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Abstract. The lack of direct measurement of root-zone soil moisture poses a challenge to the large-scale prediction of ecosys-
tem response to variation in soil water. Microwave remote sensing capability is limited to measuring moisture content in the
uppermost few centimetres of soil. GRACE (Gravity Recovery and Climate Experiment) mission detected the variability in
storage within the total water column. However, root-zone soil moisture cannot be separated from GRACE observed total
water storage anomalies without ancillary information on surface soil moisture or groundwater changes. In this study, global
satellite-derived water content from GRACE and SMOS were jointly assimilated into a hydrological model to better esti-
mate the impact of changes in root-zone soil moisture on vegetation vigour. Overall, the accuracy of root-zone soil moisture
estimates through the joint assimilation of surface soil moisture and total water storage retrievals showed improved consis-
tency with ground-based soil moisture measurements and satellite-observed greenness when compared to open-loop estimates
(i.e. without assimilation). For example, the correlation between modelled and in-situ measurements of root-zone moisture
increased by 0.1 (from 0.48 to 0.58) and 0.12 (from 0.53 to 0.65) on average for grasslands and croplands, respectively. Im-
proved correlations were found between vegetation greenness and soil water storage on both seasonal variability and anomalies
over water-limited regions. Joint assimilation results show a more severe deficit in soil water anomalies in eastern Australia,
southern India and eastern Brazil over the period of 2010 to 2016 than the open-loop, consistent with the satellite-observed
vegetation greenness anomalies. The assimilation of satellite-observed water content contributes to more accurate knowledge

of soil water availability, providing new insights for monitoring hidden water stress and vegetation conditions.

1 Introduction

Water is a growth-limiting resource that impacts over 40% of Earth’s vegetated surface (Nemani et al., 2003). Vegetation
productivity and water stress are strongly coupled by the interactions between soil moisture, photosynthesis, transpiration,
interception and hydraulic redistribution (Porporato et al., 2004). The amount of water available to support plant growth and
buffer against rainfall deficiencies largely determines the length of the growing period (Leenaars et al., 2018). Rooting depth

as an essential parameter in hydrologcial modeling to regulate correct simulation of subsurface processes have been estimated
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based on various scientific hypotheses due to the lack of direct measurements (Wang-Erlandsson et al., 2016; Yang et al.,
2016). Although some vegetation species have roots that can grow to tens of metress depth (Canadell et al., 1996), most plants
have roots that are contained in the upper 2m of the soil column, and thus cannot access the deeper water stores (Tokumoto
etal., 2014). For example, Dunne and Willmott (1996) derived a global distribution map of plant-extractable soil water capacity
based on soil-water retention properties, soil texture and organic content estimates and found that less than 150 mm of the water
capacity can be accessed by the plants over 90% of the vegetated area. The duration of water stress and the vertical distribution
of soil moisture determine the vegetation vigour to a large extent in drylands (Canadell et al., 1996). Stress due to limited soil
water can trigger a reduction in photosynthesis, which in turn leads to reduced productivity and increased vegetation mortality.
The increasing deficit in deep soil water under a changing climate may further intensify ecological droughts during the growing
season (Schlaepfer et al., 2017). There is a compelling need to quantify the vegetation responses to water scarcity for improved

assessment of climate change impacts at large scales (Breshears et al., 2005).

Wang et al. (2007) and Santos et al. (2014) investigated different responses of vegetation vigor to ground-based root-zone soil
moisture observations at different depths. There are limited studies on the impacts of soil water availability on the functions
in terrestrial ecosystems at regional to global scale due to the absence of widespread direct observations of root-zone soil
moisture. Soil moisture simulations and satellite water content observations from the uppermost soil layer to the total water
column have been used to quantify the water driven surface vegetation greenness variability (Laio et al., 2001; Wang et al.,
2007; Andela et al., 2013; Chen et al., 2014; Yang et al., 2014; Xie et al., 2016a). However, model-simulated soil moisture
profile estimates are highly uncertain due to the necessary simplification of processes and parameterization (Porporato et al.,
2004). Soil moisture observations from in-situ monitoring networks or satellite observations are generally spatially, vertically
and temporally constrained by the instruments. Satellite soil moisture retrievals from microwave sensors such as SMOS (Soil
Moisture and Ocean Salinity) only provide the soil moisture in the uppermost soil layer and are limited by the errors introduced
by soil type, canopy cover and surface roughness (Houser et al., 1998; Narayan et al., 2004). In contrast, the GRACE (Gravity
Recovery and Climate Experiment) mission provided integrated water storage change including water above and under the
surface through mapping anomalies in the changing Earth’s gravity field (Tapley et al., 2004). It has been demonstrated that
GRACE-observed total water storage anomalies can explain changes in surface greenness both interannually and seasonally
without time lag over Australia (Yang et al., 2014). Conversely, Chen et al. (2014) found that vegetation greenness typically
lags soil moisture at less than 10 cm depth by one month over mainland Australia using merged satellite soil moisture products
(Liu et al., 2012). This discrepancy in the time lags indicates that vegetation responds differently to variations in surface soil
moisture and total water storage. The quantification of vegetation response to soil water availability at large scale therefore

remains challenging without accurate soil moisture profile estimations.

