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Abstract 17 

In general, there are no long-term meteorological or hydrological data available for karst 18 

river basins. The lack of rainfall data is a great challenge that hinders the development of 19 

hydrological models. Quantitative precipitation estimates (QPEs) based on weather satellites 20 

offers a potential method by which rainfall data in karst areas could be obtained. Furthermore, 21 

coupling QPEs with a distributed hydrological model has the potential to improve the 22 

precision of flood predictions in large karst watersheds. Estimating precipitation from 23 

remotely sensed information using an artificial neural network-cloud classification system 24 

(PERSIANN-CCS) is a type of QPE technology based on satellites that has achieved broad 25 

research results worldwide. However, only a few studies on PERSIANN-CCS QPEs have 26 

occurred in large karst basins, and the accuracy is generally poor in terms of practical 27 

applications. This paper studied the feasibility of coupling a fully physically based distributed 28 

hydrological model, i.e., the Liuxihe model, with PERSIANN-CCS QPEs for predicting 29 

floods in a large river basin, i.e., the Liujiang Karst River Basin, which has a watershed area 30 

of 58,270 km2, in southern China. The model structure and function require further 31 

refinement to suit the karst basins. For instance, the sub-basins in this paper are divided into 32 
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many karst hydrology response units (KHRUs) to ensure that the model structure is 33 

adequately refined for karst areas. In addition, the convergence of the underground runoff 34 

calculation method within the original Liuxihe model is changed to suit the 35 

karst water-bearing media, and the Muskingum routing method is used in the model to 36 

calculate the underground runoff in this study. Additionally, the epikarst zone, as a distinctive 37 

structure of the KHRU, is carefully considered in the model. The result of the QPEs shows 38 

that compared with the observed precipitation measured by a rain gauge, the distribution of 39 

precipitation predicted by the PERSIANN-CCS QPEs was very similar. However, the 40 

quantity of precipitation predicted by the PERSIANN-CCS QPEs was smaller. A post-41 

processing method is proposed to revise the products of the PERSIANN-CCS QPEs. The 42 

karst flood simulation results show that coupling the post-processed PERSIANN-CCS QPEs 43 

with the Liuxihe model has a better performance relative to the result based on the initial 44 

PERSIANN-CCS QPEs. Moreover, the performance of the coupled model largely improves 45 

with parameter reoptimization via the post-processed PERSIANN-CCS QPEs. The average 46 

values of the six evaluation indices change as follows: the Nash–Sutcliffe coefficient 47 

increases by 14%, the correlation coefficient increases by 15%, the process relative error 48 

decreases by 8%, the peak flow relative error decreases by 18%, the water balance coefficient 49 

increases by 8%, and the peak flow time error displays a 5-hour decrease. Among these 50 

parameters, the peak flow relative error shows the greatest improvement; thus, these 51 

parameters are of the greatest concern for flood prediction. The rational flood simulation 52 

results from the coupled model provide a great practical application prospect for flood 53 

prediction in large karst river basins. 54 

1 Introduction 55 

The highly anisotropic karst water-bearing media and intricate hydraulic conditions cause 56 

karst flood processes to exhibit significant differences in time and space, which leads to 57 

laminar flow and turbulent flow transmutation in karst areas; thus, flood events in karst river 58 

basins are more complicated than those in non-karst areas (Ford and Williams,2007; 59 

Goldscheider and Drew,2007). This difference makes it difficult to precisely simulate and 60 

forecast the karst flood process using a hydrological model. It is common practice to simplify 61 

karst water-bearing media before building a model. For example, the karst river basin could 62 

be made into a multiple and nested spatial structure, the underground river could be made into 63 

an intelligible river system in the model, and the cave could be an anisotropic medium with a 64 

large vertical infiltration coefficient and porosity but a small specific yield. Even so, it is still 65 

hard to quantify the spatial structure of karst water-bearing media with a physics-mathematics 66 

model. Karst flood simulation results usually have some errors that cannot be ignored, and 67 

these errors represent the main problem in flood prediction in karst river basins (Kovacs and 68 

Perrochet, 2011). 69 
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Because the dynamic changes in karst hydrological processes and the hydraulic conditions 70 

of the underlying surface are complicated and nonlinear in karst areas, obtaining 71 

hydrogeological parameters, such as specific yield, hydraulic conductivity and aquifer 72 

transmissivity, is difficult. With the rapid development of remote sensing, GIS technology 73 

and hydrogeology, the technology used in field work, including tracer tests (Birk et 74 

al.,2005;Doummar et al.,2012) and infiltration tests, has made significant progress. However, 75 

accurately simulating the laws of motion of karst hydrological processes in karst water-76 

bearing media based on these experimental tests remains difficult. Therefore, traditional 77 

methods, such as lumped hydrological models, are not suitable for flood prediction in karst 78 

areas (Hartmann et al., 2013). Compared with the performance of lumped hydrological 79 

models, physically based distributed hydrological models (PBDHMs) have some advantages 80 

in terms of generating karst flood predictions. PBDHMs divide the entire karst river basin into 81 

a series of small grid units named karst sub-streams, which precisely reflect the real rules of 82 

hydrological processes and karst development characteristics. Therefore, the PBDHM 83 

approach has great application potential in terms of improving karst flood simulation and 84 

prediction capabilities (Ambroise et al., 1996). Many PBDHMs have been proposed since the 85 

blueprint of the PBDHM was published by Freeze and Harlan (1969). The first full PBDHM, 86 

called the SHE model, was published in 1987 (Abbott et al., 1986a, b). Shustert and White 87 

(1971) attempted to use the PBDHM in karst areas. In their research, the dissolved carbonate 88 

species were analysed in the waters of 14 carbonate springs in the central Appalachians. 89 

These springs were classified into diffuse-flow feeder-system types and conduit feeder-90 

system types. PBDHMs have obtained several good research results in karst areas 91 

(Atkinson,1977; Quinlan and Ewers,1985; Quinlan et al.,2011; Duan and Miller,1997; 92 

Ren,2006; Liu et al.,2013; Zhang et al.,2007). 93 

The PBDHM used in this paper is the Liuxihe model (Chen,2009), which is a fully 94 

distributed model with 14 physically based parameters. After the karst mechanisms were 95 

added, the number of parameters was 20. Unlike other distributed hydrological models, there 96 

are some special structural designs in this model. For instance, the whole model structure is 97 

divided into eight independent parts, which are called sub-models. These sub-models include 98 

the 1) watershed division and data mining sub-model, 2) unit classification and river section 99 

estimation sub-model, 3) rainfall fusion computational sub-model, 4) evapotranspiration 100 

calculation sub-model, 5) runoff calculation sub-model, 6) confluence calculation sub-model, 101 

7) parametric sensitivity analysis sub-model, and 8) parameter optimization sub-model. 102 

Unlike other distributed models, separate parameter uncertainty analysis calculations must be 103 

performed outside the model. However, the parametric sensitivity analysis is a fixed module 104 

in the Liuxihe model, which means that when the model is built for flood prediction, 105 

parametric uncertainty analysis has already been carried out. The parametric uncertainty 106 

analysis in the Liuxihe model is based on a multi-parameter sensitivity analysis that was 107 
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presented by Choi (1999) et al. 108 

In actual flood predictions, people may pay more attention to the flood process at specific 109 

points of the river section. For example, focus may be directed at the mouth of the river or the 110 

outlet of the basin. These points have special significance in relation to procedures such as 111 

flood warnings and evacuations. Therefore, extracting the flood processes at these points is 112 

important and should be given special consideration. In the Liuxihe model, these points are 113 

named early warning points, and flood prediction, which is urgently needed in karst areas, can 114 

be performed separately at these points. For example, the confluence of underground rivers 115 

could be established through a field survey and a geological borehole test and set as an early 116 

warning point because this is a point at which the influence of karst may dominate the runoff 117 

processes. 118 

In addition, the catchment property data for the Liuxihe model, which primarily include 119 

the digital elevation model (DEM), land use and soil types, can be easily downloaded from 120 

open-access databases for free. Therefore, the Liuxihe model can be built in any area. Though 121 

it is not easy to obtain the basic data needed to build a distributed hydrological model in karst 122 

areas, only a very small amount of data must be downloaded from the web to build the 123 

Liuxihe model, making it a feasible option for flood simulation and prediction in karst basins. 124 

The regulation and storage capacity of karst water-bearing media are weak. When the 125 

accumulated rainfall exceeds the maximum drainage capacity of the channel during a heavy 126 

rain storm, a karst immersion-waterlogging hazard is much more likely to occur. The hazard 127 

will become increasingly serious with the intensification of extreme global weather events. 128 

Therefore, some effective measures need to be taken to reduce losses caused by floods. For 129 

example, effectively and reliably simulating and predicting the karst flood process using a 130 

PBDHM is an important non-project measure for flood control. However, there are 131 

insufficient rain gauges and long-term meteorological or hydrogeological data available to 132 

build a PBDHM in karst river basins classified as ungauged basins. Predictions in ungauged 133 

basins (PUB) are the theme of the international hydrological decade, at the core of which is 134 

runoff calculation (Li and Ren, 2009). Therefore, it is more difficult to forecast flood events 135 

in karst river basins than in non-karst areas. How to solve the problem of rainfall sources is a 136 

key factor in the current karst flood prediction challenge. Quantitative precipitation estimates 137 

(QPEs) and, particularly, satellite QPE technology, make it possible to obtain reasonable 138 

rainfall data in karst areas. However, the current application of QPEs is immature, which 139 

results in poor QPE accuracy, and the effect of the karst flood simulation and prediction is 140 

also poor. 141 

The development of numerical weather prediction models in recent decades has provided 142 

a reasonable and accurate QPE product that can be used in karst areas. The current 143 

mainstream QPEs include weather radar QPEs (Delrieu et al.,2014; Rafieei et al.,2014; Faure 144 

et al.,2015), satellite QPEs and radar-merging satellite QPEs (Stenz, 2014; Bartsotas et 145 
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al.,2017; Goudenhoofdt and Delobbe,2009; Wardhana et al.,2017). Additionally, precipitation 146 

can be estimated from remotely sensed information using artificial neural 147 

networks/PERSIANN QPEs (Soroosh et al.,2000; Hirpa et al.,2010; Romilly, 2011;Yang et 148 

al.,2007), the dPERSIANN-climate data record/PERSIANN-CDR (Ashouri et al., 2014; Liu 149 

et al., 2017; Tan and Santo,2018; Hussain et al., 2018), and the PERSIANN-cloud 150 

classification system/PERSIANN-CCS (Yang et al., 2004,2007; Moradkhani and Meskele, 151 

2010). Studying the QPE products from meteorological satellites has become a popular topic 152 

in rainfall prediction research (Hu et al., 2013). 153 

Many scholars at home and abroad have performed considerable research using QPE 154 

technology, and they have achieved many acceptable  results. However, considerable 155 

uncertainty exists in the application of these results, which causes the precision of the QPEs 156 

to be low; thus, the precipitation result generated from the QPEs may be unsatisfactory. Two 157 

effective measures could reduce the uncertainty of QPE results in the karst area. One measure 158 

is to match the appropriate resolution of the model. The resolution can directly affect the 159 

results of the QPEs; thus, if the resolution is too low, then the division of the grid units is too 160 

coarse, which causes a considerable error in the rainfall estimates. However, if the resolution 161 

is too high, then the meteorological model structure is complicated and unstable. Furthermore, 162 

the required computational resources will increase exponentially as the model spatial 163 

resolution increases (Chen et al., 2017), which leads to a large number of calculations and low 164 

efficiency. Therefore, using the appropriate model spatial resolution is extremely important in 165 

terms of the QPE results. The other measure that affects uncertainty is that the current 166 

technology of QPEs still has some systematic errors due to uncertainties in the structure and 167 

mathematical algorithms. For this reason, when compared with the precipitation observed 168 

using rain gauges, the results of QPEs have some relative errors, and these errors cause the 169 

karst flood simulation results from the coupled model (i.e., those from coupling the QPEs 170 

with a PBDHM) to have uncertainties that largely affect the model’s performance. Therefore, 171 

the results of the initial QPEs could not be directly used to build the coupled model. In this 172 

study, a post-processing method was employed to revise the productions of the PERSIANN-173 

