
1.Reply to the Editor‘s comments further review by 

editor and referees(a point-by-point reply to the 

comments) 

 

 

Editor Decision: Publish subject to revisions (further review by editor and 

referees) (15 Nov 2018) by Frederiek Sperna Weiland 

Comments to the Author: 

The manuscript addresses a relevant topic and especially for this Special Issue the 

model improvement with satellite data is very valuable. Yet, as also stated by the 

reviewers, the manuscript needs further improvement. Please address all improvements 

addressed in your response to the reviewers and pay specific attention to hte following: 

 

1. Improve the English 

 

2. Clearly address the novelty of the research and make sure you link this to other 

international research and model developments on this topic. The fact that your model 

has been improved with the specific properties and has been applied for the basin for 

the first time does not say that it is scientifically novel. Pay more attention to the 

discussion of the differences, advantages and similarities of your model from the 

models referenced in the Introduction. 

 

3. Address the model and parameter uncertainty, see the comments of reviewer 2 and 

pay specific attention to the model calibration and please increase the number of flood 

events considered. Look for a way to present the relevant statistics efficiently. 

 

4. Make sure the presentation and discussion of results is in the right order. 

 

5. Consider presenting results of the model performance for one of the upstream sub-

basins where the influence of Karst highly dominates the runoff processes. 

 

First, thank you very much for the further review by the editor and referees. Below 

are the individual responses to the editor’s and reviewers’ comments. 

Comment 1. 

Improve the English 

ACs 1. 

The language of the manuscript was improved during the revision process. There 

were some syntax errors and unclear sentences in the paper. After the editor and 

reviewer commented on the language of the manuscript, the authors checked the 

entire paper carefully to correct the language errors. Additionally, we asked 



AMERICAN JOURNAL EXPERTS (AJE) for help and chose the “Premium editing 

package” for revision of the whole paper. Afterward, the authors again reviewed the 

entire paper carefully to ensure that the language was addressed and that the edits 

suggested by AJE accurately reflected the meaning of the article. 

Comment 2. 

Clearly address the novelty of the research and make sure you link this to other 

international research and model developments on this topic. The fact that your model 

has been improved with the specific properties and has been applied for the basin for 

the first time does not say that it is scientifically novel. Pay more attention to the 

discussion of the differences, advantages and similarities of your model from the 

models referenced in the Introduction. 

ACs 2. 

This was completed in the revision. The reviewer pointed out that the novelty of 

the research is not clear in the original paper. The novelty of this study is described 

more clearly in the abstract and the introduction in the revision. 

The main novelty of the paper is the improvements to the structure and function of 

the physically based distributed hydrological model, the Liuxihe model, by adding a 

karst mechanism. For instance, the sub-basins are divided into many karst hydrology 

response units (KHRUs) in this paper to ensure that the model structure is refined 

enough to suit karst landforms. In addition, the karst hydrological processes including 

‘rapid fissure’ and ‘slow fissure’ in the epikarst zone are considered in the model 

structure.  

There is lack of typical rainfall data upon which to build a hydrological model in 

karst basins, and the PERSIANN CCS QPEs could offer reasonable and high-

resolution rainfall data. Coupling the PERSIANN CCS QPEs with a physically based 

distributed hydrological model has far-reaching application potential in karst flood 

simulation and prediction. Additionally, recalibrating the coupling model parameters 

is a novelty of this study, and it can largely improve the flood prediction performance 

of the model. 

 

The editor pointed out the authors should pay more attention to the discussion of 

the differences, advantages and similarities of the model in this study from the models 

referenced in the Introduction. and make sure the model used in this paper is 

innovative compared with other international research and model developments. 

This was completed in the revision. Some of the features and functions unique to 

the model structure in this paper have been added and described in the introduction. For 

instance, the early warning points are set up in the model to predict the flood processes 

of some special points in the river section, for example, at the mouth of the river or at 

the outlet of the basin. These points have special significance, such as in flood warnings 

and to ensure safe evacuations. Flood process predictions could be performed 



separately at these points, and people may pay more attention to these flood processes, 

which is greatly needed in karst areas. 

Comment 3. 

 

Address the model and parameter uncertainty, see the comments of reviewer 2 and pay 

specific attention to the model calibration and please increase the number of flood 

events considered. Look for a way to present the relevant statistics efficiently. 

ACs 3. 

This was completed in the revision. The model parameter uncertainty was analysed 

and added to section 5.3, Parametric uncertainty analysis, in the revised manuscript. 

The multi-parameter sensitivity analysis (MPSA) method by Choi (1999) et al. was 

used to analyse the parameter uncertainty in the model, and it was developed based on 

the GLUE method.  

 There are only 5 karst flood events in the original paper, and according to the 

comments of reviewer, this amount is not sufficient for such a complex model. 

Therefore, in the revision, 30 karst flood events from 1982-2013 were collected, and 3 

were used for parameter optimization, while the others were used to validate the 

performance of the model. A set of 6 evaluation indices, namely, the Nash-Sutcliffe 

coefficient, correlation coefficient, process relative error, peak flow relative error, 

coefficient of water balance, and peak flow time error, are used to present the simulated 

flood results efficiently.  

Comment 4. 

Make sure the presentation and discussion of results is in the right order. 

ACs 4. 

This was corrected during the revision process. The structure of the paper has 

been modified in the revised manuscript. The original paper structure was as follows: 

1 Introduction, 2 Methodology, 3 Study area and data, 4 PERSIANN-CCS QPEs and 

its post-processed results, 5 Model set up, 6 Results and discussions, and 7 

Conclusion.  

In consideration of the content in part 4, PERSIANN-CCS QPEs, and part 5, 

Model set up, we felt that some of this content belonged in part 2, Methodology, so 

the structure of the paper was modified so that the sequence and the logical 

relationship were easier to understand. The new structure of the paper is as follows: 1 

Introduction, 2 Study area and data, 3 PERSIANN-CCS QPEs, 4 Hydrological model, 

5 Model set up, 6 Results and discussion, and 7 Conclusion.  

Furthermore, as noted, some of the results were already presented in section 5, 

before section 6 ‘Results and discussion’. These results were added to section 6 

‘Results and discussion’ during the revision process. 

  After these revisions, the presentation and discussion of our results now appear in 

the correct order. 



 

Comment 5. 

 Consider presenting results of the model performance for one of the upstream sub-

basins where the influence of Karst highly dominates the runoff processes. 

 

ACs 5. 

This is a valuable suggestion, and it was implemented during the revision. The 

most developed karst area of the study area, the LKRB, is the Beijiang catchment, 

where the influence of karst features highly dominates the rainfall runoff processes. The 

Beijiang catchment is a tributary of the middle and upper reaches of the Liujiang River. 

The karst floods are typical flash floods with rapid discharge and water level fluctuation 

in the catchment and are mainly caused by storms, and the developed karst landforms 

play important roles in flood propagation. For instance, karst depressions can store 

some water content during the heavy rain. Additionally, the regulation functions of the 

karst fissure system can slow the flood propagation velocity. 

The early warning point at the Goutan river gauge was set in the model to 

simulate and predict the karst flood process in the Beijiang catchment, since the 

Goutan point is the outlet of the catchment. In total, 10 karst flood events were 

collected to validate the flood simulation effect based on the Liuxihe model in the 

revised manuscript. 

 

References: Choi, J., Harvey, J. W., and Conklin, M. H.: Use of multi-parameter sensitivity 

analysis to determine relative importance of factors influencing natural attenuation of mining 

contaminants. the Toxic Substances Hydrology Program Meeting, Charleston ,south Carolina: 

1999. 

  



2. A list of all relevant changes made in the 

manuscript 

2.1 Improve the English 

The language of the manuscript was improved during the revision process. Some 

syntax errors, unclear sentences and the language errors in the paper were corrected 

carefully. And we asked AMERICAN JOURNAL EXPERTS (AJE) for help and 

chose the “Premium editing package” for revision of the whole paper.  

2.2 Clearly address the novelty of this study  

The main novelty of the paper is the improvements to the structure and function of 

the physically based distributed hydrological model, the Liuxihe model, by adding a 

karst mechanism. The novelty of this study is described more clearly in the abstract 

(Line 28-38), the introduction (line 94-124, and 185-200) and section 4.2 (line 486-

510) in the revision. 

And compared with other international research and model developments, the 

feature and function unique to the model structure in this paper have been added and 

described in the introduction section. For instance, the early warning points are 

proposed and introduced in the introduction (line 109-118) and set up in the model to 

predict the flood processes in section 2.3, line 289-299, section 5.1, line 609-617, and 

shows in Figure 1. 

2.3 Improve the structure of the paper 

The structure of the paper has been modified in the revised manuscript. The 

original paper structure was as follows: 1 Introduction, 2 Methodology, 3 Study area 

and data, 4 PERSIANN-CCS QPEs and its post-processed results, 5 Model set up, 6 

Results and discussions, and 7 Conclusion.  

To easier understand the sequence and the logical relationship of the paper, the 

structure of the paper was modified as follows: 1 Introduction, 2 Study area and data, 

3 PERSIANN-CCS QPEs, 4 Hydrological model, 5 Model set up, 6 Results and 

discussion, and 7 Conclusion.  

And some of the results presented in section 5 were added to section 6 ‘Results 

and discussion’ during the revision process. 

After these revisions, the presentation and discussion of our results now appear in 

the correct order. 

2.4 Improve words and sentences 

Some words in the paper are modified in the revised manuscript. For instance, the 

word ‘forecasting’ is mentioned many times in the manuscript, even in the tile, but it 



is replaced by ‘prediction’ in the whole paper in the revision. 

And in section 4.2, equation (4), line 510-513, (original in line 255-258), there is 

a mistake in spelling, and the word ‘rapid fissure flow’ is changed to ‘slow fissure 

flow’ in the revision. 

In section 4.2, equation (5), line 518-523, (original in line 263-267), ‘the epikarst 

zone’ is replaced by ‘the slow fissure flow’. 

It is not clear how the sub-basins are identified in the study area. The description 

of the sub-basins is modified in section 4.1, line 432-437, (original in line 192-195): 

“and the whole catchment is divided into a great number of grid cells horizontally 

using the high-resolution DEM data, with the divisions called sub-basins. Each grid is 

considered a uniform basin, and the elevation, land cover type, soil type, and other 

model elements including rainfall-runoff, evapotranspiration, etc. are calculated in the 

uniform basin.” 

In section 4.2, line 497-510, (original in line 250-256): the paragraph has been 

rewritten to make the karst hydrological process of the rapid fissure flow and slow 

fissure flow in the epikarst zone more clear. 

In section 4.2, line 524-525, (original in line 268-269): the sentence “The linear 

reservoir model is employed to calculate the regulation process of the superficial karst 

fissure system” is replaced by “The linear reservoir model is employed to calculate 

the regulation process of the superficial karst fissure system in the epikarst zone” 

2.5 Add descriptive content and calculation results 

In section 1. Introduction, line 109-118, the descriptive content about the early 

warning points in the model is added. 

The distributed hydrological karst models have a direct relationship with the karst 

landform or geology. However, there is no introduction about the landform or geology 

in the original paper. In the revised manuscript, section 2.2 Landform, tectonics and 

hydrogeology information are added (line 236-275).  

In section 2.1, line 227-235, the Beijiang catchment is introduced, it is the most 

developed karst area in LKRB, where the influence of karst features highly dominates 

the rainfall-runoff processes, and in section 2.3, the early warning point of the 

Beijiang catchment and the karst flood events are added.  

In section 4.2, line 486-510, some key issues are more clearly explained in the 

model description. For example, the meaning of ‘rapid fissure’ and ‘slow fissure’ in 

the epikarst zone, the karst hydrological process for rainfall-runoff during the heavy 

rain, and the hydrological function of the sinkholes.  

The karst flood simulation results of Beijiang catchment are calculated in section 

6.2 in the revised manuscript (line 768-793). There are 10 karst flood events are 

simulated in the Beijiang catchment, and the evaluation indices of the simulated flood 

results are shown in Table 6, and 4 karst flood simulation results are shown in Figure 

13. 



2.6 Address the hydrogeology parameters and parameter uncertainty  

The hydrogeology parameters of the model are added in section 5.2, line 624-651, 

(original in line 486-495), and listed in Table 2 (b), (c) in the revised manuscript.  

The model parameter uncertainty was analysed and added in section 5.3, line 685-

711, section 6.1, line 732-754, and in the section 7. Conclusion, line 930-939 in the 

revised manuscript. The parameter uncertainty results are shown in Table 4.  

There are only 5 karst flood events for LKRB in the original paper, in the 

revision, 30 karst flood events from 1982-2013 were collected in section 2.3, line 278, 

and 3 were used for parameter optimization in section 5.2, line 660-674. The flood 

simulation results obtained through parameter optimization by the improved PSO 

algorithm are shown in Figure 11 and Table 3. The 30 karst flood events simulated 

results are analysed in section 6.2, line 757-767, and the evaluation indices of the 

simulated flood results are listed in Table 5. 

2.7 The down-scaling method of the PERSIANN data 

How the PERSIANN data down-scaling carried out in the original paper is not 

clear, and in the revised manuscript, section 3.1, line 336-339, add a sentence: the 

down-scaling method is used in this paper based on statistical relations between 

meteorological variables, and DEM data using LOO (Leave-One-Out) cross evaluation 

method and spatial autocorrelation analysis methods (Fan et al., 2017). 

2.8 Improve Figures and Tables 

Figures: 

1) Figures 1 is redrawn, and add Figures 1(b) and (c). 

2)The scale of the Figure 2(a)and(b) are modified to the same scale in the revised 

manuscript.  

3) Figures 3,10 are redrawn to make the resolution higher. 

4) In Figures 4-8, (original Figure 5-9), there is a mistake for the different colors of 

the lines. In the revised manuscript, the same colors of the lines and the same range on 

the x and y axes for the figures are used. And the units of the x axes for the rainfall are 

converted into mm/hr. 

5) Figure 9,11, and 13 are added. 

Tables: 

1) In Table 1, the Average precipitation and Relative bias are recalculated. 

2) In Table 2, (b) and (c) are added. 

3) Table 3,4,5 and 6 are added. 

4) In Table 7 and 8, the titles are replaced.  