Observations of near-surface soil moisture have been successfully integrated into land surface models to correct model de-
ficiencies on simulating soil moisture using various assimilation techniques (Walker and Houser, 2001; Sabater et al., 2007;
Crow et al., 2008; Renzullo et al., 2014; Dumedah et al., 2015). Active/radar and passive/radiometer observations were jointly

assimilated to improve surface soil moisture and root-zone soil moisture with optimal accuracy and spatial coverage by Draper
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et al. (2012) and Lievens et al. (2017). Significant improvements were mainly found for shallow root-zone estimation at 0-30
cm (Draper et al., 2012; Renzullo et al., 2014), with less benefit for deeper soil layers. Conversely, GRACE-observed total
water storage anomalies were successfully assimilated or otherwise combined with model simulations for improved deep soil
and groundwater estimation (Zaitchik et al., 2008; van Dijk et al., 2014; Tangdamrongsub et al., 2015; Khaki et al., 2017,
Schumacher et al., 2018; Girotto et al., 2017; Tangdamrongsub et al., 2018), but with typically marginal improvements for
surface and shallow soil moisture (Li et al., 2012; Girotto et al., 2017; Tian et al., 2017; Tangdamrongsub et al., 2018; Shokri
et al., 2018). This is due to the highly variable nature of near-surface and shallow soil moisture in space and time, which has
little influence on the GRACE signal. Recently, near-surface soil moisture and total water storage observations were jointly as-
similated into a water balance model over Australia and demonstrated to consistently improve water storage profile estimates,
especially in the root-zone soil moisture estimates (Tian et al., 2017). The use of satellite-observed daily near-surface soil
moisture has been demonstrated to better disaggregate shallow soil moisture and groundwater change from GRACE-observed

total water storage change because of the different temporal dynamics.

In this study, satellite-observed soil moisture and changes in total water storage were jointly assimilated into a global water
balance model following the approach of Tian et al. (2017) and extended with several further innovations. We investigated
the impacts of assimilating satellite water content retrievals on the estimation of surface and root-zone soil moisture and eval-
uated with ground-based soil moisture measurements. The relationship between vegetation vigor and soil water availability
was assessed with satellite-observed greenness and root-zone soil moisture estimates for different vegetation types. The per-
formance of the joint assimilation is compared against the open-loop model and alternative assimilation methods. The annual
trends of root-zone soil water storage anomalies are compared with the trends in vegetation greenness anomalies to investigate
the potential of using accurate information of soil water availability for explaining and anticipating vegetation greenness and

productivity.

2 Materials

2.1 Ecohydrological model

The World-Wide Water (W3) model (van Dijk et al., 2013b) (available at http://wald.anu.science) is a one-dimensional, grid-
based distributed ecohydrological model that simulates water balance and water-related vegetation dynamics. It was adapted
from the Australian Water Resources Assessment Landscape (AWRA-L) model (van Dijk, 2010; Frost et al., 2016). Precipita-
tion is assumed to be the only water input into the system. The precipitation enters the grid cell through the vegetation and soil
moisture stores and exits the grid cell through evapotranspiration, run-off or groundwater discharge (Frost et al., 2016). Each
grid cell contains a mix of land cover classes (Hydrological Response Units; HRUs) and is conceptualized as a catchment that

does not laterally exchange water with neighbouring cells. Different vegetation has different degrees of access to soil water.
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Soil and vegetation water and energy fluxes were simulated separately for deep-rooted and shallow-rooted vegetation to con-
sider different rooting and water uptake behaviour. The soil water store was partitioned into three layers, namely, top, shallow
and deep soil to describe the plant available water, approximately 0-5cm, 0.05-1m, and 1-10m in depth respectively. A simple
groundwater model is used to simulate unconfined groundwater storage considering deep drainage from soil water, capillary
rise and groundwater evaporation and discharge. The unconfined groundwater and surface water stores were simulated at grid

cell level.

A 0.25° x 0.25° global gridded Multi-Source Weighted-Ensemble Precipitation (MSWEP) data set derived by merging gauge,
satellite and reanalysis data (Beck et al., 2017) was used as the only water input in the system. The 0.5° x 0.5° WFDEI
(WATCH Forcing Data methodology applied to ERA-Interim) meteorological forcing data set (Weedon et al., 2014) used in
this study including radiation, air temperature, wind speed, and surface pressure, and these were resampled to be consistent
with the resolution of precipitation at 0.25°. The soil water balance of the W3 model was simulated globally on a daily basis

with a spatial resolution of 0.25° x 0.25°.

2.2 Land cover types

The 2010 land cover types of each pixel were characterized by the MODIS (Moderate Resolution Imaging Spectroradiometer)
global IGBP (International Geosphere-Biosphere Programme) land cover classifications (MCD12Q1) at 5’ x 5" resolution
(Channan et al., 2014). The number of pixels at 5’ x 5’ resolution for each land cover type in the entire corresponding 0.25° x
0.25° grid cells were counted to determine the sub-pixel heterogeneity. If the land cover type is identical for the corresponding
model grid cell, the land cover type of this model grid cell is considered to be homogeneous. Model grid cells with multiple
land cover types and over 60% grassland were defined as grassland-dominated mixed vegetation. Similarly, model grid cells
with mostly forest were classified as forest-dominated pixels. Grid cells with multiple different land covers were classified
as mixed land cover. The forest cover of each 0.25° x 0.25° grid cell was calculated with the percentage of forest (including

evergreen, deciduous and mixed forest) pixels to investigate the impact of woody vegetation on soil moisture estimation.

