of the corrected wind induced measurements 

(quantified by the root mean squared error RMSE) around the optimal value (CE=1) is observed when smaller time periodsshort 10 

aggregation intervals are considered. Table 34 also shows that smaller RMSEs are systematically observed when the CE is 

calculated using the measured snowfall intensity. On the other handSI. Indeed, shorter timeaggregation intervals showyield a 

larger improvement of the correction when using the measured snowfall intensitySI rather than temperature, as demonstrated 

by larger values of the difference ΔRMSE=RMSE(CE(Uw,T))-RMSE(CE(Uw,SI)). This is a consequence of the increasingly 

better fit of the CE(Uw,SISA) formulation with reducing the aggregation scale, as already shown in Table 2.   15 
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Table 3: Root mean square error4: RMSE of the solid precipitation measurements made by the single AlterSA shielded gauge at the 
Marshall field test site over different timeaggregation intervals Δt byafter applying athe correction based on snowfall intensitySI, 
CE(Uw,SISA), and air temperature, CE(Uw,T), and their difference ΔRMSE. 5 

Δt RMSE (CE(Uw,T)) RMSE (CE(Uw,SISA)) ΔRMSE 

(min) (-) (-) (-) 

1 0.26 0.16 0.10 

5 0.19 0.12 0.07 

10 0.16 0.11 0.05 

30 0.13 0.08 0.04 

60 0.12 0.07 0.05 

 

The fact that the amount of scatter reduction ΔRMSE increases with shorter accumulation timeaggregation intervals, seems to 

support the need of high-resolution measurements to improve the accuracy of the snow data.  For instance, the scatter resulting 

from the correction of 30-min accumulation measurements based on wind speed and temperature can be achieved for a 10-

min accumulation measurements if the snowfall intensitySI is used for the correction.  Thus by using the SI in the transfer 10 

function instead of temperature, one can either achieve a higher skillsskill for a given aggregation time period of accumulation 

or achieve a higher time resolutionaggregation interval with RSEa RMSE similar to the one traditionally obtained for a longer 

time period by including the snowfall intensity in the transfer functionaggregation interval.   

 

5. CFD Validationsimulation and validation 15 

The following section presents the CFD modelling framework used to compare to the observations in section 3 and to validate 

the physical basis of using the SI as an explanatory variable for the CE.  

5.1 Airflow modelling and CE calculation 

The flow field around a SA shielded gauge was numerically simulated using the Open Foam software and is described by Colli 

et al. (2015). The time-averaged air velocity, turbulent kinetic energy and pressure fields were solved by means of a Reynolds 20 

Averaged Navier-Stokes k-ω SST model.  

The trajectories of drysnow particles falling through the CFD flow field are calculated using a Lagrangian model (Colli et al. 

2015)  for wind speeds between 1 and 8 m/s. The particle characteristics are from Rasmussen et al. (1999). 
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Several particle sizes were simulated to capture the dependence of CE on particle size.  The PSD of snowfall events can be 

described using the gamma distribution, as shown by Brandes et al. (2007), which is similar than Marshall and Palmer (1948) 

but with a shape parameter,: 

𝑁(𝐷) = 𝑁 ∙ 𝐷ఓ ∙ 𝐷ିఒ∙ (4) 

 

where D is the snowflake diameter, N0 is the scale parameter, µ characterizes the curvature and λ the slope of the distribution. 5 

According to Brandes et al. (2007) µ can be estimated by the following expression:  µ=-0.00499 λ2+0.798 λ-0.666. In this 

work we adopted a general intercept value equal to N0= 1.5 106 mm-1m-3 and, based on observations, the slope parameters used 

are 0.5 mm-1 < λ < 1.5 mm-1 (Brandes et al.,2007; Houze et al, 1979). The estimation of CE is based on the particle counting 

technique described in Colli et al. 5.1(2016b), : 

 10 

𝐶𝐸(𝑈௪) =
∫ 𝑉௪(𝑑)𝐴௦ௗ(𝑑, 𝑈௪)𝑁(𝑑)𝑑

ௗೌೣ



∫ 𝑉௪(𝑑)𝐴௨𝑁(𝑑)𝑑
ௗೌೣ



 (5) 

 

where Ainside(dp,Uw) is the effective collecting area associated with the number of particles collected by the gauge and 

Agauge(dp,Uw) is the area associated with the entering particles in the case of undisturbed airflow. Finally, Vw(dp) is the 

equivalent water volume.  