To make the descriptions of Table 7 and 8 more clear (original Table 3 and 4), the 

title of them are modified. Table 7. Evaluation indices of simulated flood events using 

the initial PERSIANN-CCS QPEs and the post-processed values; Table 8. The effect of 

recalibrating the coupling model parameters. Also, the flood simulation result by rain 

gauge precipitation are deleted in Table 8(original Table 4). Because it is not necessary 



and already exist in Table 7(original Table 3). 

In Table 7 and 8, the Peak flow time errors are considerably high. So the coupling 

model are re-examined and the Peak flow time errors are recalculate in Table 7 and 8. 

After that, the Errors in time to peak are acceptable. 

2.9 Improve References 

1) Delete or replace references: 
There are two redundant references in this paper: 

Original Line189, Chen et al. (2011) in is mentioned in the text but not in the list;  

Original Line 964-966, Liang (1997) is in the list, but not mentioned in the text.  

Both of them are deleted in the revised manuscript. 

Some of the references used in this study are outdated. For instance, 

Davis (1912), Original line335; Strahler method (Strahler, 1957), line Original 453, and 

Saxton (Saxton et al.,1986), Original line 485. In the revised manuscript, the references 

Davis (1912), Strahler method (Strahler, 1957) are deleted, and Saxton (Saxton et 

al.,1986) is replaced by Ren (2006), line 653. 

2) Add references: 

Line 560, Ahilan, S., O'Sullivan, J. J., and Bruen, M.: Influences on flood frequency 

distribution in Irish catchments. 34th IAHR World Congress 2011: Balance and 

Uncertainty: Water in a Changing World. International Assn for Hydro-Environment 

Engineering and Research, 2012. 

Line 689, Choi, J., Harvey, J. W., and Conklin, M. H.: Use of multi-parameter 

sensitivity analysis to determine relative importance of factors influencing natural 

attenuation of mining contaminants. the Toxic Substances Hydrology Program Meeting, 

Charleston ,south Carolina: 1999． 

Line 338, Fan, K.K.,Duan, L.M.,Zhang, Q., Shi, P.J., Liu, J.Y., Gu, X.H., and Kong, 

D.D.: Downscaling Analysis of TRMM Precipitation Based on Multiple High-

resolution Satellite Data in the Inner Mongolia, China. Scientia Geographica Sinica, 

37(9):1411-1421, 2017. 
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Abstract.  

In general, there areThere is no long-term meteorological or hydrological data in available for 

karst river basins to a large extent. EspeciallyThe lack of typical rainfall data is a great challenge 

to buildtheat hinders the development of  a hydrological models. Quantitative precipitation 

estimates (QPEs) based on the weather satellites could offers a good attemptpotential method 

by which to obtain the rainfall data in karst area. What’s moreareas could be obtained. 

Furthermore, coupling QPEs with a distributed hydrological model has the potential to improve 

the precision for of flood predictions in large karst watershedwatersheds. Estimating 

Pprecipitation estimation from remotely sensed information using an artificial neural networks-

cloud classification system (PERSIANN-CCS) as is a type of QPE technology of QPEs based 

on satellites that has been achieved a wide broad research results in the worldworldwide. 

However, only a few studies on PERSIANN-CCS QPEs are have occurred in large karst basins, 

and the accuracy is always generally poor in terms of practical applicationapplications. This 

paper studied the feasibility of coupling a fully physically- based distributed hydrological 

model-, i.e., the Liuxihe model, with the PERSIANN-CCS QPEs for predicting floods 

prediction in a large river basin, i.e., the- Liujiang Kkarst rRiver bBasin, which has with a 

watershedn area of 58,270 km2 , watershed in southern China. This study is also the first time 

thatto use the Liuxihe model has been used infor flood simulations and predictions in karst 

basinbasins as an attempt in this study. And theThe model structure and function need to be 

morerequire further refined refinement to suit the karst basins. For instance,   the sub-basins in 

mailto:445776649@qq.com


this paper are divided into many karst hydrology respondresponse units (KHRUs) in this paper to 

ensure that the model structure is adequately refined enough infor karst area.  What’s moreareas. 

In addition, the convergence of the underground runoff calculation method within the original 

Liuxihe model is changed to suit the  

karst water-bearing media, and the Muskingum routing method is used in the model to calculate 

the underground runoff in this study. AlsoAdditionally, the epikarst zone, as a distinctive structure 

of the KHRU, is considered carefully considered in the model. The result of the QPEs result shows 

that, compared with the observed precipitation measured by a rain gauge, the distribution of 

precipitation predicted by the PERSIANN-CCS QPEs has a great similaritywas very similar. 

ButHowever, the quantity values of precipitation predicted by the PERSIANN-CCS QPEs are 

was smaller. A post-processeding method is proposed to revise the products of the PERSIANN-

CCS QPEs products. The karst flood simulation results show that coupling the post-processed 

PERSIANN-CCS QPEs with the Liuxihe model has a better performance than relative to the 

the result with based on the initial PERSIANN-CCS QPEs in karst flood simulation. What’s 

moreMoreover, the performance of the coupled modelcoupling model’s performance largely 

improves largely with parameter re-optimized optimization with via the post-processed 

PERSIANN-CCS QPEs. The average values of the six evaluation indices change as follows: 

including the Nash–Sutcliffe coefficient has  aincreases by 14% increase, the correlation 

coefficient has aincreases by 1415% increase, the process relative error decreases by has a 8% 

decrease, the peak flow relative error decreases byhas a 18% decrease, the water balance coefficient 

increases byhas a 78% increase, and the peak flow time error has displays a 255 hours -hour decrease, 

respectively. Among themthese parameters, the peak flow relative error showsand the peak flow 

time error have has the biggest greatest improvements; thus, these parameters are of the greatest 

concern which are the greatest concerned factors infor flood prediction. The rational flood 

simulation results byfrom the coupling coupled model provide a great practical application prospect 

for flood prediction in large karst river basins. 

1 Introduction 

The highly anisotropic karst water-bearing media and intricate hydraulic conditions make cause 

the karst flood processes to exhibit significant differences in time and space, which ledleads to the 

laminar flow and turbulent flow transmutationtransmutetransmuting into each other in karst areas; 

thus, and the flood events in karst river basins are more complicated compared withthan that of 

those in non-karst areaareas (Ford and Williams,2007;Goldscheider and Drew,2007）.2007). This 

difference makes it difficult to precisely simulate and forecast the karst flood process based onusing 

a hydrological model in mechanism. It is a common practice that to simplify the karst water-bearing 

media should be simplified before buildbuilding a model. For example, making the karst river basin 

could be made into as a multiple and nested spatial structure;, making the underground river as the 

could be made into an intelligible river system in the model;, and the cave as could be the an 

anisotropic medium with a large vertical infiltration coefficient and porosity but a small specific 

yield. Even so, it is still hard to quantify the spatial structure of the karst water-bearing media with 

a physics-mathematics model. And the karst Karst flood simulation results usually have some errors 

that could not cannot be ignored, which isand these errors represent the main problem in flood 

prediction in karst river basins（Kovacsbasins (Kovacs and Perrochet,2011）. 

       2011). 



Because the dynamic changes of in the karst hydrological processprocesses and the hydraulic 

conditions of the underlying surface are complicated and non-linear in karst area, which makes it 

hardareas, it is difficult to obtain obtaining the  hydrogeology hydrogeological parameters, such as 

specific yield, hydraulic conductivity and aquifer transmissivity, is difficult and so on. With the 

rapid development of remote sensing, GIS technology and hydrogeology, the technology of used in 

field work, including the tracer tests (Birk et al.,2005;Doummar et al.,2012) and infiltration tests 

have, has made a significant progress. However, it is still a challenge to accurately simulate 

accurately simulating the laws of motion of the karst hydrological processes in the karst water-

bearing media with based on these experimental tests remains difficult. So the Therefore, traditional 

methods, such as lumped hydrological models, are not suitable for flood prediction in karst area

（Hartmann areas (Hartmann et al.,2013） 2013). Compared with the performance of lumped 

hydrological models, the physically based distributed hydrological models (PBDHMs) have some 

advantages for in terms of generating karst flood predictions in mechanism. The PBDHMs divide 

the wholeentire karst river basin into a series of small grid units named karst sub-streams, which 

could precisely reflect the real rules of hydrological processes and karst development characteristics 

precisely. Therefore, it the PBDHM approach has a great application potential to improvein terms 

of improving the karst floodsflood simulation and prediction capability capabilities (Ambroise et 

al., 1996). Many PBDHMs have been proposed since the blueprint of the PBDHMs PBDHM was 

published by Freeze and Harlan (1969). The first full PBDHM is, called the SHE model,  was 

regarded as the SHE model and was published in 1987 (Abbott et al., 1986a, b). Shustert and White 

(1971) attempted to used the the PBDHM as an attempt in karst area, inareas. In their research, the 

dissolved carbonate species were analyzedanalysed in the waters of 14 carbonate springs in the 

Central central Appalachians. And these These springs were classified into diffuse-flow feeder-

system types and conduit feeder-system types. The PBDHMs have been achieved obtained many 

several good research results in karst areaareas (Atkinson,1977; Quinlan and Ewers,1985; Quinlan 

et al.,2011; Duan and Miller,1997; Ren,2006; Liu et al.,2013; Zhang et al.,2007). 

The PBDHM used in this paper is the Liuxihe model（ (Chen,2009)）, itwhich is a fully 

distributed model with 14 physically  based parameters. And after After adding the karst 

mechanisms were added, the number of the parameters is was 20. Unlike other distributed 

hydrological models, there are some special structural designs in the this model. For instance, the 

whole model structure is divided into eight independent parts, which are called sub-models;. tThese 

sub-models that includinginclude the 1) Watershed watershed division and data mining sub-model, 

2) UnitsUunit classification and river section estimation sub-model, 3) Rainfall rainfall fusion 

computationalmerged calculation sub-model, 4) Evapotranspiration evapotranspiration calculation 

sub-model, 5) Runoff runoff calculation sub-model, 6) Confluence confluence calculation sub-

model, 7) Parametric parametric sensitivity analysis sub-model,   and 8) Parameter parameter 

optimization sub-model. , among them, uUnlike other distributed models, separate parameter 

uncertainty analysis calculations need tomust be performed outside the model. However, the 

parametric sensitivity analysis is a fixed module in the Liuxihe model, which means that when the 

model is built for flood prediction, parametric uncertainty analysis has already been carried out. And 

theThe parametric uncertainty analysis 

 in the Liuxihe model is based on a Multimulti-Parameter parameter Sensitivity sensitivity 

Analysis analysis that was presented by by in Choi (1999) et al.  

 



In the actual flood predictions, people may pay more attention to the flood process of at some 

specialspecific points on of the river section. For example, focus may be directed aton the mouth of 

the river or the outlet of the basin. And these These points have special significance in relation to 

procedures such, such as flood warnings and getting, get evacuees to safetyevacuationssafely, etc. 

Therefore, it is very important to extract extracting the flood processes of at these points is important 

and should be givenand make a special displaygive them special consideration.   In the Liuxihe 

model, these points are named early warning points, and flood prediction, which is badlyurgently 

needed in karst areas, can be doneperformed separately at these points, which is badly needed in 

karst areas. 

For instanceexample, the confluentconfluence of the underground rivers could be established 

through a field survey and a geological borehole test and set to becomeas aan early warning point 

through the field survey, and geological borehole test,  because this is a point where at which 

the influence of karst highly may dominate the runoff processes. 

In addition, the catchment property data for the Liuxihe model, which primarily include 

themainly including digital elevation model (DEM), land use and soil types, can be easily 

downloaded from the open- access databases for free. This meansTherefore, you can easily build 

the Liuxihe model in your areacan be built in any area. Considering thatThough it is not easy to 

obtain the basic data needed to buildfor building a distributed hydrological model in karst areas, but 

2only a very small amount of data must beneed to downloaded from the web to build the Liuxihe 

model, making it is a feasible option for flood simulation and prediction in karst basins. 

Since the The regulation and storage capacity of the karst water-bearing media are weak. When 

the accumulated rainfall exceeds the maximum drainage capacity of the channel during a heavy rain 

storm, athen the karst immersion-waterlogging hazard is much more likely to appear in this 

situationoccur. And the The hazard will become more and more increasingly serious with the 

intensification of extreme global extreme weather events. SoTherefore, some effective measures 

need to be taken to reduce the losses caused by floods losses. For example, effectively and reliably 

simulating and predictionpredicting the karst flood process using reliably with a PBDHM effectively, 

it is is an important non-project measure for flood control. However, there is no enoughare 

insufficient rain gauges as well as the and long-term meteorological or hydrogeological data 

available to build a PBDHM in karst river basins where is classified as anbelongs to ungauged basins. 

Predictions in ungauged basins (PUB) is are the theme of the international hydrological decade,, at 

the core of which is runoff calculation (Li and Ren, 2009). Therefore, it is more difficult to forecast 

the flood events in karst river basin compared with that of basins than in non-karst areaareas. How 

to solve the problem of rainfall sourcesources is a key factor ofin the current karst flood prediction 

challenge. The quantitative Quantitative precipitation estimates /(QPEs), especially and, particularly, 

the satellite QPEsQPE technology brings the possibility, make it possible to obtain the reasonable 

rainfall data in karst area. Butareas. However, the current application of the QPEs is not mature 

enoughimmature, which makes results in the poor QPE accuracy, of the QPEs as well as and the 

effect of the karst flood simulation and prediction to being pooris also poorare not so good. 

The developed development of numerical weather prediction models in the past decadesrecent 

decades has provided a reasonable and accurate QPEsQPE product that can be used in karst 

areaareas. The current mainstream QPEs includinginclude the weather radar QPEs (Delrieu et 



al.,2014; Rafieei et al.,2014; Faure et al.,2015), satellite QPEs and radar radar-merging satellite 

QPEs (Stenz, 2014; Bartsotas et al.,2017; Goudenhoofdt and Delobbe,2009; Wardhana et 

al.,2017), ). Additionally, Pprecipitation can be estimation estimated from remotely sensed 

information using Artificial artificial Neural neural Networksnetworks/PERSIANN QPEs (Soroosh 

et al.,2000; Hirpa et al.,2010; Romilly, 2011;Yang et al.,2007), the dPERSIANN-Climate climate 

Data data Recordrecord/PERSIANN-CDR (Ashouri et al., 2014; Liu et al., 2017; Tan and 

Santo,2018; Hussain et al., 2018), and the PERSIANN-Cloud cloud Classification classification 

Systemsystem/PERSIANN-CCS (Yang et al., 2004,2007; Moradkhani and Meskele, 2010)）. The 

research Studies of Studying on the QPEs products by from meteorological satellites has become a 

hotspot popular topic in rainfall prediction research (Hu et al., 2013). 