2.3 Satellite observed water content

Satellite-observed near-surface soil moisture from SMOS and total water storage from GRACE were used in this study. GRACE
tracked the water movement from space by measuring the changes in the distance between the twin satellites caused by
surface mass variations (Tapley et al., 2004). The JPL RLO5M mass concentration (mascon) GRACE solutions (Watkins et al.,
2015) were used to constrain model-simulated total water storage (i.e. the integration of surface water, soil water at three
layers and groundwater stores). The GRACE data were represented on a 0.25° grid but they represent native resolution of
3° x 3° equal-area caps. In contrast with sensing the integrated water content, SMOS characterizes global temporal change of

near-surface (0 - 5 cm) soil moisture from the microwave brightness temperature observations every three days (Kerr et al.,
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2010). The 0.25° Level-3 global daily soil moisture retrievals from CADTS (Centre Aval de Traitement des Données SMOS,
https://www.catds.fr) (Jacquette et al., 2010; Kerr et al., 2013) for ascending and descending orbits were averaged over the
overlapping area. The temporally and spatially varying uncertainties of GRACE and SMOS retrievals were provided as part
of their respective products, and were used to investigate observation error variance-covariance matrices in the assimilation
method. The relative error was calculated as the ratio of the uncertainty over the absolute value for both GRACE and SMOS
retrievals for each grid cell at each time step. The average uncertainties for SMOS and GRACE observations were categorized

based on land cover types to investigate the relative weighting between observations in the assimilation (Fig. 1).

2.4 International Soil Moisture Network

In-situ soil moisture observations at different depths available from the International Soil Moisture Network (ISMN) (Dorigo
et al., 2011) were used to evaluate the performance of model-simulated soil moisture for the uppermost soil layer and root-
zone. An additional level of quality control was imposed here on the ISMN data to eliminate those sites with less than 2 years
data record, having persistently low or high values, or possessing inexplicable spikes or breaks in the time series. In total 164
stations from 19 measurement networks provided near-surface (0 — 5 cm) soil moisture observation globally, while 197 station
from 15 networks provided root-zone soil moisture at 0 — 1 m (Fig. 2). Hourly observations were averaged over a 24-hour
period to give daily moisture measurements. Stations with multiple measurements for soil moisture within 1 m depth were
aggregated to soil moisture at 0—1 m. The 98" and 2" percentiles of the data records for each site were assumed to represent

the field capacity and wilting point required for the calculation of relative wetness.

2.5 Satellite observed greenness

The MODIS 0.05° monthly normalized difference vegetation index (NDVI) product (MOD13C2) (Didan, 2015) derived from
atmospherically-corrected reflectance in red and near-infrared wavelengths were used as a simple and robust indicator for
vegetation greenness. The MOD13C2 NDVI data were aggregated to 0.25° to be comparable with model simulations from
January 2010 to December 2016. Areas of the Earth’s surface that never exceeded a maximum NDVI value of 0.2 over this

period were masked as barren land.
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3 Method

3.1 Data assimilation

Satellite-derived total water storage and near-surface soil moisture were jointly assimilated into the global W3 model from
2010 to 2016. Systematic differences between model and observations need to be removed to ensure optimal performance
of the assimilation method (Evensen, 1994; Dee, 2005; Renzullo et al., 2014). Since the W3 model only specifies soil water
storage in water depth (mm) rather than prescribing a physical thickness of the soil layers and porosity, the model-simulated
soil water availability cannot be directly compared with SMOS soil moisture retrievals in volumetric fraction. To resolve the
inconsistency between model and satellite observations in representing the near-surface soil water availability, both SMOS

retrievals and W3 simulated top-layer soil water storage (6;) were converted to relative wetness (w;) (0-1) with respect to the

dry (6,,¢) and wet (84.) extremes over the 7-year period, calculated as the 274 and 98th percentiles, respectively (Eq. 1).
915 - owt
_ t Twt 1
T e — O 1)

For total water storage, it was a simple matter of adding the W3 model simulated total water storage averaged over 2004 —

2009 to the GRACE observed water storage anomaly for absolute total water storage values.

Due to the disparity in temporal and spatial resolution and measurement depths between SMOS and GRACE, these contrasting
satellite water content observations were assimilated using an ensemble-based Kalman smoother approach with a one-month
window, following the approach of Tian et al. (2017). Total water storage together with soil moisture data were used to constrain
model-simulated water storage components formed as the state vector x, including vegetation water and soil water (top, shallow,
and deep layer) for each hydrological response unit, surface water (rivers, lakes) and unconfined groundwater. The observation
vector y consisted of the available daily SMOS surface soil moisture and the GRACE total water storage in a month at each grid.
Model error variance Pf was derived from 100 ensemble members of the state variable, generated through the perturbation
of precipitation, radiation and air temperature data. The analysis states 2 were updated with the forecast states 2/ and the

weighted difference between the observations and forecasts at the end of every month (Eq. 2), i.e.,
wt = ol + PIHT(HPTHT + R) 7 [y = H(al) ], i=1,...,100 @)

The matrix P H T(H PIHT 4 R)_1 above, known as the Kalman gain, determines the degree of influence that observation y

has on changing the model forecast state, z/.