CCS QPEs products, which caused the QPE results to be more credible and receivable. 174 

There have been many studies of PERSIANN-CCS QPEs (Yang et al. 2007). However, 175 

most of these studies have been conducted in small non-karst watersheds. In this study, the 176 

PERSIANN-CCS QPEs were employed in an attempt to estimate the rainfall data in a large 177 

karst river basin, i.e., the Liujiang Karst River Basin (LKRB), which has an area of 5.8×104 178 

km2 and is located in Guangxi Province, China. Watershed flood prediction relies on a 179 

PBDHM as a computation tool, while precipitation is the driving force behind the model (Li 180 

et al., 2017). This method has the potential to improve the accuracy of karst flood predictions 181 

by coupling PERSIANN-CCS QPEs with a PBDHM. The PBDHM in this study is the 182 



6 

 

Liuxihe model (Chen, 2009). This study is the first time to use the Liuxihe model for flood 183 

simulation and prediction in karst basins. 184 

Therefore, the model structure and function have been improved to suit the requirements 185 

of the karst basin. For instance, in this study, the entire river basin will be divided into many 186 

small sub-basins using the DEM data, and this process is adequate when considering non-187 

karst basins. However, to ensure the effect and accuracy of the model in karst areas, the 188 

model structure must be more refined. Thus, in this paper, the sub-basins will be further 189 

divided into many karst hydrology response units (KHRUs). The entire karst hydrological 190 

process, including the storage and regulation processes of the epikarst zone and the spatial 191 

interpolation of the precipitation, evapotranspiration and rainfall-runoff, are all calculated 192 

based on the KHRUs. Furthermore, in the original Liuxihe model, the underground layer is 193 

treated as an integral unit, and a linear reservoir method is adopted to calculate the amount of 194 

underground runoff. However, because the structure of the karst underground layer is non-195 

linear, the original linear reservoir method of the Liuxihe model is not appropriate. Therefore, 196 

in this study, the Muskingum routing method is used to improve the convergence of the 197 

underground runoff calculations. Additionally, the epikarst zone, as a distinctive structure of 198 

the KHRU, is carefully considered in the model. An exponential decay equation is used to 199 

calculate the regulation and storage processes in the epikarst zone. 200 

The spatial resolution of the Liuxihe model for the LKRB is 200 m×200 m. The 201 

PERSIANN-CCS QPE products, which have a spatial resolution of 0.04°×0.04° and a time 202 

interval of 30 min, are employed to estimate the precipitation results for the LKRB. The 203 

resolution of the PERSIANN-CCS QPEs must be downscaled to the same size as the Liuxihe 204 

model before the coupled model can be built. After post-processing, the PERSIANN-CCS 205 

QPE products could offer high-precision precipitation results for the LKRB in locations 206 

where there is an inadequate number of rain gauges. Additionally, the model performance can 207 

be greatly improved by coupling the post-processed PERSIANN-CCS QPEs with the Liuxihe 208 

model. A modified PSO algorithm (Chen et al., 2016) is used to optimize the coupled model 209 

parameters in this paper, and this method could control the uncertainty of parameterization. 210 

2 Study area and data 211 

2.1 Study area 212 

The LKRB in southern China was selected as the study area for this research. The LKRB 213 

is the second largest tributary of the Pearl River and covers three provinces, including 214 

Guizhou, Guangxi and Hunan. The LKRB is the most developed karst area of China, with a 215 

drainage area of 58270 km2 and a channel length of 1121 km. Moreover, the LKRB is a 216 

typical karst-mountainous catchment that has experienced frequent flash flooding in past 217 

centuries. The peak forest-plain area is the main karst landform on the ground, while the karst 218 

conduit and fissure are well developed underground. There are also many complicated 219 
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underground rivers and springs with large flows (Li, 1996). The karst water-bearing media is 220 

highly non-linear and heterogeneous, which makes it very difficult to simulate and forecast 221 

the karst hydrological process. 222 

The LKRB is in the sub-tropical monsoon climate zone, with an average annual 223 

precipitation between 1400 mm and 1700 mm, and the precipitation distribution is highly 224 

uneven on spatial and temporal scales. The precipitation from April to September accounts 225 

for 75%-80% of the annual precipitation. A sketch map of the LKRB is shown in Figure 1a. 226 

The most developed karst area in LKRB is the Beijiang catchment, where the influence 227 

of karst features highly dominates the rainfall-runoff processes. The Beijiang catchment is a 228 

tributary of the middle and upper reaches of the Liujiang River, lying at 25°06-25°27' north 229 

latitude and 108°38-109°18' east longitude. The drainage area of the Beijiang catchment is 230 

1790 km2, and the length is 130 km. The catchment has a dense river system (Figure 1b) and 231 

is surrounded by high mountains with peak elevation at 1000-1800 m (Figure 1c), in which 232 

the peak-cluster depression covers most of the area. The average valley slope gradient is 233 

0.143. 234 

Figure 1. Sketch map of Liujiang and the Beijiang catchment 235 

2.2 Landform, tectonics and hydrogeology information 236 

The LKRB is located in the central part of Guangxi Province, China. The terrain is high 237 

on all sides and low in the middle. The cross-strait terraces of the Liujiang River are well 238 

developed, especially near the Liuzhou River gauge (as shown in Figure 1), which is located 239 

at the outlet of the LKRB. The north part of the basin has transmeridional arc-like folded 240 

belts, where the soluble rock forms syncline and the sand shale forms anticline. Sand shale 241 

formations and carbonate and carbonate clastic rocks are widely distributed here. The karst 242 

valley is the main landform in the south part of the basin, and the overlying lithology is clay 243 

and gravel with poor water permeability. The underlying bedrock is mainly carbonate and 244 

dolomite, and the karst fissures are well developed, in which a large amount of water is stored 245 

(He,2017). 246 

The western part of the basin has a large area of limestone in a continuous distribution, 247 

and a peak-cluster depression covers most of the area. The landform of the eastern basin is 248 

mainly hilly, where the rocks are soft-hard due to their different anti-erosion abilities. The 249 

hard rocks form low mountains that move towards the gentle slope and then back to the steep 250 

slope. The landforms of the central part of the basin are mainly the isolated peak plain and the 251 

peak forest plain. Overall, the main landforms of the LKRB are the peak forest plain and the 252 

peak-cluster depression. 253 

The Liujiang River is located in the karst valley basin, which is covered by quaternary 254 

loose deposits. The underlying surface is dominated by alluvium, diluvium and katatectic 255 
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layers due to the fluviraption of the Liujiang River and the karst geological background, and 256 

the thickness is approximately 10-20 metres. Carbonate, sandstone, shale and carbonate 257 

clastic rocks are widely distributed in the basin. Among them, the area of the carbonate rocks 258 

is about 19,230 km2, which accounts for 33% of the entire watershed. The outcrops in the 259 

basin mainly include Upper Devonian limestone (D3), Lower Carboniferous Datangpo 260 

formation limestone (C1d,C1d3), Middle (C2d) and Upper Carboniferous (C3) limestone, 261 

Upper Permian carbonate and clastic rocks (P2d, P2 h), Lower Triassic clastic and carbonate 262 

rocks (T1), Lower Cretaceous clastic and carbonate rocks, and loose rock groups of the 263 

Quaternary Pleistocene (Q,Qp) and Holocene (Qh). 264 

After studying the karst geomorphology of the LKRB, Williams (1987) believed that the 265 

peak-cluster depression had developed into turreted peak-forest landforms after a long 266 

evolutionary process, which is equivalent to the late prime of life, i.e., entering old age in 267 

terms of geomorphologic evolution. Allogeneic water, especially from the Liujiang River, is 268 

the main driving force behind the development of peak-forest landforms. Therefore, the peak-269 

forest plains and valleys are often distributed in contiguous areas near the main trunk stream 270 

of the Liujiang River. The main karst landform of the LKRB is peak-forest plain, and there 271 

are also some peak-cluster depressions and peak-forest valleys. Figure 2 shows the DEM and 272 

three-dimensional topographical map of the LKRB. 273 

 274 

Figure 2. The DEM and three-dimensional topographical map of LKRB. 275 

2.3 Rain gauges and karst flood process 276 

There are 68 rain gauges and 131 grid points for the PERSIANN-CCS QPEs within the 277 

LKRB, and data from 30 karst flood events that occurred between 1982 and 2013 were 278 

collected. There was one flood event each year. Among them, 5 karst flood events between 279 

2008 and 2013 were used to test the effect of coupling PERSIANN-CCS QPEs with the 280 

Liuxihe model. The karst floods process in the LKRB has typical characteristics: the flood 281 

peak flows usually exceed 10,000 m3/s, and there is an expression of a multi-peak flood 282 

process. A flood process usually lasts approximately 10 days, and the shortest flood event 283 

duration was only approximately 3 days, while the longest was 25 days. Hourly precipitation 284 

data were collected from the rain gauges in this study, and these results were compared with 285 

the results from the PERSIANN-CCS QPEs. The rain gauges, the grid points of the 286 

PERSIANN-CCS QPEs and the Liuzhou River gauge that is located close to the outlet of the 287 

LKRB are shown in Figure 1a. 288 

There are 11 early warning points set in the Beijiang catchment (Figure 1b), and 10 karst 289 

flood events at the Goutan warning point were collected to validate the flood simulation effect 290 

based on the Liuxihe model, in which the Goutan point is the outlet of the Beijiang 291 
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catchment. In fact, the Beijiang catchment is in the centre of the storm area of Guangxi 292 

Province, China. According to field observation data, the observed maximum 24-hour 293 

accumulated precipitation is 779.11 mm in the Beijiang catchment, and the maximum 3-day 294 

accumulated precipitation is 1335.15 mm. Karst floods are typical flash floods with rapid 295 

discharge and water level fluctuation, mainly caused by storms, and the developed karst 296 

landform plays an important role in flood propagation. For instance, the karst depressions can 297 

store some water content during heavy rain. Additionally, the regulation functions of the karst 298 

fissure system can slow the flood propagation process. 299 

2.4 Property data 300 

The catchment property data for the distributed hydrological models mainly include the 301 

DEM, land use and soil types. These data were downloaded from open-access databases. The 302 

DEM was downloaded from the shuttle radar topography mission database at 303 

http://srtm.csi.cgiar.org (Falorni et al., 2005, Sharma et al., 2014). The downloaded DEM had 304 

an initial spatial resolution of 90 m×90 m, and after many model resolution tests, the most 305 

appropriate resolution of the Liuxihe model in the LKRB was confirmed to be 200 m×200 m. 306 