Although mMany scholars at home and abroad have done a lot ofperformed  considerable 

research with using the QPEsQPE technology, and they have also achieved many acceptable 

accepted results. However, there are considerable uncertainty exists in the application of these 

results, which makes causes the precision of the QPEs is to be low; thus, and the precipitation result 

by generated from the QPEs is not satisfactorymay be unsatisfactory. Two effective measures could 

reduce the uncertainty of the QPEs results in the karst area. One measure is to match the appropriate 

resolution of the model. Because tThe resolution can directly affect the results of the QPEs directly: ; 

thus, if the resolution is too low, then the division of the grid units divided areis too coarse, which 

causes a considerable error in the rainfall estimates; . However, if the resolution is too high, then the 

meteorological model structure is complicated and unstable. Furthermore, the requirement 

requiredof computational resources will increase exponentially with as the the raise of the model 

spatial resolution increases (Chen et al., 2017), which leads to huge a large number of calculations 

and low efficiency. SoTherefore, using the appropriate model spatial resolution is extremely 

important for in terms of the QPE results of QPEs.. And theThe other measure that affects 

uncertainty is that the current technology of QPEs still has some systematic errors existed due to the 

uncertainties in the structure and mathematical algorithmalgorithms. For this reason, when 

compared with the precipitation observed using by the rain gauges, the results of QPEs compared 

with the observed precipitation by rain gauge have some relative errors, which causesand these 

errors cause the karst flood simulation results by from the coupling coupled model (i.e., those from 

coupling the QPEs with a PBDHM) to have uncertainties that largely affect the model’s performance 

largely. So. Therefore, the results of the initial QPEs could not be directly used directly to build the 

coupling coupled model. In this study, a post-processeding method is was employed to revise the 

productions of the PERSIANN-CCS QPEs products, which makes causeds the QPE results to be of 

QPEs more credible and receivable.  

   There are have been many researchesstudies onf PERSIANN-CCS QPEs (Yang et al. 2007) at 

present. ButHowever, most of them these studies have been used conducted in small non-karst 

watersheds. In this study, the PERSIANN-CCS QPEs iswere employed in an attempt to to estimate 

the rainfall data as an attempt in suchin a large karst river basin, i.e., the -Liujiang Karst River Basin 

(LKRB), which haswith an area of 5.8×*104 km2 and is located in Guangxi provinceProvince, China. 



Watershed flood prediction relies on a PBDHM for as a computation tool, while the precipitation is 

the model’s driving force of behind the model (Li et al., 2017). This methodIt has the potential to 

improve the accuracy of karst flood predictions by coupling PERSIANN-CCS QPEs with a PBDHM. 

And the The PBDHM in this study is the Liuxihe model（Chen,2009）model (Chen, 2009). This 

reportstudy  is also the first time time that to use the Liuxihe model has been used in for flood 

simulation and prediction in karst basinbasins as an attempt. 

SoTherefore, the model structure and function have beenare improved to suit the requirements of 

the karst basins. For instance, in this study, the whole entire river basin will be divided into many 

small sub-basins by using the DEM data in this study, and this process is enough adequate when 

consideringin non-karst basins. However, in order to ensure the effect and accuracy of the model in 

karst areaareas, the model structure needs tomust be more refined. SoThus, in this paper, the sub-

basins will be further divided into many karst hydrology respondresponse units (KHRUs) in this 

paper.  And the The whole entire karst hydrological processes, including the storage and regulation 

processes of the epikarst zone and, the spatial interpolation of the precipitation, evapotranspiration 

and rainfall-runoff, are all calculated on based on the KHRUs. What’s more,  Furthermore, in the 

original Liuxihe model, the underground layer is treated as an integral unit, ,  and a linear reservoir 

method is adopted to calculate the amount of underground runoff. However, considering thatbecause 

the structure of the karst underground layer is non-linear, the original linear reservoir method in of 

the Liuxihe model is   not appropriate here. SoTherefore, in this study, the Muskingum routing 

method is used to improve the convergence of the underground runoff calculationcalculations in this 

study. AlsoAdditionally, the epikarst zone, as a distinctive structure of the KHRU, is carefully 

considered carefully in the model. An exponential decay equation is used to calculate the regulation 

and storage processes in the epikarst zone. 

The spatial resolution of the Liuxihe model for the LKRB is  200 m×*200 m. And tThe the  

The PERSIANN-CCS QPEsQPE products, which have that the a spatial resolution isof 0.04°×*0.04° 

scale and a time interval isof 30 min,utes are employed to estimate the precipitation results for the 

LKRB. The resolution of the PERSIANN-CCS QPEs must be downscaled to the same size as the 

Liuxihe model before building the coupling coupled model can be built. After post-processing, Tthe 

PERSIANN-CCS QPEsQPE products after post-processed could offer the high-precision 

precipitation results for the LKRB in locations where there is an inadequate number of lack of 

enough rain gauges. It can largely improveAdditionally, the the model performance can be greatly 

improved by coupling the post-processed PERSIANN-CCS QPEs with the Liuxihe model. A 

modified PSO algorithm (Chen et al., 2016) is used to optimize the coupling coupled model 

parameters in this paper, which and this method could control the uncertainty of the parameterization 

passing. 

2 Study area and data 

2.1 Study area 

The Liujiang Karst River Basin (LKRB) in southern China iswas selected as the study area in 

this paperfor this research. It The LKRB is the second largest tributary of the Pearl River andthat 

covers three provinces, including    Guizhou, Guangxi and Hunan province. The LKRB is the 

most developed karst area of China, with a drainage area of 58270 km2 and a channel length of 1121 

km. Moreover, the LKRB is a typical karst-mountainous catchment with that has experienced 

frequent flash flooding in the past centuries. .The peak forest-plain area is the main karst landform 



on the ground, while the karst conduit and fissure are well -developed underground, also there are. 

There are also many complicated underground rivers and springs with large flows (Li, 1996). The 

karst water-bearing media is highly non-linear and heterogeneous, which makes it very difficult to 

simulate and forecast the karst hydrological process. 

The LKRB is in the sub-tropical monsoon climate zone, with an average annual precipitation 

ofbetween 1400mm 1400 mm toand 1700mm 1700 mm, and the precipitation distribution is highly 

uneven aton spatial and temporal scalescales. The precipitation from April to September accounts 

for 75%- to 80% of the annual precipitation. The A sketch map of the LKRB is shown in Figure 1a. 

The most developed karst area in LKRB is the Beijiang catchment, where the influence of karst 

features highly dominates the rainfall-runoff processes. The Beijiang catchment is a tributary of the 

middle and upper reaches of the Liujiang rRiver, liesying at 25°06-25°27' north latitude and, 

108°38-109°18' east longitude. The drainage area of the Beijiang catchment is 1790 km2, and the 

length is 130 km. The catchment has a dense river system (Figure 1b), and is surrounded by high 

mountains with peak elevation at 1000 -1800 m (Figure 1c), where in which the peak-cluster 

depression covers most of the area. The average valley slope gradient is 0.143. 

Figure 1. Sketch map of Liujiang and the Beijiang  catchment 

2.2 Landform, tectonics and hydrogeology information 

The LKRB is located in the central part of Guangxi provinceProvince, China. The terrain is 

high on all sides and low in the middle. The cross-strait terraces of the Liujiang riverRiver are well 

developed , especially near by the liuzhou Liuzhou river River gauge (as shown in Figure 3) that, 

which is located at the basin outlet of the LKRB. The north part of the basin is thehas transmeridional 

arc-like folded belts, where the soluble rock forms syncline, and the sand shale forms anticline. The 

sSand shale formations and, carbonate and carbonate clastic rocks are widely distributed here. The 

karst valley is the main landform in the south part of the basin, and  the overburden overlying 

lithology is clay and gravel with poor water permeability. The underlying bedrock is mainly 

carbonate and dolomite, where and the karst fissures are well developed- developed, within a large 

water storage are well developedreservoirin which a large amount of water is stored (He,2017). 

 The western part of the basin hasis a large area of limestone in a continuous distribution, and 

the a peak-cluster depression covers most of the area. The landform of the eastern basin is mainly 

hilly, where the rocks are soft-hard due to thetheir different anti-erosion abilityabilities. The hard 

rocks form low mountains that move toward towards the gentle slope, but and then back to the steep 

slope. The landforms of the central part of the basin are mainly the isolated peak plain and the peak 

forest plain. Overall, the main landforms of the LKRB are the peak forest plain and the peak-cluster 

depression. 

The Liujiang riverRiver is located in the karst valley basin, which that is covered by quaternary 

loose deposits. And the The underlying surface areis dominated by the alluvium , diluvium and the 

katatectic layers due to the fluviraption of the liujiang Liujiang rRiver and the karst geological 

background, where and the thickness is aboutapproximately 10-20 meter metres. Carbonate, 

sandstone, shale and carbonate clastic rocks are widely distributed in the basin,. aAmong them, the 



area of the carbonate rocks is about  

19230km2, account 19,230 km2, which accounts for 33% of the wholeentire watershed. The 

outcrops in the basin mainly include the Upper Devonian limestone (D3), the Lower Carboniferous 

datangpo Datangpo formation limestone (C1d,C1d3), the Middle (C2d) and Upper Carboniferous (C3) 

limestone, the Upper Permian carbonate and clastic rocks (P2d, P2h2 h), the Lower Triassic clastic 

and carbonate rocks (T1), the Lower Cretaceous clastic and carbonate rocks, and the loose rock 

groups of the Quaternary pleistocene Pleistocene (Q,Qp) and Holocene (Qh). 

After studiedstudying the karst geomorphology of the LKRB, Wil1iams Williams (1987) 

believed that the peak-cluster depression had developed into turreted peak-forest landforms after a 

long evolutionary process, which is equivalent to the late prime of life, i.e., entering old age in terms 

of,   and going into the old age of geomorphologic evolution. The allogenic Allogeneic water, 

especially from the Liujiang riverRiver, is the main driving force for behind the development of 

peak-forest landforms. Therefore, the peak-forest plains and valleys are often distributed in 

contiguous areas near the main trunk stream of the Liujiang river. And theRiver. The main karst 

landform of the LKRB is peak-forest plain, and there are also some peak-cluster depressions and 

peak-forest valleys. Figure 2. areshows the DEM and three-dimensional topographical map of the 

LKRB. 

 

Figure 2. The DEM and three-dimensional topographical map of LKRB. 

Figure   

2.3 Rain gauges and the karst flood process 

There are 68 rain gauges and 131 grid points of for the PERSIANN-CCS QPEs within the LKRB, 

and data from 5five karst flood events that occurred betweenfrom  2008 to and 2013 were has been 

collected respectively. There is awas one flood event each year. The karst floods process in the 

LKRB have has typical characteristics: the flood peak flows usually exceed 10,000 vm3/s, and there 

is an expression of the a multi-peakspeak flood process. A flood process usually lasts 

aboutapproximately 10 days, and the shortest flood event duration is was only aboutapproximately 

3 days, while the the longest is was 25 days. The hHourly precipitation data of were collected from 

the rain gauges are collected in this study, and these results were compared with the to compare with 

the results of from the PERSIANN-CCS QPEs. The rain gauges, the grid points of the PERSIANN-

CCS QPEs and the Liuzhou river River gauge that closesis located close to the outlet of the LKRB 

are shown in Figure 1a. 

There are 11 early warning points are set in the Beijiang catchment (Figure 1b), and 10 karst 

flood events at the Goutan warning point are were collected to validate the flood simulation effect 

based on the Liuxihe model, where in which the Goutan point is the outlet of the Beijiang catchment. 

In fact, the Beijiang catchment is in the centre of the storm area of Guangxi pProvince, China. 



According to the field observation data, the observed maximum 24- hour accumulated precipitation 

is 779.11 mm in the Beijiang catchment, and the maximum 3- day accumulated precipitation is 

1335.15 mm. The Kkarst floods are the typical flash floods with rapid discharge and water level 

fluctuation, which are mainly caused by storms, and the developed karst landform plays an 

important role in flood propagation. For instance, the karst depressions could can store some water 

content during the heavy rain. Also,Additionally, the regulation functions of the karst fissure system 

could can slow down the flood propagation process. 

Figure 3. 

Figure   

2.4 Property data 

The Ccatchment property data for the distributed hydrological modelmodels mainly include the 

DEM, land use and soil types. These data are were downloaded from an open- access databases. 

The DEM is was downloaded from the shuttle radar topography mission database at 

http://srtm.csi.cgiar.org (Falorni et al., 2005, Sharma et al., 2014). The downloaded DEM has had 

an initial spatial resolution of 90m*90m 90 m×90 m, and after many model resolution tests, the 

most appropriate resolution for of the Liuxihe model in the LKRB has beenwas confirmed to be as 

200m*200m200 m×200 m for Liuxihe model in LKRB. SoTherefore, the spatial resolution of the 

initial DEM is was rescaled to 200m*200m200 m×200 m in this study, and this value 

representswhich is athe high resolution for the Liuxihe model in the LKRB. The DEM is shown in 

Figure 2(a). The land use-[ type is data were downloaded from http: //landcover.usgs.gov (Loveland 

et al., 1991, 2000), and the soil- type is data were downloaded from http://www.isric.org. The initial 

spatial resolutions of the land use- type and soil- type data are were both 1000m*1000m1000 

m×1000 m. However, Bboth of themresolutions had need to be rescaled to 200m*200m200 m×200 

m in this study. Figure 4 3 (a) isshows the land use types, and (b) isshows the soil types. 