Spatially and temporally varying uncertainties from GRACE and SMOS products, characterised by R, were used in the as-
similation to represent the observation error covariance matrix. Tian et al. (2017) applied an artificial weighting factor to the
uncertainties of GRACE and SMOS data to compensate the over-adjustment from SMOS due to the inconsistency in units
between SMOS and GRACE data. In this study, the first part of the observation operator H converts SMOS soil moisture

retrievals firstly into relative wetness (Eq. 1) and then to available water content (in mm) for the upper most soil layer. The field
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capacity and wilting point from model simulations for the top 5 cm were applied to both soil wetness and uncertainties. No
further weighting factor was required between GRACE and SMOS data after converting SMOS data to equivalent water height.
Both ascending and descending SMOS soil moisture retrievals were used to improve the spatial coverage. The second part of
the observation operator computes the monthly mean from the sum of daily water storage components in the state vector. The

state variables for the next time step of the model forward run were initialized with the analysis states.

The open-loop run (without assimilation of any observation), the assimilation of soil moisture alone and the assimilation of
total water storage alone were also evaluated to examine different impact of different satellite data on soil moisture profile
adjustments. The same ensemble Kalman smoother was applied to the assimilation of SMOS alone (SMOS-only) and the
assimilation of GRACE alone (GRACE-only) to compare with the joint assimilation. Since the uncertainty in SMOS data
varies considerably between land cover types, another joint assimilation experiment (Joint-landcover) was conducted where
SMOS uncertainties were increased by 50% of the reported value over dense forest area (tree cover > 0.7) was implemented to

identify any possible under-estimation of SMOS uncertainties in forest regions.

3.2 Evaluation of soil moisture estimates

Estimates of soil water content in the uppermost soil layer (0-5 cm) and shallow root-zone (0—1 m) after the joint assimilation
were evaluated against in-situ soil moisture observations from ISMN. The in-situ stations within the corresponding model grid
cell were aggregated to represent the soil moisture at 0.25° scale. The in-situ soil moisture monitoring sites were grouped based
on land cover type of the corresponding model grid cell. Both model-simulated and observed soil moisture were transformed
to relative wetness to resolve differences in units and depths between model simulations and in-situ observations (Eq. 1). The
performance of soil moisture estimation was statistically evaluated with Pearson correlation (r) and root-mean-square error

(RMSE) for the open-loop and different assimilation experiments.

3.3 Analysis of vegetation response to root-zone soil moisture

In this study, satellite-observed vegetation greenness were used as an independent evaluation of root-zone soil moisture esti-
mates in water-limited regions. 30 years of monthly potential evapotranspiration and precipitation data were used to derive the
aridity index. The aridity was simply calculated by averaging the fraction of months that potential evapotranspiration exceeded
precipitation in a year. The humid regions with aridity index less than 0.4 were masked out in the evaluation. The correlations
between satellite-observed vegetation greenness and soil water storage from different sources were calculated for comparison.
The deseasonalized NDVI and soil water storage were derived to investigate the impacts of data assimilation on simulating
seasonal cycle and anomalies. The estimation of soil water availability used in the comparisons included SMOS soil moisture,
GRACE total water storage, model simulated root-zone soil moisture via the joint assimilation, and the precipitation-based

soil moisture estimates from the antecedent precipitation index (API). The API was calculated using the MSWEP precipitation
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data with a constant decay coefficient of 0.9 (Hooke, 1979). API was used as it better represents the cumulative effects of
precipitation than individual rainfall events on vegetation response. The statistical improvement in correlation was used as an

indicator for enhanced performance on simulating seasonal pattern and the deviation of monthly mean.

The soil water availability at the integrated depth that has the maximum correlation with NDVI best explains the changes in
surface greenness at each grid cell, so-called vegetation-accessible storage (Tian et al., 2019). The correlation of monthly NDVI
and soil moisture estimates integrated over different depths after joint assimilation were calculated. The soil water storage
estimates were integrated at four depths: near-surface (0—5cm), shallow-root zone (0—1m), deep-root zone (0—10m) and total
water column. Annual trend of the accessible storage anomalies relative to monthly means were calculated to determine the
area under soil water stress. Linear trend analysis was also applied to the annual average NDVI anomalies to investigate the
consistency between vegetation greenness and soil water storage. The trends in accessible storage derived from the open-loop

and joint assimilation were compared with the trends in NDVI to investigate the change in annual trend after data assimilation.

4 Results

4.1 Near-surface and root-zone soil moisture estimation

SMOS soil wetness and W3 top-layer soil wetness from open-loop and data assimilation were compared with the in-situ
near-surface soil wetness observations from ISMN (Fig. 3). Satellite observations of soil moisture (SMOS) were generally
better correlated with in-situ soil moisture observations over non-forest areas than open-loop simulations (Fig. 3a). However,
as the fraction of tree cover increases, the relative performance changes and model simulations tend to be better correlated
with in-situ measurements than SMOS observations. The joint assimilation of both SMOS and GRACE observations (Fig.
3b) shows improved correlation with in-situ measurements compared with the model open-loop over the majority of the sites
where SMOS observations better correlated with in-situ measurements. This improvement is due to data assimilation bringing
the model and SMOS soil moisture into better agreement for these sites, as illustrated in Fig. 3c for a grassland site. On the
other hand, joint assimilation largely reduces the degradation on surface soil moisture over forest sites where SMOS retrievals

are less accurate than model simulations (dark green dots in Fig. 3a and Fig. 3d).

