Discussion started: 20 September 2018 © Author(s) 2018. CC BY 4.0 License.

- 1 Trade-offs between crop-related (physical and virtual) water flows
- 2 and the associated economic benefits and values: a case study of the
- 3 Yellow River Basin
- 4 Pute Wu^{1,6,8,10}, La Zhuo^{1,6,8,10}, Guoping Zhang², Mesfin M. Mekonnen³, Arjen Y. Hoekstra^{4,7},
- 5 Yoshihide Wada⁵, Xuerui Gao^{1,6,8,10}, Xining Zhao^{1,6,8,10}, Yubao Wang^{6,9} and Shikun Sun^{6,9}
- 6 ¹ Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China.
- Water Footprint Network, The Hague, 2594AV, The Netherlands.
- 8 ³ Robert B. Daugherty Water for Food Global Institute, University of Nebraska, Lincoln, NE 68583, USA.
- ⁴ Twente Water Centre, University of Twente, Enschede, 7500AE, The Netherlands
- 10 ⁵ International Institute for Applied Systems Analysis, Laxenburg, 2361, Austria
- 11 ⁶ Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, 712100, China
- 12 ⁷ Institute of Water Policy, Lee Kuan Yew School of Public Policy, National University of Singapore, 259770, Singapore
- 13 ⁸ National Engineering Research Center for Water Saving Irrigation at Yangling, Yangling, 712100, China
- 14 ⁹ College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, 712100, China
- 15 ¹⁰ Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling,
- 16 712100, China.
- 17 Correspondence to: Pute Wu (gjzwpt@vip.sina.com; gjzwpt@hotmail.com), La Zhuo (zhuola@nwafu.edu.cn;
- 18 <u>zhuo.l@hotmail.com</u>)

Manuscript under review for journal Hydrol. Earth Syst. Sci.

Discussion started: 20 September 2018 © Author(s) 2018. CC BY 4.0 License.

1 2

3

4

5

6 7

8 9

10

11

12 13

14

15 16

17

18

19

Abstract. Water issues in many river basins associated with droughts, water over-exploitation and pollution are increasingly being driven by remote pressures through intensified virtual water (VW) flows. However, little attention has been paid to the internal trade-offs between the (physical and virtual) water flows and the associated economic benefits and incomes that the water generated. Here we estimate the concomitant reversed flows of economic benefits and values to the physical and VW flows in crop production and consumption at a basin level, by taking the Yellow River Basin (YRB) in both current three typical years (2003, 2004, and 2006, which were dry, average, and wet, respectively) and possible four scenarios for 2050 under climate-socio-economic changes as the study case. An algorithm for estimation of the economic net benefits of green and blue water use for crop production based on the water footprint (WF) accounting is developed. Results show that the net benefit of blue water (irrigation) was 13-42% lower than that of green water used in irrigated croplands in the basin. Cropping pattern has defined the spatial heterogeneity in the levels of net benefits of water used for crops within the YRB. Provinces located in the relatively drier upper and middle reaches had high irrigation withdrawal rates while a low economic return to farmers because of growing relatively cheap crops. The YRB got increasingly net income due to exports of wheat, cotton and apples even though as a crop-related net VW importer associated to the intra-national trades. Considered scenarios for 2050 suggested that the economic returns of crop-related physical and VW flows were more sensitive than the quantity levels of corresponding water flows. This study implies the importance of managing the internal trade-offs or mutual effects between the water resources consumption and economic returns, in order to get a win-win situation in maximizing both the water use efficiency and economic productivities per drop of water flows.

Manuscript under review for journal Hydrol. Earth Syst. Sci.

Discussion started: 20 September 2018 © Author(s) 2018. CC BY 4.0 License.

1 Introduction

3

5

7

8

9

12

13

30

2 Across the natural, social and economic systems in the Anthropocene, water flows physically through the hydrosphere as

well as virtually as embedded virtual water (VW) into the trades among different places (Bierkens, 2015; Konar et al., 2016;

4 V ör ösmarty et al., 2015; Wu et al., 2016; Zhao et al., 2015; Savenije et al., 2014). It has been widely recognized that regional

water issues associated with droughts, water over-exploitation and pollution are increasingly being driven by intensified VW

6 trades (Marston and Konar, 2017; Marston et al., 2015; Vörösmarty et al., 2015; Dalin et al., 2014; Rulli et al., 2013;

Hoekstra, 2011; 2013). The VW flows among countries account for one-fifth to one-fourth of the total water footprint (WF)

in the world (Hoekstra, 2011; Hoekstra and Mekonnen, 2012; Vörösmarty et al., 2015). A sustainable VW flows can

indirectly reduce the water-demand risks experienced by exporters (Chapagain et al., 2006). However, many nations and

10 river basins are 'losing' water through unsustainable VW flows. Agriculture has been the largest water consumer and user.

11 Over 70% of blue water withdrawals globally, 92% of humanity's WF and 76% of global VW flows are for agriculture

(Hoekstra and Mekonnen, 2012). A recent study (Dalin et al., 2017) shows that approximately 11% of global non-renewable

groundwater depletion flows virtually through the international crop trade, which leads to increased risk of water shortages

14 in many populous but water-poor countries. The crop-related VW flows among regions within China are from the water-

15 scarce North China to water-rich South China (Ma et al., 2006; Feng et al., 2014; Guan et al., 2007; Zhang and Anadon,

16 2014). The VW flows lead to losses of the China's blue water and exacerbate the water stress experienced by the water-

17 exporting regions (Dalin et al., 2014; Zhao et al., 2015; Zhuo et al., 2016a).