(a) land use types                                                       (b) 

soil types 

Figure 3. The pProperty data for the Liuxihe model in LKRB 

Figure   

http://srtm/


3 PERSIANN-CCS QPEs and its post-processed processing results 

3.1 PERSIANN-CCS QPEs 

The original PERSIANN system (Hsu et al., 1999) was based on geostationary infrared imagery 

and was later extended to include the use of both infrared and daytime visible imagery;. tThis 

method represents an, which is an automated system for estimating precipitation estimation from 

remotely sensed information using through the use of artificial neural networks .T. The system 

method for rainfall estimation that is under development at The the University of Arizona and gets 

constantlyis continuously improving as technology advances stronger with the improvement of the 

technology (Soroosh et al.,2000). The fundamental algorithm of the PERSIANN system is based on 

a neural network. And theThe network parameters could be optimized by an adaptive training 

characteristic, which makes can estimate the precipitation could be estimated from a 

geosynchronous satellite at any time and place.  

The Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks-Cloud Classification System /PERSIANN-CCS (Yang et al., 2004; Hsu et al., 2007)   is 

a patch-based cloud classification and rainfall estimation system from low Earth -orbiting and 

geostationary satellites by that uses using pattern recognition technology and computer imaging 

technology (Yang et al.,2007 ). Satellite-based precipitation retrieval algorithms use information 

ranging from visible (VIS) to infrared (IR) spectral bands of Geostationary geostationary Earth earth 

Orbiting orbiting (GEO) satellites and microwave (MW) spectral bands (Hsu et al., 2007). 

The QPEsQPE products of PERSIANN-CCS has been have generated precipitation estimates at a 

resolution of 0.04°×*0.04° scale and at a time interval of 30 minutes since 2000. The output of 

PERSIANN-CCS QPEs has beenwas downscaled at 200m*200m as 200 m×200 m to achieve the 

same spatial resolution as that of the Liuxihe model in the LKRB.  And the The down-scaling 

method is used in this paper was based on statistical relationships between the meteorological 

variables, and DEM data using the LOO (Leaveleave-Oneone-Outout) cross evaluation method and 

spatial autocorrelation analysis methods (Fan et al., 2017). 

The hourly precipitation data of from the PERSIANN-CCS QPEs are were collected and 

compared with the precipitation observed by the rain gauges. 

The Restimation of rainfall estimation from the PERSIANN-CCS consists asof the 

followfollowing steps (Hsu, 2007):  

 (1) IR cloud image segmentation, (2) Characteristic characteristic extraction from IR cloud 

patches, (3) Patch patch characteristic classification, (4) oObtaining the rainfall estimation results 

of QPEsthe QPE products, and (5) Evaluate evaluateing and reviseing the results of the QPEsQPE 

products. 

In this paper, the PERSIANN-CCS QPEs real-time data used in the LKRB from the current 

version of PERSIANN-CCS are available and downloadable online 

(http://hydis8.eng.uci.edu/CCS/). 

3.2 Precipitation estimation results 

The QPEsQPE product of the PERSIANN-CCS has been generated precipitation resultresults 

for the LKRB in this study. There are were 131 grid points of PERSIANN-CCS QPEs within the 

LKRB , whichand these points were   are representative and can completely covered the 

wholeentire watershed   completely (as shown in Figure 3). The spatial resolution is was 



200m*200m200 m×200 m, and the time interval is was 1 hour. The respective QPEsQPE products 

of the PERSIANN-CCS in 2008, 2009, 2011, 2012 and 2013 are were produced respectively, means 

there are , and the results indicated that five5 rainfall events are corresponding corresponded to the 

five5 karst flood processes. Figures 5-94-8 isshow the average precipitation pattern comparisons of 

the two precipitation products in of the five5 years, andwhere (a) is the average precipitation of 

based on data from the rain gauges,,  (b) is the average precipitation of based on the data from the 

PERSIANN-CCS QPEs., and (c) is the qQuantile-Qquantile plot, in which the 45-degree line is 

used to compare two precipitation products. 

Figure 4. Precipitation pattern comparison of two precipitation products (2008) 

Figure 5. Precipitation pattern comparison of two precipitation products (2009) 

Figure 6. Precipitation pattern comparison of two precipitation products (2011) 

Figure 7. Precipitation pattern comparison of two precipitation products (2012) 

Figure 8. Precipitation pattern comparison of two precipitation products (2013) 

 

Figure 

According to the results of Figures   5-94-8, it appears that the temporal average precipitation 

patternpatterns of both products are quite similar, especially in terms of the rainfall distribution, 

while there are some differencedifferences in the quantitative values.   The results of from the 

PERSIANN-CCS QPEs are smaller than thatthose of from the rain gauges, which means that there 

is a relative error exists between the two products. From the Qquantile-Qquantile plot, the two 

rainfall scatter plots are closely distributed on both sides of the 45-degree line, which means that 

the rainfall distribution of both products is are close to each other. 

 

3.3 Evaluation of PERSIANN-CCS QPEs  

In order to 

To quantitatively evaluate the results of the PERSIANN-CCS QPEs, the precipitation by from the 

PERSIANN-CCS QPEs and the precipitation from the rain gauges are were compared in this study. 

The rainfall distribution of both products areis shown in Figs.Figures 5–94-8. To makeFor further 

comparisons, the average precipitation of the five5 karst flood events arewas calculated, and the 

results are shown in Table 1. 

Table 1. Precipitation pattern comparison of two precipitation products  

Table  



According to the results of Table 1, it could be found that  there are obvious relative errors 

between the two precipitation products. The average precipitationsprecipitation values of the 

PERSIANN-CCS QPEs arewere lower than those from smaller than that of the rain gauges. For the 

five5 karst flood events from 2008 to 2013, the relative errors between the two products are were -

1611%, -2516%, -147%, -2119% and -2320%, respectively. The average relative error is was -

2014%, and the maximum error is was -2520%, which means that these relative errors could cannot 

be ignored. SoTherefore, the precipitation results generated by the PERSIANN QPEs must to be 

revised effectively, and the precipitation data observed by the rain gauges can be are used to revise 

the results of the PERSIANN QPEs in this study. 

3.4 The post-processed PERSIANN-CCS QPEs 

In order to To make the results of the PERSIANN QPEs more credible and receivable, the 

precipitation results by PERSIANN QPEs arewere revised with using the observed precipitation 

measured by the rain gauges. FirstlyFirst, it was necessary to locatefinding the grid points of the 

PERSIANN-CCS QPEs that ware ere closest to the rain gauges (as shown in Figure 3). And 

thereThere are were 23 grid points in the LKRB. SecondlySecond, calculating their average 

precipitation values of the PERSIANN-CCS QPEs and the rain gauges were calculated, and the , 

and taking the average precipitation of from the rain gauges was used as the true precipitation value. 

ThirdlyThird, the process of revising the results of the PERSIANN QPEs with based on the average 

precipitation observed by the rain gauges.The procedure  is summarized as follows. 

1). Calculating theThe average precipitation of these 23 grid points based on the PERSIANN-CCS 

QPEs was calculated with the following equation:. 
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Where,where
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is the average precipitation of these 23 grid points by based on the 

PERSIANN-CCS QPEs,;
 iP  is the precipitation based on the PERSIANN-CCS QPEs on at the i 



grid point,;
 iF  is the catchment area of the i grid point,; and N is the number of the grid points. 

2). Calculating the The average precipitation of these 23 rain gauges was calculated using the 

following equation:. 
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Where,where
 2P  is the average precipitation observed by these 23 rain gauges;,

 jP  is the 

precipitation observed atby the j rain gauge;, and M is the number of rain gauges. 

3). The precipitation valuess observed by the adjacent rain gauges are were used to revise the results 

of the PERSIANN-CCS QPEs with the following equation.: 
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Where,where
 

'

iP  is the value of precipitation based on the PERSIANN-CCS QPEs after revised 

revision on the i grid point,; and 
2 / PERSIANN CCSP P −

 is the reviserevised factor. 

4). After revision, Tthe precipitation results based on the PERSIANN-CCS QPEs after revised will 

bewere used as input data for the Liuxihe model to test its feasibility through theoffor  use in the 

for floodsflood simulation. 

From theAfter running the  above procedure of the post-processed processing procedure for 

the PERSIANN-CCS QPEs described above, it could be foundwas determined that the reviserevised 

factor -
2 / PERSIANN CCSP P −

 is was a key factor that madeto make the results of the PERSIANN-CCS 

QPEs much closer to the value of observed precipitation recorded by the rain gauges, 

meansindicating that the systematic errors of the PERSIANN-CCS QPEs could be corrected 



effectively. SoTherefore, the post-processed processing method described in this paper is a both 

feasible and necessary. And it Additionally, it could greatly improve the accuracy of the coupling 

coupled model in the simulation and prediction of karst floods simulation and prediction. 

Furthermore, the reviserevised factor could be preserved as an empirical value for the future flood 

prediction in the LKRB. 

4 Hydrological model 

4.1 Liuxihe model  

The Liuxihe model proposed by Yangbo Chen (Chen, 2009) of Sun Yat-Sen University, China,  

is employed as the fully distributed hydrological model in this study, which is a physically based 

distributed hydrological model（  (PBDHM） ) mainly for catchment floods simulationg and 

prediction (Chen  en et al., 2016,2017; Li et al., 2017). The Liuxihe model earned its name by 

being the first successful application in the Liuxihe catchment, Guangdong Pprovince, China. There 

are three layers vertically, including the canopy layer, the soil layer and the underground layer in 

the model, and the whole catchment is divided into a great number of grid cells horizontally by 

using the high-resolution DEM data, with the divisions named called sub-basins. Each grid is 

considered as a uniform basin, and the elevation, land cover type, soil type, and other model 

elements including rainfall-runoff, evapotranspiration, etc. and so on  are calculated on in the 

uniform basin. All cells are categorized into three types, namely, hill slope cell, river cell and 

reservoir cell.  

An improved PSO algorithm (Chen et al., 2016) is employed to optimize the model parameters 

in this study, which can make the model’s performance much better in flood prediction in karst river 

basins. The observed meteorological and, hydrological data and the development conditions of the 

karst underground river are used to optimize the model parameters. The terrain property data, 

likesuch as the DEM, land use type and soil type, can be downloaded freely from an open- access 

databases onlingonline the website. The model is validated by against observed karst flood events. 

All tThese factors of the model are physically based and rational to truly reflect the underlying 

surface of the karst basin. So Therefore, thisit implieds that the Liuxihe model could be used for 

real-time flood prediction in karst river basins. Figure 9. isshows the structure of the Liuxihe model. 

 

Figure 9. The structure of the Liuxihe model 

 

4.2 The iImprovement of the Liuxihe model 

The Liuxihe model has been successfully applied successfully for floodsflood predictions in 

many river basins. However, all none of these basins are were non-karst areas. This study is the first 

time the model is has been used in a karst river basin as an attempt in this study. And theThe structure 

of the model should be improved to suit the needs of the karst basin in questions.  So Therefore, 

some effective measures should be taken before building the model. FirstlyFirst, simplify the karst 

water-bearing media should be simplified, and this process could includeincluding making the karst 

basin as a multiple and nested spatial structure, . The underground river could be included as the 



intelligible channel system in the model, and the cave could be used as the anisotropic medium with 

a large vertical infiltration coefficient and porosity but a small specific yield. Finally, the, and fault 

could be used as the anisotropic medium with a vertical, large vertical infiltration coefficient and a 

specific yield. SecondlySecond, the wholeentire karst river basin will can be divided into many 

small karst sub-basins by using the high-resolution DEM data. Furthermore, in order to suit the karst 

area, the karst sub-basins will can be divided into many karst hydrology respond units (KHRUs), 

which are generally independent of each other. And the wholeThe entire karst hydrological process, 

including the storage and regulation processes of the epikarst zone, the spatial interpolation of the 

precipitation, the evapotranspiration and the rainfall-runoff, are all calculated based on this KHRU. 

After thatThen, these hydrological processes will can be summarized in for each of the karst sub-

basins. ThenAdditionally, the outlet flow will beis formed through the river confluence among each 

karst sub-basin from the upstream region to the downstream region. Such This type ofa multi-

structure distributed hydrological model could utilize variously scaled information effectively and 

make the bestoptimize the use of the observed meteorological, hydrological and geological data. 

In this study, the KHRUs are were divided by GIS technology combined with karst topography, 

land use type and soil type (Ren, 2006). Each KHRU in this study has had its own model 

characteristics, such as the meteorological and hydrological characteristics, as well as the karst 

developmental characteristics in this study. The KHRU is was proposed to describe the spatial 

variation of the karst sub-basins. And make sure that the The differences within the KHRUs are 

were smaller than ofthose among the KHRUs. Then, the each KHRU is was vertically divided into 

five5 layers vertically: the canopy layer, the soil layer, the epikarst zone, the bedrock and the 

underground river. The A sketch map of the KHRU is as followfollows: 

 

a. The structure of the KHRU (Ren, Q.W.,2006)   b. The pPhotograph of the three-

dimensional space structure of the KHRU        

Figure 10. Sketch map of the KHRU 

Figure 

In Figure 110(.b), the three-dimensional space model of the KHRU in the Liujiang Karst River 

Basin (LKRB)   is was built in the laboratory to better understand how groundwater movemoves 

in the karst media and convertconverges mutually with the surface river. Then, the hydrological 

model could be built more and visualized throughin this way. 

In order to To satisfy the applicability of the model in karst areas, the epikarst zone, which is as 

a distinctive structure of the KHRU, was carefully is considered carefully in the model. It The 

epikarst zone is composed of the karst rocks with macro cracks and tiny fissures.   When the rain 

falls on the ground, it will beis intercepted by plants, held in depressions detention and experiences 

some evapotranspiration firstly. After thatThen, the rainfall will infiltrates into the soil and rock 

layer, and satisfy satisfies the water shortage of the unsaturated zone. Part of the water in the epikarst 

zone may formed the form karst springs that emerge from the surface,. Another part will enter the 

the superficial karst water system of the epikarst zone. When the rainfall intensity is heavy enough 

to form the surface runoff on the exposed bedrock, part of the water will enter the karst conduit 

through the sinkholes.  

        



The karst hydrological process of the epikarst zone could be divided into rapid fissure flow and slow 

fissure flow. After the heavy rain, a lot large amount of water in the epikarst zone is stagnant in the 

epikarst zone couldand can form a surface karst aquifer with a temporary water table. If there are 

large cracks or fractures under the water table, a precipitation funnel will be formedform along 

withand be associated with a drop in the water table drops. The rRapid fissure flow referrefers to 

the rainfall that infiltrates into the karst conduit through the precipitation funnel, which and this flow 

happenedoccurs in the macro cracks and hadhas a fasthigh speeds. When the rainfall enters the 

superficial karst water system of the epikarst zone. , Tthe macro cracks will be filled firstlyfirst. 