5.2 PSD and snowfall intensity collected by the gauge 15 

The CFD analysis performed by Thériault et al. (2012) found a physical explanation for the large variability of the gauge catch 

performance observed for a given Uw and a specific type of precipitation from variations in the particle size distribution. Colli 

et al. (2015) confirmed this conclusion by providing different CE(Uw) functions computed using an improved CFD approach 

corresponding to the slope parameter (λ) equal to 0.25, 0.50 and 1 mm-1 (the same values used by The link betweenThériault 

et al. 2012). 20 

We expanded that work here and the collection efficiency results for a larger set of λs and reference snowfall intensity values 

are reported computed based on the simulation and the slope of the size distribution is given in Table 4. The table5. It shows 

that steeper PSD slopes of the PSD (represented by higher λ), and as a consequence smaller mean particle sizes, are 

characterized by lower values of the CE. This is due to the stronger influence of the airflow around the gauge collector on the 

trajectories of the smaller particles. The CE values calculated in Table 4 shows5 show that the variability of CE for a given λ 25 

remains significant in all the simulations performed with a wind speed higher than 3 m s-1.  
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Table 45: Ratio between the collected snowfall intensity SI and the reference snowfall intensity SI (mmh-1)SI  by varying the wind 
speed Uw (m s-1) and the slope parameter λ (mm-1) of the particle size distributionPSD. 

λ 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 

SI 8.49 3.86 2.1 1.26 0.81 0.54 0.38 0.27 

Uw= 1 m/s 1 1 1 1 1 1 1 1 

Uw= 2 m/s 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 

Uw= 3 m/s 0.94 0.93 0.93 0.93 0.93 0.93 0.93 0.92 

Uw= 4 m/s 0.87 0.86 0.85 0.84 0.84 0.83 0.82 0.81 

Uw= 5 m/s 0.78 0.74 0.7 0.67 0.63 0.6 0.57 0.54 

Uw= 6 m/s 0.69 0.61 0.54 0.47 0.41 0.35 0.31 0.27 

Uw= 7 m/s 0.51 0.39 0.29 0.21 0.15 0.11 0.08 0.06 

Uw= 8 m/s 0.32 0.19 0.11 0.06 0.03 0.02 0.01 0.01 

 

 

The CFD analysis performed by Thériault et al. (2012) found that the type of precipitation and their sizes explained some of 5 

the scatter in the gauge catch efficiency for a given Uw. Colli et al. The simulated size distribution of(2015) confirmed this 

conclusion by providing different CE(Uw) functions as well as an improve drag coefficient using the same slope parameters 

(λ= 0.25, 0.50 and 1 mm-1) as in Thériault et al. (2012).  

To link the snowfall intensity with the PSD, an example of the simulated size distribution of dry snow particles that fall into 

the gauge is shown in Figure 9 for a sample precipitation characterized by λ=1.0 mm-1 and N0=10^6 mm-1m-3 , as. These PSD 10 

parameters were suggested by Houze et al. (1979) who observed the snow size distribution in different atmospheric conditions. 

TheIn agreement with Figure 9 of Thériault et al. (2012), it is shown that the gauge starts missing the lower particle sizes when 

Uw approaches 4 m s-1, and higher wind speeds correspond to narrower ranges of Dpparticle diameters that are collected by the 

gauge (and higher curvature parameter µ). This smaller particles fall in the gauge at 4 m/s than previously found by Thériault 

et al. (2012). This is probably due to the updated drag coefficient.  15 
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Figure 9:  CFD simulated particle size distributions N(Dp)PSD of solid precipitationdry snow collected by the single AlterSA shielded 
gauge under different wind conditions. using λ=1.0 mm-1 and N0=10^6 mm-1m-3 

For the larger Dpdiameters, the PSD of the precipitation collected by the gauge maintains the same slope λ of the reference and 

slightly decrease the concentration number N0 with increasing Uw. The collected N(Dp) values are lower than the reference 

PSD but maintain the same order of magnitude. An exception is represented by the smaller diameter of the PSDs collected 5 

under wind speeds higher than 4 m s-1. In this case, the N(Dp) value is approximately one order of magnitude lower than the 

reference one. The wind-induced underestimation of the SISA for a given λ is due to the loss of high concentration small particles 

falling into the gauge. 