As an indispensable input in crop production, water resources are consumed while generate economic benefits as that the

19 products has economic values and the blue water withdrawal together with other inputs have costs. Regarding a crop-related

20 VW flow network between different regions, the crop prices in the exporting places define the net economic income of each

21 trade partner in per drop of VW flows across their boundary (Schwarz et al., 2015). In order to get higher economic benefits

22 or income, the water consumers (i.e. farmers) could abstract more water even though there was improved water use

23 efficiency (Ward and Pulido-Velazquez, 2008; Song et al., 2017). Studies available on physical and VW flow assessments

24 related to crop production and consumption have been focusing on the impacts of the water flows on water scarcities (e.g.

25 Dalin et al., 2014; Zhao et al., 2015; Zhuo et al., 2016b), or external climate/social/economic driving factors of the physical

and virtual water networks (e.g. Tamea et al., 2014; Wang et al., 2016; Dalin et al., 2012). However, to our knowledge, there

27 is little attentions paid to the internal trade-offs between the (physical and virtual) water flows and the associated economic

28 benefits and incomes that the water generated.

29 In addition, the economic benefit contributed by green water, which represents most water consumed by agriculture, has

been seriously neglected. Given the economic character of water, the economic water productivity (in USD/m³) is measured

31 as the ratio of product value (USD/kg) to the water consumed in production (m³/kg), for being comparable to water

32 productivity (kg/m³) (Schyns and Hoekstra, 2014; Chouchane et al., 2015). Chouchane et al. (2015) provided the estimation

Manuscript under review for journal Hydrol. Earth Syst. Sci.

Discussion started: 20 September 2018 © Author(s) 2018. CC BY 4.0 License.

2 productivity index hides the effects of cost in the production. Most related studies have focused on blue water in examining 3 how changes in the economic benefits of irrigation water affect irrigation efficiency (Cai et al., 2003; Schmitz et al., 2013) or 4 how the cost effectiveness of different irrigation measures respond to changes in the blue WFs associated with crop 5 production (Zou et al., 2013; Chukalla et al., 2017). Cai et al. (2003) analyzed the relationship between the physical and net economic benefit of irrigation water in the Maipo River Basin in an integrated economic-hydrologic modeling framework. 6 7 The results of this case study indicated that higher water prices might result in higher levels of basin irrigation efficiency,

of the crop green and blue economic water productivities separately for the case of Tunisia. While the economic water

whereas higher costs of implementing technologies or measures to improve physical water efficiency can result in lower 8

9 incomes for farmers. Although Hoekstra et al. (2001) estimated the value of green water for the Zambezi Basin, only the

10 total amount was presented; the comparisons with blue water values as well as the contributions of diverse products were not

11 shown. What's more, previous studies (Novo et al., 2009; Schwarz et al., 2015) on the economic income in VW flows have

12 concentrated on the international crop trade, while intra-national crop transfers have not been analyzed.

13 In order to fill the knowledge gaps as described above, the current study objective is to investigate the trade-offs between the

14 physical/virtual water flows and associated economic benefits and incomes related to crop production and consumption for a

15 geographic area addition to evaluation of the related physical and virtual water flows. To make this possible, an algorithm

for estimation of the economic net benefits of green and blue water use for crop production based on the WF accounting is

developed. We take the crop production and consumption within the Yellow River Basin (YRB) as the study case, looking at

both current three selected typical years (2003, 2004, and 2006, which were dry, average, and wet, respectively) and possible

19 four scenarios for 2050 in responses to the climate and socio-economic changes.

2 Methods and Data

16

17

18

20

21

2.1 Case study setup 22

23 The YRB is selected as the study area given its representativeness. Firstly, the basin is facing increasing challenge in 24 sustainable water management from its biggest water user — agriculture. As the second largest river basin of China, The The YRB has a drainage area of 795×10³ km² (YRCC, 2013). The basin occupies 2% of the national water resources while 25 produces 13% of national grain production (YRCC, 2013). Currently, the irrigation accounts for 67% of total blue water 26 27 consumption in the basin (2016) (YRCC, 2017). Over the long-term average, the basin faces moderate to severe blue water scarcity for seven months a year. Due to the spatial mismatch between the blue water consumption and availability, half of 28 29

the basin still suffers severe blue water scarcity in the wet months (Zhuo et al., 2016b). Secondly, the basin spreads across

30 nine provinces (Qinghai, Sichuan, Gansu, Ningxia, Inner Mongolia, Shaanxi, Shanxi, Henan and Shandong) with varied

levels of economy (Fig. 1). The highest provincial per capita gross domestic product (GDP) in Inner Mongolia was 2.6 times 31

Manuscript under review for journal Hydrol. Earth Syst. Sci.

Discussion started: 20 September 2018 © Author(s) 2018. CC BY 4.0 License.