The impact of data assimilation on W3 model performance is further illustrated in Fig. 4. For near surface soil moisture (Fig.
4a), the assimilation of SMOS observations alone (SMOS-only) shows more sites with improved correlations and reduced
RMSE against model open-loop. The assimilation of GRACE data alone had little impact on surface soil moisture estimation.
Joint assimilation of SMOS and GRACE with SMOS observations down-weighted for ISMN sites in forest (high tree cover)
areas (plot labeled ’Joint-landcover’) was observed with less degradation sites than joint assimilation with original SMOS

uncertainties (’Joint’).
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Data assimilation resulted in significant improvements in W3 root-zone soil moisture estimation over the majority of sites (Fig.
4b). In contrast to surface soil wetness, SMOS and GRACE observations both impacted deeper soil wetness estimation consid-
erably. Simulation of soil wetness over the root-zone (0—1m) in the joint assimilation was less affected by forest cover compared
to the near-surface soil wetness, as evident from the high degree of similarity between the *Joint’ and ’Joint-landcover’ plots
(Fig. 4b). This suggests no significant difference in performance as a result of down-weighting SMOS influence over forest

regions.

Table 1 summarises W3 model soil moisture estimation performance for both near-surface and the root-zone for different
land cover types. On average, the correlation with in-situ observations increased for both surface and root-zone soil moisture
estimates compared to model open-loop. The improvements in surface soil moisture estimates were mainly over croplands
(i.e. CP and CV) and grassland dominated areas (i.e. GS and GD), with changes in correlation, r* — r°, as high as 0.44 for
cropland. Correlation in model surface soil moisture estimates over savannas and forest areas decreased relative to open-loop
simulations. Data assimilation improved root-zone soil moisture estimates for most land cover types with up to 0.38 increase
over mix-types areas and an average change in correlation of 0.1 for croplands (from 0.59 to 0.69) and grass-dominated areas

(from 0.54 to 0.64).

4.2 Relation between vegetation greenness and soil water availability

Monthly water storage integrated to different depths, from the uppermost soil layer to total soil column, were compared with
satellite observed greenness. The response of vegetation greenness to water storage at different depths is illustrated for selected
sites over six land cover types in Fig. 5. Significant differences in soil water variability were found between the joint assimila-
tion and open-loop estimates in all sites (Fig.5), in particular deep-root zone and total water column. The temporal pattern in
greenness and water storage time series was characterized for open-loop and joint assimilation estimates by correlation, r° and
r¢ respectively. As an example, the grassland site in northern China responded more strongly to the availability of near-surface
soil water (higher correlation) than deep soil water and total water storage (Fig. 5a). This suggests a shorter time lag between
surface soil water availability and surface greenness. Stronger correlations between NDVI and near surface soil water storage
were found to have increased by 0.15 after assimilation (i.e. r* —r° = 0.15). Greenness of the savannas site in eastern Brazil
and the cropland site in southern Australia showed a similar seasonal pattern (correlation) to water storage over all depths (Fig.
5b and 5c). The largest change in correlation as a result of joint assimilation was observed for the Brazil savannas site (Fig.
5b) (r* —r° > 0.4) for shallow- and deep- water storage. NDVI in shrublands and forest sites with deeper roots showed higher
correlation with deep soil water and total water storage availability, such as the evergreen broadleaf forest in Nigeria, shrubland

in northern Mexico and deciduous broadleaf forest in southern Bolivia (Fig. 5d to 5f).

Significant increases in correlation between W3 water storage and vegetation greenness resulted from the joint assimilation of

SMOS and GRACE data. Fig. 6a shows the maximum change in correlation between the seasonal cycle of NDVI and soil water



10

15

20

25

30

storage at different integrated depths. Increases in correlations between the seasonality of NDVI and soil water storage after
the joint assimilation were observed globally, most notably in the high latitudes of the northern hemisphere, where increases in
correlation over 0.5 were widespread. This is due to the joint assimilation bringing the seasonality of soil water availability into
better agreement with greenness. Significant increases in the correlation between NDVI anomalies and root-zone soil water
anomalies by 0.2 were widely observed over the semi-arid and arid regions after the joint assimilation (Fig. 6b). The result
shows that the deviations of root-zone soil water to monthly mean can be better simulated after the joint assimilation with

improved consistency with vegetation greenness anomalies.

Having established that joint assimilation improved soil water estimation and the correlation with vegetation response globally,
we explored the sources of the improvements. The correlation between NDVI and soil water content estimates from API,
SMOS, GRACE and W3 were computed globally (Fig. 7). API showed a correlation with NDVI of ~ 0.5 — 0.6 over major
dry lands and high latitude regions, except for western and southern Australia and North America (Fig. 7a). Near-surface
soil moisture estimates from SMOS showed strong positive correlation with vegetation conditions over tropical grassland and
savannas regions, but strong negative correlation over eastern America and Europe (Fig. 7b). Vegetation growth over tropical
regions showed clear wet and dry seasonal patterns closely related to the variability of total water storage from GRACE (Fig.
7¢). The correlation of derived accessible soil water storage (from joint assimilation) shows the strongest correlation with NDVI
(Fig. 7d) in the semi-arid and arid regions compared to other water content estimates. The negative correlations over western
Australia between vegetation conditions and precipitation and surface soil moisture were not observed in GRACE observed
total water storage and joint assimilation derived accessible storage. This indicates that the vegetation here mainly responds to
the availability of deep soil moisture. The vegetation conditions were found to be less responsive to the soil moisture availability

in Europe and North America since water is not the only limiting factor to the vegetation growth.

