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Abstract.  21 

There is no long-term meteorological or hydrological data in karst river basins to a large 22 

extent. Especially lack of typical rainfall data is a great challenge to build a hydrological 23 

model. Quantitative precipitation estimates (QPEs) based on the weather satellites could offer 24 

a good attempt to obtain the rainfall data in karst area. What’s more, coupling QPEs with a 25 

distributed hydrological model has the potential to improve the precision for flood forecasting 26 

in large karst watershed. Precipitation estimation from remotely sensed information using 27 

artificial neural networks-cloud classification system (PERSIANN-CCS) as a technology of 28 

QPEs based on satellites has been achieved a wide research results in the world. However, 29 

only few studies on PERSIANN-CCS QPEs are in large karst basins and the accuracy is 30 

always poor in practical application. In this study, the PERSIANN-CCS QPEs is employed to 31 

estimate the hourly precipitation in such a large river basin-Liujiang karst river basin with an 32 

area of 58,270 km
2
. The result shows that, compared with the observed precipitation by rain 33 

gauge, the distribution of precipitation by PERSIANN-CCS QPEs has a great similarity. But 34 

the quantity values of precipitation by PERSIANN-CCS QPEs are smaller. A post-processed 35 

method is proposed to revise the PERSIANN-CCS QPEs products. The result shows that 36 

coupling the post-processed PERSIANN-CCS QPEs with a distributed hydrological model-37 

Liuxihe model has a better performance than the result with the initial PERSIANN-CCS 38 

QPEs in karst flood simulation. What’s more, the coupling model’s performance improves 39 

largely with parameter re-optimized with the post-processed PERSIANN-CCS QPEs. The 40 

average values of the six evaluation indices including Nash–Sutcliffe coefficient has a 14% 41 

increase, the correlation coefficient has a 14% increase, process relative error has a 8% 42 

decrease, peak flow relative error has a 18% decrease, the water balance coefficient has a 7% 43 

increase, and peak flow time error has 25 hours decrease, respectively. Among them, the peak 44 

flow relative error and peak flow time error have the biggest improvement, which are the 45 

greatest concerned factors in flood forecasting.The rational flood simulation results by the 46 

coupling model provide a great practical application prospect for flood forecasting in large 47 

karst river basins. 48 

Key words：Quantitative precipitation estimates /QPEs, Precipitation Estimation from Remotely 49 

Sensed Information Using Artificial Neural Networks-Cloud Classification System/ PERSIANN-50 

CCS, Liujiang karst river basin , Liuxihe model,  Flood forecasting 51 

1 Introduction 52 

The highly anisotropic karst water-bearing media and intricate hydraulic conditions make 53 

the karst flood process exhibit significant differences in time and space, which led to the 54 

laminar flow and turbulent flow transmute into each other in karst areas, and the flood events 55 

in karst river basins are more complicated compared with that of in non-karst area(Ford and 56 

Williams,2007;Goldscheider and Drew,2007）.This makes it difficult to precisely simulate 57 
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and forecast the karst flood process based on a hydrological model in mechanism. It is a 58 

common practice that the karst water-bearing media should be simplified before build a 59 

model. For example, making karst river basin as a multiple and nested spatial structure; 60 

making the underground river as the intelligible river system in the model; cave as the 61 

anisotropic medium with a large vertical infiltration coefficient and porosity but small 62 

specific yield. Even so, it is still hard to quantify the spatial structure of the karst water-63 

bearing media with a physics-mathematics model. And the karst flood simulation results 64 

usually have some errors that could not be ignored, which is the main problem in flood 65 

forecasting in karst river basins（Kovacs and Perrochet,2011）. 66 

      Because the dynamic change of karst hydrological process and the hydraulic conditions of 67 

underlying surface are complicated and non-linear in karst area, which makes it hard to obtain 68 

the  hydrogeology parameters, such as specific yield, hydraulic conductivity and aquifer 69 

transmissivity and so on. With the rapid development of remote sensing, GIS technology and 70 

hydrogeology, the technology of field work including the tracer tests (Birk et 71 

al.,2005;Doummar et al.,2012) and infiltration tests have made a significant progress. 72 

However, it is still a challenge to accurately simulate the laws of motion of the karst 73 

hydrological process in the karst water-bearing media with these experimental tests. So the 74 

traditional methods such as lumped hydrological models are not suitable for flood forecasting 75 

in karst area（Hartmann et al.,2013）. Compared with the performance of lumped 76 

hydrological models, the physically based distributed hydrological models (PBDHMs) have 77 

some advantages for karst flood forecasting in mechanism. The PBDHMs divide the whole 78 

karst river basin into a series of small grid units named karst sub-streams, which could reflect 79 

the real rules of hydrological process and karst development characteristics precisely. 80 

Therefore, it has a great application potential to improve the karst floods simulation and 81 

forecasting capability (Ambroise et al., 1996). Many PBDHMs have been proposed since the 82 

blueprint of the PBDHMs published by Freeze and Harlan (1969). The first full PBDHM is 83 

regarded as the SHE model published in 1987(Abbott et al., 1986a, b). Shustert and White 84 

(1971) used the PBDHM as an attempt in karst area, in their research, the dissolved carbonate 85 

species were analyzed in the waters of 14 carbonate springs in the Central Appalachians. And 86 

these springs were classified into diffuse-flow feeder-system types and conduit feeder-system 87 

types. The PBDHMs have been achieved many good research results in karst area 88 

(Atkinson,1977; Quinlan and Ewers,1985;Quinlan et al.,2011;Duan and Miller,1997; 89 

Ren,2006;Liu et al.,2013;Zhang et al.,2007). 90 

Since the regulation and storage capacity of the karst water-bearing media are weak. 91 

When the accumulated rainfall exceeds the maximum drainage capacity of the channel during 92 

a heavy rain storm, then the karst immersion-waterlogging hazard is much more likely to 93 

appear in this situation. And the hazard will become more and more serious with the 94 

intensification of global extreme weather events. So some effective measures need to be taken 95 
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to reduce the flood losses. For example, simulating and forecasting the karst flood process 96 

reliably with a PBDHM effectively, it is an important non-project measure for flood control. 97 

However, there is no enough rain gauges as well as the long-term meteorological or 98 

hydrogeological data to build a PBDHM in karst river basin where belongs to ungauged basin. 99 

Prediction in ungauged basins (PUB) is the theme of international hydrological decade, the 100 

core of which is runoff calculation (Li and Ren, 2009). Therefore, it is more difficult to 101 

forecast the flood events in karst river basin compared with that of in non-karst area. How to 102 

solve the problem of rainfall source is a key factor of the current karst flood forecasting. The 103 

quantitative precipitation estimates /QPEs, especially the satellite QPEs technology brings the 104 

possibility to obtain the reasonable rainfall data in karst area. But the current application of 105 

the QPEs is not mature enough, which makes the accuracy of QPEs as well as the effect of 106 

karst flood simulation and forecasting are not so good. 107 

The developed numerical weather prediction model in the past decades provided a 108 

reasonable and accurate QPEs product in karst area. The current mainstream QPEs including 109 

the weather radar QPEs (Delrieu et al.,2014; Rafieei et al.,2014; Faure et al.,2015), satellite 110 

QPEs and radar merging satellite QPEs (Stenz, 2014; Bartsotas et al.,2017; Goudenhoofdt and 111 

Delobbe,2009; Wardhana et al.,2017), Precipitation estimation from remotely sensed 112 

information using Artificial Neural Networks/PERSIANN QPEs (Soroosh et al.,2000; Hirpa 113 

et al.,2010; Romilly, 2011;Yang et al.,2007), PERSIANN-Climate Data Record/PERSIANN-114 

CDR (Ashouri et al., 2014; Liu et al., 2017; Tan and Santo,2018; Hussain et al., 2018), and 115 

PERSIANN-Cloud Classification System/PERSIANN-CCS (Yang et al., 2004,2007; 116 

Moradkhani and Meskele, 2010）. The research on the QPEs products by meteorological 117 

satellites has become a hotspot in rainfall prediction (Hu et al., 2013). 118 

Although many scholars at home and abroad have done a lot of research with the QPEs 119 

technology, also achieved many accepted results. However, there are considerable uncertainty 120 

exists in the application, which makes the precision of the QPEs is low and the precipitation 121 

result by the QPEs is not satisfactory. Two effective measures could reduce the uncertainty of 122 

the QPEs results in karst area. One is to match the appropriate resolution of the model. 123 

Because the resolution can affect the result of the QPEs directly: if the resolution is too low, 124 

then the grid units divided are coarse, which causes a considerable error in rainfall estimates; 125 

if the resolution is too high, the meteorological model structure is complicated and unstable. 126 

Furthermore, the requirement of computation resources will increase exponentially with the 127 

raise of the model spatial resolution (Chen et al., 2017), which leads to huge calculation and 128 

low efficiency. So the appropriate model spatial resolution is extremely important for the 129 

results of QPEs. And the other is the current technology of QPEs still has some systematic 130 

errors existed due to the uncertainties in structure and mathematical algorithm. For this reason, 131 
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the results of QPEs compared with the observed precipitation by rain gauge have some 132 

relative errors, which causes the karst flood simulation results by the coupling model 133 

(coupling QPEs with a PBDHM) have uncertainties that affect the model’s performance 134 

largely. So the results of initial QPEs could not be used directly to build the coupling model. 135 