- 1 higher than the lowest in Gansu province within the YRB (2016) (NBSC, 2018). Therefore, the price and cost of a same crop
- 2 varied as well across the nine provinces. With spatial variation in climate as well as the planting structure and scales, the
- 3 contribution of each province in the total WF of crop production varies. Thirdly, the basin participates in the VW networks
- 4 related to either the intra-national domestic or in international crop transfers. According to the available studies on VW
- 5 balance of the YRB through the top-down approach (i.e. Input-Output analysis) (Feng et al., 2012; Cai et al., 2009; Yin et al.,
- 6 2016), the YRB has a net VW export in consideration of the primary industry.
- 7 For both the selected three typical years and the scenarios for 2050, at 5 by 5 arc minute grid level and crop by crop, we
- 8 firstly calculate green and blue WFs of crop production aiming for describing the related physical water flows. Then we
- 9 estimate WF of crop consumption as well as the associated VW flows at provincial scales through bottom-up approach. One
- 10 step further than existing assessments of WFs and VW flows, we evaluate the economic net benefits of green and blue water
- 11 use in crop production by proposing an algorithm based on WF accounting, and the net income along with international and
- 12 domestic related VW flows. Sixteen crops (Table 4) are chosen; these crops accounted for approximately 87% of the
- harvested area and 93% of crop production in 2009 (NBSC, 2013).

14 2.2 Quantifying green and blue WFs and net benefit of each drop of water in crop production

- 15 Physical water flows within a region are associated with water withdrawals and the direct consumption of water by human
- 16 activities. The physical water flow associated with the production of crop i within a region over the cropping period is
- 17 described by the corresponding water inflow-outflow balance for the region:

$$PR[i] + IRS[i] - RF[i] = WF_{a,Prod}[i] + WF_{b,i,Prod}[i]$$
 (1)

- where PR[i] (m³) refers to the precipitation over the cropping field, which is the green water supply for growing crop i;
- 20 IRS[i] (m³) is the irrigation water supply; $WF_{q,Prod}[i]$ (m³) is the green WF of producing crop i; $WF_{b,i,Prod}[i]$ (m³) is the
- 21 blue WF of producing crop i; and RF[i] (m³) represents the remainder of the inflows from precipitation and irrigation not
- 22 included in the WF, including surface runoff, drainage and percolation.
- 23 The annual total green and blue WFs of crop production at the field level measure the green and blue evapotranspiration (ET)
- 24 from croplands over the cropping period (Hoekstra et al.,2011). The WF accounting was carried out at the grid level of 5 by
- 25 5 arc-minute (~7.4 km × 9.3 km at the latitude of the YRB) by following the WF assessment framework by Hoekstra et al.
- 26 (2011). The green and blue WFs of producing a crop within a grid cell (in m³/y) were estimated as the product of the green
- and blue ET, respectively, over the growing period (m³/ha) and the harvested area for the crop (in ha/y). The (green or blue)
- WF per unit of a crop (in m³/t) equals to be as dividing the (green or blue) ET over the growing period (m³/ha) by the crop
- 29 yield (Y, t/ha). The ET and Y for each crop per year per grid cell were simulated by the FAO crop water productivity model
- 30 AquaCrop plug-in program (version 4.0) (Steduto et al, 2009; Raes et al., 2009; Hsiao et al., 2009). More detailed

- 1 information on calculation methods and data sources used for field WF accounting for crop production can be found in Zhuo
- 2 et al. (2016b).
- 3 The regional blue WF related to crop production consists of the blue WF at the field level $(WF_{b_f,Prod}[i], m^3)$ and the blue
- 4 WF of the irrigation supply network ($WF_{b\ e,Prod}[i]$, m³); thus, it reflects evaporative losses, as well as the network (Schyns
- 5 and Hoekstra, 2014; Cao et al., 2014):

$$WF_{h,Prod}[i] = WF_{h,f,Prod}[i] + WF_{h,e,Prod}[i]$$
 (2)

- 7 The blue WF of the irrigation supply network is estimated based on the evaporation loss coefficient α (%) of the IRS[i],
- 8 according to the efficiencies of irrigation canals and fields:

$$WF_{h\ e.Prod}[i] = \alpha \times IRS[i]$$
 (3)

- 10 The α for each province in China is obtained from Cao et al. (2014). The PR of the croplands during each considered year
- are obtained from the 30-arc-minute monthly CRU-TS-3.10 data set (Harris et al., 2014). The IRS from surface water and
- 12 groundwater distributed to each province per year is derived from the annual water resource bulletins for the YRB produced
- 13 by the Yellow River Conservancy Commission (YRCC, 2011).
- 14 We quantify the economic net benefit per drop of green and blue water, separately, along with the physical water flow in
- 15 crop production by farmers' perspective at provincial levels within the YRB. Here we propose an algorithm based on the WF
- 16 accounting. The underline assumption is that every drop of water consumption, either in green and blue, has a same
- 17 contribution to forming the final products. For an irrigated crop, the total net benefit per unit of irrigation (blue) water supply
- 18 (NB_b, USD/ m^3) is estimated as:

$$NB_{b,ir}[i] = \frac{\frac{WF_{b,Prod}[i]}{WF_{Prod}[i]} \times P[i] \times (V[i] - FC[i]) - IRS[i] \times p_{irr}}{IRS[i]}$$
(4)

- where V[i] (USD/t) is the producer price of the crop i, FC[i] (USD/t) refers to the cost of other inputs than irrigation water,
- 21 including the costs of seed, fertilizer, pesticides, machinery, technical service, field management, maintenance, labors and
- 22 tax. p_{irr} (USD/m³) the price of irrigation water. The corresponding net benefit per unit of rainwater (green) supply at
- 23 irrigated crop fields (NBg, USD/m³) is calculated as:

$$NB_{g,ir}[i] = \frac{WF_{g,Prod}[i]}{WF_{Prod}[i]} \times P[i] \times (V[i] - FC[i])$$

$$PR[i] \qquad (5)$$

Manuscript under review for journal Hydrol. Earth Syst. Sci.