4.3 Trends in soil water availability and vegetation response

The soil water anomalies estimated from the W3 open-loop and joint assimilation from January 2010 to December 2016 was
compared with the global vegetation greenness anomalies over the same period and clear differences in the magnitude of soil
water storage change and high spatial variability were observed globally (Fig. 8a and 8b). For example, a decrease of soil water
storage was simulated in open-loop simulations over southern Mexico and northeastern China. However joint assimilation
results showed an increase in soil water storage anomalies for these same regions. Differences in water storage anomalies
change between open-loop and joint assimilation (Fig. 8c) could be over 10 mm/yr, and were most noticeable over southeast

Asia and Australia.

Clear decreasing trends in NDVI anomalies (more than 0.025 units per year) were observed over central and eastern Australia
(Fig. 8d), while decreasing trends in soil water availability of over 10 mm/yr were found in both model open-loop and joint

assimilation estimates. A greater decrease of soil water storage was inferred in central and eastern Australia through joint

10
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assimilation than from the open-loop. Similarly, the deficit in accessible root-zone soil water storage estimated through joint
assimilation aligned well with the dramatic decrease in vegetation greenness in eastern Brazil, southern India and southern
Africa. The joint assimilation resulted in estimated increases in soil water storage that were globally much more consistent

with increased greenness than the open-loop simulations.

5 Discussion

We found that global modelling of root-zone soil moisture can be improved substantially through the joint assimilation of
GRACE total water storage and SMOS soil moisture retrievals. This is consistent with previous findings for Australia (Tian
et al., 2017). Corrections to near-surface soil moisture estimates resulted mainly from the assimilation of SMOS soil moisture.
Uncertainties in SMOS soil moisture retrievals, e.g. related to errors in surface roughness and vegetation cover characterisation,
influenced the accuracy of the estimation through the weights of the Kalman gain (Eq. 2). Therefore, in locations where satellite
soil moisture estimates were observed to be more accurate than the W3 model open-loop simulations (e.g. grassland and
cropland areas), the assimilation of these data improved the agreement between model estimates of near-surface soil moisture
and in-situ observations. However, assimilation of SMOS degraded model estimation for grid cells dominated by forest or
mixed land cover types, most likely due to the underestimated SMOS uncertainties. The SMOS relative errors for each cover
type ranged from 7-15% at median values, but was as high as 50% for full forest coverage regions (Fig. 1a). The average
relative errors for SMOS for over 50% of the in-situ sites with mixed land cover types were only 9% (Table 1), indicating a
potential under-estimation of SMOS error in those grid cells. By increasing the uncertainty of SMOS observations for forest
areas, thus reducing their influence on assimilation, the number of sites with degraded model estimation was reduced (Fig. 4a).
This suggests that reported uncertainties associated with the SMOS product are likely underestimated for densely vegetated

areas.

The suitability of ISMN in-situ soil moisture measurements for evaluation needs to be considered in interpretation. The quality
of the data records, the sparseness of network coverage, uneven distribution globally (e.g. heavily skewed to North America), as
well as the representativeness of a single site, or very small number of sites within a model or satellite pixel (~ 0.25° x 0.25°)
are important contributing factors to the evaluation statistics. For example, there were considerably fewer ISMN sites in dense
vegetation cover area (e.g. Table 1 WS, EN,DB and MF) than other cover types (i.e. 11 out of 167), and therefore should be
a consideration in comparing average performance metrics across cover types. Also, by careful inspection of the in-situ data
and removal of any sites with large gaps in the temporal coverage or with unrealistic temporal behaviour (e.g. abrupt changes
between dramatically contrasting moisture states), model evaluation could only be conducted with a subset of only 70% of
the full complement of ISMN data that was believed to be of better quality. Given the paramount importance of these data in
evaluation of model and satellite products in general, it is critical that the ISMN and similar in-situ measurement networks are

maintained, but rigorous quality control is equally important.
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The assimilation of GRACE data had marginal impact on W3 near-surface soil moisture simulation (Fig. 4a). In contrast to the
SMOS product, uncertainties in GRACE data were less variable in terms of relative error across land cover type, with error
between 10—15% on average (Fig. 1b). The majority of the modelling grid cells showed improved correlation and reduced
RMSE of root-zone soil moisture as a results of joint assimilation of GRACE and SMOS, not only in the grassland-dominated
sites but also for mixed land cover types. The improved root-zone soil water estimation in the joint assimilation could be linked
to the Kalman smoother, which used the SMOS (daily) data to temporally disaggregate the GRACE observed (monthly) total
water storage. Therefore, not only does the joint assimilation of SMOS and GRACE observations vertically redistribute the
water storage change into different W3 soil layers, it also redistributes the change temporally based on different dynamics of

the soil moisture signal at the different depths.