In this study, a post-processed method is employed to revise the PERSIANN-CCS QPEs 136 

products, which makes the result of QPEs more credible and receivable.  137 

   There are many researches on PERSIANN-CCS QPEs (Yang et al 2007) at present. But 138 

most of them have been used in small non-karst watersheds. In this study, the PERSIANN-139 

CCS QPEs is employed to estimate the rainfall data as an attempt in such a large karst river 140 

basin -Liujiang Karst River Basin (LKRB) with an area of 5.8*10
4
km

2
 in Guangxi province, 141 

China. Watershed flood forecasting relies on a PBDHM for a computation tool, while the 142 

precipitation is the model’s driving force (Li et al., 2017). It has the potential to improve the 143 

accuracy of karst flood forecasting by coupling PERSIANN-CCS QPEs with a PBDHM. And 144 

the PBDHM in this paper is Liuxihe model（Chen,2009）.The spatial resolution of Liuxihe 145 

model for LKRB is 200m*200m. And the PERSIANN-CCS QPEs products that the spatial 146 

resolution is 0.04°*0.04° scale and time interval is 30 minutes are employed to estimate the 147 

precipitation results for LKRB. The resolution of the PERSIANN-CCS QPEs must be 148 

downscaled to the same size as Liuxihe model before building the coupling model. The 149 

PERSIANN-CCS QPEs products after post-processed could offer the high-precision 150 

precipitation results for LKRB where lack of enough rain gauges. It can largely improve the 151 

model performance by coupling the post-processed PERSIANN-CCS QPEs with Liuxihe 152 

model. A modified PSO algorithm (Chen et al., 2016) is used to optimize the coupling model 153 

parameters in this paper, which could control the uncertainty of the parameter passing. 154 

2 Methodology 155 

2.1 PERSIANN-CCS QPEs 156 

The original PERSIANN system (Hsu et al., 1999) was based on geostationary infrared 157 

imagery and later extended to include the use of both infrared and daytime visible imagery, 158 

which is an automated system for precipitation estimation from remotely sensed information 159 

using artificial neural networks .The system for rainfall estimation under development at The 160 

University of Arizona and gets constantly stronger with the improvement of the technology 161 

(Soroosh et al.,2000). The fundamental algorithm of PERSIANN system is based on a neural 162 

network. And the network parameters could be optimized by an adaptive training 163 

characteristic, which makes the precipitation could be estimated from geosynchronous 164 

satellite at any time and place.  165 

The Precipitation Estimation from Remotely Sensed Information using Artificial Neural 166 

Networks-Cloud Classification System /PERSIANN-CCS(Yang et al., 2004; Hsu et al., 2007)  167 

is a patch-based cloud classification and rainfall estimation system from low Earth-orbiting 168 
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and geostationary satellites by using pattern recognition technology and computer imaging 169 

technology (Yang et al.,2007 ). Satellite-based precipitation retrieval algorithms use 170 

information ranging from visible (VIS) to infrared (IR) spectral bands of Geostationary Earth 171 

Orbiting (GEO) satellites and microwave (MW) spectral bands (Hsu et al., 2007). 172 

The QPEs products of PERSIANN-CCS has been generated precipitation estimates at 173 

resolution 0.04°*0.04° scale and time interval 30 minutes since 2000. The output of 174 

PERSIANN-CCS QPEs has been downscaled at 200m*200m as the same spatial resolution as 175 

Liuxihe model in LKRB. The hourly precipitation data of the PERSIANN-CCS QPEs are 176 

collected and compared with the precipitation observed by rain gauges. 177 

Rainfall estimation from the PERSIANN-CCS consists as the follow steps (Hsu, 2007):  178 

(1) IR cloud image segmentation, (2) Characteristic extraction from IR cloud patches, (3) 179 

Patch characteristic classification, (4) Obtain the rainfall estimation results of QPEs products, 180 

(5) Evaluate and revise the results of QPEs products. 181 

In this paper, the PERSIANN-CCS QPEs real-time data used in LKRB from the current 182 

version of PERSIANN-CCS are available and downloadable online 183 

(http://hydis8.eng.uci.edu/CCS/). 184 

2.2 Liuxihe model  185 

Liuxihe model proposed by Yangbo Chen (Chen, 2009)of Sun Yat-Sen University, China  186 

is employed as the fully distributed hydrological model in this study, which is a physically 187 

based distributed hydrological model（PBDHM）mainly for catchment floods simulating 188 

and forecasting(Chen  et al., 2011, 2016,2017; Li et al., 2017). Liuxihe model earn its name 189 

by first successful application in Liuxihe catchment, Guangdong province, China. There are 190 

three layers vertically, including the canopy layer, the soil layer and the underground layer in 191 

the model and the whole catchment is divided into a great number of grid cells horizontally 192 

by using the DEM, which are treated as a uniform basin, and the elevation, land cover type, 193 

soil type, and other model elements including rainfall-runoff, evapotranspiration and so on are 194 

calculated on the uniform basin. All cells are categorized into three types, namely hill slope 195 

cell, river cell and reservoir cell.  196 

An improved PSO algorithm (Chen et al., 2016) is employed to optimize the model 197 

parameters in this study, which can make the model’s performance much better in flood 198 

forecasting in karst river basins. The observed meteorological, hydrological data and the 199 

development conditions of the karst underground river are used to optimize the model 200 

parameters. The terrain property data like the DEM, land use type and soil type can be 201 

downloaded freely from an open access databases on the website. The model is validated by 202 

observed karst flood events. All these factors of the model are physically based and rational to 203 

truly reflect the underlying surface of the karst basin. So it implied Liuxihe model could be 204 

used for real-time flood forecasting in karst river basins. 205 
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2.3The improvement of the Karst hydrological model 206 

Liuxihe model has been applied successfully for floods forecasting in many river basins. 207 

However, all these basins are non-karst areas. This is the first time the model is used in karst 208 

river basin as an attempt in this study. And the structure of the model should be improved to 209 

suit the karst basins.  So some effective measures should be taken before building the model. 210 

Firstly, simplify the karst water-bearing media, including making karst basin as a multiple and 211 

nested spatial structure, underground river as the intelligible channel system in the model, 212 

cave as the anisotropic medium with a large vertical infiltration coefficient and porosity but 213 

small specific yield, and fault as the anisotropic medium with a vertical, large infiltration 214 

coefficient and specific yield. Secondly, the whole karst river basin will be divided into many 215 

small karst sub-basins by the theory of distributed hydrological model. Furthermore, the karst 216 

sub-basins will be divided into many karst hydrology respond units (KHRUs), which are 217 

generally independent of each other. The whole karst hydrological process including the 218 

storage and regulation process of the epikarst zone, the spatial interpolation of the 219 

precipitation, evapotranspiration and rainfall-runoff are all calculated on the KHRU. After 220 

that, these hydrological processes will be summarized in the karst sub-basins. Then the outlet 221 

flow will be formed through the river confluence among each karst sub-basin from upstream 222 

to downstream. Such a multi-structure distributed hydrological model could utilize various 223 

scale information effectively and make the best use of the observed meteorological, 224 

hydrological and geological data. 225 

The whole karst river basin is composed by many small karst sub-basins, then the karst 226 

sub-basins will be divided into many KHRUs. And each KHRU has its own model 227 

characteristics such as the meteorological and hydrological characteristics as well as the karst 228 

development characteristics in this study. The KHRU is proposed to describe the spatial 229 

variation of the karst sub-basins. And make sure that the differences within the KHRUs are 230 

smaller than of among the KHRUs. Then the KHRU is divided into five layers vertically: the 231 

canopy layer, the soil layer, the epikarst zone, the bedrock and the underground river. The 232 

sketch map of the KHRU is as follow: 233 

 234 

 The structure of the KHRU(Ren,2006)     b. The photograph of the three-dimensional                  235 

                                                                space structure of the KHRU 236 

Figure 1. Sketch map of the KHRU 237 

In Figure 1.b, the three-dimensional space model of the KHRU in Liujiang Karst River 238 

Basin(LKRB)  is built in the laboratory to better understand how groundwater move in the 239 

karst media and convert mutually with the surface river. Then the hydrological model could 240 

be built more visualized through this way. 241 
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In order to satisfy the applicability of the model in karst area, the epikarst zone as a 242 

distinctive structure of the KHRU is considered carefully in the model. An exponential decay 243 

equation is used to calculate the regulation and storage process of surface karst zone. The  244 

linear reservoir model is employed to describe  the regulation process of the superficial karst 245 

fissure system. And the Muskingum routing method is used to calculate the convergence 246 

process of the karst underground river that will be summarized and converge to drainage 247 

outlet through the underground river system. 248 

     The karst hydrological process of the epikarst zone could be divided into rapid fissure flow 249 

and slow fissure flow. When the precipitation falls to the surface karst zone, it will fill the 250 

pores of the macro crack firstly. After all the pores are full-filled, means the macro crack is 251 

saturated. This part of saturated water content named rapid fissure flow will go directly into 252 

the underground river through the macro crack, and ignore the regulation and storage 253 

hydrological process of the macro crack in this study. The rest of the water content will enter 254 

the tiny pores in the surface karst zone, and the water content of rapid fissure flow could be 255 

described as the following equation: 256 

                                          inf=epi crkSW Q V
                                    

(1)
 

257 

Where 
epiSW  is the water content of the rapid fissure flow in the epikarst zone,

  
258 

infQ
 
is the infiltration water content, and crkV

 
is the water content in the macro crack. 259 

  The slow fissure flow in the epikarst zone is calculated by an exponential decay 260 

equation (Ren, 2006): 261 

                           

perc

t 1 , , 1 , 1

perc

= 1 exp

-

sep epi

epi epi t epi t sep t

epi epi

epi

T
W W

TT

W W SW W

SAT FC
TT

K

  

   
        


  

 



，

             

 
(2)

 

262 

Where 
sepW  is the water content from the epikarst zone to the underground river,

 epiW
 
is the 263 

current water content of the epikarst zone, T is the simulation time-step,
 percTT  is the  264 

attenuation coefficient,
 epiSAT is the saturation water content of the epikarst zone,

 epiFC is 265 

field capacity of the epikarst zone, and 
epiK  is the saturated hydraulic conductivity of the 266 
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epikarst zone.
 