This part of the saturated water content, named rapid fissure flow, will go move directly into the 

karst conduit through the macro crack. Because this rapid fissure flow will pass quickly through the 

karst conduit system without stopping, and because the water regulation and storage functions are 

is weak, so ignored the regulation and storage of the rapid fissure flow was were ignored in this 

study. The rest of the water content in the epikarst zone keep infiltrating infiltrates through the tiny 

fissures. This part of the water, named slow fissure flow, plays an important role in the process of 

rainfall regulation. The water content of the slow fissure flow couldcan be described asby the 

following equation: 

                                          inf=epi crkSW Q V−
                                    

(14)
 

Wherewhere 
epiSW  is the water content of the slow fissure flow in the epikarst zone.,

  

infQ
 
is the infiltration water content of the rainfall, and crkV

 
is the water content of the rapid 

fissure flow in the macro crack. 

 

  The slow fissure flow in the epikarst zone is calculated by an exponential decay 

equation (Ren, 2006) as follows: 
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Wherewhere 
sepW  is the water content that flows from the epikarst zone to the underground 

river., ; bBecause the regulation and storage functions of the rapid fissure flow is are ignored in this 

study, the 
sepW

 
means refers to the slow fissure flow here,

epiW
 
is the current water content of 

the slow fissure flow, T  is the simulation time-step,
 percTT   is the   attenuation coefficient,

 



epiSAT  is the saturation water content of the slow fissure flow,
 epiFC  is the field capacity, and 

epiK  is the saturated hydraulic conductivity of the slow fissure flow. 

The linear reservoir model is employed to calculate the regulation process of the superficial 

karst fissure system in the epikarst zone, and the base discharge is calculated by the hydraulic 

gradient of the KHRU (Neitsch et al.,2000)  as follows :: 
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(36) 

Wherewhere 
gwQ   is the base discharge,

 ,gw iQ    
  and 

, 1gw iQ −
 is are the suppliessupply 

quantityies of the base discharge that convergeconverges into the karst conduit or underground river 

on the i day and the (i-1) day, respectively, epiK  is the saturated hydraulic conductivity of the 

epikarst zone,
 wtblh  is the hydraulic gradient,

 gwL   is the length of the KHRU,
 gwa   is the 

depletion coefficient of the base discharge,
 

T is the simulation time-step (day),
 ,rchrg iW is the 

suppliessupply quantity of the aquifer on the i day (mm/d),
 seepW  is the water flux through the 

bottom of the soil profile into the underground aquifer on the i day （(mm/d)）, and
 gw  is the   

delay time of the  supply (day)supplies（day）day（day）.
 

In the original Liuxihe model, the underground layer is treated as an integral unit ,  a, and a 

linear reservoir method is used to calculate the underground runoff. However, the structure of the 

karst underground layer is non-linear; thus, the linear reservoir method is obviously not appropriate 

here. SoTherefore, int this study, the Muskingum routing method is was used to calculate the 

convergence process of the karst underground river in this study, and the equation is as follows: 

  

                                 

'[ (1 ) ]W K xI x O KO= + − =                           （(47)） 

Wherewhere 
'O  is the water storage content, O is the outlet flow of the river reach,

 
x is the 

dimensionless proportion factor, I is the inflow discharge of the river reach, and K is the slope of 

the correlation curve of the water storage content and the discharge. 



The finite difference method is used to calculate the water balance equation and the 

Muskingum routing method: 
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If the Muskingum routing method parameters of the Muskingum routing method K and x could 

can be determined for a karst underground river reach, then the values of the 0C , 1C
 
and 2C  

will can be calculated by the equationeEquation (6). When t =2Kx,
 0 =0C , which means that 

the karst flood prediction lead time will be 2Kx.; uUnder this condition, then the Muskingum routing 

method canould be simplified as follows: 

2 1 1 2 1=O C I C O+
                                

（(710)） 

One of the key problems of the Muskingum routing method is to optimizeinvolves determining 

how to optimize the parameters -K and x in the practical applicationapplications. And iIt is hard to 

generalisegeneralize the parameters K and x in flood simulation and prediction due to their 

variability with flow conditions. Ahilan et al. (2012) used the generalized extreme value (GEV) to 

analyzse the flood frequency distributions in Irish rivers, and the result showeds that a Type II 

distribution appears in a single cluster in the karst area, which reflects the finite nature of Kkarst 

storage and the effects of saturation when storage is no longer available. In this study, 30 karst flood 

events are collected to validate the performance of the Muskingum model in study area. The least 

squares method is used to optimize the parameters -K and x in this study as follows: 

The least square method is as used in this study: 




2n

0 1

1

min = ( ) - ( ) ]
j

E W j W j C
=

  
− 

 


                 

（(811)） 

Wherewhere E is the objective function between the observed water storage content and the 

simulated onewater storage content, which makesrequires only requirethe least squares 

approximation with regard to the functional value,
 
;
 0( )W j   and 1( )W j  are the observed and 

simulated water storage contents at within the j period, respectively, ; 1( )= [ (1 ) ]W j K xI x O+ − ;, 

n is the total numbersnumber of the observation periods,;   and C is the absolute value of the water 

storage content. 

In order to To simplify calculatingthe calculation, making A=K*x and, B=K*(1-x);, then, taking 

the partials can be taken with respect to A, B, and C, respectively:  
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Then, the values of A, B, and C could can be calculated as follows: 
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Wherewhere, 
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（(1114)） 

The parameters of the Muskingum routing method could can be optimized through using the 

above equations shown above. And after After thatThen, the convergence process of the karst 

underground river could can be calculated by the Muskingum routing method in the Liuxihe model. 

5 Model set up 

5.1 hHydrological model setup 

The method combiningthat combines a DEM with a stream network leads to a more accurate 

drainage network from in terms of surface runoff modelling (Li and Tao,2000), especially in karst 

areaareas. In this study, according tobased on the high resolution of 200m*200m200 m×200 m used 

for the Liuxihe model in the LKRB, the wholeentire studied area is was divided into 1,469,900 grid 

cells, which were named the karst sub-basins, by using the DEM.   The grid cells included 

1,463,204 hill slope cells and 6,696 river cells. Then, the karst sub-basins will bewere further 

divided into many karst hydrology respondresponse units (KHRUs) further; ,, with  the an example 

KHRU is is as shown in Figure 1. The river system is was dividedivided into three- orders as shown 

in Figure 3.  

In the Liuxihe model, the flood process of some specialspecific points, named the early warning 

points on of the river section, could be simulated and predicted. From Figure 3, it can be seen shows 

that there are few rain gauges located along the upstream of the Liujiang river (thatRiver (which is 

why the PERSIANN-CCS QPEs iswere used here). However, the karst is very developed here, and 

the influence of the karst dominatedominates the runoff processes a lot. So a. Therefore, an early 

warning point is set upwas established at the Danian river River gauge (Figure 3) , and a sub-karst 

basin of the upstream area could be divided from this early warning point. And 10 Ten karst flood 

events will bewere collected to validate the performance of the model performance. 



     Because of the sinkholes and karst depressions in the karst watershed, as well as the 

systematic error of the DEM itself, there are many pits, including the true and false pits, in the 

LKRB. Among them, the true pits are include the karst depressions and sinkholes,, and they usually 

have a certain scale with and elevational difference. While the differences. The false pits arewere 

only represented only by  just only a few points with low elevation, which is was due to the 

systematic errors of the DEM. SoTherefore, the true and false pits should be reliably distinguished 

reliably before using the DEM data to divide the area into the karst sub-basins. Firstly, finding out 

all First, we identified all of the pits with low elevation, and connectconnected them into on a plane.;, 

tThen, we distinguishdistinguished the true pits from the false onespits according tobased on the on-

site topographic survey. Finally, keeping the model retained the true pits like  such as the sinkholes 

and karst depressions, unchanged but filling the false pits in the modelwere filled (i.e., removed). 

The karst hydrology respond unit (KHRU) is was introduced in this study to reasonably 

describe the spatial variability of the karst water-bearing media (as shown in Figure1Figure 

1). The spatial characteristiccharacteristics of every KHRU hashave a definite physical 

meaning. SoTherefore, the calculation of the evapotranspiration, rainfall -runoff and 

parameter optimization on of the KHRU is alsowas physically based, which could truly 

reflect the differences of the underlying surface. After the division of the karst sub-basins and 

the KHRUs, the post-processed PERSIANN-CCS QPEsQPE results will can be used as the 

input data for the Liuxihe model to simulate and forecast the karst flood process. The 

performance of the coupling coupled model could bewas reliably improved reliably in this 

way. 

The early warning points set in the Liuxihe model could offer an important alerting and 

forecasting information on for some critical river sections. In this study, a key early warning point 

named Goutan (Figure 1a, b) is set to extract the most developed karst area in the LKRB- Beijiang 

catchment, where the influence of karst features highly dominates the rainfall-runoff -runoff 

processes. There are 11 early warning points are set in the Beijiang catchment (Figure 1b). 

 

5.2 Parameter optimization of the coupling coupled model 

     There are were 14 parameters that needed to be optimized for the original Liuxihe 

model, and after adding the karst mechanism, the number of the parameters is increased to 20, 

as shown in Table 2. The parameters of the epikarst zone are were the most complicated due 

to the anisotropy of the karst water-bearing media, which makes made it harddifficult to 

measure and calculate the hydraulic characteristics.  

      The hydrogeology parameters used in this study, including the permeability coefficient 



of the rock mass, the rainfall infiltration coefficient, the specific yield of the aquifer, and the 

storage coefficient, are were calculated by the field test and the experience function. For 

instance, the permeability coefficient /K is was calculated by an experience function 

according to the water inrush prediction of a coal mine in the study area.: 
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Where,where Q is the mine inflow, m3/h;, K is the permeability coefficient, m/d,; H is the 

distance from the the water-resisting floor to the water level of the confined aquifer, m;, M is 

the aquifer thickness, ,m,; h is the height of the dynamic water level, m;, R0   is the 

substitute influence radius, m;; r0 is the substitute radius, m;,   S is the drawdown value, m;; 

and a *b is the area of the mine, m2. 

 In the water inrush test of the coal mine, the othersother parameters in equation Equation 

(1215) are were given, and the permeability coefficient /K couldcanwas be calculated by the 

anti-equation Equation (1215). 

The parameters of the epikarst zone, including the thickness, Saturated, saturated water 

content,  

, Fieldfield capacity and macro crack volume ratio, and so on are were obtained according 

tobased on the field survey, geological borehole test and pumping test, as well as on the 

empirical value observed in the study area. 

The epikarst zone is was mainly developed on the hard surface of pure carbonate rock, 

especially on the Paleozoic limestone. The thicknesses and characteristics of the epikarst zone 

are differentdiffer due to the different climates, topography and landforms.   The parameters 

of the coupling coupled model and the epikarst zone are listed inTable in Table 2(a) and (b) , 

and the rainfall infiltration coefficients of the different karst landforms is are calculated based 

on the empirical values shown in Table 2(c). 

(a) The parameters of the coupling model 

(b) The physical parameters of the epikarst zone 

(c)The rainfall infiltration coefficient of different karst landforms 

 

 

Table  2 . The parameters of the model 

  

        

The soil type parameters, of the Soil type like  such as the saturated water content and 

the field capacity, are were calculated throughusing a software tool (Ren, 2006). .The 

statistical relationship between the soil texture and the soil water couldcan be easily queried 

easily in the software tool. And In addition, it this method has been effectively provedproven 



by many experiments (Servat and Sakho, 1995), and the calculated value of this method has a 

good fitting relationship with the measured value. 

The Liuxihe Model model has been deployed on a supercomputer system with parallel 

computation technology (Chen et al., 2011). .An improved PSO algorithm (Chen et al., 2017) is was 

employed to optimize the parameters of the coupling coupled model in this study. There are 30 karst 

flood events from 1982-2013 in the LKRB, and among them, 3 flood events —Floods 2004070300, 

2009060908, and 2011010100—arewere used for parameter optimization including the Flood 

2004070300,2009060908, and 2011010100 are simulationsed in this paper. The flood simulation 

results are shown in Figure 11 and Table 3. 

Figure 11．. The flood simulation results obtained through parameter optimization by the 

improved PSO algorithm 

    From the flood simulation results in Figure 11, it can be seen that the Fflood 2009060908 

simulated result is the best. The simulated flood process for this flood is closest to the observedr one 

process, and the valuation indices of flood simulation results including the Nash–Sutcliffe-Sutcliffe 

coefficient, /C;, cCorrelation coefficient,/ R,; pProcess relative error, /P%,; Ppeak flow relative 

error,/ E%;, The coefficient of water balance, /W,; and Ppeak time error,/ T(h), are also the best. 

Table 3 shows the valuation indices of flood simulation results by from the improved PSO algorithm. 

Therefore, this Fflood 2009060908 is finally adopted for the Liuxihe model parameter optimization. 

Other floods will be used to verify the model performance. 

Table 3. The evaluation indices of flood simulation results obtained through parameter 

optimization by the improved PSO algorithm 

The parameter optimization results by from the improved PSO algorithm are shown in Figure 

12 as follows.,And the The flood process for parameter optimization is was the Flood 2009060908. 

The results of parametersparameter optimization are shown in Figure 10, among them, : (a) is the 

objective function evolution result, (b) is the parametersparameter evolution result, and (c) is the 

simulated flood process by using the optimized model parameters. 

Figure 12. Parameter optimization results with the improved PSO algorithm 

   

In order to  

To test the parameters optimization effect with different precipitation sources, both the 

precipitation of the rain gauge and the precipitation of the PERSIANN- CCS QPEs are were used 

to optimize the parameters of the coupling coupled model. To compare with thatFor comparison, 



the simulated flood process of the coupleding model with the same parameter as that from the rain 

gauges and the re-optimized parameter with from the the  the post-processed PERSIANN- CCS 

QPEs are also drawn in Figure 10(c).  