Root-zone soil moisture varies considerably in space, as do plant rooting depth and soil physical properties. This makes it a
challenge to compare model estimates over a cell and in-situ measurements at point scale. Remotely sensed vegetation green-
ness can serve as a surrogate for water availability in water-limited regions of the world. MODIS NDVI was used as an inde-
pendent dataset to evaluate root-zone soil moisture simulations. Significant increases in correlation were found globally after
joint assimilation (Fig. 6). The improvements over temperate regions are due to better consistency with NDVI seasonality (Fig.
6a). The increased correlation between root-zone soil water storage anomalies and vegetation greenness anomalies in semi-arid
to arid regions is encouraging as it may result in improved capability for forecasting drought and vegetation productivity in

dryland ecosystems.

The response of vegetation to water availability at different depths varies according to vegetation type and climate. For example,
grasslands over the western U.S. and northeastern China showed strong correlation with SMOS near-surface soil moisture
retrievals and modelled surface soil moisture, but weak correlation with GRACE observed total water storage (Fig. 5a and
7). On the other hand, grassland in Sahel showed the same relative response to water availability at different depths but
higher correlation with deep soil availability (Fig. 7). This appears to be due to the relatively deep root zone and lesser water
holding capacity (Leenaars et al., 2018). Identifying the soil layers that contribute most to the temporal behaviour of vegetation
greenness is critical for understanding the impacts of water stress on the terrestrial ecosystem. The variation of soil water storage
at plant accessible depths strongly reflected vegetation conditions over most of the globe except for part of North America and
Europe (Fig. 7d). The SMOS and GRACE observations both showed negative correlation with the surface greenness over
Europe and eastern North America, where better correlations were found with precipitation based index (APIL, in Fig. 7a).
This is expected, since is water is not the primarily and only limiting factor (Nemani et al., 2003; Wu et al., 2015). Overall,
the soil water storage derived from the joint assimilation embodied the best knowledge of available water content not only
from meteorological forcing data, but also from the SMOS near-surface soil moisture and GRACE total water storage. Given

accurate information of soil water availability, vegetation vigor and productivity can potentially be predicted (Tian et al., 2019).

A number of severe droughts have occurred during the last decade, including the droughts in Sahel, East Africa, California,

China and northeastern Australia. The annual trends in NDVI anomalies and root-zone soil water storage anomalies from
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January 2010 to December 2016 showed consistency in the spatial patterns. After a sharp recovery from the Millennium
drought during an extremely wet period from 2010 to 2011 (Leblanc et al., 2009; van Dijk et al., 2013a; Xie et al., 2016b),
drought returned to eastern Australia with a decrease in soil water of over 10 mm/yr estimated from both model open-loop
and joint assimilation (Fig. 8a and 8b). A decline in NDVI anomalies of more than 0.025 units per year was observed for the
majority of middle and eastern Australia due to the developing soil water deficit (Fig. 8d), which is likely due to the widespread
rainfall deficits caused by the El Nifio 2014-16 and further amplified by the Indian Ocean Dipole 2015. Increases in soil water
deficit were enhanced as a result of assimilating GRACE and SMOS over eastern Brazil, California and southern India and this
was consistent with a decrease in vegetation greenness in these areas. The stronger signal of water storage deficiency compared
to the open-loop is mainly attributed to GRACE-observed decreasing total water storage in agreement with the water storage
deficit observed by GRACE data only Rodell et al. (2018). The severity of groundwater depletion for irrigation in northern and
southern India, as observed by GRACE (Rodell et al., 2009), was also better captured by through the assimilation of GRACE
(Fig. 8b). Joint assimilation of GRACE and SMOS sometimes reversed the direction of change in soil water storage, compared
to the open-loop, resulting in better agreement with trends of temporal pattern in NDVI, particularly in southern Mexico and

northeastern China.

6 Conclusions

This work has demonstrated that the joint assimilation of GRACE and SMOS data into an ecohydrological model resulted
in a spatial and temporal redistribution of water storage that significantly improved root-zone soil moisture estimation over
different land cover types globally. In particular, significant improvements were found in the estimation of root-zone soil water
availability over grassland and cropland. The joint assimilation optimally integrated the water dynamics information from

SMOS and GRACE and mitigated the deficiencies of the individual sources of observation.

Vegetation response to soil water availability at different depths was found to vary according to ecosystem and climate. The
close relationship between vegetation growth and soil water availability was quantified firstly with the root-zone soil water
estimates through the assimilation of satellite soil moisture and total water storage retrievals simultaneously. The improved
agreement between vegetation vigor and soil water availability indicates the potential for improving ecohydrological modelling
and forecasting vegetation condition. Accurate characterization of vegetation response to soil water availability also provides

new insights to help improve monitoring and forecasting drought impacts on ecosystems.