Discussion started: 20 September 2018 © Author(s) 2018. CC BY 4.0 License.

1 For a rainfed crop, the total net benefit of the green water used in producing rainfed crop (NPRF_g, USD/y) is estimated as:

$$NB_{g,rf}[i] = \frac{P[i] \times (V[i] - FC[i])}{PR[i]}$$
 (6)

- 3 The producer price of each considered crop per province per year was obtained from the Compilation of National
- 4 Agricultural Product Cost and Income Data for the considered years (NDRC, 2004, 2005, 2007). Values on the price of
- 5 irrigation per province were collected through relative literatures or news which were according to the local water authorities
- 6 (Wen et al., 2009; Wang and Lou, 2016; Zheng and Zhang, 2017; Fu, 2007; PGIMG, 2014; Fan, 2005; Yang, 2011; Tian,
- 7 2010).

8

2.3 Quantifying WFs of crop consumption, green and blue VW flows and associated economic values

- 9 For the YRB, the green and blue WFs related to the consumption of a considered crop i within each province equals to the
- total consumption volume ([i], in t/y) multiplied by the weighted average WF within a province ($WF_{prov}[i]$, in m³/t). The
- 11 $WF_{prov}[i]$ is estimated as (Hoekstra et al., 2011):

$$WF_{prov}[i] = \frac{P_{prov}[i] \times WF_{prod}[i] + \sum_{e} (NI_e[i] \times WF_{prod,e}[i])}{P[i] + \sum_{e} NI_e[i]}$$
(7)

- in which refers to the WF related to the consumption of crop i within a province; P[i] (t/y) is the quantity of crop i produced;
- 14 $NI_e[i]$ (t/y) is the net import quantity of crop i from exporter e (other regions in China or other countries); $WF_{prod}[i]$ (m³/t)
- 15 is the specific WF of crop production in the province; and $WF_{prod,e}[i]$ (m³/t) is the WF of the crop, as produced in exporting
- place e. For provinces located partly within the basin, the proportion of the total provincial crop consumption accounted for
- 17 by the basin is assumed to be the same as the international crop volume. The population of the YRB shared by each province
- 18 is estimated according to the county-level statistics of each province (CYFD, 2017).
- 19 The net domestic crop import volume of the part of the basin in each province is calculated according to the following
- 20 balance:

21
$$C[i] = P[i] + NI_{int}[i] + NI_{dom}[i]$$
 (8)

- where P[i](t/y) is the production of crop i in the region; $NI_{int}[i]$ (t/y) is the net import of crop i by the region through
- 23 international trade; and $NI_{dom}[i]$ (t/y) is the net import of crop i from other places within the same country. The net import
- 24 of a crop (t y⁻¹) in a province was estimated as its total crop utilization minus the local crop production. Following Zhuo et al.
- 25 (2016b), the national use of a crop for direct and manufactured food as well as the national use of a crop for feed shown in
- 26 FAO (2014) were projected into provinces according to provincial populations and the proportional to the national livestock

Manuscript under review for journal Hydrol. Earth Syst. Sci.

Discussion started: 20 September 2018 © Author(s) 2018. CC BY 4.0 License.

3

7

12

20

23

25

26

28 29

30

1 units (LU) per province, respectively. LU is a reference unit which facilitates the aggregation of different livestock types to a

2 common unit, via the use of a 'livestock unit coefficient' obtained by converting the livestock body weight into the

metabolic weight by an exchange ratio (FAO, 2005). We used the LU coefficients for East Asia from Chilonda and Otte

4 (2006): 0.65 for cattle, 0.1 for sheep and goats, 0.25 for pigs, 0.5 for asses, 0.65 for horses, 0.6 for mules, 0.8 for camels, and

5 0.01 for chickens. Finally, we downscale national variations in crop stock to provincial level by assuming provincial stock

6 variations proportional to the provincial share in national production. The international crop imports and exports was

distributed to the provinces following Ma et al.(2006). The crop-related net blue and green VW imports of the area of the

8 basin within each province are equal to the net imported volume of the crop multiplied by the corresponding blue and green

9 WFs per unit mass of the imported crop, respectively.

10 The economic values per drop of VW flows (in USD/m³) is defined by the economic water productivity (i.e. the ratio of

11 product producer price to the WF of crop production) of related crop in the exporting place (Chouchane et al. 2015; Schwarz

et al., 2015; Schyns and Hoekstra, 2014). Then if a region exports VW through higher valued crops and imports VW with

13 relatively lower valued crops, then there could be a net economic income per drop of VW flows across the region. The net

income due to VW flows through the trade in crop i of a province (NI(VWF)[i], USD/y) is calculated as:

$$NI(VWF)[i] = \sum_{e} (E[i] \times V[i]) - \sum_{i} (I_e[i] \times V_e[i])$$
 (9)

where E[i] (t/y) refer to the export quantity of crop i, V[i] the price of crop i in the considered province, $I_e[i]$ the import

17 quantity of crop i from exporter e, and $V_{\rho}[i]$ the price of crop i in the place e. A negative NI(VWF)[i] means a net expense

18 through the VW flows. A positive NI(VWF)[i] means a net income in the VW flows. The national average prices of each

19 considered crop in the international trades per year were obtained from FAOSTAT (FAO, 2014).