Therefore, the spatial resolution of the initial DEM was rescaled to 200 m×200 m in this 307 

study, and this value represents the high resolution for the Liuxihe model in the LKRB. The 308 

DEM is shown in Figure 2(a). The land use-type data were downloaded from http: 309 

//landcover.usgs.gov (Loveland et al., 1991, 2000), and the soil-type data were downloaded 310 

from http://www.isric.org. The initial spatial resolutions of the land use-type and soil-type 311 

data were both 1000 m×1000 m. However, both resolutions had to be rescaled to 200 m×200 312 

m in this study. Figure 3 (a) shows the land use types, and (b) shows the soil types. 313 

(a) land use types                                                       (b) soil types 314 

Figure 3. The property data for the Liuxihe model in LKRB 315 

3 PERSIANN-CCS QPEs and post-processing results 316 

3.1 PERSIANN-CCS QPEs 317 

The original PERSIANN system (Hsu et al., 1999) was based on geostationary infrared 318 

imagery and was later extended to include the use of both infrared and daytime visible 319 

imagery. This method represents an automated system for estimating precipitation from 320 

remotely sensed information through the use of artificial neural networks. The method for 321 

rainfall estimation that is under development at the University of Arizona is continuously 322 

improving as technology advances (Soroosh et al.,2000). The fundamental algorithm of the 323 

PERSIANN system is based on a neural network. The network parameters could be optimized 324 

by an adaptive training characteristic, which can estimate the precipitation from a 325 

http://srtm/


10 

 

geosynchronous satellite at any time and place. 326 

The PERSIANN-CCS (Yang et al., 2004; Hsu et al., 2007) is a patch-based cloud 327 

classification and rainfall estimation system from low Earth orbit and geostationary satellites 328 

that uses pattern recognition technology and computer imaging technology (Yang et al.,2007). 329 

Satellite-based precipitation retrieval algorithms use information ranging from visible (VIS) 330 

to infrared (IR) spectral bands of geostationary earth orbiting (GEO) satellites and microwave 331 

(MW) spectral bands (Hsu et al., 2007). 332 

The QPE products of PERSIANN-CCS have generated precipitation estimates at a resolution 333 

of 0.04°×0.04° scale and at a time interval of 30 min since 2000. The output of PERSIANN-334 

CCS QPEs was downscaled at 200 m×200 m to achieve the same spatial resolution as that of 335 

the Liuxihe model in the LKRB. The down-scaling method used in this paper was based on 336 

statistical relationships between the meteorological variables and DEM data using the LOO 337 

(leave-one-out) cross evaluation method and spatial autocorrelation analysis methods (Fan et 338 

al., 2017). 339 

The hourly precipitation data from the PERSIANN-CCS QPEs were collected and 340 

compared with the precipitation observed by the rain gauges. 341 

The estimation of rainfall from the PERSIANN-CCS consists of the following steps (Hsu, 342 

2007): (1) IR cloud image segmentation, (2) characteristic extraction from IR cloud patches, 343 

(3) patch characteristic classification, (4) obtaining the rainfall estimation results of the QPE 344 

products, and (5) evaluating and revising the results of the QPE products. 345 

In this paper, the PERSIANN-CCS QPEs real-time data used in the LKRB from the current 346 

version of PERSIANN-CCS are available and downloadable online 347 

(http://hydis8.eng.uci.edu/CCS/). 348 

3.2 Precipitation estimation results 349 

The QPE product of the PERSIANN-CCS generated precipitation results for the LKRB. 350 

There were 131 grid points of PERSIANN-CCS QPEs within the LKRB, and these points 351 

were representative and completely covered the entire watershed (as shown in Figure 1). The 352 

spatial resolution was 200 m×200 m, and the time interval was 1 hour. The respective QPE 353 

products of the PERSIANN-CCS in 2008, 2009, 2011, 2012 and 2013 were produced, and the 354 

results indicated that 5 rainfall events corresponded to the 5 karst flood processes. Figures 4-8 355 

show the average precipitation pattern comparisons of the two precipitation products of the 5 356 

years, where (a) is the average precipitation based on data from the rain gauges, (b) is the 357 

average precipitation based on the data from the PERSIANN-CCS QPEs, and (c) is the 358 

Quantile-Quantile plot, in which the 45-degree line is used to compare two precipitation 359 

products. 360 

Figure 4. Precipitation pattern comparison of two precipitation products (2008) 361 

Figure 5. Precipitation pattern comparison of two precipitation products (2009) 362 
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Figure 6. Precipitation pattern comparison of two precipitation products (2011) 363 

Figure 7. Precipitation pattern comparison of two precipitation products (2012) 364 

Figure 8. Precipitation pattern comparison of two precipitation products (2013) 365 

According to the results of Figures 4-8, it appears that the temporal average precipitation 366 

patterns of both products are quite similar, especially in terms of the rainfall distribution, 367 

while there are some differences in the quantitative values. The results from the PERSIANN-368 

CCS QPEs are smaller than those from the rain gauges, which means that a relative error 369 

exists between the two products. From the Quantile-Quantile plot, the two rainfall scatter 370 

plots are closely distributed on both sides of the 45-degree line, which means that the rainfall 371 

distribution of both products are close to each other. 372 

3.3 Evaluation of PERSIANN-CCS QPEs 373 

To quantitatively evaluate the results of the PERSIANN-CCS QPEs, the precipitation from 374 

the PERSIANN-CCS QPEs and the precipitation from the rain gauges were compared in this 375 

study. The rainfall distribution of both products is shown in Figures 4-8. For further 376 

comparison, the average precipitation of the 5 karst flood events was calculated, and the 377 

results are shown in Table 1. 378 

Table 1. Precipitation pattern comparison of two precipitation products  379 

According to the results of Table 1, there are obvious relative errors between the two 380 

precipitation products. The average precipitation values of the PERSIANN-CCS QPEs were 381 

lower than those from the rain gauges. For the 5 karst flood events from 2008 to 2013, the 382 

relative errors between the two products were -11%, -16%, -7%, -19% and -20%, 383 

respectively. The average relative error was -14%, and the maximum error was -20%, which 384 

means that these relative errors cannot be ignored. Therefore, the precipitation results 385 

generated by the PERSIANN QPEs must be revised effectively, and the precipitation data 386 

observed by the rain gauges can be used to revise the results of the PERSIANN QPEs in this 387 

study. 388 

3.4 The post-processed PERSIANN-CCS QPEs 389 

To make the results of the PERSIANN QPEs more credible and receivable, the 390 

precipitation results were revised using the observed precipitation measured by the rain 391 

gauges. First, it was necessary to locate the grid points of the PERSIANN-CCS QPEs that 392 

were closest to the rain gauges (as shown in Figure 1). There were 23 grid points in the 393 

LKRB. Second, the average precipitation values of the PERSIANN-CCS QPEs and the rain 394 

gauges were calculated, and the average precipitation from the rain gauges was used as the 395 
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true precipitation value. Third, the process of revising the results of the PERSIANN QPEs 396 

based on the average precipitation observed by the rain gauges is summarized as follows. 397 

1). The average precipitation of these 23 grid points based on the PERSIANN-CCS QPEs was 398 

calculated with the following equation: 399 

                          1
PERSIANN CCS

N

i i

i

PF

P
N

=
− =


                                        (1) 400 

where
 PERSIANN CCSP −  

is the average precipitation of the 23 grid points based on the 401 

PERSIANN-CCS QPEs,
 iP  is the precipitation based on the PERSIANN-CCS QPEs at the i 402 

grid point,
 iF  is the catchment area of the i grid point, and N is the number of grid points. 403 

2). The average precipitation of the 23 rain gauges was calculated using the following 404 
equation: 405 

                            
1

2

M

j

j

P

P
M

=
=


                                             (2) 406 

where
 2P is the average precipitation observed by the 23 rain gauges,

 jP is the precipitation 407 

observed at the j rain gauge, and M is the number of rain gauges. 408 

3). The precipitation values observed by the adjacent rain gauges were used to revise the 409 

results of the PERSIANN-CCS QPEs with the following equation: 410 

' 2

PERSIAN

i

C

i

N C S

P
P P

P −

=                                                    (3) 411 

where
 

'

iP  is the value of precipitation based on the PERSIANN-CCS QPEs after revision on 412 

the i grid point, and 
2 / PERSIANN CCSP P −

 is the revised factor. 413 
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4). After revision, the precipitation results based on the PERSIANN-CCS QPEs were used as 414 

input data for the Liuxihe model to test its feasibility for use in the flood simulation. 415 

After running the post-processing procedure for the PERSIANN-CCS QPEs described 416 

above, it was determined that the revised factor 
2 / PERSIANN CCSP P −

 was a key factor that made 417 

the results of the PERSIANN-CCS QPEs much closer to the value of observed precipitation 418 

recorded by the rain gauges, indicating that the systematic errors of the PERSIANN-CCS 419 

QPEs could be corrected effectively. Therefore, the post-processing method described in this 420 

paper is both feasible and necessary. Additionally, it could greatly improve the accuracy of 421 

the coupled model in the simulation and prediction of karst floods. Furthermore, the revised 422 

factor could be preserved as an empirical value for future flood prediction in the LKRB. 423 

4 Hydrological model 424 

4.1 Liuxihe model 425 

The Liuxihe model proposed by Yangbo Chen (Chen, 2009) of Sun Yat-Sen University, 426 

China, is employed as the fully distributed hydrological model in this study, which is a 427 

physically based distributed hydrological model (PBDHM) mainly for catchment floods 428 

simulation and prediction (Chen et al., 2016,2017; Li et al., 2017). The Liuxihe model earned 429 

its name by being the first successful application in the Liuxihe catchment, Guangdong 430 

Province, China. There are three layers vertically, including the canopy layer, the soil layer 431 

and the underground layer in the model, and the whole catchment is divided into a great 432 

number of grid cells horizontally using the high-resolution DEM data, with the divisions 433 

called sub-basins. Each grid is considered a uniform basin, and the elevation, land cover type, 434 

soil type, and other model elements including rainfall-runoff, evapotranspiration, etc. are 435 

calculated in the uniform basin. All cells are categorized into three types, namely, hill slope 436 

cell, river cell and reservoir cell.  437 

An improved PSO algorithm (Chen et al., 2016) is employed to optimize the model 438 

parameters in this study, which can make the model’s performance much better in flood 439 

prediction in karst river basins. The observed meteorological and hydrological data and the 440 

development conditions of the karst underground river are used to optimize the model 441 

parameters. The terrain property data, such as the DEM, land use type and soil type, can be 442 

downloaded freely from an open-access database online. The model is validated against 443 

observed karst flood events. These factors of the model are physically based and rational to 444 

truly reflect the underlying surface of the karst basin. Therefore, this implies that the Liuxihe 445 

model could be used for real-time flood prediction in karst river basins. Figure 9 shows the 446 

structure of the Liuxihe model. 447 

 448 
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Figure 9. The structure of the Liuxihe model 449 

4.2 Improvement of the Liuxihe model 450 

The Liuxihe model has been successfully applied for flood predictions in many river 451 

basins. However, none of these basins were karst areas. This study is the first time the model 452 

has been used in a karst river basin. The structure of the model should be improved to suit the 453 

needs of the karst basin in question. Therefore, some effective measures should be taken 454 

before building the model. First, the karst water-bearing media should be simplified, and this 455 

process could include making the karst basin a multiple and nested spatial structure. The 456 

underground river could be included as the intelligible channel system in the model, and the 457 

cave could be used as the anisotropic medium with a large vertical infiltration coefficient and 458 

porosity but a small specific yield. Finally, the fault could be used as the anisotropic medium 459 

with a large vertical infiltration coefficient and a specific yield. Second, the entire karst river 460 

basin can be divided into many small karst sub-basins using high-resolution DEM data. 461 