267 

The linear reservoir model is employed to calculate the regulation process of the superficial 268 

karst fissure system, and the base discharge is calculated by the hydraulic gradient of the KHRU 269 

(Neitsch et al.,2000) : 270 

  271 
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K h
Q
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Q Q a t W a t
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(3) 272 

Where 
gwQ  is the base discharge,

 ,gw iQ   
 and 

, 1gw iQ 
is the supplies quantity of the base 273 

discharge that converge to the karst conduit or underground river on the i and (i-1) day 274 

respectively, epiK  is the saturated hydraulic conductivity of the epikarst zone,
 wtblh is the 275 

hydraulic gradient,
 gwL  is the length of the KHRU,

 gwa  is the depletion coefficient of the base 276 

discharge,
 

T is the simulation time-step(day),
 ,rchrg iW is the supplies quantity of the aquifer 277 

on the i day(mm/d),
 seepW  is the water flux through the bottom of the soil profile into the 278 

underground aquifer on the i day（mm/d）,
 gw  is the  delay time of the supplies（day）.

 
279 

The Muskingum routing method is used to calculate the convergence process of the karst 280 

underground river in this study, the equation is as follows: 281 

  282 

                                
'[ (1 ) ]W K xI x O KO                              （4） 283 

Where 
'O  is the water storage content, O is the outlet flow of the river reach,

 
x is the 284 

dimensionless proportion factor, I is the inflow discharge of the river reach, K is the slope of 285 

the correlation curve of the water storage content and the discharge. 286 

The finite difference method is used to calculate the water balance equation and the 287 

Muskingum routing method: 288 
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（5） 289 

where, 
290 

0

1

2

0.5 t
=

0.5 t+

0.5 t
=

0.5 t+

0.5 t+
=

0.5 t+

Kx
C

K Kx

Kx
C

K Kx

K Kx
C
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（6） 291 

If the parameter of the Muskingum routing method K and x could be determined for a 292 

karst underground river reach, then the value of the 0C , 1C
 
and 2C  will be calculated by the 293 

equation(6). When t =2Kx,
 0 =0C , which means the karst flood forecasting lead time will 294 

be 2Kx, then the Muskingum routing method could be simplified as follows: 295 

2 1 1 2 1=O C I C O
                                

（7） 296 

One of the key problems of Muskingum routing method is to optimize the parameters -K 297 

and x in the practical application. The least square method is used in this study: 298 


2n

0 1

1

min = ( ) - ( ) ]
j

E W j W j C


  
 

 


                 

（8） 299 

Where E is the objective function between the observed water storage content and the 300 

simulated one, which makes only require least squares approximation with regard to 301 

functional value,
 0 ( )W j  and 1( )W j are the observed and simulated water storage content at j 302 

period respectively, 1( )= [ (1 ) ]W j K xI x O  , n is the total numbers of the observation 303 

periods,  C is the absolute value of the water storage content. 304 

In order to simplify calculating, making A=K*x, B=K*(1-x), then taking the partials with 305 

respect to A, B, C respectively:  306 

2 2
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（9） 307 
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Then the values of A, B, C could be calculated as follows: 308 
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Where, 310 
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（11） 311 

The parameters of the Muskingum routing method could be optimized through the above 312 

equations. And after that, the convergence process of the karst underground river could be 313 

calculated by the Muskingum routing method in Liuxihe model. 314 

3 Study area and data 315 

3.1 Study area 316 

Liujiang Karst River Basin (LKRB) in southern China is selected as the study area in this 317 

paper. It is the second largest tributary of Pearl River that covers three provinces including 318 

Guizhou, Guangxi and Hunan province. LKRB is the most developed karst area of China with 319 

a drainage area of 58270km
2
 and a channel length of 1121 km. The carbonate rocks are 320 

widely distributed in the southwest of the basin, and the areas account for 33% of the whole 321 
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watershed. LKRB is a typical karst-mountainous catchment with frequent flash flooding in 322 

the past centuries .The peak forest-plain area is the main karst landform on the ground, while 323 

the karst conduit and fissure are well-developed underground, also there are many 324 

complicated underground rivers and springs with large flow (Li, 1996). The karst water-325 

bearing media is highly non-linear and heterogeneous, which makes it very difficult to 326 

simulate and forecast the karst hydrological process. 327 

LKRB is in the sub-tropical monsoon climate zone with an average annual precipitation of 328 

1400mm to 1700mm, and the precipitation distribution is highly uneven at spatial and 329 

temporal scale. The precipitation from April to September accounts for 75% to 80% of the 330 

annual precipitation. 331 

After studied the karst geomorphology of LKRB, Wil1iams (1987) believed that the 332 

peak-cluster depression had developed into turreted peak-forest landforms after a long 333 

evolutionary process, which is equivalent to the late prime of life,  and going into the old age 334 

of geomorphologic evolution as the tradition physiognomy theory by Davis (1912).  The 335 

allogenic water especially the Liujiang river is the main driving force for the development of 336 

peak-forest landforms. Therefore, the peak-forest plains and valleys are often distributed in 337 

contiguous areas near the main trunk stream of the Liujiang river. And the main karst 338 

landform of LKRB is peak-forest plain, there are also some peak-cluster depressions and 339 

peak-forest valleys. Figure 2. are the DEM and three-dimensional topographical map of 340 

LKRB. 341 

 342 

a. the DEM                                        b. three-dimensional topographical map 343 

Figure 2. The DEM and three-dimensional topographical map of LKRB. 344 

3.2 Rain gauges and the karst flood process 345 

There are 68 rain gauges and 131 grid points of PERSIANN-CCS QPEs within LKRB 346 

and five karst flood events from 2008 to 2013 has been collected respectively. There is a 347 

flood event each year. The karst floods process in LKRB have typical characteristics: the 348 

flood peak flows usually exceed 10,000m
3
/s and expression of the multi-peaks flood process. 349 

A flood process usually lasts about 10 days, and the shortest flood event duration is only 350 

about 3 days, the longest is 25 days. The hourly precipitation data of rain gauges are collected 351 

in this study to compare with the results of PERSIANN-CCS QPEs. The rain gauges, grid 352 

points of PERSIANN-CCS QPEs and the Liuzhou river gauge that closes to the outlet of 353 

LKRB are shown in Figure 3. 354 

Figure 3. Sketch map of Liujiang River Basin（LKRB） 355 
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3.3 Property data 356 

Catchment property data for distributed hydrological model mainly include DEM, land 357 

use and soil types. These data are downloaded from an open access databases. The DEM is 358 

downloaded from the shuttle radar topography mission database at http://srtm.csi.cgiar.org 359 

(Falorni et al., 2005, Sharma et al., 2014). The downloaded DEM has an initial spatial 360 

resolution of 90m*90m, and after many model resolution tests, the most appropriate 361 

resolution has been confirmed as 200m*200m for Liuxihe model in LKRB. So the spatial 362 

resolution of the initial DEM is rescaled to 200m*200m in this study, which is a high 363 

resolution for Liuxihe model in LKRB. The DEM is shown in Figure 2(a).The land use type 364 

is downloaded from http: //landcover.usgs.gov (Loveland et al., 1991, 2000), and the soil type 365 

is downloaded from http://www.isric.org. The initial spatial resolutions of the land use type 366 

and soil type are 1000m*1000m. Both of them need to be rescaled to 200m*200m in this 367 

study. Figure 4 (a) is land use types and (b) is soil types. 368 

Figure 4. The property data for Liuxihe model in LKRB 369 

4 PERSIANN-CCS QPEs and its post-processed results 370 

4.1 Precipitation estimation results 371 

The QPEs product of PERSIANN-CCS has been generated precipitation result for LKRB 372 

in this study. There are 131 grid points of PERSIANN-CCS QPEs within LKRB , which  are 373 

representative and can cover the whole watershed  completely (as shown in Figure 3).The 374 

precipitation estimation results by PERSIANN-CCS QPEs has been downscaled as the same 375 

temporal-spatial resolution as Liuxihe model, the spatial resolution is 200m*200m and the 376 

time interval is 1 hour. The QPEs products of PERSIANN-CCS in 2008,2009,2011,2012 and 377 

2013 are produced respectively, means there are five rainfall events are corresponding to the 378 

five karst flood processes. Figure 5-9 is the average precipitation pattern comparisons of two 379 

precipitation products in the five years, and (a) is the average precipitation of rain gauges, (b) 380 

is the average precipitation of PERSIANN-CCS QPEs. 381 

Figure 5. Precipitation pattern comparison of two precipitation products(2008), (a) is the average 382 
precipitation of rain gauges, (b) is the average precipitation of PERSIANN-CCS QPEs. 383 