2.4 Scenario set-up for 2050

21 To investigate the responses of crop-related physical and VW flows as well as the associated water economic benefits and

22 values under possible climate and socio-economic changes in the YRB, we carry out scenarios analysis for the YRB as a

whole for 2050 by considering four key changing factors: (1) climate, (2) population growth, (3) technology and (4) diet.

24 The green and blue WF simulation were at 5 arc-minute grid level driven by the Global Climate Models' (GCMs') outputs

with the technology effects on yield increase and improved irrigation network efficiency. The VW balances related to each

considered crop driven by were estimated taking YRB as a whole as driven by the population growth, diet change and the

27 changes in crop production. Taking the average year of 2004 as the baseline year, we set four scenarios S1-S4 for YRB in

consistent with the four scenarios set by Zhuo et al. (2016c) for mainland China. The scenarios were built on the scenario

matrix of the shared socio-economic pathways (SSPs) (O'Nell et al., 2012) and the representative concentration pathways

(RCPs) (Van Vuuren et al., 2011) as approved in the 5th IPCC Assessment Report (IPCC, 2014). In order to represents

scenarios under varied level of climate changes and socio-economic developments, S1 and S2 combine climate scenarios

Manuscript under review for journal Hydrol. Earth Syst. Sci.

Discussion started: 20 September 2018 © Author(s) 2018. CC BY 4.0 License.

- 1 forced by RCP2.6 with SSP1 and SSP2, respectively. S3 and S4 combine climate scenarios forced by RCP8.5 with SSP2 an
- 2 SSP3, respectively. More information in details on choosing the considered quadrants for scenarios in the matrix can be
- 3 found in Zhuo et al. (2016c).
- 4 Table 1 lists the main the levels or relative changes in key driving factors compared to their baseline values. Scenarios ran
- 5 under climate change projections by four GCMs including CanESM2 (Canadian Centre for Climate Modelling and Analysis),
- 6 GFDL-CM3 (NOAA Geophysical Fluid Dynamics Laboratory), GISS-E2-R (NASA Goddard Institute for Space Studies),
- 7 and MPI-ESM-MR (Max Planck Institute for Meteorology), which span the full range of projections for China on the
- 8 precipitation over the cropping seasons (Zhuo et al., 2016c), within the Coupled Model Intercomparison Project (CMIP5)
- 9 (Taylor et al., 2012). The downscaled GCMs outputs at 5 by 5 arc minute resolution driving the WF assessment of crop
- 10 production were obtained from Ramirez-Villegas and Jarvis (2010). The population scenarios with increasing levels of
- 11 population growth from SSP1 to SSP2 were obtained from IIASA (2013). The scenarios on crop yield increase through
- 12 technology development are in line with Zhuo et al. (2016c) who set the increasing levels per SSP according to global 2000-
- 13 2050 scenarios by De Fraiture et al. (2007) and the assumption of a linear increasing trend. The improvements in irrigation
- 14 network efficiency compared to the baseline year are set to 10% to 30% from SSP3 to SSP1. The diet scenario for each SSP
- 15 (Table 2) is selected from the East Asia scenarios by Erb et al. (2009).

3 Results

16

17

3.1 Green and blue physical water flows and net benefit per drop of water used in crop production in the YRB

- 18 For the YRB as a whole, averaged over the considered years, annual total net benefit of water used for crop production was
- 19 2.45 billion USD/y, of which blue water contributed to 27%. Table 3 lists the crop-related physical water flows and
- associated basin's average net benefits per drop of green and blue water used in the basin at each selected year (2003, 2004,
- 21 and 2006, which were dry, average, and wet, respectively). The drier year featured greater irrigation (blue water)
- 22 withdrawals and higher blue WFs whereas a relatively lower net benefit per blue water was shown. Compared to the wet
- 23 year of 2003, 36% less precipitation occurred over croplands in the dry year of 2006. Simultaneously, irrigation withdrawals
- 24 increased by 25% and the blue WF of crop production grew by 14.3%. Within one year, the net benefit per drop of water
- 25 differs among colors as well as among cropping methods. The net benefit per drop of blue water was 13-42% lower than of
- 26 green water for irrigated crops, as mainly resulted from the cost of blue water use while the cost was zero for green water use.
- 27 With relatively lower water productivity in most cases, the net benefit per drop of green water (rainwater) at rainfed fields
- 28 was 11% smaller, averagely, than that of the level of green water at irrigated fields.
- 29 Among the nine provinces that contain the YRB, there was high spatial heterogeneity in net benefits of water used in crop
- 30 production, because of variation in cropping structure as well as the economic water productivities per crop. Figure 2 shows,

Manuscript under review for journal Hydrol. Earth Syst. Sci.

Discussion started: 20 September 2018 © Author(s) 2018. CC BY 4.0 License.

80% of total annual blue WF in Inner Mongolia.