Furthermore, to suit the karst area, the karst sub-basins can be divided into many KHRUs, 462 

which are generally independent of each other. The entire karst hydrological process, 463 

including the storage and regulation processes of the epikarst zone, the spatial interpolation of 464 

precipitation, the evapotranspiration and the rainfall-runoff, are all calculated based on this 465 

KHRU. Then, these hydrological processes can be summarized for each of the karst sub-466 

basins. Additionally, the outlet flow is formed through the river confluence among each karst 467 

sub-basin from the upstream region to the downstream region. This type of multi-structure 468 

distributed hydrological model could utilize variously scaled information effectively and 469 

optimize the use of observed meteorological, hydrological and geological data. 470 

In this study, the KHRUs were divided by GIS technology combined with karst 471 

topography, land use type and soil type (Ren, 2006). Each KHRU in this study had its own 472 

model characteristics, such as meteorological and hydrological characteristics, as well as the 473 

karst developmental characteristics. The KHRU was proposed to describe the spatial variation 474 

of the karst sub-basins. The differences within the KHRUs were smaller than those among the 475 

KHRUs. Then, each KHRU was vertically divided into 5 layers: the canopy, the soil, the 476 

epikarst zone, the bedrock and the underground river. A sketch map of the KHRU is as 477 

follows: 478 

 479 

a. The structure of the KHRU (Ren, 2006)   b. Photograph of the three-dimensional structure 480 

of the KHRU        481 

Figure 10. Sketch map of the KHRU 482 
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In Figure 10(b), the three-dimensional model of the KHRU in the LKRB was built in the 483 

laboratory to better understand how groundwater moves in the karst media and converges 484 

with the surface river. Then, the hydrological model could be built and visualized in this way. 485 

To satisfy the applicability of the model in karst areas, the epikarst zone, which is a 486 

distinctive structure of the KHRU, was carefully considered in the model. The epikarst zone 487 

is composed of karst rocks with macro cracks and tiny fissures. When rain falls on the 488 

ground, it is intercepted by plants, held in depressions and experiences some 489 

evapotranspiration. Then, the rainfall infiltrates into the soil and rock layer and satisfies the 490 

water shortage of the unsaturated zone. Part of the water in the epikarst zone may form karst 491 

springs that emerge from the surface. Another part will enter the superficial karst water 492 

system of the epikarst zone. When the rainfall intensity is heavy enough to form surface 493 

runoff on the exposed bedrock, part of the water will enter the karst conduit through 494 

sinkholes. 495 

The karst hydrological process of the epikarst zone could be divided into rapid fissure 496 

flow and slow fissure flow. After heavy rain, a large amount of water in the epikarst zone is 497 

stagnant and can form a surface karst aquifer with a temporary water table. If there are large 498 

cracks or fractures under the water table, a precipitation funnel will form and be associated 499 

with a drop in the water table. Rapid fissure flow refers to rainfall that infiltrates into the karst 500 

conduit through the precipitation funnel, and this flow occurs in the macro cracks and has 501 

high speeds. When rainfall enters the superficial karst water system of the epikarst zone, the 502 

macro cracks will fill first. This part of the saturated water content, named rapid fissure flow, 503 

will move directly into the karst conduit through the macro crack. Because this rapid fissure 504 

flow will pass quickly through the karst conduit system without stopping, and because the 505 

water regulation and storage functions are weak, the regulation and storage of the rapid 506 

fissure flow were ignored in this study. The rest of the water content in the epikarst zone 507 

infiltrates through tiny fissures. This part of the water, named slow fissure flow, plays an 508 

important role in the process of rainfall regulation. The water content of the slow fissure flow 509 

can be described by the following equation: 510 

                         
inf=epi crkSW Q V−

                                                           
(4)

 
511 

where 
epiSW  is the water content of the slow fissure flow in the epikarst zone.

 
512 

infQ
 
is the infiltration water content of the rainfall, and crkV

 
is the water content of the rapid 513 

fissure flow in the macro crack. 514 

The slow fissure flow in the epikarst zone is calculated by an exponential decay equation 515 

(Ren, 2006) as follows: 516 
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517 

where 
sepW  is the water content that flows from the epikarst zone to the underground river. 518 

Because the regulation and storage functions of the rapid fissure flow are ignored in this 519 

study, 
sepW

 
refers to the slow fissure flow,

epiW
 
is the current water content of the slow 520 

fissure flow, T is the simulation time-step,
 percTT  is the attenuation coefficient,

 epiSAT  is the 521 

saturation water content of the slow fissure flow,
 epiFC  is the field capacity, and 

epiK  is the 522 

saturated hydraulic conductivity of the slow fissure flow. 523 

The linear reservoir model is employed to calculate the regulation process of the superficial 524 

karst fissure system in the epikarst zone, and the base discharge is calculated by the hydraulic 525 

gradient of the KHRU (Neitsch et al.,2000) as follows: 526 
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(6) 528 

where 
gwQ  is the base discharge,

 ,gw iQ  and 
, 1gw iQ −

are the supply quantities of the base 529 

discharge that converges into the karst conduit or underground river on the i day and the (i-1) 530 

day, respectively, epiK  is the saturated hydraulic conductivity of the epikarst zone,
 wtblh is the 531 

hydraulic gradient,
 gwL  is the length of the KHRU,

 gwa  is the depletion coefficient of the base 532 

discharge,
 

T is the simulation time-step (day),
 ,rchrg iW is the supply quantity of the aquifer 533 

on the i day (mm/d),
 seepW  is the water flux through the bottom of the soil profile into the 534 

underground aquifer on the i day (mm/d), and
 gw  is the delay time of the supply (day).

 
535 

In the original Liuxihe model, the underground layer is treated as an integral unit, and a 536 

linear reservoir method is used to calculate the underground runoff. However, the structure of 537 

the karst underground layer is non-linear; thus, the linear reservoir method is obviously not 538 

appropriate here. Therefore, in this study, the Muskingum routing method was used to 539 

calculate the convergence process of the karst underground river, and the equation is as 540 

follows: 541 
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 542 

                   '[ (1 ) ]W K xI x O KO= + − =                           (7) 543 

where 
'O  is the water storage content, O is the outlet flow of the river reach,

 
x is the 544 

dimensionless proportion factor, I is the inflow discharge of the river reach, and K is the slope 545 

of the correlation curve of the water storage content and the discharge. 546 

The finite difference method is used to calculate the water balance equation and the 547 

Muskingum routing method: 548 
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(9) 551 

If the Muskingum routing method parameters of K and x can be determined for a karst 552 

underground river reach, then the values of 0C , 1C
 
and 2C  can be calculated by Equation 553 

(6). When t =2Kx,
 0 =0C , which means that the karst flood prediction lead time will be 554 

2Kx. Under this condition, the Muskingum routing method can be simplified as follows: 555 

2 1 1 2 1=O C I C O+
                                

(10) 556 

One of the key problems of the Muskingum routing method involves determining how to 557 

optimize the parameters -K and x in practical applications. It is hard to generalize the 558 

parameters K and x in flood simulation and prediction due to their variability with flow 559 

conditions. Ahilan et al. (2012) used the generalized extreme value (GEV) to analyse the 560 

flood frequency distributions in Irish rivers, and the result showed that a Type II distribution 561 

appears in a single cluster in the karst area, which reflects the finite nature of karst storage 562 

and the effects of saturation when storage is no longer available. In this study, 30 karst flood 563 

events are collected to validate the performance of the Muskingum model in study area. The 564 

least squares method is used to optimize the parameters -K and x in this study as follows: 565 
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(11) 566 

where E is the objective function between the observed water storage content and the 567 

simulated water storage content, which requires only the least squares approximation with 568 

regard to the functional value;
 0( )W j  and 1( )W j are the observed and simulated water storage 569 

contents within the j period, respectively; 1( )= [ (1 ) ]W j K xI x O+ − ; n is the total number of 570 

observation periods; and C is the absolute value of the water storage content. 571 

To simplify the calculation, A=K*x and B=K*(1-x); then, the partials can be taken with 572 

respect to A, B, and C, respectively: 573 
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(12) 574 

Then, the values of A, B, and C can be calculated as follows: 575 

31

2 2

1 2 2 1

3 2 2 3

0

yy

y y

y z y z

y z y z

A

B

W A I B O
C

n


= −




= −

 − −
 =


 


                        

(13) 576 

where 577 
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(14) 578 

The parameters of the Muskingum routing method can be optimized using the equations 579 

shown above. Then, the convergence process of the karst underground river can be calculated 580 

by the Muskingum routing method in the Liuxihe model. 581 

5 Model set up 582 

5.1 Hydrological model setup 583 

The method that combines a DEM with a stream network leads to a more accurate 584 

drainage network in terms of surface runoff modelling (Li and Tao,2000), especially in karst 585 

areas. In this study, based on the high resolution of 200 m×200 m used for the Liuxihe model 586 

in the LKRB, the entire studied area was divided into 1,469,900 grid cells, which were named 587 

the karst sub-basins, using the DEM. The grid cells included 1,463,204 hill slope cells and 588 

6,696 river cells. Then, the karst sub-basins were further divided into many KHRUs. The 589 

river system was divided into three orders as shown in Figure 1. 590 

Because of the sinkholes and karst depressions in the karst watershed, as well as the 591 

systematic error of the DEM itself, there are many pits, including true and false pits, in the 592 

LKRB. Among them, the true pits include karst depressions and sinkholes, and they usually 593 

have a certain scale and elevational differences. The false pits were represented only by a few 594 

points with low elevation, which was due to the systematic errors of the DEM. Therefore, the 595 

true and false pits should be reliably distinguished before using the DEM data to divide the 596 

area into the karst sub-basins. First, we identified all of the pits with low elevation and 597 

connected them on a plane. Then, we distinguished the true pits from the false pits based on 598 
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the on-site topographic survey. Finally, the model retained the true pits such as the sinkholes 599 

and karst depressions, but the false pits were filled (i.e., removed). 600 

The KHRU was introduced in this study to reasonably describe the spatial variability of 601 

the karst water-bearing media (as shown in Figure 10). The spatial characteristics of every 602 

KHRU have a definite physical meaning. Therefore, the calculation of the evapotranspiration, 603 

rainfall runoff and parameter optimization of the KHRU was physically based, which could 604 

truly reflect the differences of the underlying surface. After the division of the karst sub-605 

basins and the KHRUs, the post-processed PERSIANN-CCS QPE results can be used as the 606 

input data for the Liuxihe model to simulate and forecast the karst flood process. The 607 

performance of the coupled model was reliably improved in this way. 608 

In the Liuxihe model, the flood process of specific points, named the early warning 609 

points of some critical river sections, could be simulated and predicted. Figure 1 shows that 610 

there are few rain gauges located upstream of the Liujiang River (which is why the 611 

PERSIANN-CCS QPEs were used here). However, the karst is very developed here, and the 612 

influence of the karst dominates the runoff processes. Therefore, an early warning point was 613 

established at the Goutan River gauge (Figure 1 b) to extract the most developed karst area in 614 

the LKRB, Beijiang catchment, where the influence of karst features highly dominates the 615 

rainfall-runoff processes. There are 11 early warning points set in the Beijiang catchment 616 