Data availability. The ecohydrological model W3 is available online at http://wald.anu.science. The MOD13C2 data was retrieved from
online Data Pool, courtesy of the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources
Observation and Science (EROS) Center, Sioux Falls, South Dakota, https://Ipdaac.usgs.gov. GRACE land mascon solutions are available
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Figure 1. Averaged relative error of satellite observed water content in different land cover types for: (a) SMOS-derived soil moisture; (b)

GRACE-derived total water storage.
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Figure 4. Performance of surface and root-zone soil moisture estimates from four data assimilation scenarios against open-loop: correlation
(r) and root mean-squared error (RMSE) change (r® — r°, RMSE*-RMSE?; “: after assimilation, °: open-loop) after the assimilation in
(a) surface soil moisture estimation; (b) root-zone soil moisture estimation. The four scenarios include: SMOS-only as the assimilation of
SMOS data alone, GRACE-only as the assimilation of GRACE data only, Joint as joint assimilation of SMOS and GRACE, Joint-landcover
as increasing SMOS uncertainty in forest regions in the joint assimilation. The points in the scatter plots are colour coded such that: blue
indicates ISMN sites where improvement was observed in both correlation and RMSE; green indicates sites where there was improvement
in correlation, but not in RMSE; yellow indicates those sites where there was improved RMSE, but not correlation; and red indicating sites

where assimilation resulted in degradation in both correlation and RMSE.
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(a) Grassland, northern China (b) Savannas, eastern Brazil (c) Cropland, South Australia
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Figure 5. Time series of vegetation responses (NDVI) to soil water storage over different integrated depths across land vegetation types

before (r°, red curves) and after the joint assimilation (%, blue curves). The location of each site is shown in Figure 1.
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Figure 6. Maximum change in correlation (r* —r°, r*: joint assimilation, 7° open-loop) of (a) the seasonal cycle of vegetation greenness and
soil water storage over different integrated depths; (b) the anomalies of vegetation greenness and soil water storage over different integrated

depths.
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Figure 7. Vegetation response to different sources of soil water availability as indicated by: the correlation between monthly NDVI and (a)
antecedent precipitation index (API), (b) SMOS surface soil moisture retrievals, (c) GRACE total water storage change retrievals, and (d)

vegetation-accessible water storage derived after the joint assimilation.
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Figure 8. Change of soil water availability and vegetation greenness from 2010 to 2016: linear trends of accessible water storage anomalies
estimated from (a) model open-loop and (b) joint assimilation; (c) difference in trends between joint assimilation and model open-loop; (d)

linear trends of NDVI anomalies.

26



SI0A0D pue| paxIu T sodA) X1t pajeurwop 38910 (] sodA) X1 pojeuriop-pue[sseis (o) 1Sa10§ XIW :JJA] 15210 Jed[ PEoIq SNonprodp g

15010 JeA[ S[PIAU UAISIVAD N Uonelasoa [exnjeu/pue[dord :AD puejdoId ;gD SeuueAes :SS SeuueAes Apoom :SA\ pueqniys uado :§O puelsseIs :g0

:sad£) 10100 puer]

790 | S90 | 890 | 0S0O | 190 | LL'O | TLO | S90 | 980 | ¢80 | ¥SO | 850 4 UOTIR[21I0D /(T Jutof oFeroay
960 | 190 | 090 | L¥FO | S90 | 9L°0 | S90 | €50 | 980 | SLO | ¥SO | 870 o+t UONE[21105 d00[-uado oFeIoAY
900 | ¥0°0 | 800 | €00 | ¥0°0- | 100 | LOO | CI'O 0 900 0 010 || o+ — p 9SUBYD UOHE[ALIOD OTLIOAY
8€'0 | 8T°0 | 6€0 | ¥1'0 | ¥0°0- | OT'0 | 9T°0 | I€0 0 ST°'0 | 010 | #€°0 o) — pt 9TUBYD UONBIALI0D XBIN
%01 | %8 | %8 %6 %8 %9 %8 | BL %9 %6 %6 %6 Kureroun gOv Yo o5eIAy
%6 | B8 | BL | BET | %8 | BIT | %OI | %S BL | BT | B8 %9 Aureyreoun SONS 95eIoAY
YL €l 0¢ C C ¥ L (44 I € 9 €e S[[99 U3 Jo TequunN
WIT-() JANJSIOW [I0S JUOZ-)00.1
090 | S90 | 990 | L9O eu 790 | 850 | ¥9°0 | 0L0 | 650 | 090 | ¥9°0 o4 UOTIB[2110D /(] Jutof o5eIoAy
190 | S9°0 | 650 | 19°0 eu 090 | ¥S0 | ¥SO | ¥80 | LSO | ¥9°0 | LSO o+t UONE[21105 d0O]-Uado o5eIoAY
10°0- 0 L00 | 900 eu 200 | #0°0 | OT°0 | ¥1°0- | TO'0 | #0°0- | LOO || o — p OSUBYD UONERLIOD FLIOAY
620 | 900 | CC0 | IT°0 | 90°0- | €00 | CI'0 | ¥¥'0 | CI'0- | IT°0 | €00 | 9¢°0 ot — e ABUBYD UONL[OLIOD XEIN
%OL | WL | %6 | %6 | %OI | %S %6 | %6 %9 | BT | BT | %6 Aureneoun gV YD d5eIeAy
%6 | BYT | BL | BLL | BL | BIT | BIT | %9 BL | BT | B8 %9 Aureyeoun SOINS 5erony
99 L €C C 0 (4 4 9¢ C 9 9 e S[[92 PLIS Jo ToqunN
TN | dd | @O | dN qaa NA | AD | dD SS SM SO SO

WDG-() AAN)SIOU [0S IDBJINS-TLIU

sad£) 10A00 pue[ SSOIOE UONEBAIISQO QINISIOW [10S MIS-UT NIAST YIM UOHBWIISS 9IN)SIOW [I0S dUOZ-)00I PUB 908JINS-IBaU JO UOen[eAd T dqeL

27