14

15

taking the average year 2004 as the example, the visible spatial variations in net benefits per drop of green and blue water in 2 crop production. The provinces in middle and lower reaches, including Shaanxi, Shanxi, Shandong and Henan, tended to 3 have higher net benefits of water used in crop production (>0.2 USD/m³) than the provinces in the upper reach. Table 4 4 shows the YRB's average unit WFs, producer price and cost in producing each considered crop for the considered years. Among crops, cotton and tomato had the highest level of net profit per water consumption. And the four provinces in the 5 middle and lower reaches with relatively higher net benefit of water use in crop production together produced 96% of basin's 6 7 total cotton and 97% of tomato in the year of 2004. However, provinces with higher blue water withdrawal tended to have low net benefits of irrigation water. Given the high spatial variation in climate across the YRB, the level of annual 8 9 precipitation differed significantly with the range averaged from 304 mm in Ningxia province (in the upper reach) to 874 10 mm in Shandong province (at lower reach). Inner Mongolia drew the largest volume of blue water (~22.9% of the basin's 11 total) to irrigated crop land and had a more annual blue WF (~19.8% of basin's total blue WF) in annual average, with only 0.01 USD/m³ as half of the basin's average level, of net benefit per drop of irrigation. The main reason behind was the 12 13 cropping structure that maize and wheat, which are the crops with the lower net benefits per blue water, accounted for over

3.2 Crop-related virtual water flows related crops and associated economic values of the YRB

16 Summing up the net VW imports related to the considered crops, the YRB is a net VW importer, of 13 billion m³/y averagely over the considered years. The VW imports related to rice, which almost double the total net VW imports of the 17 18 basin annually, defined the role of the basin as a net VW importer. Annually, the crop-related VW export accounted for 36% 19 of total WF of production in the YRB, as a result of exports of wheat, maize, millet, potatoes, groundnuts and apples to other places within the country or abroad. Table 5 summaries the YRB's WF related to considered crop consumption, associated 20 21 VW flows and economic values of the VW flows over the three typical years. Regarding the economic values of VW flows, 22 per drop of crop-related international VW flows had relatively higher economic value than of intra-national domestic VW 23 flows across the YRB (Table 5). When seeing the trade-offs between the gross economic values of VW exports (income) and of VW imports (expanse), the YRB had an increased net expanse via the net international VW import whereas an increased 24 net income through the domestic net VW import. The net expanses in the international VW flows were dominated by 25 imports of soybean and cotton, accounting for 89% (year 2004) -96% (year 2006) of the total economic values of 26 international VW imports of the basin. Via the domestic VW flows, wheat (the biggest contributor of crop export), cotton 27 and apples (the two with higher economic water productivities) contributed the net income by accounting for 60% (year 28 29 2003) -64% (year 2004) in the total economic values of domestic VW exports.

30 Figure 3 shows the economic values of crop-related VW exports and import, respectively, as well as the net VW imports per

31 province within the YRB for the selected years. Three in the nine province including Shaanxi, Henan and Shandong province

2 got net income of VW flows in all the three years, even though Shaanxi province was an all-time net VW importer. For

Manuscript under review for journal Hydrol. Earth Syst. Sci.

Discussion started: 20 September 2018 © Author(s) 2018. CC BY 4.0 License.

- 1 Shaanxi province, it was because of its main contribution in the apple exports, accounting for over 65% of basin's total. For
- 2 Henan and Shandong, the only two exporters of cotton defined their net income through VW flows.

3.3 Scenarios for 2050

- 4 Table 6 shows the responses in the crop-related physical and VW flows, net benefits of water use and economic values of
- 5 VW flows to the climate-socio-economic scenarios for 2050 of the YRB, as compared to the baseline year 2004's levels.
- 6 With the consistent levels of cost, price and water price in crop production, as mainly driven by the increased crop economic
- 7 productivity with higher yield levels, the net benefits of green and blue water used in irrigated crops increased at higher level
- 8 than the corresponding water consumption levels in S1-S3. While the net benefits of the water used at irrigated fields
- 9 decreased by 3% in S4 with increased irrigation while lower improvement in crop yields than the other three scenarios (~14%)
- 10 lower than S3). Net benefits of green water used for rainfed crops significantly increased (by 55% (S1) -134% (S3) from
- 11 2004's level) across the considered scenarios with visible increases in rainfed crop production (e.g. the production of
- 12 rapeseed was tripled in S4). Although there were projected increased total annual precipitation by 2050 for the whole YRB
- 13 (Table 1), the annual rainfall on croplands tend to decreased by 1% and 0.5%, at multi-GCM average levels, from the level
- 14 of year 2004 under RCP26 and RCP85 respectively. While the WF of crop production increased by 5% and 1% under
- 15 RCP26 (S1 and S2) and RCP85 (S3 and S4), respectively, as driven by the visible increases in blue WFs (by 18% under RCP
- 16 26 and by 17% under RCP85). Figure 4 shows the spatial distribution of the relative changes in the annual green and blue
- WF (in m³/y) of crop production by year 2050 as compared to 2004 forced by RCP 26 and RCP85, respectively. It can be
- 18 clearly seen that the increases in blue WFs mainly happened in the south basin, especially in Henan and Shandong provinces
- 19 i.e. the lower reaches, by over 60%. While the increased green WFs mostly happened in the places where blue WF decreased.
- 20 We considered only the increased irrigation network efficiencies in responses in the responses in the amount of annual
- 21 irrigation (blue water) withdrawal. The blue water abstraction decreased in S1-S3 by 7%-2% thanks to the improvements in
- 22 irrigation network efficiencies of 30%-20%, even though the increased blue WFs.
- 23 The only difference between S1 and S2 is the diet scenario. The 'less meat' diet leads to a 4% increase in the total food crop
- 24 consumption and a 39% decrease in the feed crop consumption; the corresponding values for the 'current trend' diet are a 7%
- 25 decrease and a 0.1% decrease, respectively. As a result, the WF of crop consumption decreased by 45% in S1 while by 38%
- 26 in S2. Driven by the increases in crop productivity and the reduced rates of population growth, the crop-related net VW
- 27 imports of the YRB decrease drastically, and the YRB becomes a bigger net VW exporter in all the scenarios. The net
- 28 income form VW flows then was dominated by the economic values of VW exports.