(Figure 1b). 617 

5.2 Parameter optimization of the coupled model 618 

There were 14 parameters that needed to be optimized for the original Liuxihe model, 619 

and after adding the karst mechanism, the number of parameters increased to 20, as shown in 620 

Table 2. The parameters of the epikarst zone were the most complicated due to the anisotropy 621 

of the karst water-bearing media, which made it difficult to measure and calculate the 622 

hydraulic characteristics. 623 

The hydrogeology parameters used in this study, including the permeability coefficient 624 

of the rock mass, the rainfall infiltration coefficient, the specific yield of the aquifer, and the 625 

storage coefficient, were calculated by the field test and the experience function. For instance, 626 

the permeability coefficient K was calculated by an experience function according to the 627 

water inrush prediction of a coal mine in the study area: 628 

 629 
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 630 

where Q is the mine inflow, m3/h; K is the permeability coefficient, m/d; H is the distance 631 

from the water-resisting floor to the water level of the confined aquifer, m; M is the aquifer 632 

thickness, m; h is the height of the dynamic water level, m; R0 is the substitute influence 633 

radius, m; r0 is the substitute radius, m; S is the drawdown value, m; and a *b is the area of 634 

the mine, m2. 635 

In the water inrush test of the coal mine, the other parameters in Equation (15) were 636 

given, and the permeability coefficient K was calculated by anti-Equation (15). 637 

The parameters of the epikarst zone, including the thickness, saturated water content, 638 

field capacity and macro crack volume ratio, were obtained based on the field survey, 639 

geological borehole test and pumping test as well as on the empirical value observed in the 640 

study area. 641 

The epikarst zone was mainly developed on the hard surface of pure carbonate rock, 642 

especially on Paleozoic limestone. The thicknesses and characteristics of the epikarst zone 643 

differ due to different climates, topography and landforms. The parameters of the coupled 644 

model and the epikarst zone are listed in Table 2(a) and (b), and the rainfall infiltration 645 

coefficients of the different karst landforms are calculated based on the empirical values 646 

shown in Table 2(c). 647 

(a) The parameters of the coupling model 648 

(b) The physical parameters of the epikarst zone 649 

(c)The rainfall infiltration coefficient of different karst landforms 650 

Table 2. The parameters of the model 651 

The soil type parameters, such as the saturated water content and the field capacity, were 652 

calculated using a software tool (Ren, 2006). The statistical relationship between the soil 653 

texture and the soil water can be easily queried in the software tool. In addition, this method 654 

has been effectively proven by many experiments (Servat and Sakho, 1995), and the 655 

calculated value of this method has a good fitting relationship with the measured value. 656 

The Liuxihe model has been deployed on a supercomputer system with parallel 657 

computation technology (Chen et al., 2016). An improved PSO algorithm (Chen et al., 2017) 658 

was employed to optimize the parameters of the coupled model in this study. There are 30 659 

karst flood events from 1982-2013 in the LKRB, and among them, 3 flood events—Floods 660 

2004070300, 2009060908, and 2011010100—were used for parameter optimization 661 

simulations in this paper. The flood simulation results are shown in Figure 11 and Table 3. 662 
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Figure 11. The flood simulation results obtained through parameter optimization by the 663 
improved PSO algorithm 664 

    From the flood simulation results in Figure 11, it can be seen that the Flood 2009060908 665 

simulated result is the best. The simulated process for this flood is closest to the observed 666 

process, and the valuation indices of flood simulation results including the Nash–Sutcliffe 667 

coefficient, C; correlation coefficient, R; process relative error, P%; peak flow relative error, 668 

E%; coefficient of water balance, W; and peak time error, T(h), are also the best. Table 3 669 

shows the valuation indices of flood simulation results from the improved PSO algorithm. 670 

Therefore, Flood 2009060908 is finally adopted for the Liuxihe model parameter 671 

optimization. Other floods will be used to verify the model performance. 672 

Table 3. The evaluation indices of flood simulation results obtained through parameter 673 

optimization by the improved PSO algorithm 674 

The parameter optimization results from the improved PSO algorithm are shown in 675 

Figure 12 as follows: (a) the objective function evolution result, (b) the parameter evolution 676 

result, and (c) the simulated flood process using the optimized model parameters. 677 

Figure 12. Parameter optimization results with the improved PSO algorithm 678 

To test the parameter optimization effect with different precipitation sources, both the 679 

precipitation of the rain gauge and the precipitation of the PERSIANN-CCS QPEs were used 680 

to optimize the parameters of the coupled model. For comparison, the simulated flood process 681 

of the coupled model with the same parameter from the rain gauges and the re-optimized 682 

parameter from the post-processed PERSIANN-CCS QPEs are drawn in Figure 12(c). 683 

5.3 Parametric uncertainty analysis 684 

In this study, parametric uncertainty analysis refers to sensitivity analysis, and this process 685 

is conducted using a fixed module called the parametric sensitivity analysis sub-model in the 686 

Liuxihe model. It is a parameter sensitivity analysis method that was developed based on the 687 

GLUE method, and it was named multi-parameter sensitivity analysis (MPSA) by Choi 688 

(1999) et al. Monte Carlo sampling was used to obtain the value of the parameter spatial 689 

variation. The sensitivity of each parameter could be obtained by running the model multiple 690 

times. 691 

In this study, the Nash–Sutcliffe coefficient was used as the objective function value for 692 

the parametric sensitivity analysis, and the formula is as follows: 693 
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where NSE is the objective function value of the Nash–Sutcliffe coefficient, iQ  and '

iQ  695 

are the observed streamflow and the simulated streamflow, respectively, in m3/s, Q  is the 696 

average value of the observed flows in m3/s, and n is the number of observation periods in 697 

hours. 698 

First, the initial value range of the parameter was determined to be [0.5,2.5]. Second, 699 

6,000 groups of parameter sequences were obtained by the Monte Carlo sampling method. 700 

Third, the Liuxihe model was run to simulate the objective function values of the Nash–701 

Sutcliffe coefficient, and the karst flood processes were the three flood events also used for 702 

parameter optimization. In this study, the critical value of the Nash–Sutcliffe coefficient was 703 

0.85, and the objective function values below this threshold were considered to be 704 

unacceptable values; otherwise, they were considered to be acceptable values. The degree of 705 

separation between these values indicates the sensitivity of the parameters. This degree of 706 

separation was calculated according to the Nash–Sutcliffe coefficient (NSD). To analyse 707 

parameter sensitivity more easily, a factor SI is given here, and SI=1- |NSD|—the closer the 708 

value of SI is to 0, the less sensitive the parameter. Table 4 shows the SI values, which 709 

represent the sensitivity of the parameters in the Liuxihe model. 710 

Table 4. The calculation results of the parameters sensitivity in the Liuxihe model 711 

 712 

6 Results and discussion 713 

6.1 Results of parameter optimization and sensitivity analysis  714 

The results of the parameter optimization are shown in Figure 12 as follows: (a) the 715 

objective function evolution result and (b) the parameter evolution result. From the results of 716 

Figure 12(a) and (b), it can be seen that the evolution number of the objective function for the 717 

parameter was 50, and the computation time of the parameter optimization based on the 718 

improved PSO algorithm was approximately 8 hours, which means that convergence of the 719 

parameter optimization was achieved after only 50 cycles. In comparison, the computation 720 

time of the initial model parameters that were not optimized was approximately 55 hours. 721 

This result implies that the improved PSO algorithm had high efficiency in terms of 722 

parameter optimization. 723 

To test the parameter optimization effect using the improved PSO algorithm (Chen et al., 724 

2017), the flood process simulated results achieved from the improved PSO algorithm, as well 725 

as the initial model parameter values, are shown in Figure 12(c). From the results shown in 726 

Figure 12(c), it can be seen that the coupled model does not simulate the observed karst flood 727 

process well when the initial model parameter values are used. Additionally, the simulated 728 
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flood process obtained from using the improved PSO algorithm was very close to that from 729 

the observed process, which means that the improved PSO algorithm (Chen et al., 2017) in 730 

this study was effective and could largely improve the performance of the coupled model.  731 

In this study, the sensitivity of the parameters in the Liuxihe model was calculated 732 

according to the Nash–Sutcliffe coefficient, as shown in Equation (16). The values of SI =1- 733 

|NSD|, which represent the sensitivity of the parameters, and the results in Table 4 indicate 734 

that the SI values of the saturated water content parameter, θsat, were maximized, which 735 

means that the degree of separation between the unacceptable values and the acceptable 736 

values (NSD) was minimal. This parameter, θsat, was the most sensitive parameter in the 737 

Liuxihe model. When the SI value of a parameter is greater than 0.7, this parameter is 738 

identified as a highly sensitive parameter in the Liuxihe model, and SI values between 0.2 and 739 

0.7 indicate that a parameter has medium sensitivity. When the SI value is less than 0.2, the 740 

parameter is insensitive. From Table 4, the SI values of the different parameters, from largest 741 

to smallest, are the saturated water content, θsat > saturation permeability coefficient, θs > 742 

field capacity, θfc > saturated hydraulic conductivity, Ks > macro crack volume ratio, V > 743 

Muskingum routing method (the slope of the water storage content and flow curve), K > 744 

Muskingum routing method (the proportion of the flow), χ > soil layer thickness, z > soil 745 

coefficient, b > bottom width, Sw > bottom slope, Sp > slope roughness, n > channel 746 

roughness, n1 > depletion coefficient, ω > evaporation coefficient, λ > potential evaporation, 747 

Ep > wilting percentage, Cwl. Additionally, the θsat, θs, θfc, Ks, V, K, and χ parameters were 748 

highly sensitive; the z, b, Sw, Sp, n, n1 and ω parameters had medium sensitivity; and the λ, 749 

Ep, and Cwl parameters were insensitive. 750 

The flow direction, slope and thickness parameters of the epikarst zone could not be 751 

adjusted. Among them, the flow direction and the slope were directly calculated by the DEM 752 

data, and the thickness of the epikarst zone was a fixed value for a particular region. It was 753 

approximately 3-10 metres of the study area according to the field survey. 754 

6.2 Model validation results 755 

To better test the effect of the Liuxihe model in flood simulation and prediction and to 756 

increase the results acceptability, 30 karst flood events from 1982-2013 in LKRB are 757 

simulated by the Liuxihe model, and the evaluation indices of the simulated flood results are 758 

listed in Table 5. Table 5 shows that the 6 evaluation indices of the flood simulation results 759 

for the 30 flood events are credible and reasonable. The average value of the Nash–Sutcliffe 760 

coefficient (C) is 0.82, the correlation coefficient (R) is 0.83, the process relative error (P) is 761 

0.22, the peak flow relative error (E) is 0.05, the water balance coefficient (W) is 0.87, and 762 

the peak flow time error (T) is -6 hours. Among these results, the peak flow relative error (E) 763 

is minimal. The applicability of the Liuxihe model is proven through these accepted flood 764 

simulation effects in the LKRB. 765 
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Table 5. The evaluation indices of the simulated flood results based on the Liuxihe 766 

model in the LKRB 767 

To further validate the performance of the Liuxihe model in flood simulation and 768 

prediction, simulations are performed in a very developed karst area, where the influence of 769 

karst landforms plays an important role in hydrological processes. The most developed karst 770 

area in the whole basin examined in this study is the Beijiang catchment, and it is divided by 771 

the early warning point Goutan set in the Liuxihe model (Figure 1b). In total, 10 karst flood 772 

events are simulated to test the performance of the Liuxihe model, and the evaluation indices 773 

of the simulated flood results are shown in Table 6. From these results, 4 karst flood 774 

simulation results are shown in Figure 13. 775 

 776 

Table 6. The evaluation indices of the simulated flood results based on the Liuxihe model in 777 

the Beijiang catchment 778 

Figure 13. Four karst flood simulation results produced by the Liuxihe model in the 779 