5.3 Parametric uncertainty analysis 

In this study, The parametric uncertainty analysis in this study is refer refers to the sensitivity 

analysis, which and this process is conducted using a fixed module called the parametric sensitivity 

analysis sub-model in the Liuxihe model,. itIt is a parameter sensitivity analysis method that was 

developed based on the GLUE method, and it was named Multimulti-Parameter parameter 

Sensitivity sensitivity Analysis analysis (MPSA) by Choi (1999) et al. Monte Carlo sampling is was 

used to obtain the value of the parameter spatial variation value. And theThe sensitivity of each 

parameter could be obtained through by running the model multiple timesruns of the model. 

In this study, the Nash–Sutcliffe coefficient is was used as the objective function value for the 

parametric sensitivity analysis, and the formula is as follows: 
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Where,where NSE is the objective function value of the Nash–Sutcliffe coefficient, iQ  and   

'

iQ  are the observed streamflow and the simulated onestreamflow, respectively, in m3/s, Q  is the 

average value of the observed flows in, m3/s, and n is the number of observation periods in, hours. 

FirstlyFirst, thedetermine the initial valuesvalue range of the parameter iswas determined to be 

[0.5,2.5]. SecondlySecond, 6,000 groups of parameter sequences were obtained by the Monte Carlo 

sampling method. ThirdlyThird, run the Liuxihe model was run to simulate the objective function 

values of the Nash–Sutcliffe coefficient, and the karst flood processes are were also the three flood 

events also used for parameter optimization. In this study, Tthe critical value of the Nash–Sutcliffe 

coefficient is was 0.85 in this study, and the objective function values that below this threshold are 

were considered as theto be unacceptable values,; otherwise, they are thewere considered to be 

acceptable values. The degree of separation between them these values indicates the sensitivity of 

the parameters. And this This degree of separation degree is was calculated according to the Nash–

-Sutcliffe coefficient (NSD), NSD, for short. In order to To analyzeanalyse the parameter sensitivity 

easiermore easily, a factor SI is given here, and SI=1- |NSD|;, —the closer is this the value of SI is 

is to 0, the less sensitive is theis parameter is. Table 3 4 shows the SI values of SI, which represent 

the sensitivity of the parameters in the Liuxihe model. 

Table 4. The sensitivity calculation results of the parameters sensitivity in the Liuxihe model 

 



6 Results and discussions 

6.1 Results of parametersparameter optimization and sensitivity analysis results 

  The results of parametersthe parameter optimization are shown in Figure 1012 as follows, 

among them,: (a) is the objective function evolution result and, (b) is the parametersparameter 

evolution result, . And from From the results of Figure 1012(a) and (b), it couldcan be found seen 

that the evolution number of the objective function for the parameter wass is 50 times, and the 

computation time of the parametersparameter optimization based on the   improved PSO 

algorithm is was aboutapproximately 8 hours, which means that the convergence of the 

parametersparameter optimization was achieved just after only 50 cycles. And compared In 

comparison,with that, the computation time of the initial model parameters that are were not 

optimized is was aboutapproximately 55 hours. ItThis result implies that the improved PSO 

algorithm has had high efficiency in terms of parametersparameter optimization. 

In order toTo test the parameters optimization effect with using the improved PSO algorithm 

(Chen et al., 2017), the flood process simulated results by achieved fromusing the improved PSO 

algorithm, as well as the initial model parameter values, are shown in Figure 1012(c) .And from 

From the results of shown in Figure 1012(c), it couldcan be found seen that the coupling coupled 

model does not simulate the observed karst flood process well when thewith initial model parameter 

values are does not simulate the observed karst flood process satisfactorilywere used;. aAdditionally, 

and compared with that, the simulated flood process by obtained from using the improved PSO 

algorithm is was very close to that from the observed process, which means that the improved PSO 

algorithm (Chen et al., 2017) in this study is was effective, and could largely improve the 

performance of the coupled modelcoupling model’s performance.   

In this study, the sensitivity of the parameters in the Liuxihe model is was calculated according 

to the Nash–-Sutcliffe coefficient, as shown in Equationformula (1316). The values of SI =1- |NSD|, 

which represent the sensitivity of the parameters, and according to the results in Table 3 4 indicate 

that, the SI values of the parameter Saturated saturated water content/θsat parameter, θsat, were 

maximizedare the maximum, which means that the degree of separation degree of thebetween the 

unacceptable values and the acceptable ones values (NSD) are thewas minimal minimum.. It means 

that thisThis parameter/, θsat, is was the most sensitive parameter in the Liuxihe model. When the 

SI value of the SI for a parameter is greater than 0.7, this parameter in the Liuxihe model is identified 

as a highly sensitive parameter in the Liuxihe model, and the SI values of the SI between 0.2 and 

0.7 indicate that a, this parameter is has medium sensitivesensitivity. When the SI value of the SI is 



less than 0.2, the parameter is insensitive. From Table 3, the SI values of the SI forthe different 

parameters, from big largest to smallest, are the Saturated saturated water content/, θsat > Saturation 

saturation permeability coefficient/, θs > Field field capacity/, θfc > Saturated saturated hydraulic 

conductivity/, Ks > Macro macro crack volume ratio/, V > Muskingum routing method (tThe slope 

of the water storage content and flow curve)/, K > Muskingum routing method (the proportion of 

the flow), /χ > Soil soil layer thickness/, z > Soil soil coefficient, /b > Bottom bottom width, /Sw > 

Bottom bottom slope, /Sp > Slope slope roughness, /n > Channel channel roughness, /n1 > Depletion 

depletion coefficient, /ω > Evaporation evaporation coefficient, /λ > Potential potential evaporation, 

/Ep > Wilting wilting percentage, /Cwl, among them,. Additionally, the parameters –θsat, θs, θfc, 

Ks ,, V, K, and χ parameters wereare highly sensitive; the z, b, Sw, Sp, n , n1 and ω parameters had 

medium sensitivityare medium sensitive,; and the λ, Ep , and Cwl are parameters were insensitive 

parameters. 

The parameters -Fflow direction, Slope slope and the Tthickness parameters of the epikarst zone 

are unadjustablecould not be adjusted,. aAmong them, the Flow flow direction and the Sslope are 

were directly calculated by the DEM data directly, and the Thickness thickness of the epikarst zone 

is was a fixed value in for a particular region. It is was aboutapproximately 3-10 meter metres in of 

the study area according to the field survey. 

6.2 Model validation results 

To better test the effect of the Liuxihe model in flood simulation and prediction, and to increase  

make the results more acceptibilityacceptabilityed, there are 30 karst flood events from 1982-2013 

in LKRB are simulated by the Liuxihe model, and the evaluation indices of the simulated flood 

results are listed in Table 5. And fFrom Table 5, it can be seen shows that the 6 evaluation indices 

of the flood simulation results for the 30 flood events are credible and reasonable. The average value 

of the Nash–Sutcliffe coefficient (C) is 0.82, the correlation coefficient (R) is 0.83, the process 

relative error (P) is 0.22, the peak flow relative error (E) is 0.05, the water balance coefficient (W) 

is 0.87, and the peak flow time error (T) is -6 hours, respectively,. aAmong these resultsm, the peak 

flow relative error (E) is minimal. The applicability of the Liuxihe model is provedn through these 

accepted flood simulation effects in the LKRB. 

Table 5. The evaluation indices of the simulated flood results based on the Liuxihe model in 

the LKRB 

In order tTo further validate the performance of the Liuxihe model in flood simulation and 

prediction, simulations are performed in a very developed karst area, where the influence of karst 

landforms plays an important role in hydrological processes. In this study, tThe most developed 

karst area in the whole basin examined in this study is the Beijiang catchment, and it is divided by 

the early warning point- Goutan set in the Liuxihe model (Figure 1b). And In total, 10 karst flood 

events are simulated to test the performance of the Liuxihe model, and the evaluation indices of the 

simulated flood results are shown in Table 6,. among From these resultsm, 4 karst flood simulation 

results are shown in Figure 13. 

 

Table 6. The evaluation indices of the simulated flood results based on the Liuxihe model in 

the Beijiang catchment 



Figure 13. Four4 karst flood simulation results produced by the Liuxihe model in the Beijiang 

catchment 

 

From the results in Table 4, the evaluation indices of the simulated karst flood results 

produced by the Liuxihe model are quite good in the Beijiang catchment. The average value 

of the Nash–Sutcliffe coefficient (C) is 0.92, the correlation coefficient (R) is 0.91, the 

process relative error (P) is 0.11, the peak flow relative error (E) is 0.08, the water balance 

coefficient (W) is 0.94, and the peak flow time error (T) is 3 hours, respectively. It is obvious 

that the evaluation indices of the simulated karst flood events based on the Liuxihe model are 

satisfying, and the accuracy is very high.  

Also,Additionally, from the flood simulation results in Figure 13, the 4 reasonable karst 

flood simulation results including those for floods 2008071311, 2012080310, 2014061015, 

and 2016091501 proved that the performance of the Liuxihe model in karst areas. The 

simulated flood discharge processes are very close to the observed values, especially for the 

peak flows. So it This finding implies that the Liuxihe model is feasible and effective in flood 

simulation and prediction in areas where karst is very well developed, as in the just like 

Beijiang catchment. 

6.23 Results of flood simulation with the post-processed PERSIANN-CCS QPEs 

After the correction was made, the post-processed PERSIANN-CCS QPEsQPE precipitation 

has become became much closer to the observed precipitation observed of at the rain gauge. In order 

to To analyzeanalyse the effects of flood simulation with the initial PERSIANN-CCS QPEs and the 

post-processed QPEs, five5 karst flood events, including FFloods 200806090200, 200906090800, 

201106010900, 201206022000 and 201306011400, are were simulated and are compared; the 

results are shown  in Figure 1114. In this simulation, maintaining the coupling coupled model 

parameters remained unchanged;, i.e., means the original coupling coupled model parameters with 

based on the rain gaugesgauge precipitation were employed, not while the re-optimized model 

parameters with based on the precipitation of the post-processed PERSIANN-CCS QPEs were not. 

Figure 14. The flood simulation results of the couplinged model with using two precipitation 

products  

From the result of Figure 11 14 shows, it could be seen that the karst flood simulation results 

with from the initial PERSIANN- CCS QPEs are were not so satisfactory, and the performance of 

the model arewas worse than that of the rain gauge precipitation. For instance, the simulated peak 

flows with from the PERSIANN-CCS QPEs are were lower than the observed onespeak flows. 

While tThe performance of the coupleding model with the post-processed PERSIANN- CCS QPEs 

is was much better, and also the evaluation indices of the flood simulation have beenwere largely 



improved (as shown in Table 37). The average value of the Nash–Sutcliffe coefficient (C) has 

aincreased by 7% increase, the correlation coefficient (R) increased byhas a 8% increase, the process 

relative error (P) has adecreased by 6% decrease, the peak flow relative error (E) has adecreased by 

14% decrease, the water balance coefficient (W) has aincreased by 5% increase, and   the peak 

flow time error (T) has had a decrease of 72  hours decrease, respectively. Among themthese 

parameters, the peak flow relative error has had the biggestlargest improvement, which ismaking it 

the most concernedimportant factor in flood prediction. It is was obvious that the evaluation indices 

are improved substantially with when thethe post-processed QPEs were used. So it implies 

Therefore, the post-processeding method for PERSIANN-CCS QPEs in this paper is was feasible 

and effective. AndIn addition, coupling the post-processed PERSIANN-CCS QPEs with the Liuxihe 

model has the potential to improve the model performance in in for flood simulation and prediction 

in the LKRB. 

Table 7. Evaluation indices of simulated flood events with the initial PERSIANN-CCS QPEs 

and the post-processed valuesones 

Table . 

. 

6.34 Effects cComparisons of different model parameters 

     The model parameters that were optimized with using the precipitation of from the rain 

gauge and those optimized using the PERSIANN-CCS QPEs are were different, and the 

performance of the coupling coupled model with using the different parameters makes made a 

biglarge difference in the flood simulation and prediction. To analyse this effect, the flood 

simulation results with from two different sets of model parameters are shown in Figure 1215. 

One set is used the parameters of the coupling coupled model that was optimized by the 

precipitation of from the rain gauge;, i.e., means the coupled flood simulation results with had 

used the same parameter as the rain gauge precipitation. And theThe other is used the 

parameters that were re-optimized by the post-processed PERSIANN-CCS QPEs. The flood 

process used for re-parameter reoptimization-optimization is was also the Flood 2009060908, 

and the other four flood events are were used to validate the performance of the coupling 

coupled model. 

 

Figure  15. Coupled flood simulation results with using the same parameter as the rain 

gauge precipitation and the re-optimized parameter with from the post-processed PERSIANN-

CCS QPEs 

 

From the above results in Figure 12, it has been foundFigure 1215 shows that the simulated 

flood results with obtained using the re-optimized parameters by from the post-processed 



PERSIANN-CCS QPEs are were much better than that of those with obtained using the same 

parameter as the rain gauge precipitation. The simulated flood discharge processes, especially the 

peak flows with the re-optimized parameter, are were closer to the observation observed values. To 

further compare the flood simulation results, six evaluation indices are were calculated and are 

shown in Table 48, the. The average value of the Nash–Sutcliffe coefficient has aincreased by 7% 

increase, the correlation coefficient has aincreased by 67% increase, the process relative error has 

adecreased by 2% decrease, the peak flow relative error has adecreased by 4% decrease, the water 

balance coefficient has aincreased by 23% increase, and the peak flow time error has hadexhibited 

a 183 hours-hour decrease, respectively.  . 

Table 8. The effect of recalibrating the coupling model parameters 

What is more, comparing 

Moreover, compared with the simulated flood results of from the initial PERSIANN-CCS 

QPEs in Table 38, the flood simulation results with the re-optimized parameters by from the post-

processed PERSIANN-CCS QPEs made a great progress:. tThe average value of the Nash–Sutcliffe 

coefficient has aincreased by 14% increase, the correlation coefficient has aincreased by 1415% 

increase, the process relative error has decreased bya 8% decrease, the peak flow relative error 

decreased byhas a 18% decrease, the water balance coefficient has aincreased by 78% increase, and 

the peak flow time error has had a 255 hours -hour decrease, respectively  (as shown in Table 3 7 

and Table 48). So it impliesThese results imply that the re-optimized parameters with calculated 

using the post-processed PERSIANN-CCS QPEs are necessary and effective for the coupling 

coupled model are necessary and effective, which makes aand the model performance improved 

better performance for the coupling model in terms of karst flood simulation and prediction. 