Figure 6. Precipitation pattern comparison of two precipitation products(2009), (a) is the average 384 
precipitation of rain gauges, (b) is the average precipitation of PERSIANN-CCS QPEs. 385 

Figure 7. Precipitation pattern comparison of two precipitation products(2011), (a) is the average 386 
precipitation of rain gauges, (b) is the average precipitation of PERSIANN-CCS QPEs. 387 

Figure 8. Precipitation pattern comparison of two precipitation products(2012), (a) is the average 388 
precipitation of rain gauges, (b) is the average precipitation of PERSIANN-CCS QPEs. 389 

Figure 9. Precipitation pattern comparison of two precipitation products(2013), (a) is the average 390 
precipitation of rain gauges, (b) is the average precipitation of PERSIANN-CCS QPEs. 391 
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According to the results of Figure  5-9, it appears that the temporal average precipitation 392 

pattern of both products are quite similar, especially in the rainfall distribution, while there 393 

are some difference in the quantitative value.  The results of PERSIANN-CCS QPEs are 394 

smaller than that of the rain gauge, which means there is a relative error exists between the 395 

two products. 396 

4.2 Evaluation of PERSIANN-CCS QPEs  397 

In order to quantitatively evaluate the results of PERSIANN-CCS QPEs, the 398 

precipitation by PERSIANN-CCS QPEs and rain gauge are compared in this study. The 399 

rainfall distribution of both products are shown in Figs. 5–9.To make further comparison, the 400 

average precipitation of the five karst flood events are calculated in Table 1. 401 

Table1. Precipitation pattern comparison of two precipitation products 402 

According to the results of Table 1, it could be found that there are obvious relative 403 

errors between the two precipitation products. The average precipitations of PERSIANN-CCS 404 

QPEs are smaller than that of the rain gauge. For the five karst flood events from 2008 to 405 

2013, the relative errors between two products are -16%,-25%,-14%,-21% and -23% 406 

respectively. The average relative error is -20% and the maximum error is -25%, which 407 

means these relative errors could not be ignored. So the precipitation results by PERSIANN 408 

QPEs must to be revised effectively, the precipitation data observed by rain gauge are used to 409 

revise the results of PERSIANN QPEs in this study. 410 

4.3 The post-processed PERSIANN-CCS QPEs 411 

In order to make the results of PERSIANN QPEs more credible and receivable, the 412 

precipitation results by PERSIANN QPEs are revised with the observed precipitation by rain 413 

gauge. Firstly, finding the grid points of PERSIANN-CCS QPEs that are adjacent the rain 414 

gauges (as shown in Figure 3). And there are 23 grid points in LKRB. Secondly, calculating 415 

their average precipitation of PERSIANN-CCS QPEs and rain gauges, and taking the average 416 

precipitation of rain gauges as the true precipitation. Thirdly, revising the results of 417 

PERSIANN QPEs with the average precipitation observed by rain gauges.The procedure is 418 

summarized as follows. 419 

1). Calculating the average precipitation of these 23 grid points based on PERSIANN-CCS 420 

QPEs with the following equation. 421 
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Where,
 PERSIANN CCSP   

is the average precipitation of these 23 grid points by PERSIANN-CCS 423 

QPEs;
 iP  is the precipitation based on PERSIANN-CCS QPEs on the i grid point;

 iF  is the 424 

catchment area of the i grid point; N is the number of the grid points. 425 

2). Calculating the average precipitation of these 23 rain gauges. 426 
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Where,
 2P is the average precipitation observed by these 23 rain gauges;

 jP is the 428 

precipitation by the j rain gauge; M is the number of rain gauges. 429 

3). The precipitations observed by the adjacent rain gauges are used to revise the results of 430 

PERSIANN-CCS QPEs with the following equation. 431 
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Where,
 

'

iP  is the value of precipitation based on PERSIANN-CCS QPEs after revised on the i 433 

grid point;
2 / PERSIANN CCSP P 

 is the revise factor. 434 

4). The precipitation results based on PERSIANN-CCS QPEs after revised will be as input 435 

data for Liuxihe model to test its feasibility through the floods simulation. 436 

From the above procedure of the post-processed PERSIANN-CCS QPEs, it could be 437 

found that the revise factor-
2 / PERSIANN CCSP P 

 is a key to make the results of PERSIANN-438 

CCS QPEs much closer to the observed precipitation by rain gauges, means the systematic 439 

errors of the PERSIANN-CCS QPEs could be corrected effectively. So the post-processed 440 
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method in this paper is a feasible and necessary. And it could greatly improve the accuracy of 441 

the coupling model in karst flood simulation and forecasting. Furthermore, the revise factor 442 

could be preserved as an empirical value for the future flood forecasting in LKRB. 443 

5 Model set up 444 

5.1hydrological model setup 445 

The method combining DEM with stream network leads to a more accurate drainage 446 

network from surface runoff modelling (Li and Tao,2000), especially in karst area. In this 447 

study, according to the high resolution of 200m*200m for Liuxihe model in LKRB, the whole 448 

studied area is divided into 1,469,900 grid cells named the karst sub-basins by using the DEM.  449 

The grid cells include 1,463,204 hill slope cells and 6,696 river cells. Then the karst sub-450 

basins will be divided into many karst hydrology respond units (KHRUs) further, the KHRU 451 

is as shown in Figure 1. The river system are divide into three-order by Strahler method 452 

(Strahler,1957) as shown in Figure 3.  453 

     Because of the sinkholes and karst depressions in karst watershed, as well as the 454 

systematic error of the DEM itself, there are many pits including the true and false pits in 455 

LKRB. Among them the true pits are the karst depressions and sinkholes, they usually have a 456 

certain scale with elevation difference. While the false pits are just few points with low 457 

elevation, which is due to the systematic errors of the DEM. So the true and false pits should 458 

be distinguished reliably before using DEM data to divide into the karst sub-basins. Firstly, 459 

finding out all the pits with low elevation, and connect them into a plane, then distinguish the 460 

true pits from the false ones according to the on-site topographic survey. Finally,keeping the 461 

true pits like the sinkholes and karst depressions unchanged but filling the false pits in the 462 

model. 463 

The karst hydrology respond unit (KHRU) is introduced in this study to reasonably 464 

describe the spatial variability of the karst water-bearing media (as shown in Figure1). The 465 

spatial characteristic of every KHRU has definite physical meaning. So the calculation of the 466 

evapotranspiration, rainfall-runoff and parameter optimization on the KHRU is also 467 

physically based, which could truly reflect the differences of the underlying surface. After the 468 

division of the karst sub-basins and the KHRUs, the post-processed PERSIANN-CCS QPEs 469 

results will be as the input data for Liuxihe model to simulate and forecast the karst flood 470 

process. The performance of the coupling model could be improved reliably in this way. 471 
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5.2 Parameter optimization of coupling model 472 

      There are many parameters need to be optimized for a distributed hydrological model, as 473 

shown in Table.2, among them the parameters of soil water properties, the epikarst zone and  474 

the underground river are the most sensitive parameters for the coupling model in this study. 475 

The parameters of the epikarst zone are the most complicated due to the anisotropy of the 476 

karst water-bearing media, which makes it hard to measure and calculate the hydraulic 477 

characteristics. According to the field survey, the epikarst zone is mainly developed on the  478 

hard surface of pure carbonate rock, especially on the Paleozoic limestone. The thickness and 479 

characteristics of the epikarst zone are different due to the different climate, topography and 480 

landforms. And the thickness of the epikarst zone is about 10 meters in the study area- LKRB. 481 

The parameters of the coupling model are listed inTable 2. 482 

Table 2. The parameters of the coupling model 483 

       The parameters of the Soil type like the saturated water content and field capacity are 484 

calculated through a software tool by the research result of Saxton (Saxton et al.,1986) .The 485 

statistical relation between the soil texture and the soil water could be queried easily in the 486 

software tool. And it has been effectively proved by many experiments (Servat and 487 

Sakho,1995), the calculated value of this method has a good fitting relation with the measured 488 

value. 489 

Liuxihe Model has been deployed on a supercomputer system with parallel computation 490 

technology (Chen et al., 2011) .An improved PSO algorithm (Chen et al., 2017)is employed 491 

to optimize the parameters of the coupling model in this study. And the flood process for 492 

parameter optimization is the Flood 2009060908. The results of parameters optimization are 493 

shown in Figure 10, among them, (a) is the objective function evolution result, (b) is the 494 

parameters evolution result, and (c) is the simulated flood process by using the optimized 495 

model parameters. 496 

Figure 10. Parameter optimization results with the improved PSO algorithm 497 

From the results of Figure 10(c), it could be found that the coupling model with initial 498 

model parameter values does not simulate the observed karst flood process satisfactorily, and 499 

compared with that, the parameters optimization with the improved PSO algorithm could 500 

largely improve the coupling model’s performance. The simulated flood process is very close 501 

to the observed value. 502 

In order to test the parameters optimization effect with different precipitation sources, 503 

both the precipitation of the rain gauge and PERSIANN CCS QPEs are used to optimize the 504 

parameters of the coupling model. To compare with that, the simulated flood process of the 505 
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coupling model with the same parameter as rain gauges and re-optimized parameter with the 506 

post-processed PERSIANN CCS QPEs are also drawn in Figure 10(c).  507 

From the results of Figure 10(c), it could be found that the coupling model with the re-508 

optimized parameters by the post-processed PERSIANN CCS QPEs has a better flood 509 

simulation effect than that of with the same parameter as rain gauges precipitation, which 510 

means re-optimized parameters with the post-processed PERSIANN CCS QPEs for the 511 

coupling model is necessary. 512 

5.3 Model validation 513 

 The karst flood process for parameter optimization is the Flood 2009060908 in this 514 

study. Other four floods including Flood 200806090200, Flood 201106010900, Flood 515 