Beijiang catchment 780 

From the results in Table 6, the evaluation indices of the simulated karst flood results 781 

produced by the Liuxihe model are quite good in the Beijiang catchment. The average value 782 

of the Nash–Sutcliffe coefficient (C) is 0.92, the correlation coefficient (R) is 0.91, the 783 

process relative error (P) is 0.11, the peak flow relative error (E) is 0.08, the water balance 784 

coefficient (W) is 0.94, and the peak flow time error (T) is 3 hours. It is obvious that the 785 

evaluation indices of the simulated karst flood events based on the Liuxihe model are 786 

satisfying, and the accuracy is very high.  787 

Additionally, from the flood simulation results in Figure 13, the 4 reasonable karst flood 788 

simulation results including those for floods 2008071311, 2012080310, 2014061015, and 789 

2016091501 prove the performance of the Liuxihe model in karst areas. The simulated flood 790 

discharge processes are very close to the observed values, especially for the peak flows. This 791 

finding implies that the Liuxihe model is feasible and effective in flood simulation and 792 

prediction in areas where karst is very well developed, as in the Beijiang catchment. 793 

6.3 Results of flood simulation with the post-processed PERSIANN-CCS QPEs 794 

After the correction was made, the post-processed PERSIANN-CCS QPE precipitation 795 

became much closer to the precipitation observed at the rain gauge. To analyse the effects of 796 

flood simulation with the initial PERSIANN-CCS QPEs and the post-processed QPEs, 5 karst 797 

flood events, including Floods 200806090200, 200906090800, 201106010900, 798 

201206022000 and 201306011400, were simulated and compared; the results are shown in 799 

Figure 14. In this simulation, the coupled model parameters remained unchanged; i.e., the 800 

original coupled model parameters based on the rain gauge precipitation were employed, 801 
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while the re-optimized model parameters based on the precipitation of the post-processed 802 

PERSIANN-CCS QPEs were not. 803 

Figure 14. The flood simulation results of the coupled model using two precipitation products  804 

Figure 14 shows that the karst flood simulation results from the initial PERSIANN-CCS 805 

QPEs were not satisfactory, and the performance of the model was worse than that of the rain 806 

gauge precipitation. For instance, the simulated peak flows from the PERSIANN-CCS QPEs 807 

were lower than the observed peak flows. The performance of the coupled model with the 808 

post-processed PERSIANN-CCS QPEs was much better, and the evaluation indices of the 809 

flood simulation were largely improved (as shown in Table 7). The average value of the 810 

Nash–Sutcliffe coefficient (C) increased by 7%, the correlation coefficient (R) increased by 811 

8%, the process relative error (P) decreased by 6%, the peak flow relative error (E) decreased 812 

by 14%, the water balance coefficient (W) increased by 5%, and the peak flow time error (T) 813 

had a decrease of 2 hours. Among these parameters, the peak flow relative error had the 814 

largest improvement, making it the most important factor in flood prediction. It was obvious 815 

that the evaluation indices improved substantially when the post-processed QPEs were used. 816 

Therefore, the post-processing method for PERSIANN-CCS QPEs in this paper was feasible 817 

and effective. In addition, coupling the post-processed PERSIANN-CCS QPEs with the 818 

Liuxihe model has the potential to improve the model performance in flood simulation and 819 

prediction in the LKRB. 820 

Table 7. Evaluation indices of simulated flood events with the initial PERSIANN-CCS QPEs 821 

and the post-processed values 822 

6.4 Comparisons of different model parameters 823 

The model parameters that were optimized using the precipitation from the rain gauge 824 

and those optimized using the PERSIANN-CCS QPEs were different, and the performance of 825 

the coupled model using the different parameters made a large difference in the flood 826 

simulation and prediction. To analyse this effect, the flood simulation results from two 827 

different sets of model parameters are shown in Figure 15. One set used the parameters of the 828 

coupled model that was optimized by the precipitation from the rain gauge; i.e., the coupled 829 

flood simulation results used the same parameter as the rain gauge precipitation. The other 830 

used the parameters that were re-optimized by the post-processed PERSIANN-CCS QPEs. 831 

The flood process used for parameter reoptimization was also Flood 2009060908, and the 832 

other four flood events were used to validate the performance of the coupled model. 833 

 834 

Figure 15. Coupled flood simulation results using the same parameter as the rain gauge 835 
precipitation and the re-optimized parameter from the post-processed PERSIANN-CCS QPEs 836 
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Figure 15 shows that the simulated flood results obtained using the re-optimized 837 

parameters from the post-processed PERSIANN-CCS QPEs were much better than those 838 

obtained using the same parameter as the rain gauge precipitation. The simulated flood 839 

discharge processes, especially the peak flows with the re-optimized parameter, were closer to 840 

the observed values. To further compare the flood simulation results, six evaluation indices 841 

were calculated and are shown in Table 8. The average value of the Nash–Sutcliffe coefficient 842 

increased by 7%, the correlation coefficient increased by 7%, the process relative error 843 

decreased by 2%, the peak flow relative error decreased by 4%, the water balance coefficient 844 

increased by 3%, and the peak flow time error exhibited a 3-hour decrease. 845 

Table 8. The effect of recalibrating the coupling model parameters 846 

Moreover, compared with the simulated flood results from the initial PERSIANN-CCS 847 

QPEs in Table 8, the flood simulation results with the re-optimized parameters from the post-848 

processed PERSIANN-CCS QPEs made great progress. The average value of the Nash–849 

Sutcliffe coefficient increased by 14%, the correlation coefficient increased by 15%, the 850 

process relative error decreased by 8%, the peak flow relative error decreased by 18%, the 851 

water balance coefficient increased by 8%, and the peak flow time error had a 5-hour 852 

decrease (as shown in Table 7 and Table 8). These results imply that the re-optimized 853 

parameters calculated using the post-processed PERSIANN-CCS QPEs are necessary and 854 

effective for the coupled model, and the model performance improved in terms of karst flood 855 

simulation and prediction. 856 

6.5 Peak flow time error analysis 857 

It is very important to accurately determine the flood peak flow time in karst areas, as 858 

this information could improve the response times of safe and rapid evacuations before a 859 

flood disaster appears. As shown in Figures 14 and 15 and in Tables 7 and 8, all flood 860 

simulations had significant peak flow time errors, and all of the errors were negative, 861 

indicating that the simulated flood peaks appeared earlier than did the peaks in the observed 862 

values. Among them, the average peak flow time error from the precipitation from the rain 863 

gauge was -7 hours, and this value was -10 hours when the precipitation from the initial 864 

PERSIANN-CCS QPEs was used. This is an obvious error and cannot be ignored in flood 865 

prediction. The average peak flow time error of the coupled model that used the post-866 

processed PERSIANN-CCS QPE precipitation and re-optimized parameters was -5 hours. 867 

This result indicates that there is a great difference. It has been found that the average peak 868 

flow time errors of the Liuxihe model generated from the precipitation from the rain gauge 869 

and from the coupled model that used the precipitation from the post-processed PERSIANN-870 

CCS QPEs and re-optimized parameters were -5 to -7 hours (as shown in Table 7 and 8). 871 

javascript:;
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Therefore, the peak flow time error was -5 to -7 hours for the coupled model in the LKRB, 872 

which means that the actual time of the flood peak may be 5-7 hours later. This value is very 873 

important in flood prediction and is equivalent to a 5-7-hour lead time in which safe 874 

evacuations can occur. 875 

There are two reasons for the peak flow time errors. One reason is the systematic error of 876 

the coupled model itself. This error could be reduced by improving the model structure and 877 

function as well as by the reliable precipitation from the PERSIANN-CCS QPEs and 878 

parameter optimization. The other reason is due to the karst development laws and the 879 

characteristics of karst water-bearing media, which can regulate the rainfall process during 880 

floods. The karst depressions and other negative landforms in the upstream regions can hold 881 

back and store large amounts of floodwater. Furthermore, karst fissures can also slow the 882 

flood rate. These factors can play a crucial role in detaining natural floods and clipping the 883 

flood peaks. Therefore, the response times of the flood peak flow to the rainfall increased, and 884 

the observed flood peak times lagged behind. In comparison, the simulated flood peak flows 885 

appeared earlier. 886 

As rainfall moves from the sky to the ground and, finally, to the point where the rainfall 887 

converges at the outlet of the basin, it has passed through the surface karst zone, the karst 888 

conduit and fissure as well as the underground river. The karst development laws and the 889 

characteristics of the karst water-bearing media have an obvious influence on the rainfall-890 

runoff process during the entire hydrological process, which increases the response time of 891 

the flood peak flow to rainfall, and the simulated flood peak flow in the coupled model 892 

appears earlier. This result implies that there is a lead time that can be used for safe 893 

evacuation measures. 894 

The flood peak flow time has a very close relationship with the flood rate, and the flood 895 

rate is very important in determining the key factors of the karst conduit, the underground 896 

river and the other hydrogeological parameters. The sensitive parameters in this paper, such 897 

as the underground river parameters (as shown in Table 2), could be estimated from the flood 898 

rate to build the coupled model in the karst area. According to the survey data and the tracing 899 

test in the study area, i.e., the LKRB, the flood flow rate is approximately 8.64-17.28 km/d in 900 

the dry season, 17.28-43.2 km/d in the normal season and 43.2-129.6 km/d in the flood 901 

period. The extreme flow rate can reach 172.8 km/d, indicating that the karst conduit is highly 902 

developed in the LKRB. 903 

7 Conclusion 904 

Little reliable precipitation data from rain gauges are available in most karst river basins. 905 

How to obtain reasonable rainfall data for the development of a hydrological model that can 906 

be used for flood prediction is especially important. In this study, the PERSIANN-CCS QPEs 907 

offered effective precipitation results for the study area. After the correction, the post-908 
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processed PERSIANN-CCS QPEs coupled with a distributed hydrological model, i.e., the 909 

Liuxihe model, were proposed for karst flood simulation and prediction in the LKRB. The 910 

purpose of the study was not only to simulate the flood process well but also to determine key 911 

information about how the karst hydrological process responds to the rainfall process in the 912 

coupled model. The coupled model employed in this paper had good performance in 913 

simulating flood events; thus, this method offers reasonable theoretical guidance for flood 914 

prediction, control and disaster reduction in karst river basins such as the LKRB. Based on the 915 

study results, the following conclusions can be drawn: 916 

1). The quantitative precipitation estimates produced by the PERSIANN-CCS QPEs were 917 

very similar to the observed precipitation from the rain gauges, especially in terms of rainfall 918 

distribution. However, the PERSIANN-CCS QPEs underestimated the precipitation value. 919 

The average precipitation was 0.77 for the rain gauges and 0.66 for the PERSIANN-CCS 920 