3.4 Discussion

- 30 "People face trade-offs" (Mankiw, 2015). The current study reveals, through the case for the YRB, the trade-offs exist
- 31 between the physical water flow and the net benefits per drop of water in crop production, as well as between the crop-

Manuscript under review for journal Hydrol. Earth Syst. Sci.

Discussion started: 20 September 2018 © Author(s) 2018. CC BY 4.0 License.

8

9

10

11

12

13

14

15

17

20

26

31

related multi-regional VW flows and the associated net economic income of the trade partners. As shown in the Figure 5

2 with the data for 2004 in the study case, the directions of the economic benefits of water use and of economic values of VW

3 flows are inverse to the corresponding water flows. Farmers consume water in crop production while get economic net

4 benefits per drop of consumed water. A VW exporter consume local water resources in producing crops for exports and

5 finally consumed in other places while gets income through the VW flows.

There are three phenomena shown in the current study highlight important aspects in water management for food production 6

7 from the internal water-economic effecting mechanisms. (i) A drop of green water was found to be able to generate higher

net economic benefits back to farmers, without cost in water supply, than blue water at a same crop fields. Meanwhile, the

more irrigation withdrawal in relatively drier regions (the upper reach of the YRB) together with the cropping patterns

dominated by crops with relatively lower water economic productivity in USD/kg resulted in a lower net benefit per drop of

blue water than in a wet year. According to J ägermeyr et al. (2017), the integration of rainwater management into the current

irrigation system could achieve a net increase in food production of 10%. The higher net economic benefits per green water

implies the higher economic return rate in addition to the more harvest by using green water more efficiently and reducing

blue water rate in the croplands. (ii) With varied economic values among crops, differences in cropping structures among

provinces were found to have significant impacts not only on the total amount of water consumption (Sun et al., 2014; Zhuo 16

et al., 2016a), but also on the spatial heterogeneity in the corresponding levels of the net benefits per drop of water used

within the YRB. The low economic productivity of crops versus high blue water withdrawals and consumption, as shown in

Inner Mongolia for instance (Fig. 2), alerts the importance of an economic benefit assessment in regional water supply and 18

19 cropping pattern designing. (iii) The YRB was a net crop-related VW importer in the current three typical years, while the

basin got a net income through domestic crop transfers within China, as mainly contributed by exports of wheat, cotton and 21 apples. It suggests the economic driving forces in the VW networks. What's more, considered scenarios show the net

22 benefits and incomes of physical and VW flows are more sensitive to climate-socio-economic changes than corresponding

23 quantity of water use.

24 The current estimates include a number of limitations and assumptions that should be taken seriously. The uncertainties

25 produced by the assumptions made in the parameterization and modeling of WF and VW flows have been clearly illustrated

by Zhuo et al. (2016b). We compare the results of this study with those of previous studies (Feng et al., 2012; Hoekstra et al.,

27 2012) that examine blue WF and net VW flows related to crops for the YRB (Table 7). Consistent results with the same

28 order of magnitude are shown. Note that the role of the YRB as a crop-related net VW exporter, as determined by Feng et al.

29 (2012), does not consider rice, which dominates the identification of the YRB as a 'net VW importer' in this study. The net

30 income/expanses of the VW flows estimated in the current study measure the gross benefit without consideration of the cost

in the VW trade. Thus there could be some over- or under-estimation according to that in practice, who would pay for the

32 cost among the trade. Scenario studies embody uncertainties. All scenarios are set up based on assumptions regarding

Manuscript under review for journal Hydrol. Earth Syst. Sci.

Discussion started: 20 September 2018 © Author(s) 2018. CC BY 4.0 License.

1 climate change and socio-economic developments including population growth, changes in diets and technological

2 improvements. Projections with multiple GCMs can help to address variations in terms of climate projections among GCMs

3 for a given emission scenario(Semenov and Stratonovitch, 2010). We considered four GCMs covering the range of climate

4 changing levels projected by major GCMs for China (Zhuo et al., 2016c). Four scenarios capturing the available changing

5 scales in socio and economic development are already a way to reduce possible uncertainties from assumptions.

4 Conclusions

This study develops an approach, which enables to quantifying separately the net benefits of green and blue water used in crop production based on WF accounting. With an application in a case study for YRB combined with the assessment of net incomes through crop-related VW flows for both current typical years and possible 2050 scenarios under climate-socio-economic developments, the trade-offs between the real green/blue water use and the net benefits per drop of water as well as between the VW flows and corresponding net incomes is shown. Results indicate that the levels of net benefits generated by water used in crop production varied among cropping methods and colors of water. One drop of blue water used in cropland generated 13-42% less net economic benefit than corresponding green water use in the YRB. Cropping pattern significantly impact the net economic productivity per drop of water used in crop production in a certain region. The case of YRB shows the economic unsustainable cropping pattern in the provinces located in the relatively drier upper and middle reaches, where there was high irrigation withdrawal while low economic return to farmers because of growing relatively cheap crops. The YRB was a crop-related net VW importer associated to the intra-national trades, however got increasingly net income due to exports of wheat, cotton and apples. Under possible projected climate and socio-economic changes in the considered scenarios for 2050, the economic returns of crop-related physical and VW flows are shown to be more sensitive than the quantity levels of corresponding water flows as driven by the increasing crop yield and economic water productivity.