6.3 5 Peak flow time error analysis 

It is very important to accurately determine the flood peak flow time in karst areaareas, 

which as this information could offer enoughimprove the response times for of safe and rapid 

evacuations evacuation safely and rapidly before the a flood disaster appears. From the above 

results inAs shown in Figures 11 14 and, 12 15 and in Tables 37,  and 48, it has been found 

that all flood simulations have had significant peak flow time errors, and all of them the errors 

wereare negative, meansindicating that the simulated flood peaks appeared earlier than did the 

peaks in the observed values. Among them, the average peak flow time error with from the 

precipitation of from the rain gauge is was -7 hours, and that and this value is was -32 10 

javascript:;


hours with when the precipitation of from the initial PERSIANN-CCS QPEs was used. It This 

is an obvious error and could not cannot be ignored in flood prediction. While the The 

average peak flow time error of the coupling coupled model with that used the post-processed 

PERSIANN-CCS QPEsQPE precipitation and re-optimized parameters is was also -7 5 hours. 

ItThis result indicates that there ismakes a great difference. It has been found that both the 

average peak flow time errors of the Liuxihe model with generated from the precipitation of 

from the rain gauge and from the coupling coupled model with that used the precipitation of 

from the post-processed PERSIANN-CCS QPEs and re-optimized parameters are were -5 to -

7 hours (as shown in Table 47 and 8). So it implies Therefore, the peak flow time error is was 

-5 to -7 hours for the coupling coupled model in the LKRB, which means that the actual time 

of the flood peak may be 5-7 hours later, .; tThis value iswhich is very important in flood 

prediction and is equivalent to a 5-7 hours long -hour lead time in which safe evacuations can 

occurfor evacuation safely. 

There are two reasons for the peak flow time errors.   One reason is the systematic 

error of the coupling coupled model itself.  And that This error could be reduced by 

improving the model structure and function as well as by the reliable precipitation by from the 

PERSIANN-CCS QPEs and parametersparameter optimization. The other reason is due to the 

karst development laws and the characteristics of karst water-bearing media, which can 

regulate the rainfall process during floods. The karst depressions and other karst negative 

landforms in the upstream regions can hold back and store some large amounts of 

floodsfloodwater. What is more, the Furthermore, karst fissures can also slow down the 

floodsflood rate. These factors can play a crucial role in detaining natural floods and clipping 

the flood peaks detention and peak clipping. SoTherefore, the response times of the flood 

peak flow to the rainfall increased, and the observed flood peak times lagged behind. In 

comparison, the simulated flood peak flows appeared earlier ahead of time. 

The rainfall processAs rainfall moves from the sky to the ground and, finally, to the 

point where the rainfall converges to at the outlet of the basin, it has passed through the 

surface karst zone, the karst conduit and fissure, as well as the underground river. And the 

The karst development laws and the characteristics of the karst water-bearing media have an 

obvious influence on the rainfall-runoff -runoff process during the wholeentire hydrological 

process, which makesincreases the response time of the flood peak flow to rainfall increases, 

and the simulated flood peak flow by in the coupling coupled model appears earlier. ItThis 

result implies that there is a lead time for that can be used for safe evacuation 

measuresevacuation safely in flood prediction. 

 The flood peak flow time has a very close relationship with the floodsflood rate, and 

the floodsflood rate is very important to determinein determining the key factors of the karst 

conduit, the underground river and the other hydrogeological parameters. The sensitive 

parameters in this paper, such as the underground river parameters (as shown in Table 2), 

could be estimateestimated from the floodsflood rate to build the coupling coupled model in 

the karst areas. According to the survey data and the tracing test in the study area, i.e., the –  

LKRB, the flood flow rate of floods is aboutapproximately 8.64-17.28km/d28 km/d in the dry 

season; that,  is 17.28-43.2 km/d in the normal season and is 43.2-129.6 km/d in the flood 

period. The extreme flow rate can reach 172.8km/d, means8 km/d, indicating that the karst 

conduit is very highly developed in the LKRB.  



7 Conclusion 

There is no very Llittle reliable precipitation data of from rain gauges are available in 

many most karst river basins. How to obtain the reasonable rainfall data for the development 

of a hydrological model that can be used forin  flood prediction is especially important. In 

this study, the PERSIANN-CCS QPEs could offered effective precipitation results for the 

study area. And after After the correction, the post-processed PERSIANN-CCS QPEs coupled 

with a distributed hydrological model-, i.e., the Liuxihe model, iswere proposed in for karst 

flood simulation and prediction in the LKRB. The purpose is of the study was not only to 

simulate the flood process well, but also to find outdetermine the key factorkey information 

about how the karst hydrological process responds to the rainfall process in the coupling 

coupled model. The coupling coupled model employed in this paper hasad a good 

performance in in simulating flood events simulationevents; thus, this method offerswhich 

can offer a  reasonable theoretical guidance for flood prediction, control and disaster 

reduction in karst river basins like such as the LKRB. Based on the study results, the 

following conclusions couldcan be drawn: 

1). The quantitative precipitation estimates produced by the PERSIANN-CCS QPEs are were quite 

very similar to the observed precipitation by from the rain gauges, especially in terms ofthe rainfall 

distribution. ButHowever, the PERSIANN-CCS QPEs underestimatesunderestimated the 

precipitation value. The average precipitation is was 0.290.77 for the rain gauges and 0.230.66 for 

the PERSIANN-CCS QPEs. The average relative error was 20-14% between the two precipitation 

products,. Aand this relative error could be reasonably reduced by the post-processeding method 

presented in this paper.  

2). The applicability of the Liuxihe model is provedn by 30 accepted flood simulation results in the 

LKRB and 10 in the Beijiang catchment. EspeciallyIn particular, the simulated results are quite good 

for theof 10 karst flood events are quite good in the Beijiang catchment, where the karst is very 

developed. The average value of the Nash–Sutcliffe coefficient (C) is 0.92, the correlation 

coefficient (R) is 0.91, the process relative error (P) is 0.11, the peak flow relative error (E) is 0.08, 

the water balance coefficient (W) is 0.94, and the peak flow time error (T) is 3 hours, respectively. 

The parameters sensitivity analysis for the Liuxihe model shows that the parameters –θsat, θs, 

θfc, Ks ,, V, K, and χ are highly sensitive; z, b, Sw, Sp, n , , n1 and ω arehave medium  sensitivitye,; 

and λ, Ep , , Cwl are insensitive parameters. And tThe sequence of parameters sensitivity is as 

follows: Ssaturated water content/, θsat > Ssaturation permeability coefficient/, θs > Ffield capacity/, 

θfc > Ssaturated hydraulic conductivity/, Ks > Mmacro crack volume ratio/, V > Muskingum routing 

method (Tthe slope of the water storage content and flow curve)/, K> Muskingum routing method 

(the proportion of the flow)/, χ > Ssoil layer thickness/, z > Ssoil coefficient/, b > Bbottom width/, 

Sw > Bbottom slope/, Sp > Sslope roughness/, n > Cchannel roughness/, n1 > Ddepletion coefficient 

/, ω > Eevaporation coefficient/, λ> Ppotential evaporation/, Ep > Wwilting percentage/, Cwl.  

 

32). The average relative error is 20% between the two precipitation products was 20%. And this 

This relative error could be reduced reasonably reduced by the post-processed method presented in 

this paper. The flood simulation results with from the post-processed PERSIANN-CCS QPEs are 

better than that of from the initial  QPEs., tTheThe average values of the six evaluation indices, 

including the Nash–Sutcliffe coefficient (C), correlation coefficient (R), process relative error (P), 

peak flow relative error (E), water balance coefficient (W), and peak flow time error (T)  , with the 



initial   PERSIANN-CCS QPEs are were 0.66, 0.69, 0.28, 24%, 0.81 and  -32 -10 hours, 

respectively, while those with from the post-processed QPEs are were 0.73, 0.77, 0.22, 10%, 0.86 

and  -25-8 hours, respectively. ItThis result means indicates that the method used in this study for 

QPEs post-processeding QPEs is effective, and could improve the effect of the PERSIANN-CCS 

QPEsQPE capability. 

34). The coupling coupled model parameters should be re-optimized using the post-processed 

PERSIANN-CCS QPEs. Because it This approach hadhas a better performance in the flood 

simulation than that when the same model parameters were the same as those from theas rain gauges. 

The average valuevalues of the Nash–Sutcliffe coefficient (C), correlation coefficient (R), process 

relative error (P), peak flow relative error (E), ,water balance coefficient (W), and peak flow time 

error (T)   with the same model parameters as rain gauge are were 0.73, 0.77, 0.22, 10%, 0.86 and    

-25-8 hours, respectively, when the model parameters were the same as the rain gauge; however,but 

those with obtained from the re-optimized model parameters are were 0.80, 0.830.84, 0.20, 6%, 

0.880.89 and   -7-5 hours, respectively. It Thus, the proposed method significantly improves the 

model performance significantly. 

45). The simulated karst floodsflood process based on the precipitation observed by at the rain 

gauges is was the best. And In addition, the flood simulation results by using the PERSIANN-CCS 

QPEs after post-processed processing and re-optimized optimizing the model parameters could 

make theimproved the coupled coupling model performance much better. The average value of the 

Nash–Sutcliffe coefficient has a increased by 14% increase, the correlation coefficient has 

aincreased by 1415% increase, the process relative error has adecreased by 8% decrease, the peak 

flow relative error has adecreased by 18% decrease, the water balance coefficient has aincreased by  

78% increase, and the peak flow time error has hadexhibited a 255 hours -hour decrease, 

respectively. Among themse parameters, the peak flow relative error and the peak flow time error 

have the biggest improvementimproved the most; thus, these parameters are the most important in 

terms ofwhich are the greatest concerned factors in a flood prediction in karst river basins. 
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Figures 

 

a. Sketch map of the Liujiang River Basin（LKRB） 

  

 
b. The early warning points         c. Three-dimensional topography 

Figure  1. Sketch map of Liujiang and the Beijiang  catchment 

  



                                
        a. The DEM map            b. Three-dimensional topographical map 

Figure 2. The DEM and three-dimensional topographical map of the LKRB 

 

 

(a) land use types                             (b) soil types 

Figure 3. The property data for the Liuxihe model in the LKRB 

 

 



 

 

 

Figure 4. Precipitation pattern comparison of two precipitation products (2008),: (a) is 

the average precipitation of rain gauges, (b) is the average precipitation of PERSIANN-

CCS QPEs, and (c) is the Qquantile-Qquantile plot, in which the 45-degree line is used 

to compare the two precipitation products. 

 

 

 

 



 

 

Figure 5. Precipitation pattern comparison of two precipitation products (2009): (a) is 

the average precipitation of rain gauges, (b) is the average precipitation of PERSIANN-

CCS QPEs, and (c) is the quantile-quantile plot, in which the 45-degree line is used to 

compare the two precipitation products. 

 

 

 

 

 



 

 

Figure 6. Precipitation pattern comparison of two precipitation products (2011): (a) is 

the average precipitation of rain gauges, (b) is the average precipitation of PERSIANN-

CCS QPEs, and (c) is the quantile-quantile plot, in which the 45-degree line is used to 

compare the two precipitation products. 

 

 

 

 

 

 



 

 

Figure 7. Precipitation pattern comparison of two precipitation products (2012): (a) is 

the average precipitation of rain gauges, (b) is the average precipitation of PERSIANN-

CCS QPEs, and (c) is the quantile-quantile plot, in which the 45-degree line is used to 

compare the two precipitation products. 

 

 

 

 

 

 



 

 

Figure 8. Precipitation pattern comparison of two precipitation products (2013): (a) is 

the average precipitation of rain gauges, (b) is the average precipitation of PERSIANN-

CCS QPEs, and (c) is the quantile-quantile plot, in which the 45-degree line is used to 

compare the two precipitation products. 

 

  

 

 

 

 

 



 

Figure 9. The structure of the Liuxihe model 

 

 

 a. The structure of the KHRU (Ren, 2006)     b. The Pphotograph of the three-

dimensional space structure of the KHRU        

Figure 10. Sketch map of the KHRU 

   



 

 

Figure 11. The flood simulation results obtained through parameter optimization by 

the improved PSO algorithm 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) The objective function evolution result    (b) The parameters evolution result 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c) The simulated flood process by using the optimized model parameters 

Figure 12. Parameter optimization results with the improved PSO algorithm 

 

 

 

 



 

 

Figure 13. 4 karst flood simulation results by from the Liuxihe model in the Beijiang 

catchment 

 

 

(a) (a)fFlood event 200806090200       (b) fFlood event 200906090800 



 

 

 

 

(c) fFlood event 201106010900        (d) fFlood event 201206022000 

 

(e) fFlood event 201306011400 

Figure 14. The flood simulation results of the couplinged model with the two 

precipitation products  

 



 

(a) (a)Fflood event 200806090200     (b) fFlood event 201106010900 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) fFlood event 201206022000       (d) fFlood event 201306011400 

Figure 15. Coupled flood simulation results with using the same parameter as 

the rain gauge precipitation and using the re-optimized parameter with from the post-

processed PERSIANN-CCS QPEs 

  



Tables 

Table 1. Precipitation pattern comparison of the two precipitation products  

floodFloods tType 
aAverage precipitation 

(mm) 

rRelative 

bias % 

200806090200  
rain gauge 1.37 0.37     

PERSIANN-CCS QPEs 1.22 0.31  -11 -16  

200906090800  
rain gauge 0.74 0.24     

PERSIANN-CCS QPEs 0.62 0.18  -16 -25  

201106010900  
rain gauge 0.42 0.22     

PERSIANN-CCS QPEs 0.39 0.19  -7 -14  

201206022000  
rain gauge 0.78 0.38     

PERSIANN-CCS QPEs 0.63 0.30  -19 -21  

201306011400  
rain gauge 0.53 0.22     

PERSIANN-CCS QPEs 0.43 0.17  -20 -23  

average value 
rain gauge 0.77 0.29     

PERSIANN-CCS QPEs 0.66 0.23  -14 -20  

 

Table 2. The parameters of the model 

(a) The parameters of the coupling model 

Parameter

s types 
Name Variable name 

Physical 

property 
Sensitivity Adjustability 

Evapotran

spiration 

 