QPEs. The average relative error was -14% between the two precipitation products, and this 921 

relative error could be reasonably reduced by the post-processing method presented in this 922 

paper.  923 

2). The applicability of the Liuxihe model is proven by 30 accepted flood simulation results in 924 

the LKRB and 10 in the Beijiang catchment. In particular, the simulated results are quite good 925 

for the 10 karst flood events in the Beijiang catchment, where the karst is very developed. The 926 

average value of the Nash–Sutcliffe coefficient (C) is 0.92, the correlation coefficient (R) is 927 

0.91, the process relative error (P) is 0.11, the peak flow relative error (E) is 0.08, the water 928 

balance coefficient (W) is 0.94, and the peak flow time error (T) is 3 hours. 929 

The parameter sensitivity analysis for the Liuxihe model shows that the parameters θsat, 930 

θs, θfc, Ks, V, K, and χ are highly sensitive; z, b, Sw, Sp, n, n1 and ω have medium 931 

sensitivity; and λ, Ep, Cwl are insensitive parameters. The sequence of parameters sensitivity 932 

is as follows: saturated water content, θsat > saturation permeability coefficient, θs > field 933 

capacity, θfc > saturated hydraulic conductivity, Ks > macro crack volume ratio, V > 934 

Muskingum routing method (the slope of the water storage content and flow curve), K> 935 

Muskingum routing method (the proportion of the flow), χ > soil layer thickness, z > soil 936 

coefficient, b > bottom width, Sw > bottom slope, Sp > slope roughness, n > channel 937 

roughness, n1 > depletion coefficient , ω > evaporation coefficient, λ> potential evaporation, 938 

Ep > wilting percentage, Cwl.  939 

3). The flood simulation results from the post-processed PERSIANN-CCS QPEs are better 940 

than that from the initial QPEs. The average values of the six evaluation indices, including the 941 

Nash–Sutcliffe coefficient (C), correlation coefficient (R), process relative error (P), peak 942 

flow relative error (E), water balance coefficient (W), and peak flow time error (T), with the 943 

initial PERSIANN-CCS QPEs were 0.66, 0.69, 0.28, 24%, 0.81 and -10 hours, respectively, 944 

while those from the post-processed QPEs were 0.73, 0.77, 0.22, 10%, 0.86 and -8 hours, 945 

respectively. This result indicates that the method used in this study for post-processing QPEs 946 
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is effective and could improve the PERSIANN-CCS QPE capability. 947 

4). The coupled model parameters should be re-optimized using the post-processed 948 

PERSIANN-CCS QPEs. This approach had better performance in the flood simulation than 949 

that when the model parameters were the same as those from the rain gauges. The average 950 

values of the Nash–Sutcliffe coefficient (C), correlation coefficient (R), process relative error 951 

(P), peak flow relative error (E), water balance coefficient (W), and peak flow time error (T) 952 

were 0.73, 0.77, 0.22, 10%, 0.86 and -8 hours, respectively, when the model parameters were 953 

the same as the rain gauge; however, those obtained from the re-optimized model parameters 954 

were 0.80, 0.84, 0.20, 6%, 0.89 and -5 hours, respectively. Thus, the proposed method 955 

significantly improves the model performance. 956 

5). The simulated karst flood process based on the precipitation observed at the rain gauges 957 

was the best. In addition, the flood simulation results using the PERSIANN-CCS QPEs after 958 

post-processing and re-optimizing the model parameters improved the coupled model 959 

performance. The average value of the Nash–Sutcliffe coefficient increased by 14%, the 960 

correlation coefficient increased by 15%, the process relative error decreased by 8%, the peak 961 

flow relative error decreased by 18%, the water balance coefficient increased by 8%, and the 962 

peak flow time error exhibited a 5-hour decrease. Among these parameters, the peak flow 963 

relative error improved the most; thus, these parameters are the most important in terms of 964 

flood prediction in karst river basins. 965 
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Figures 988 

 989 

a. Sketch map of the Liujiang River Basin（LKRB） 990 

  991 

b. The early warning points                  c. Three-dimensional topography  992 

Figure 1. Sketch map of Liujiang and the Beijiang catchment 993 
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                                  994 

a. The DEM map                                         b. Three-dimensional topographical map 995 

Figure 2. The DEM and three-dimensional topographical map of the LKRB. 996 

 997 

(a) land use types   998 
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 999 

                                        (b) soil types 1000 

Figure 3. The property data for the Liuxihe model in the LKRB 1001 

 1002 

 1003 

Figure 4. Precipitation pattern comparison of two precipitation products (2008): (a) is 1004 

the average precipitation of rain gauges, (b) is the average precipitation of 1005 

PERSIANN-CCS QPEs, and (c) is the Quantile-Quantile plot, in which the 45-degree 1006 

line is used to compare the two precipitation products. 1007 
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 1008 

Figure 5. Precipitation pattern comparison of two precipitation products (2009): (a) is 1009 

the average precipitation of rain gauges, (b) is the average precipitation of 1010 

PERSIANN-CCS QPEs, and (c) is the Quantile-Quantile plot, in which the 45-degree 1011 

line is used to compare the two precipitation products. 1012 
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 1013 

Figure 6. Precipitation pattern comparison of two precipitation products (2011): (a) is 1014 

the average precipitation of rain gauges, (b) is the average precipitation of 1015 

PERSIANN-CCS QPEs, and (c) is the Quantile-Quantile plot, in which the 45-degree 1016 

line is used to compare the two precipitation products. 1017 
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 1018 

Figure 7. Precipitation pattern comparison of two precipitation products (2012): (a) is 1019 

the average precipitation of rain gauges, (b) is the average precipitation of 1020 

PERSIANN-CCS QPEs, and (c) is the Quantile-Quantile plot, in which the 45-degree 1021 

line is used to compare the two precipitation products. 1022 
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 1023 

Figure 8. Precipitation pattern comparison of two precipitation products (2013): (a) is 1024 

the average precipitation of rain gauges, (b) is the average precipitation of 1025 

PERSIANN-CCS QPEs, and (c) is the Quantile-Quantile plot, in which the 45-degree 1026 

line is used to compare the two precipitation products. 1027 

 1028 
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 1029 

Figure 9. The structure of the Liuxihe model 1030 

 1031 

 1032 

 a. The structure of the KHRU (Ren,2006) b. Photograph of the three-dimensional 1033 

structure of the KHRU      1034 

Figure 10. Sketch map of the KHRU 1035 
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 1037 

 1038 

Figure 11. The flood simulation results obtained through parameter optimization by 1039 

the improved PSO algorithm 1040 
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 1055 

(a) The objective function evolution result    (b) The parameter evolution result 1056 
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 1070 

c) The simulated flood process using the optimized model parameters 1071 

Figure 12. Parameter optimization results with the improved PSO algorithm 1072 
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 1078 

Figure 13. 4 karst flood simulation results from the Liuxihe model in the Beijiang 1079 

catchment 1080 

 1081 

 1082 

(a) Flood event 200806090200                        (b) Flood event 200906090800 1083 
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 1084 

 1085 

(c) Flood event 201106010900                         (d) Flood event 201206022000 1086 

 1087 

(e) Flood event 201306011400 1088 

Figure 14. The flood simulation results of the coupled model with the two 1089 

precipitation products  1090 

 1091 
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 1092 

(a) Flood event 200806090200               (b) Flood event 201106010900 1093 

 1094 

 1095 

 1096 

 1097 

 1098 

 1099 

 1100 

 1101 

 1102 

 1103 

 1104 

(c) Flood event 201206022000               (d) Flood event 201306011400 1105 

Figure 15. Coupled flood simulation results using the same parameter as the 1106 

rain gauge precipitation and using the re-optimized parameter from the post-processed 1107 

PERSIANN-CCS QPEs 1108 

  1109 
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Tables 1110 

Table 1. Precipitation pattern comparison of the two precipitation products  1111 

Floods Type 
Average precipitation 

(mm) 

Relative 

bias % 

200806090200  
rain gauge 1.37    

PERSIANN-CCS QPEs 1.22  -11  

200906090800  
rain gauge 0.74    

PERSIANN-CCS QPEs 0.62  -16  

201106010900  
rain gauge 0.42    

PERSIANN-CCS QPEs 0.39  -7  

201206022000  
rain gauge 0.78    

PERSIANN-CCS QPEs 0.63  -19  

201306011400  
rain gauge 0.53    

PERSIANN-CCS QPEs 0.43  -20  

average value 
rain gauge 0.77    

PERSIANN-CCS QPEs 0.66  -14  

 1112 

Table 2. The parameters of the model 1113 

(a) The parameters of the coupling model 1114 

Parameter

s types 
Name Variable name 

Physical 

property 
Sensitivity Adjustability 

Evapotran

spiration 

 

Potential 

evaporation 
Ep Meteorology insensitive adjustable 

Evaporation 

coefficient 
λ 

Vegetation 

type 

medium 

sensitive 
adjustable 

Wilting percentage Cwl 
Vegetation 

type 
insensitive adjustable 

The 

epikarst 

zone 

Thickness h 

Soil type& 

Karst rock 

property 

sensitive unadjustable 

Saturated water 

content 
θsat  Soil type 

highly 

sensitive 
adjustable 

Saturation 

permeability 

coefficient 

θs Soil type 
highly 

sensitive 
adjustable 

Macro crack 

 volume ratio 
V 

Karst rock 

property 

highly 

sensitive 
adjustable 

Field capacity θfc Soil type sensitive adjustable 

Rainfall-

runoff  

Soil layer thickness z Soil type sensitive adjustable 

Saturated hydraulic 

conductivity  
Ks Soil type 

highly 

sensitive 
adjustable 

Soil coefficient   b Soil type sensitive adjustable 

Flow direction Fd Landform 
highly 

sensitive 
unadjustable 
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Slope S0 Landform 
highly 

sensitive 
unadjustable 

Bottom slope Sp Landform sensitive adjustable 

Bottom width Sw Landform sensitive adjustable 

Slope roughness n 

Landform 

&Vegetation 

type 

sensitive adjustable 

Channel roughness n1 

Landform 

&Vegetation 

type 

sensitive adjustable 

The 

undergrou

nd river 

Depletion 

coefficient  
ω 

Landform 

&Soil type 

medium 

sensitive 
adjustable 

Muskingum 

routing method / 

The slope of the 

water storage 

content and flow 

curve 

K Landform 
highly 

sensitive 
adjustable 

Muskingum 

routing method/the 

proportion of the 

flow 

χ Landform 
highly 

sensitive 
adjustable 

     (b) The physical parameters of the epikarst zone 1115 

Thickness/ h 

(m) 

Saturated water 

content/θsat 

(g/cm3) 

 

 

Saturation 

permeability 

coefficient/θs 

(mm/hr) 

 

Macro crack 

volume ratio/V 

(m3/m3) 

 

Field capacity/θfc 

(mm) 

 

3-10 0.12-0.3 100-420 0.05-0.15 0.16-0.3 

(c)The rainfall infiltration coefficient of different karst landforms 1116 

Landforms karst strongly 

developed 

karst moderately 

developed  

karst poorly developed 

closed depression 0.6-0.8 0.4-0.6 0.15-0.18 

not closed depression 0.4-0.7 0.3-0.5 0.18-0.2 

monadnock, platform 0.2-0.3 0.2-0.3 0.2-0.25 

gully, slope 0.01-0.2 0.01-0.2 0.01-0.2 

 1117 

Table 3. The evaluation indices of flood simulation results obtained through 1118 

parameter optimization by the improved PSO algorithm 1119 

Floods 

Nash–

Sutcliffe 

coefficient/C 

Correlation 

coefficient/R 

Process 

relative 

error/P% 

Peak flow 

relative 

error/E% 

The 

coefficient 

of water 

balance/W 

Peak time 

error/T(h) 