201206022000 and Flood 201306011400 are used to validate the performance of the coupling 516 

model. The flood simulation results are drawn in Figure 11. 517 

Figure 11. The flood simulation results of the coupling model with two precipitation products  518 

From the result of Figure 11, it could be seen that the simulated karst flood discharges 519 

with the precipitation of rain gauge are the best. And the simulated values are the closest to 520 

the measured values, especially the simulated flood peaks are satisfactory, which is the most 521 

concerned factor in real-time flood forecasting. The  average values of six evaluation indices, 522 

including the Nash–Sutcliffe coefficient (C), correlation coefficient (R), process relative error 523 

(P), peak flow relative error (E) ,water balance coefficient (W), and peak flow time error (T)  524 

are 0.86, 0.86, 18%, 4% , 0.91, and -7 hours respectively (as shown in Table 3). This means 525 

parameters optimization with the improved PSO algorithm in this study is effective. From 526 

Figure 11, it may be seen that the karst flood simulation results with the initial PERSIANN 527 

CCS QPEs are not so satisfactory, and the performance of the model are worse than that of 528 

the rain gauge precipitation. While the flood simulation results of the coupling model with the 529 

post-processed PERSIANN CCS QPEs are much better, also the evaluation indices of the 530 

flood simulation have been largely improved. 531 

6 Results and discussions 532 

     In order to test the effects of the flood simulation of the coupling model with the post-533 

processed PERSIANN-CCS QPEs as well as the coupling model with different parameters. 534 

Two test methods are used in this paper: 535 

1) Keeping the coupling model parameters unchanged, means the coupling model takes the 536 

same parameters as the precipitation of the rain gauge. The flood simulation effects with 537 

the initial PERSIANN-CCS QPEs and the post-processed ones could be compared in this 538 

way. 539 
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2) Re-optimizing the coupling model parameters, means the post-processed PERSIANN-540 

CCS QPEs are used to re-optimize the coupling model parameters again to test its 541 

necessity. 542 

6.1 Results of flood simulation with the post-processed PERSIANN-CCS QPEs 543 

After the correction, the post-processed PERSIANN-CCS QPEs precipitation has 544 

become much closer to the observed precipitation of rain gauge. In order to analyze the 545 

effects of flood simulation with the post-processed PERSIANN-CCS QPEs, five karst flood 546 

events including Flood 200806090200, 200906090800, 201106010900, 201206022000 and  547 

201306011400 are used in this paper, and the flood simulation results with different 548 

precipitation sources including the rain gauges precipitation, the PERSIANN-CCS QPEs and 549 

its post-processed results are compared in Figure 11. In this simulation, keeping the coupling 550 

model parameters unchanged, means the coupling model with the same parameters as the rain 551 

gauges precipitation, not the re-optimized parameters with the post-processed PERSIANN-552 

CCS QPEs results. The flood simulation results are shown in Figure 11. 553 

From Figure 11, it could be seen that the simulated flood discharges with the 554 

precipitation of rain gauge are better than that of the PERSIANN-CCS QPEs. And the 555 

simulated peak flows with the PERSIANN-CCS QPEs are lower than the observed ones. 556 

However, the flood simulation effects with the post-processed PERSIANN-CCS QPEs make 557 

a great progress, the simulated flood processes fit the observation values reasonably, and 558 

simulated peak flows are much closer to the observation ones. It implies that the flood 559 

forecasting capability has been largely improved by the post-processed method of the 560 

PERSIANN-CCS QPEs.  561 

To further compare the flood simulation results, six evaluation indices are calculated and 562 

listed in Table 3. It has been found that all the six evaluation indices of rain gauges are better 563 

than that of PERSIANN-CCS QPEs. And the indices of QPEs have been improved a lot with 564 

the post processed QPEs. The average value of Nash–Sutcliffe coefficient has a 7% increase, 565 

the correlation coefficient has a 8% increase, process relative error has a 6% decrease, peak 566 

flow relative error has a 14% decrease, the water balance coefficient has a 5% increase, and  567 

peak flow time error has 7 hours decrease, respectively. Among them, the peak flow relative 568 

error has the biggest improvement. It is obvious that the evaluation indices are improved 569 

substantially with the post-processed QPEs. So it implies the post-processed method for 570 

PERSIANN-CCS QPEs in this paper is feasible and effective. And coupling the post-571 

processed PERSIANN-CCS QPEs with Liuxihe model has the potential to improve the model 572 

performance in flood simulation and forecasting in LKRB. 573 
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6.2 Effects comparison of different model parameters 574 

     The performance of the coupling model makes a big difference with different parameters. 575 

There are two different sets of model parameter values in this study, one is the parameters 576 

with the precipitation of rain gauge, and the other is the parameters with the post-processed 577 

PERSIANN-CCS QPEs. The post-processed PERSIANN-CCS QPEs are used to re-optimize 578 

the coupling model parameters again to test its necessity. And the flood simulation results 579 

with two different sets of model parameters are shown in Figure 12.  580 

 581 

Figure 12. Coupled flood simulation results with the same parameter as the rain gauge 582 
precipitation and re-optimized parameter with the post-processed PERSIANN-CCS QPEs 583 

From the above results in Figure 12, it has been found that the simulated flood results 584 

with re-optimized parameters by the post-processed PERSIANN-CCS QPEs are much better 585 

than that of with the same parameter as rain gauge precipitation. The simulated flood discharge 586 

processes, especially the peak flows with the re-optimized parameter are closer to the 587 

observation values. To further compare the flood simulation results, six evaluation indices are 588 

calculated in Table 4, the average value of Nash–Sutcliffe coefficient has a 7% increase, the 589 

correlation coefficient has a 6% increase, process relative error has a 2% decrease, peak flow 590 

relative error has a 4% decrease, the water balance coefficient has a 2% increase, and peak 591 

flow time error has 18 hours decrease, respectively.  What is more, comparing with the 592 

simulated flood results of the initial PERSIANN-CCS QPEs in Table 3, the average value of 593 

Nash–Sutcliffe coefficient has a 14% increase, the correlation coefficient has a 14% increase, 594 

process relative error has a 8% decrease, peak flow relative error has a 18% decrease, the 595 

water balance coefficient has a 7% increase, and peak flow time error has 25 hours decrease, 596 

respectively (as shown in Table 3 and Table 4). So it implies the re-optimized parameters 597 

with the post-processed PERSIANN-CCS QPEs for the coupling model is necessary and 598 

effective, which makes a better performance for the coupling model in karst flood simulation 599 

and forecasting. 600 

6.3 Peak flow time error analysis 601 

It is very important to accurately determine the flood peak flow time in karst area, which 602 

could offer enough response times for evacuation safely and rapidly before the flood disaster 603 

appears. From the above results in Figure 11, 12 and Table 3, 4, it has been found that all 604 

flood simulations have significant peak flow time errors, and all of them are negative, means 605 

the simulated flood peaks appeared earlier than the observed values. Among them the average 606 

peak flow time error with the precipitation of rain gauge is -7 hours, and that is -32 hours with 607 

the precipitation of the initial PERSIANN-CCS QPEs. It is an obvious error and could not be 608 

ignored in flood forecasting. While the average peak flow time error of the coupling model 609 
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with the post-processed PERSIANN-CCS QPEs precipitation and re-optimized parameters is 610 

also -7 hours. It makes a great difference. It has been found that both the average peak flow 611 

time errors of Liuxihe model with the precipitation of rain gauge and the coupling model with 612 

the precipitation of the post-processed PERSIANN-CCS QPEs and re-optimized parameters 613 

are -7 hours (as shown in Table 4). So it implies the peak flow time error is -7 hours for the 614 

coupling model in LKRB, means the actual time of the flood peak may be 7 hours later, 615 

which is very important in flood forecasting and equivalent to a 7 hours long lead time for 616 

evacuation safely. 617 

There are two reasons for the peak flow time errors.  One is the systematic error of the 618 

coupling model itself.  And that could be reduced by improving the model structure and 619 

function as well as the reliable precipitation by PERSIANN-CCS QPEs and parameters 620 

optimization. The other is due to the karst development laws and the characteristics of karst 621 

water-bearing media, which can regulate the rainfall process during floods. The karst 622 

depressions and other karst negative landforms in the upstream regions can hold back and 623 

store some large floods. What is more, the karst fissures can also slow down the floods rate. 624 

These factors can play a crucial role in natural flood detention and peak clipping. So the 625 

response times of flood peak flow to rainfall increased, and the observed flood peak times 626 

lagged behind. In comparison, the simulated flood peak flows appear ahead of time. 627 

The rainfall process from the sky to the ground and finally converge to the outlet of the 628 

basin has passed through the surface karst zone, the karst conduit and fissure as well as the 629 

underground river. And the karst development laws and the characteristics of karst water-630 

bearing media have obvious influence on the rainfall-runoff process during the whole 631 

hydrological process, which makes the response time of flood peak flow to rainfall increases, 632 

and the simulated flood peak flow by the coupling model appears earlier. It implies there is a 633 

lead time for evacuation safely in flood forecasting. 634 

 The flood peak flow time has a very close relationship with the floods rate, and the 635 

floods rate is very important to determine the key factors of the karst conduit, the 636 

underground river and other hydrogeological parameters. The sensitive parameters in this 637 

paper such as the underground river parameters (as shown in Table 2) could be estimate from 638 

the floods rate to build the coupling model in karst areas. According to the survey data and 639 

tracing test in the study area – LKRB, the flow rate of floods is about 8.64-17.28km/d in dry 640 

season; that is 17.28-43.2 km/d in the normal season and is 43.2-129.6 km/d in flood period. 641 