Potential 

evaporation 
Ep Meteorology insensitive adjustable 

Evaporation 

coefficient 
λ 

Vegetation 

type 

medium 

sensitive 
adjustable 

Wilting percentage Cwl 
Vegetation 

type 
insensitive adjustable 

The 

epikarst 

zone 

Thickness h 

Soil type& 

Karst rock 

property 

sensitive unadjustable 

Saturated water 

content 
θsat  Soil type 

highly 

sensitive 
adjustable 

Saturation 

permeability 

coefficient 

θs Soil type 
highly 

sensitive 
adjustable 

Macro crack 

 volume ratio 
V 

Karst rock 

property 

highly 

sensitive 
adjustable 

Field capacity θfc Soil type sensitive adjustable 

Rainfall-

runoff  

Soil layer thickness z Soil type sensitive adjustable 

Saturated hydraulic Ks Soil type highly adjustable 



conductivity  sensitive 

Soil coefficient   b Soil type sensitive adjustable 

Flow direction Fd Landform 
highly 

sensitive 
unadjustable 

Slope S0 Landform 
highly 

sensitive 
unadjustable 

Bottom slope Sp Landform sensitive adjustable 

Bottom width Sw Landform sensitive adjustable 

Slope roughness n 

Landform 

&Vegetation 

type 

sensitive adjustable 

Channel roughness n1 

Landform 

&Vegetation 

type 

sensitive adjustable 

The 

undergrou

nd river 

Depletion 

coefficient  
ω 

Landform 

&Soil type 

medium 

sensitive 
adjustable 

Muskingum 

routing method / 

The slope of the 

water storage 

content and flow 

curve 

K Landform 
highly 

sensitive 
adjustable 

Muskingum 

routing method/the 

proportion of the 

flow 

χ Landform 
highly 

sensitive 
adjustable 

     (b) The physical parameters of the epikarst zone 

Thickness/ h 

(m) 

Saturated water 

content/θsat 

(g/cm3) 

 

 

Saturation 

permeability 

coefficient/θs 

(mm/hr) 

 

Macro crack 

volume ratio/V 

(m3/m3) 

 

Field capacity/θfc 

(mm) 

 

3-10 0.12-0.3 100-420 0.05-0.15 0.16-0.3 

(c)The rainfall infiltration coefficient of different karst landforms 

Landforms karst strongly 

developed 

karst moderately 

developed  

karst poorly developed 

closed depression 0.6-0.8 0.4-0.6 0.15-0.18 

not closed depression 0.4-0.7 0.3-0.5 0.18-0.2 

monadnock, platform 0.2-0.3 0.2-0.3 0.2-0.25 

gully, slope 0.01-0.2 0.01-0.2 0.01-0.2 

 

 



Table 3. The evaluation indices of flood simulation results obtained through 

parameter optimization by the improved PSO algorithm 

Ffloods 

Nash–

Sutcliffe-

Sutcliffe 

coefficient/C 

Correlation 

coefficient/R 

Process 

relative 

error/P% 

Peak flow 

relative 

error/E% 

The 

coefficient 

of water 

balance/W 

Peak time 

error/T(h) 

2004070300  0.78 0.82 0.23 0.08 0.85 -8 

2009060908  0.95 0.92 0.17 0.04 0.09 -5 

2011010100  0.8 0.84 0.26 0.03 1.02 -7 

 

Table 4. The calculation results of the parameters sensitivity in the Liuxihe model 

Floods 

Potential 

evaporati

on/Ep 

Evapor

ation 

coeffici

ent/λ 

Wilting 

percentag

e/Cwl 

Saturat

ed 

water 

content

/θsat 

Saturati

on 

permea

bility 

coeffici

ent/θs 

Macro 

crack 

volum

e 

ratio/

V 

Field 

capacit

y/θfc 

Soil 

layer 

thickne

ss/z 

Saturated 

hydraulic 

conductiv

ity/Ks 

2004070

30000  

0.06  0.08  0.02  0.92  0.90  0.77  0.85  0.68  0.82  

Soil 

coefficie

nt/b 

Bottom 

slope/S

p 

Bottom 

width/Sw 

Slope 

roughn

ess/n 

Channel 

roughne

ss/n1 

Deplet

ion 

coeffi

cient 

/ω 

Muskin

gum 

routing 

method 

/ The 

slope 

of the 

water 

storage 

content 

and 

flow 

curve/

K 

Muski

ngum 

routing 

method

/the 

proport

ion of 

the 

flow/χ 

  

  0.65  0.36  0.49  0.27  0.19  0.12  0.76 0.75 

2009060

90800  

Potential 

evaporati

on/Ep 

Evapor

ation 

coeffici

ent/λ 

Wilting 

percentag

e/Cwl 

Saturat

ed 

water 

content

/θsat 

Saturati

on 

permea

bility 

coeffici

ent/θs 

Macro 

crack 

volum

e 

ratio/

V 

Field 

capacit

y/θfc 

Soil 

layer 

thickne

ss/z 

Saturated 

hydraulic 

conductiv

ity/Ks 

0.08  0.11  0.05  0.96  0.92  0.81  0.89  0.65 0.87  



Soil 

coefficie

nt/b 

Bottom 

slope/S

p 

Bottom 

width/Sw 

Slope 

roughn

ess/n 

Channel 

roughne

ss/n1 

Deplet

ion 

coeffi

cient 

/ω 

Muskin

gum 

routing 

method 

/ The 

slope 

of the 

water 

storage 

content 

and 

flow 

curve/

K 

Muski

ngum 

routing 

method

/the 

proport

ion of 

the 

flow/χ 

  

  0.62 0.54  0.58 0.32  0.25 0.12  0.78  0.78  

2011060

10900  

Potential 

evaporati

on/Ep 

Evapor

ation 

coeffici

ent/λ 

Wilting 

percentag

e/Cwl 

Saturat

ed 

water 

content

/θsat 

Saturati

on 

permea

bility 

coeffici

ent/θs 

Macro 

crack 

volum

e 

ratio/

V 

Field 

capacit

y/θfc 

Soil 

layer 

thickne

ss/z 

Saturated 

hydraulic 

conductiv

ity/Ks 

0.12  0.25  0.07  0.89  0.82  0.71  0.79  0.62 0.75  

Soil 

coefficie

nt/b 

Bottom 

slope/S

p 

Bottom 

width/Sw 

Slope 

roughn

ess/n 

Channel 

roughne

ss/n1 

Deplet

ion 

coeffi

cient 

/ω 

Muskin

gum 

routing 

method 

/ The 

slope 

of the 

water 

storage 

content 

and 

flow 

curve/

K 

Muski

ngum 

routing 

method

/the 

proport

ion of 

the 

flow/χ 

  

  0.58 0.52  0.55  0.48  0.42  0.33  0.72  0.68 

 

 

 

 

 

 



Table 5. The evaluation indices of the simulated flood results based on the Liuxihe 

model in the LKRB 

Ffloods 

Nash–

Sutcliffe-

Sutcliffe 

coefficient/C 

Correlation 

coefficient/R 

Process 

relative 

error/P% 

Peak flow 

relative 

error/E% 

The 

coefficient 

of water 

balance/W 

Peak time 

error/T (h) 

1982081219  0.84 0.75 0.3 0.01 0.83 -4 

1983020308  0.82 0.84 0.21 0.04 0.89 -5 

1984010100  0.75 0.89 0.26 0.14 0.96 -3 

1985010100  0.73 0.87 0.17 0.01 1.05 -5 

1986010100  0.83 0.85 0.23 0.04 0.94 4 

1987050100  0.93 0.76 0.1 0.05 1.01 -6 

1988051620  0.84 0.8 0.15 0.04 0.9 -8 

1989042600  0.64 0.74 0.39 0.02 0.88 -5 

1990050100  0.85 0.87 0.14 0.03 0.85 -3 

1991053118  0.8 0.76 0.25 0.04 0.95 10 

1992042900  0.66 0.84 0.2 0.11 0.89 5 

1993060900  0.91 0.89 0.24 0.09 1.05 -8 

1994060700  0.93 0.85 0.14 0.04 0.85 -6 

1995052100  0.82 0.7 0.2 0.01 0.81 -10 

1996060600  0.9 0.93 0.18 0.02 0.86 -5 

1997060400  0.84 0.87 0.13 0.06 0.95 -4 

1998051600  0.83 0.85 0.3 0.01 1.05 -6 

1999061700  0.6 0.83 0.15 0.05 0.8 -5 

2000052100  0.79 0.89 0.26 0.06 0.83 -8 

2001051500  0.8 0.82 0.25 0.07 0.82 -6 

2002042600  0.86 0.9 0.24 0.02 0.87 -2 

2003060600  0.92 0.85 0.14 0.04 0.76 -4 

2004070300  0.78 0.82 0.23 0.08 0.85 -8 

2005061400  0.76 0.76 0.35 0.06 0.74 -5 

2006060400  0.82 0.83 0.3 0.1 0.86 -3 

2008060900  0.8 0.91 0.15 0.03 0.89 -6 

2009060908  0.95 0.92 0.17 0.04 0.09 -5 

2011010100  0.8 0.84 0.26 0.03 1.02 -7 

2012010100  0.82 0.79 0.2 0.05 0.8 -6 

2013010100  0.95 0.82 0.2 0.06 0.92 -4 

mean value  0.82 0.83 0.22 0.05 0.87 -6  

 

 

 

 

 

 



 

Table 6. The evaluation indices of the simulated flood results based on the Liuxihe 

model in the Beijiang catchment 

Floods 

Nash–

Sutcliffe-

Sutcliffe 

coefficient/C 

Correlation 

coefficient/R 

Process 

relative 

error/P% 

Peak flow 

relative 

error/E% 

The 

coefficient 

of water 

balance/W 

Peak flow 

time 

error/T (h) 

2000101512  0.89 0.92 0.11 0.09 0.93 -3 

2003091014  0.91 0.88 0.13 0.11 0.89 -2 

2005070815  0.93 0.89 0.09 0.13 0.95 2 

2008071311  0.97 0.89 0.08 0.09 0.95 -1 

2010081012  0.87 0.93 0.12 0.07 0.91 -4 

2012080310  0.9 0.95 0.06 0.05 0.96 2 

2013091210  0.92 0.91 0.09 0.09 0.89 3 

2014061015  0.93 0.93 0.18 0.07 1.08 -2 

2015091008  0.93 0.89 0.13 0.08 0.92 -3 

2016091501  0.94 0.9 0.11 0.04 0.92 1 

mean value 0.92 0.91 0.11 0.08 0.94 3 

Table 7. Evaluation indices of simulated flood events with using the initial PERSIANN-

CCS QPEs and the post-processed onesvalues 

floodFlo

ods 
tType 

Nash–

Sutcliffe-

Sutcliffe 

coefficient/

C 

Correlatio

n 

coefficient

/R 

Proces

s 

relative 

error/P

% 

Peak 

flow 

relative 

error/E% 

The 

coefficien

t of water 

balance/

W 

Peak 

time 

error/T 

(h) 

 

 

2008060

90000  

rain gauge 0.8 0.91 15 3 0.89 -6 

PERSIANN

-CCS QPEs 
0.6 0.65 26 36 0.83 -10 

the post-

processed 

PERSIANN

-CCS QPEs 

0.63 0.73 21 6 0.92 -8 

2009060

90800  

rain gauge 0.95 0.92 17 4 0.9 -12 

PERSIANN

-CCS QPEs 
0.67 0.61 28 34 0.79 -16 

the post-

processed 

PERSIANN

-CCS QPEs 

0.75 0.64 22 14 0.85 -13 

2011060 rain gauge 0.8 0.84 16 3 1.02 -7 



10900  
PERSIANN

-CCS QPEs 
0.65 0.83 25 21 0.89 -10 

the post-

processed 

PERSIANN

-CCS QPEs 

0.75 0.85 21 12 0.92 -8 

2012060

2200  

rain gauge 0.82 0.79 20 5 0.8 -6 

PERSIANN

-CCS QPEs 
0.69 0.54 31 17 0.75 -9 

the post-

processed 

PERSIANN

-CCS QPEs 

0.71 0.74 23 12 0.78 -7 

2013060

11400  

rain gauge 0.95 0.82 20 6 0.92 -4 

PERSIANN

-CCS QPEs 
0.7 0.84 28 10 0.79 -7 

the post-

processed 

PERSIANN

-CCS QPEs 

0.82 0.89 24 7 0.85 -5 

average 

value 

rain gauge 0.86 0.86 18 4 0.91 -7 

PERSIANN

-CCS QPEs 
0.66 0.69 28 24 0.81 -10 

the post-

processed 

PERSIANN

-CCS QPEs 

0.73 0.77 22 10 0.86 -8 

 

 

 

 

 



Table 8. The effect of recalibrating the coupling model parameters 

floodFloo

ds 

Parameter 

type 

Nash–

Sutcliffe-

Sutcliffe 

coefficient

/C 

Correlation 

coefficient/R 

Process 

relative 

error/P

% 

Peak 

flow 

relative 

error/E

% 

The 

coefficien

t of water 

balance/

W 

Peak 

flow 

time 

error/T 

(h) 

2008060

90000  

Coupling 

model/the 

same model 

parameters as 

rain gauges 

0.63 0.73 21 6 0.92 -10 

Coupling 

model/re-

optimized 

model 

parameters 

0.76 0.83 18 5 0.93 -4 

2011060

10900  

Coupling 

model/the 

same model 

parameters as 

rain gauges 

0.75 0.85 21 12 0.92 -8 

Coupling 

model/re-

optimized 

model 

parameters 

0.78 0.87 19 6 0.94 -6 

2012060

2200  

Coupling 

model/the 

same model 

parameters as 

rain gauges 

0.71 0.74 23 12 0.78 -7 

Coupling 

model/re-

optimized 

model 

parameters 

0.78 0.76 21 8 0.79 -4 

2013060

11400  

Coupling 

model/the 

same model 

parameters as 

rain gauges 

0.82 0.89 24 7 0.85 -5 



Coupling 

model/re-

optimized 

model 

parameters 

0.86 0.91 22 6 0.87 -4 

average 

value 

Coupling 

model/the 

same model 

parameters as 

rain gauges 

0.73  0.77 22  10  0.86   -8 

Coupling 

model/re-

optimized 

model 

parameters 

0.80  0.84  20  6 0.89  
      -

5 
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