The main consequence of the λ invariance is that the significant wind-induced underestimation of SISA reported by 
Table 4 is principally explained by the loss of high concentration small particles. 10 

 

 

5.23 Comparing the results of field observations and CFD simulations 

The computed CE variation with wind speed for the different snowfall intensitiesas a function of SI is shown in Figure 10. The 

Marshall field site measurements are reported in Fig. 10b while the The results of the CFD trajectory analysis are shown in 15 

Fig.Figure 10a while the Marshall field site measurements are reported in Figure 10b. The plot is comparable to Figure 8 of 

Colli et al (2015) where the correlation between the simulated collection efficiencyCE and the particle size distributionPSD 

was discussed. For aany given Uwwind speed, a set of eight collection efficiency pointsCE values have been computed 

according to the slope λ of the reference particle size distributionPSD, which is correlated with the snowfall intensitySI 

measured by the gauge (equation 21).  20 

The CFD results show that when Uwthe wind speed is higher than 3 m/ s-1, there is an abrupt increase of the PSA/PDFIR 

scatteringCE scatter from 1 mm h-1<SISA<1.5 mm h-1 (red points) to 0 mm h-1<SISA<0.5 mm h-1 (blue points), associated with 

a decrease of the collection efficiencyCE at a given wind speed (Fig.Figure 10a). When the average wind speed is lower or 

equal to 3 m/s the dependency of the PSA/PDFIRCE on the measured snowfall intensitySI becomes less significant, meaning that 

even the smaller particles are mostly collected by the single AlterSA shielded gauge. The latter result is not confirmed by the 25 

field measurements provided in Figure 1 that show a persistent scattering of PSA/PDFIRthe CE even at the lower wind speeds. 

Such behaviour has been already explained by Colli et al. (2016b) that demonstrated the role of the airflow turbulence 

generated by the wind shield in the collection efficiencyCE scattering by means of time-dependent CFD simulation. The same 

figures are not obtained by using time-averaged CFD simulations that do not represent the airflow time fluctuations, leading 

to the PSA/PDFIR distribution of Figure 10. 30 

The results of the CFD simulations therefore highlight the physical dependency between the collection efficiencyCE and the 

snowfall intensitySI measured by the gauge, and this dependency varies according to the wind speed. Figure 10b shows the 
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CE field observations for the 10-min accumulation timeaggregation interval dataset, categorized by snowfall intensitySI 

confirming the dependency between collected precipitation, measured intensity and wind speed.  

 

 

Figure 10: Collection efficiency CE= PSA/PDFIR scatter of the 10 -min single AlterSA shielded gauge measurements simulated by 5 
means of the time-averaged CFD model (panel a) and actual 10 minfield measurements (panel b) made at the Marshall field test site 
(CO, USA). Data are colour coded according to the measured snowfall intensity SISA, showingSI.  
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The added value of using the clustering of the measurements.  

 

The conceptual improvement achieved when the SI in the transfer function is parameterised according to the measured snowfall 

intensity is best visualised in the SISA vs. SIREF scatter plot shown in Figure 11a, where SIREF is the reference snowfall intensitySI 5 

(assumed coincident with SIDFIR  for the field data). In this graph, where the wind speed is colour -coded according to the side 

bar, the iso-CE lines would be linear (grey dotted lines) in the absence of a clear influence of the SISA on the collection 

efficiency. However, this is not supported neither by the field data (white dots in panels b, c, d, e of Figure 11) nor by numerical 

simulations (solid coloured curves and diamonds in Figure 11a). Instead, aCE. A clear deviation from linearity is observed, 

showing that the collection efficiency increases far beyond linearity with the measured snowfall intensity, SISA, forSI at any 10 

given wind speed class. This deviation vanishes when 𝑈௪ → 0 and increases with the wind speed, therefore justifying the 

larger spread of collection efficiencyCE values observed towards the right-hand side inof Figure 10 (a and b).  