The extreme flow rate can reach 172.8km/d, means the karst conduit is very developed in 642 

LKRB.  643 

7 Conclusion 644 

There is no reliable precipitation data of rain gauges in many karst river basins. How to 645 

obtain the reasonable rainfall data for the hydrological model in flood forecasting is especially 646 
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important. In this study, the PERSIANN-CCS QPEs could offer effective precipitation results 647 

for the study area. And after the correction, the post-processed PERSIANN-CCS QPEs coupled 648 

with a distributed hydrological model-Liuxihe model is proposed in karst flood simulation 649 

and forecasting in LKRB. The purpose is not only to simulate the flood process well, but also 650 

to find out the key factor how the karst hydrological process responds to the rainfall process 651 

in the coupling model. The coupling model employed in this paper has a good performance in 652 

flood events simulation, which can offer a reasonable theoretical guidance for flood 653 

forecasting, control and disaster reduction in karst river basins like LKRB. Based on the study 654 

results, the following conclusions could be drawn: 655 

1). The quantitative precipitation estimates produced by the PERSIANN-CCS QPEs are quite 656 

similar to the observed precipitation by rain gauges, especially in the rainfall distribution. But 657 

the PERSIANN-CCS QPEs underestimates the precipitation value. The average precipitation 658 

is 0.29 for rain gauges and 0.23 for PERSIANN-CCS QPEs. 659 

2). The average relative error is 20% between the two precipitation products. And this relative 660 

error could be reduced reasonably by the post-processed method in this paper. The average 661 

values of the six evaluation indices including the Nash–Sutcliffe coefficient (C), correlation 662 

coefficient (R), process relative error (P), peak flow relative error (E), water balance 663 

coefficient (W), and peak flow time error (T)  with the initial  PERSIANN-CCS QPEs are 664 

0.66,0.69,0.28, 24%, 0.81 and  -32 hours, respectively, while those with the post-processed 665 

QPEs are 0.73, 0.77, 0.22, 10%,0.86 and  -25 hours, respectively. It means the method used in 666 

this study for QPEs post-processed is effective, and could improve the effect of the 667 

PERSIANN-CCS QPEs capability. 668 

3). The coupling model parameters should be re-optimized using the post-processed 669 

PERSIANN-CCS QPEs. Because it has a better performance in the flood simulation than the 670 

same model parameters as rain gauges. The average value of Nash–Sutcliffe coefficient (C), 671 

correlation coefficient (R), process relative error (P), peak flow relative error (E) ,water 672 

balance coefficient (W), and peak flow time error (T)  with the same model parameters as rain 673 

gauge are 0.73, 0.77, 0.22, 10%,0.86 and  -25 hours, respectively, but those with the re-674 

optimized model parameters are 0.80, 0.83, 0.20, 6%,0.88 and  -7 hours, respectively. It 675 

improves the model performance significantly. 676 

4). The simulated karst floods process based on the precipitation observed by rain gauges is 677 

the best. And the flood simulation results by PERSIANN-CCS QPEs after post-processed and 678 

re-optimized model parameters could make the coupling model performance much better. The 679 

average value of Nash–Sutcliffe coefficient has a 14% increase, the correlation coefficient has 680 

a 14% increase, process relative error has a 8% decrease, peak flow relative error has a 18% 681 

decrease, the water balance coefficient has a 7% increase, and peak flow time error has 25 682 

hours decrease, respectively. Among them, the peak flow relative error and peak flow time 683 

error have the biggest improvement, which are the greatest concerned factors in a flood 684 
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forecasting in karst river basins. 685 
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Figures 701 

  702 

a. The structure of the KHRU(Ren, Q.W.,2006)   b. The photograph of the three-703 

dimensional space structure of the KHRU        704 

Figure 1. Sketch map of the KHRU 705 

                                  706 

 707 

 708 

 709 

 710 

 711 

 712 

 713 

 714 

 715 

a. The DEM map                                         b. Three-dimensional topographical map 716 

Figure 2. The DEM and three-dimensional topographical map of LKRB. 717 
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 719 

Figure  3. Sketch map of Liujiang River Basin（LKRB） 720 

 721 

 722 

 723 

 724 

 725 

 726 

 727 

(a) Land use                                              (b) Soil type 728 

Figure 4. The property data for Liuxihe model in LKRB 729 
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 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

(a)                                                           (b)  742 

Figure 5. Precipitation pattern comparison of two precipitation products(2008), (a) is 743 

the average precipitation of rain gauges, (b) is the average precipitation of 744 

PERSIANN-CCS QPEs. 745 

 746 

 747 

 748 

 749 

 750 

 751 

(a)                                                           (b)  752 

Figure 6. Precipitation pattern comparison of two precipitation products(2009), (a) is 753 

the average precipitation of rain gauges, (b) is the average precipitation of 754 

PERSIANN-CCS QPEs. 755 
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 759 

 760 

 761 

 762 

 763 

 764 

(a)                                                          (b)  765 

Figure 7. Precipitation pattern comparison of two precipitation products(2011), (a) is 766 

the average precipitation of rain gauges, (b) is the average precipitation of 767 

PERSIANN-CCS QPEs. 768 

 769 

 770 

 771 

 772 

 773 

 774 

 775 

 776 

 777 

(a)                                                            (b)  778 

Figure 8. Precipitation pattern comparison of two precipitation products(2012), (a) is 779 

the average precipitation of rain gauges, (b) is the average precipitation of 780 

PERSIANN-CCS QPEs. 781 
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 787 

 788 

 789 

 790 

 791 

 792 

 793 

 794 

 795 

(a)                                                                    (b)  796 

Figure 9. Precipitation pattern comparison of two precipitation products(2013), (a) is 797 

the average precipitation of rain gauges, (b) is the average precipitation of 798 

PERSIANN-CCS QPEs. 799 
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(a) The objective function evolution result    (b) The parameters evolution result 808 
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(c) The simulated flood process by using the optimized model parameters 817 

Figure 10. Parameter optimization results with the improved PSO algorithm 818 
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 827 

(a)flood event 200806090200                        (b) flood event 200906090800 828 

 829 

 830 

 831 

 832 

 833 

 834 

 835 

 836 
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(c) flood event 201106010900                         (d) flood event 201206022000 838 
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(e) flood event 201306011400 840 

Figure 11. The flood simulation results of the coupling model with two precipitation 841 

products  842 

 843 

 844 

 845 

 846 

 847 

 848 

 849 

 850 

 851 

 852 

(a)flood event 200806090200               (b) flood event 201106010900 853 

 854 

 855 

 856 

 857 

 858 

 859 

 860 

 861 

 862 

(c) flood event 201206022000               (d) flood event 201306011400 863 

Figure 12. Coupled flood simulation results with the same parameter as the rain 864 

gauge precipitation and re-optimized parameter with the post-processed PERSIANN-865 

CCS QPEs 866 
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Tables 868 

Table 1. Precipitation pattern comparison of two precipitation products  869 

flood type 
average 

precipitation(mm) 

relative 

bias % 

200806090200  
rain gauge 0.37    

PERSIANN-CCS QPEs 0.31  -16  

200906090800  
rain gauge 0.24    

PERSIANN-CCS QPEs 0.18  -25  

201106010900  
rain gauge 0.22    

PERSIANN-CCS QPEs 0.19  -14  

201206022000  
rain gauge 0.38    

PERSIANN-CCS QPEs 0.30  -21  

201306011400  
rain gauge 0.22    

PERSIANN-CCS QPEs 0.17  -23  

average value 
rain gauge 0.29    

PERSIANN-CCS QPEs 0.23  -20  

 870 

Table 2. The parameters of the coupling model 871 

Parameter

s types 
Name Variable name 

Physical 

property 
Sensitivity Adjustability 

Evapotran

spiration 

 

Potential 

evaporation 
Ep Meteorology insensitive adjustable 

Evaporation 

coefficient 
λ 

Vegetation 

type 
sensitive adjustable 

Wilting percentage Cwl 
Vegetation 

type 
insensitive adjustable 

The 

epikarst 

zone 

Thickness h 

Soil type& 

Karst rock 

property 

sensitive unadjustable 

Saturated water 

content 

θsat 

 
Soil type 

highly 

sensitive 
adjustable 

Saturation 

permeability 

coefficient 

θs Soil type 
highly 

sensitive 
adjustable 

Wide crack volume 

ratio 
V 

Karst rock 

property 

highly 

sensitive 
adjustable 

Field capacity θfc Soil type sensitive adjustable 

Rainfall-

runoff 

 

Soil layer thickness z Soil type sensitive adjustable 

Saturated hydraulic 

conductivity 

 