2004070300  0.78 0.82 0.23 0.08 0.85 -8 

2009060908  0.95 0.92 0.17 0.04 0.09 -5 

2011010100  0.8 0.84 0.26 0.03 1.02 -7 

 1120 

 1121 

 1122 

 1123 

 1124 
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Table 4. The calculation results of the parameters sensitivity in the Liuxihe model 1125 

Floods 

Potential 

evaporati

on/Ep 

Evapor

ation 

coeffici

ent/λ 

Wilting 

percentag

e/Cwl 

Saturat

ed 

water 

content

/θsat 

Saturati

on 

permea

bility 

coeffici

ent/θs 

Macro 

crack 

volum

e 

ratio/

V 

Field 

capacit

y/θfc 

Soil 

layer 

thickne

ss/z 

Saturated 

hydraulic 

conductiv

ity/Ks 

2004070

30000  

0.06  0.08  0.02  0.92  0.90  0.77  0.85  0.68  0.82  

Soil 

coefficie

nt/b 

Bottom 

slope/S

p 

Bottom 

width/Sw 

Slope 

roughn

ess/n 

Channel 

roughne

ss/n1 

Deplet

ion 

coeffi

cient 

/ω 

Muskin

gum 

routing 

method 

/ The 

slope 

of the 

water 

storage 

content 

and 

flow 

curve/

K 

Muski

ngum 

routing 

method

/the 

proport

ion of 

the 

flow/χ 

  

  0.65  0.36  0.49  0.27  0.19  0.12  0.76 0.75 

2009060

90800  

Potential 

evaporati

on/Ep 

Evapor

ation 

coeffici

ent/λ 

Wilting 

percentag

e/Cwl 

Saturat

ed 

water 

content

/θsat 

Saturati

on 

permea

bility 

coeffici

ent/θs 

Macro 

crack 

volum

e 

ratio/

V 

Field 

capacit

y/θfc 

Soil 

layer 

thickne

ss/z 

Saturated 

hydraulic 

conductiv

ity/Ks 

0.08  0.11  0.05  0.96  0.92  0.81  0.89  0.65 0.87  

Soil 

coefficie

nt/b 

Bottom 

slope/S

p 

Bottom 

width/Sw 

Slope 

roughn

ess/n 

Channel 

roughne

ss/n1 

Deplet

ion 

coeffi

cient 

/ω 

Muskin

gum 

routing 

method 

/ The 

slope 

of the 

water 

storage 

content 

and 

flow 

curve/

K 

Muski

ngum 

routing 

method

/the 

proport

ion of 

the 

flow/χ 

  

  0.62 0.54  0.58 0.32  0.25 0.12  0.78  0.78  

2011060

10900  

Potential 

evaporati

on/Ep 

Evapor

ation 

coeffici

ent/λ 

Wilting 

percentag

e/Cwl 

Saturat

ed 

water 

content

/θsat 

Saturati

on 

permea

bility 

coeffici

ent/θs 

Macro 

crack 

volum

e 

ratio/

V 

Field 

capacit

y/θfc 

Soil 

layer 

thickne

ss/z 

Saturated 

hydraulic 

conductiv

ity/Ks 

0.12  0.25  0.07  0.89  0.82  0.71  0.79  0.62 0.75  
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Soil 

coefficie

nt/b 

Bottom 

slope/S

p 

Bottom 

width/Sw 

Slope 

roughn

ess/n 

Channel 

roughne

ss/n1 

Deplet

ion 

coeffi

cient 

/ω 

Muskin

gum 

routing 

method 

/ The 

slope 

of the 

water 

storage 

content 

and 

flow 

curve/

K 

Muski

ngum 

routing 

method

/the 

proport

ion of 

the 

flow/χ 

  

  0.58 0.52  0.55  0.48  0.42  0.33  0.72  0.68 

 1126 

Table 5. The evaluation indices of the simulated flood results based on the Liuxihe 1127 

model in the LKRB 1128 

Floods 

Nash–

Sutcliffe 

coefficient/C 

Correlation 

coefficient/R 

Process 

relative 

error/P% 

Peak flow 

relative 

error/E% 

The 

coefficient 

of water 

balance/W 

Peak time 

error/T (h) 

1982081219  0.84 0.75 0.3 0.01 0.83 -4 

1983020308  0.82 0.84 0.21 0.04 0.89 -5 

1984010100  0.75 0.89 0.26 0.14 0.96 -3 

1985010100  0.73 0.87 0.17 0.01 1.05 -5 

1986010100  0.83 0.85 0.23 0.04 0.94 4 

1987050100  0.93 0.76 0.1 0.05 1.01 -6 

1988051620  0.84 0.8 0.15 0.04 0.9 -8 

1989042600  0.64 0.74 0.39 0.02 0.88 -5 

1990050100  0.85 0.87 0.14 0.03 0.85 -3 

1991053118  0.8 0.76 0.25 0.04 0.95 10 

1992042900  0.66 0.84 0.2 0.11 0.89 5 

1993060900  0.91 0.89 0.24 0.09 1.05 -8 

1994060700  0.93 0.85 0.14 0.04 0.85 -6 

1995052100  0.82 0.7 0.2 0.01 0.81 -10 

1996060600  0.9 0.93 0.18 0.02 0.86 -5 

1997060400  0.84 0.87 0.13 0.06 0.95 -4 

1998051600  0.83 0.85 0.3 0.01 1.05 -6 

1999061700  0.6 0.83 0.15 0.05 0.8 -5 

2000052100  0.79 0.89 0.26 0.06 0.83 -8 

2001051500  0.8 0.82 0.25 0.07 0.82 -6 

2002042600  0.86 0.9 0.24 0.02 0.87 -2 

2003060600  0.92 0.85 0.14 0.04 0.76 -4 

2004070300  0.78 0.82 0.23 0.08 0.85 -8 

2005061400  0.76 0.76 0.35 0.06 0.74 -5 

2006060400  0.82 0.83 0.3 0.1 0.86 -3 

2008060900  0.8 0.91 0.15 0.03 0.89 -6 

2009060908  0.95 0.92 0.17 0.04 0.09 -5 

2011010100  0.8 0.84 0.26 0.03 1.02 -7 

2012010100  0.82 0.79 0.2 0.05 0.8 -6 
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2013010100  0.95 0.82 0.2 0.06 0.92 -4 

mean value  0.82 0.83 0.22 0.05 0.87 -6  

 1129 

Table 6. The evaluation indices of the simulated flood results based on the Liuxihe 1130 

model in the Beijiang catchment 1131 

Floods 

Nash–

Sutcliffe 

coefficient/C 

Correlation 

coefficient/R 

Process 

relative 

error/P% 

Peak flow 

relative 

error/E% 

The 

coefficient 

of water 

balance/W 

Peak flow 

time 

error/T (h) 

2000101512  0.89 0.92 0.11 0.09 0.93 -3 

2003091014  0.91 0.88 0.13 0.11 0.89 -2 

2005070815  0.93 0.89 0.09 0.13 0.95 2 

2008071311  0.97 0.89 0.08 0.09 0.95 -1 

2010081012  0.87 0.93 0.12 0.07 0.91 -4 

2012080310  0.9 0.95 0.06 0.05 0.96 2 

2013091210  0.92 0.91 0.09 0.09 0.89 3 

2014061015  0.93 0.93 0.18 0.07 1.08 -2 

2015091008  0.93 0.89 0.13 0.08 0.92 -3 

2016091501  0.94 0.9 0.11 0.04 0.92 1 

mean value 0.92 0.91 0.11 0.08 0.94 3 

1132 
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Table 7. Evaluation indices of simulated flood events using the initial PERSIANN-1133 

CCS QPEs and the post-processed values 1134 

Floods Type 

Nash–

Sutcliffe 

coefficient/

C 

Correlatio

n 

coefficient

/R 

Proces

s 

relative 

error/P

% 

Peak 

flow 

relative 

error/E% 

The 

coefficien

t of water 

balance/

W 

Peak 

time 

error/T 

(h) 

 

 

2008060

90000  

rain gauge 0.8 0.91 15 3 0.89 -6 

PERSIANN

-CCS QPEs 
0.6 0.65 26 36 0.83 -10 

the post-

processed 

PERSIANN

-CCS QPEs 

0.63 0.73 21 6 0.92 -8 

2009060

90800  

rain gauge 0.95 0.92 17 4 0.9 -12 

PERSIANN

-CCS QPEs 
0.67 0.61 28 34 0.79 -16 

the post-

processed 

PERSIANN

-CCS QPEs 

0.75 0.64 22 14 0.85 -13 

2011060

10900  

rain gauge 0.8 0.84 16 3 1.02 -7 

PERSIANN

-CCS QPEs 
0.65 0.83 25 21 0.89 -10 

the post-

processed 

PERSIANN

-CCS QPEs 

0.75 0.85 21 12 0.92 -8 

2012060

2200  

rain gauge 0.82 0.79 20 5 0.8 -6 

PERSIANN

-CCS QPEs 
0.69 0.54 31 17 0.75 -9 

the post-

processed 

PERSIANN

-CCS QPEs 

0.71 0.74 23 12 0.78 -7 

rain gauge 0.95 0.82 20 6 0.92 -4 
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2013060

11400  

PERSIANN

-CCS QPEs 
0.7 0.84 28 10 0.79 -7 

the post-

processed 

PERSIANN

-CCS QPEs 

0.82 0.89 24 7 0.85 -5 

average 

value 

rain gauge 0.86 0.86 18 4 0.91 -7 

PERSIANN

-CCS QPEs 
0.66 0.69 28 24 0.81 -10 

the post-

processed 

PERSIANN

-CCS QPEs 

0.73 0.77 22 10 0.86 -8 

Table 8. The effect of recalibrating the coupling model parameters 1135 

Floods 
Parameter 

type 

Nash–

Sutcliffe 

coefficien

t/C 

Correlation 

coefficient/R 

Process 

relative 

error/P

% 

Peak 

flow 

relative 

error/E

% 

The 

coefficien

t of water 

balance/

W 

Peak 

flow 

time 

error/T 

(h) 

2008060

90000  

Coupling 

model/the 

same model 

parameters as 

rain gauges 

0.63 0.73 21 6 0.92 -10 

Coupling 

model/re-

optimized 

model 

parameters 

0.76 0.83 18 5 0.93 -4 

2011060

10900  

Coupling 

model/the 

same model 

parameters as 

rain gauges 

0.75 0.85 21 12 0.92 -8 

Coupling 

model/re-

optimized 

model 

parameters 

0.78 0.87 19 6 0.94 -6 
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2012060

2200  

Coupling 

model/the 

same model 

parameters as 

rain gauges 

0.71 0.74 23 12 0.78 -7 

Coupling 

model/re-

optimized 

model 

parameters 

0.78 0.76 21 8 0.79 -4 

2013060

11400  

Coupling 

model/the 

same model 

parameters as 

rain gauges 

0.82 0.89 24 7 0.85 -5 

Coupling 

model/re-

optimized 

model 

parameters 

0.86 0.91 22 6 0.87 -4 

average 

value 

Coupling 

model/the 

same model 

parameters as 

rain gauges 

0.73  0.77 22  10  0.86   -8 

Coupling 

model/re-

optimized 

model 

parameters 

0.80  0.84  20  6 0.89        -5 
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