 

 

 15 
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Figure 11: Collection efficiency deviationDeviation from linearity of the CE (grey dotted lines) in (a)) when increasing the wind speed 
(colour coded according to the side bar) in the measured SISA vs. reference SIREF snowfall intensitySI plane. The deviation is evident 
in both the results of numerical simulation (solid coloured lines and diamonds in panel a) and field data (white circles in panels b, c, 
d, e) although with some residual dispersionscatter. The field data is presented together with the 𝑺𝑰𝑺𝑨 = 𝒂𝑺𝑰𝑫𝑭𝑰𝑹

𝒃 power law 5 
regressions performed for the Uw<2ms-1 (a=0.90, b=1.00, r=0.98), 2<Uw<4 ms-1 (a=0.83, b=1.08, r=0.94), 4<Uw<6 ms-1 (a=0.47, b=1.37, 
r=0.84) and 6 ms-1< Uw (a=0.27, b=2.00, r=0.85)various wind speed classes.  

 

6 Conclusions 

 10 

The present analysis of recent WMO -SPICE quality controlled 30 -min accumulation data from the Marshall field-test site 

(CO, USA) revealed that the wind-induced undercatch of solid precipitation gauges is best correlated with the measured 

snowfall intensity, rather than temperature, in addition to wind speed. While the environmental temperature provides general 

relevant information about whether the precipitation is rain (Auer, 1974), wet or dry snow (Rasmussen et al., 1999) it is not 

clear how the exact type of solid precipitation can be easily determined in the field. At cold temperatures, which are often 15 

associated with dry snow, it is also possible to observe rime particles that would have higher collection efficiency (Thériault 

et al., 2012). On the other hand, the measured snowfall intensity has the advantage of including information about the PSD 

(Pruppacher and Klett, 1997). Optimal curve fitting used to derive the transfer function for the GEONOR gauge in a 

singleSingle Alter shield and in a DFIR configuration indicates that accounting for snowfall intensitySI indeed reduces the 

scatter of the residuals.  20 

This result is confirmed by the analysis of data from other field sites, such as CARE (Canada) and Haukeliseter (Norway), and 

shows a consistent behaviour under different climatological conditions. Recent results from Chubb et al. (2015) found 
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improved under-catch correction for an ETI weighing gauge for data collected in the Snowy Mountains of Australia. This 

supports our results and suggests that other snow gauges can benefit from this type of adjustment. 

The physical basis for the improved parameterisation of the transfer function by using the measured snowfall intensitySI was 

shown through CFD modelling of the gauge snow collection process to be due to the correlation of large particles with high 

intensities. Large particles are preferentially collected by a snow gauge, even in strong wind, due to their higher fall velocity, 5 

allowing them to break through streamlines of flow above the gauge and be collected. The CFD modelling was able to 

reproduce the collection efficiencyCE pattern observed in the field providing strong evidence of the hypothesized behaviour.  

The analysis of the optimal accumulation periodaggregation interval of the snowfall measurements was based on the evaluation 

of the residual data scattering after applying a correctionadjustments based on wind speed Uw and either environmental 

temperature T and a correction based on Uw  andor the measured snowfall intensity SISA.SI. It has been observed that shorter 10 

accumulation intervals increase the dependency of the CE on SISASI and a stronger benefit in using the proposed approach. On 

the other hand, it was also observed that larger accumulation intervals are generally associated with a smaller residual scattering 

of the measurements. According to our analysis, the 10 -min timeaggregation interval may represent a trade-off point between 

the availability of correlated SISASI and CE observations and the need of accumulating significant amounts of snowfall when 

lower precipitation intensities occur. 15 

Overall, these findings provide an attractive method to improve operational measurements since no additional instrument, 

except for a wind sensor, is required to derive the derived the improvedadjusted estimates of snow accumulation. 
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