Ks Soil type 
highly 

sensitive 
adjustable 

Soil coefficient  

 
b Soil type sensitive adjustable 

Flow direction Fd Landform 
highly 

sensitive 
unadjustable 
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Slope S0 Landform 
highly 

sensitive 
unadjustable 

Bottom slope Sp Landform sensitive adjustable 

Bottom width Sw Landform sensitive adjustable 

Slope roughness n 

Landform 

&Vegetation 

type 

sensitive adjustable 

Channel roughness n1 

Landform 

&Vegetation 

type 

sensitive adjustable 

The 

undergrou

nd river 

Depletion 

coefficient  
ω 

Landform 

&Soil type 
sensitive adjustable 

Muskingum routing 

method / The slope 

of the water storage 

content and flow 

curve 

K Landform 
highly 

sensitive 
adjustable 

Muskingum routing 

method/the 

proportion of the 

flow 

χ Landform 
highly 

sensitive 
adjustable 

Table 3. Evaluation indices of simulated flood events with the post-processed 872 

PERSIANN-CCS QPEs 873 

flood type 

Nash-

Sutcliffe 

coefficient/C 

Correlation 

coefficient/

R 

Process 

relative 

error/P

% 

Peak 

flow 

relative 

error/E% 

The 

coefficient 

of water 

balance/W 

Peak 

flow 

time 

error/T(

h) 

 

 

2008060

90000  

rain gauge 0.8 0.91 15 3 0.89 -6 

PERSIANN-

CCS QPEs 
0.6 0.65 26 36 0.83 -69 

the post-

processed 

PERSIANN-

CCS QPEs 

0.63 0.73 21 6 0.92 -60 

2009060

90800  

rain gauge 0.95 0.92 17 4 0.9 -12 

PERSIANN-

CCS QPEs 
0.67 0.61 28 34 0.79 -36 

the post-

processed 

PERSIANN-

CCS QPEs 

0.75 0.64 22 14 0.85 -30 

2011060 rain gauge 0.8 0.84 16 3 1.02 -7 
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10900  

PERSIANN-

CCS QPEs 
0.65 0.83 25 21 0.89 -17 

the post-

processed 

PERSIANN-

CCS QPEs 

0.75 0.85 21 12 0.92 -12 

2012060

2200  

rain gauge 0.82 0.79 20 5 0.8 -6 

PERSIANN-

CCS QPEs 
0.69 0.54 31 17 0.75 -21 

the post-

processed 

PERSIANN-

CCS QPEs 

0.71 0.74 23 12 0.78 -15 

2013060

11400  

rain gauge 0.95 0.82 20 6 0.92 -4 

PERSIANN-

CCS QPEs 
0.7 0.84 28 10 0.79 -15 

the post-

processed 

PERSIANN-

CCS QPEs 

0.82 0.89 24 7 0.85 -10 

average 

value 

rain gauge 0.86 0.86 18 4 0.91 -7 

PERSIANN-

CCS QPEs 
0.66 0.69 28 24 0.81 -32 

the post-

processed 

PERSIANN-

CCS QPEs 

0.73 0.77 22 10 0.86 -25 

Table 4. Evaluation indices of simulated flood events with different model parameters 874 

flood 
Parameter 

type 

Nash-

Sutcliffe 

coefficient/C 

Correlation 

coefficient/

R 

Process 

relative 

error/P

% 

Peak 

flow 

relative 

error/E% 

The 

coefficient 

of water 

balance/W 

Peak 

flow 

time 

error/T(h

) 

2008060 rain gauge 0.8 0.91 15 3 0.89 -6 
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90000  Coupling 

model/the 

same model 

parameters 

as rain 

gauges 

0.63 0.73 21 6 0.92 -60 

Coupling 

model/re-

optimized 

model 

parameters 

0.76 0.83 18 5 0.93 -4 

2009060

90800  

rain gauge 0.95 0.92 17 4 0.9 -12 

Coupling 

model/the 

same model 

parameters 

as rain 

gauges 

0.75 0.64 22 14 0.85 -30 

Coupling 

model/re-

optimized 

model 

parameters 

0.82 0.78 19 7 0.87 -5 

2011060

10900  

rain gauge 0.8 0.84 16 3 1.02 -7 

Coupling 

model/the 

same model 

parameters 

as rain 

gauges 

0.75 0.85 21 12 0.92 -12 

Coupling 

model/re-

optimized 

model 

parameters 

0.78 0.87 19 6 0.94 -10 

2012060

2200  

rain gauge 0.82 0.79 20 5 0.8 -6 

Coupling 

model/the 

same model 

parameters 

as rain 

gauges 

0.71 0.74 23 12 0.78 -15 

Coupling 

model/re-

optimized 

model 

parameters 

0.78 0.76 21 8 0.79 -10 

2013060 rain gauge 0.95 0.82 20 6 0.92 -4 
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11400  Coupling 

model/the 

same model 

parameters 

as rain 

gauges 

0.82 0.89 24 7 0.85 -10 

Coupling 

model/re-

optimized 

model 

parameters 

0.86 0.91 22 6 0.87 -8 

average 

value 

rain gauge 0.86 0.86 18 4 0.91 -7 

Coupling 

model/the 

same model 

parameters 

as rain 

gauges 

0.73 0.77 22 10 0.86 -25 

Coupling 

model/re-

optimized 

model 

parameters 

0.8 0.83 20 6 0.88 -7 

References  875 

Abbott, M. B., Bathurst, J. C., Cunge, J. A., O’Connell, P. E.,and Rasmussen, J.: An Introduction to the 876 

European HydrologicSystem-System Hydrologue Europeen, ‘SHE’, a: History and Philosophy of a 877 

Physically-based, Distributed Modelling System,J. Hydrol., 87, 45–59, 1986a. 878 

Abbott, M. B.,Bathurst, J. C.,Cunge, J. A.,O’Connell, P. E., and Rasmussen, J.: An Introduction to the 879 

European Hydrologic System-System Hydrologue Europeen, ‘SHE’, b: Structure of a Physically based, 880 

distributed modeling System, J. Hydrol., 87,61–77, 1986b. 881 

Ambroise, B., Beven, K., and Freer, J.: Toward a generalization of the TOPMODEL concepts: 882 

Topographic indices of hydrologic similarity, Water Resour. Res., 32,2135–2145, 1996. 883 

Ashouri, H., Hsu, K.L., Soroosh,S., Braithwaite, D. K., Knapp, K. R., and Cecil, L. D.: PERSIANN-884 
CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and 885 
Climate Studies. Bulletin of the American Meteorological Society, 96(1):197-210, 2014. 886 

Atkinson, T.C.: Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset 887 
(Great Britain). Journal of Hydrology, 35(1-2):93-110, 1977. 888 

Bartsotas, N., Nikolopoulos, E., Anagnostou, E., and Kallos, G.: Improving satellite quantitative 889 
precipitation estimates through the use of high-resolution numerical weather predictions: Similarities 890 
and contrasts between the Alps and Blue Nile region// EGU General Assembly Conference. EGU 891 
General Assembly Conference Abstracts, 2017. 892 

Birk,S., Geyer, T., Liedl, R., and Sauter, M.: Process-based interpretation of tracer tests in carbonate 893 
aquifers. Ground Water, 43(3): 381-388, 2005. 894 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-438
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 5 September 2018
c© Author(s) 2018. CC BY 4.0 License.



36 

 

Chen, Y.B, Li, J., Wang, H., Qin, J., and Dong, L.: Large-watershed flood forecasting with high-895 

resolution distributed hydrological model, Hydrol. Earth Syst. Sci., 21, 735–749, doi:10.5194/hess-21-896 

735-2017, 2017. 897 

Chen, Y.B., Li, J., and Xu, H.J.: Improving flood forecasting capability of physically based distributed 898 

hydrological models by parameter optimization, Hydrol. Earth Syst. Sci., 20, 375–392, 899 

doi:10.5194/hess-20-375-2016, 2016. 900 

Chen, Y.B.: Liuxihe Model, China Science and Technology Press, Peking, China, September 2009. 901 

Davis W.M.: Relation of geography to geology. Geological Society of America Bulletin, 23,1912. 902 

Delrieu,G., Bonnifait, L., Kirstetter, P. E., and Boudevillain, B.: Dependence of radar quantitative 903 
precipitation estimation error on the rain intensity in the Cévennes region, France. Hydrological 904 
Sciences Journal, 59(7):1308-1319,2014. 905 

Doummar, J., Margane, A., Sauter, M., and Geyer, T.: Assessment of transport parameters in a karst 906 
system under various flow periods through extensive analysis of artificial tracer tests// EGU General 907 
Assembly Conference. EGU General Assembly Conference Abstracts, 2012. 908 

Duan, J.,and Miller,N.L.: A generalized power function for the subsurface transmissivity profile in 909 
TOPMODEL. Water Resources Research, 33(11):2559–2562, 1997. 910 

Falorni, G., Teles, V., Vivoni, E. R., Bras, R. L., and Amaratunga, K. S.: Analysis and characterization 911 

of the vertical accuracy of digital elevation models from the Shuttle RadarTopography Mission, J. 912 

Geophys. Res.-Earth, 110, F02005, doi:10.1029/2003JF000113, 2005. 913 

Faure, D., Gaussiat, N., Tabary, P., and Urban, B.: Real time integration of foreign radar quantitative 914 
precipitation estimations (QPEs) in the French national QPE mosaic// Conference on Radar 915 
Meteorology, AMS,21-21, 2015. 916 

Ford, D., and Williams P.W.: Karst Geomorphology and Hydrology. Geographical Journal, 917 
157(1):87,1991. 918 

Freeze, R. A. and Harlan, R. L.: Blueprint for a physically-based,digitally simulated, hydrologic 919 

response model, J. Hydrology., 9,237–258, 1969. 920 

Goldscheider, N., and Drew, D.: Methods in Karst Hydrogeology: IAH:International Contributions to 921 
Hydrogeology, 26. CRC Press, 2007. 922 

Goudenhoofdt E, Delobbe L.: Evaluation of radar-gauge merging methods for quantitative precipitation 923 
estimates. Hydrology & Earth System Sciences, 13(2):195-203.,2009. 924 

Hartmann, A., Barberá, J. A., Lange, J., Andreo, B., and Weiler, M.: Progress in the hydrologic 925 
simulation of time variant recharge areas of karst systems – Exemplified at a karst spring in Southern 926 
Spain. Advances in Water Resources, 54(2):149-160, 2013. 927 

Hirpa, F. A., Gebremichael, M., and Hopson, T.: Evaluation of high-resolution satellite precipitation 928 
products over very complex terrain in ethiopia. J.appl.meteor.climatol, 49(5), 1044-1051.,2010. 929 

Hsu, K. L., Gupta, H. V., Gao, X.G, and Soroosh,S.: Estimation of physical variables from 930 

multichannel remotely sensed imagery using a neural network: Application to rainfall estimation. 931 

Water Resources Research, 35(5):1605-1618,1999. 932 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-438
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 5 September 2018
c© Author(s) 2018. CC BY 4.0 License.



37 

 

Hsu, K.L, Yang,H., and Soroosh,S.: Rainfall Estimation Using a Cloud Patch Classification Map// 933 
Measuring Precipitation From Space. Springer Netherlands,329-342, 2007. 934 

Hussain, Y., Satgé, F., Hussain, M. B., Martinez-Carvajal, H., Bonnet, M. P., and Cárdenas-Soto, M.: 935 
Performance of CMORPH, TMPA, and PERSIANN rainfall datasets over plain, mountainous, and 936 
glacial regions of Pakistan. Theoretical & Applied Climatology, 131(3-4), 1119-1132,2018. 937 

Hu, Q.F., Yang,D.W.,Wang,Y.T.,Yang,H.B.,and Liu,Y.: Characteristics and sources of errors in daily 938 
TＲMM precipitation product over Ganjiang River basin in China．ADVANCES IN WATER 939 
SCIENCE,24(6)：794-800,2013. 940 

Kovacs,A., and Perrochet,P.: Hydrograph Analysis for Parameter Estimation of Connected and Karst 941 
Systems// Engineers Australia, 2011. 942 

Li, J., Chen, Y.B., Wang, H.Y., Qin, J.M., Li, J., and Chiao, S.: Extending flood forecasting lead time 943 
in a large watershed by coupling WRF QPF with a distributed hydrological model. Hydrology & Earth 944 
System Sciences Discussions, 21:1-45,2017. 945 

Li,B.G.,and Tao,S.: Several Problems and Their Solutions in Surface Runoff Modeling. Bulletin of Soil 946 
and W ter Conservation, 20(3):47-49,2000. 947 

Li,G.F.: Karst Hydrogeologic Characteristics and Water Resources in Guangxi,China, Carsologica 948 
Sinica,3:253-258,1996. 949 

Li,X.M., and Ren,B.: The calculation method of non-closure small watershed of the mine water runoff 950 
in ungauged basins. Mineral Engineering Research, 2009. 951 

Liu,H.M.Deng,H.P.,Sun,S.F.,and Xiao,Y.: .Numerically Test of Influence of Incorporation of 952 
TOPMODEL  into Land Surface Model SSiB on Hydrological Simulation at Basin Scale.PLATEAU 953 
METEOROLOGY, 32(3):829-838,2013. 954 

Liu, X.Y.,Yang, T., Hsu ,K.L., Liu, C., and Soroosh,S.: Evaluating the streamflow simulation 955 
capability of PERSIANN-CDR daily rainfall products in two river basins on the Tibetan Plateau. 956 
Hydrology & Earth System Sciences Discussions, 21(1):1-31, 2017. 957 

Loveland, T. R., Merchant, J. W., Ohlen, D. O., and Brown, J. F.: Development of a Land Cover 958 

Characteristics Data Base for the Conterminous U.S., Photogram, Photogramm. Eng. Rem. S., 57, 959 

1453–1463, 1991. 960 

Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, J., Yang, L., and Merchant, J. W.: 961 

Development of a Global Land Cover Characteristics Database and IGBP DISCover from 1-km 962 

AVHRR Data, Int. J. Remote Sens., 21, 1303–1330, 2000. 963 

Liang,H.: Prelim in Ary Study on the Characteristics of Flood Discharge and Low Flow in Fluenced by 964 
the Scale of Karst Dranin Age Basin- Exampled by the River s in Guizhou Province,China, Carsologica 965 
Sinica. 2:121-129, 1997. 966 

Moradkhani, and Meskele, T.T.: Satellite Rainfall Applications for Surface Hydrology. Springer 967 
Netherlands, 2010. 968 

Neitsch,S.L.,J.G.Arnold,J.R.Kiniry and J.R.Williams.: Soi1  and  Water  Assessment  Tool 969 

Theoretical Documentation Version,2000. 970 

Quinlan, J.F and Ewers, R.O.: Ground water flow in limestone terranes -strategy, rationale and 971 
procedure for reliable, efficient monitoring of ground water in karst areas. Mendeley, 8:167-173, 1985. 972 

Quinlan, J. F., Davies, G. J., Jones, S. W., and Huntoon, P. W.: The applicability of numerical models 973 
to adequately characterize ground-water flow in karstic and other triple-porosity aquifers. 1288:114-974 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-438
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 5 September 2018
c© Author(s) 2018. CC BY 4.0 License.



38 

 

133, 2011. 975 

Rafieei,N.A., Norouzi,, A., Kim, B., and Seo, D.: J Fusion of multiple radar-based quantitative 976 
precipitation estimates (QPE) for high-resolution flash flood forecasting in large urban areas// AGU 977 
Fall Meeting. AGU Fall Meeting Abstracts, 2014. 978 

Ren,Q.W.: Water Quantity Evaluation Methodology Based on Modified SWAT Hydrological 979 
Modeling in Southwest Karst Area. China University of Geoscience, Wuhan ,China, 2006. 980 

Romill, T. G. and Gebremichael, M.: Evaluation of satellite rainfall estimates over Ethiopian river 981 
basins. Hydrol. Earth Syst. Sci., 15, 1505–1514, 2011, doi:10.5194/hess-15-1505-2011. 982 

Saxton, K.E, Rawls, W. J, Romberger, J .S, and Papendick, R. I.: Estimating generalized soil water 983 

characteristics from texture. Soil Science Society of America Journal, 50: 1031- 1036,1986. 984 

Servat, E .,and Sakho,M.: Modelling and management of sustainable basin-scale water resource 985 

systems : proceedings of an international symposium held at Boulder, Proceedings of IAHS 986 

Symposium 6, IAHS Publication No.231,1995. 987 

Sharma, A. and Tiwari, K. N.: A comparative appraisal of hydrological behavior of SRTM DEM at 988 

catchment level, J. Hydrol., 519, 1394–1404, 2014. 989 

Shuster, E .T, and White,W.B.: Seasonal fluctuations in the chemistry of lime-stone springs: A possible 990 
means for characterizing carbonate aquifers. Journal of Hydrology, 14(2):93-128,1971. 991 

Soroosh,S., Hsu ,K.L.,Gao,,X.G.,Hoshin,V.G.,Bisher,I.,and Braithwaite, D.: Evaluation of PERSIANN 992 
System Satellite-Based Estimates of Tropical Rainfall. Bulletin of the American Meteorological 993 
Society,81,2035-2046,2000. 994 

Stenz, R.D.: Improving satellite quantitative precipitation estimates by incorporating deep convective 995 
cloud optical depth. Dissertations & Theses - Gradworks, 2014. 996 

Strahler, A. N.: Quantitative analysis of watershed Geomorphology,Transactions of the American 997 
Geophysical Union, 35, 913–920,1957. 998 

Tan ,M.L., and Santo,H.: Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite 999 
precipitation products over Malaysia. Atmospheric Research, , 202, 2018. 1000 

Wardhana A, Pawitan H, and Dasanto B D.: Application of hourly radar-gauge merging method for 1001 
quantitative precipitation estimates//012033,2017. 1002 

Williams,P.W.: Geomorohic inheritance and the development of tower karst Earth surface Progresses 1003 
and landform.12,453-465,1987. 1004 

Yang,H., Hsu, K. L., Soroosh,S., and Gao, X.G.: Precipitation Estimation from Remotely Sensed 1005 
Imagery Using an Artificial Neural Network Cloud Classification System. Journal of Applied 1006 
Meteorology, 36(9):1176-1190,2004. 1007 

Yang,H.,Gochis, D., Cheng, J. T., Hsu, K. L., and Soroosh,S.: Evaluation of PERSIANN-CCS Rainfall 1008 
Measurement Using the NAME Event Rain Gauge Network. Journal of Hydrometeorology, 8(3):469, 1009 
2007. 1010 

Zhang,C.,Jiang,Y.J.,Lian,Y.Q.,Yuan,D.X.,Pei,J.G.,and Jiang,G.H.: Rainfall-runoff simulation of a 1011 
typical karst fengcong depression system using SWMM model-A case study of the Yaji experimental 1012 
site in Guilin.Hydrogeology and Engineering Geology,34(3):10-14, 2007. 1013 

 1014 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-438
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 5 September 2018
c© Author(s) 2018. CC BY 4.0 License.