The concomitant reversed flows of economic benefits and values to the physical and virtual water flows in crop production and consumption at a basin level are shown in the current analysis. It implies a highly importance of managing the internal trade-offs or mutual effects between the water resources consumption and economic returns, in order to get a win-win situation in maximizing both the water use efficiency and economic productivities per drop of water flows. Green water management is highlighted again according to the current result on higher economic benefits per drop of green water than blue water. The "green water credit" (Bai et al., 2015) that investing farmers in upstream for improving green water use efficiency and reducing green water consumption at both the rainfed and irrigated in the benefit of sustaining both the food production and ecosystem for the basin (Rockström et al., 2010) is one of the feasible measures. Too much focus has been on identifying the external natural or socio-economic driving factors on the physical green and blue water flows in crop production (Sun et al., 2013; Zhao et al., 2015; Zhao and Chen, 2014; Tunittee et al., 2015) or on the associated VW flows (Dalin et al., 2012; Tamea et al., 2014; Wang et al., 2016). Therefore, identifications on the internal driving factors on the

Manuscript under review for journal Hydrol. Earth Syst. Sci.

Discussion started: 20 September 2018 © Author(s) 2018. CC BY 4.0 License.

7

20

22

23

26

27

1 water consumption relevant to the generated economic benefits and values are highly recommended in the future. As the

2 very start, the current study identified, for example, the impacts of cropping patterns on the net benefits of green and blue

3 water use by crops. So that modifying cropping pattern could be one of the suggested measures, while being of long-term

4 effects, to maximum the economic benefits of physical and VW flows. With short-term effects on the current cropping lands,

5 it has been proven quantitively that different tillage and irrigation strategies differ significantly in terms of their cost

6 effectiveness (Chukalla et al., 2017). Reasonable costs and prices of water are effective stimulus measures that promote

reductions in blue water withdrawals and consumption. Furthermore, the combination of increased water prices or taxes with

8 WF benchmarks could also be considered.

9 Balancing environmental and economic benefits is definitely the key to realizing the sustainable water-food-economic nexus.

10 Of course, the current case study, which focuses on the agricultural sector, is still far from a comprehensive treatment of the

11 entire socio-economic-hydrological system. Therefore, the current estimation can be improved in the future by adding

12 modules that enable the assessment of water quality-related issues and other water sectors.

13 Data availability

14 The GIS polygon data for the YRB can be extracted from HydroSHEDS dataset at https://hydrosheds.cr.usgs.gov/ (Lehner et

15 al., 2008). Data on monthly precipitation, ET₀ and temperature at 30 arc minute resolution can be obtained from CRU-TS-

16 3.10.01 at https://crudata.uea.ac.uk/cru/data/hrg/ (Harris et al., 2014). Data on irrigated and rain-fed harvested area for each

17 crop at 5 arc minute resolution are obtained from MIRCA 2000 dataset (Portmann et al., 2010) and Monfreda et al. (2008).

18 The downscaled GCM outputs at 5 by 5 arc min grid level for the YRB on monthly precipiation, maximum and minimum

19 were freely accessible at http://www.ccafs-climate.org/data/ (Ramirez-Villegas and Jarvis, 2010). AquaCrop model can be

freely obtained at http://www.fao.org/land-water/databases-and-software/aquacrop/en/. The data in the current results can be

21 obtained by contacting L. Zhuo.

Author contribution

24 PW and LZ and GZ designed the study, LZ carried out the study, MM, AY, YW revised the study design and the

25 methodologie. PW and LZ prepared the manuscript with contributions by all co-authors.

Competing interests

28 The authors declare that they have no conflict of interest.

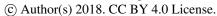
Manuscript under review for journal Hydrol. Earth Syst. Sci.

Discussion started: 20 September 2018 © Author(s) 2018. CC BY 4.0 License.

Acknowledgements

- 2 The research falls under the umbrella of the Panta Rhei Research Initiative of the International Association of Hydrological
- 3 Sciences (IAHS). This work was financially supported by the National Key Research and Development Plan
- 4 (2018YFF0215702), the National Thousand Youth Talents Plan to L. Zhuo, the West Light Talent Program of the Chinese
- 5 Academy of Sciences to L. Zhuo, the Technology Foundation for Selected Overseas Chinese Scholars in Shaanxi province
- 6 (2017034) and the Fundamental Research Funds for the Central Universities (2452017181).

7 8


9

References

- 10 Allen, R.G., Pereira, L.S., Raes, D. and Smith, M.: Crop evapotranspiration: guidelines for computing crop water
- 11 requirements, FAO Drainage and Irrigation Paper 56, Food and Agriculture Organization, Rome, Italy, 1998.
- 12 An, Y., Zhao, M., Su, L. & Xiao, S.: Analysis of irrigation benefits of the Yellow River management in recent 70 years.
- 13 Yellow River, 38 (12), 24-27, 2016. (in Chinese with English abstract)
- 14 Bai, Z., Liu, C., Chen, Y., Yu, J. & Wang, S.: Green water credit and its applications to watershed eco-compensation in
- 15 China. Journal of Economics of Water Resources, 33(4), 66-71, 2015. (in Chinese with English abstract)
- 16 Bierkens, M. F. P.: Global hydrology 2015: State, trends, and directions, Water Resour. Res., 51, 4923-4947,
- 17 doi:10.1002/2015WR017173, 2015.
- 18 Cai. X., Rosegrant, M.W. & Ringler, C.: Physical and economic efficiency of water use in the river basin: Implications for
- 19 efficient water management. Water Resour. Res., 39(1), 1013, doi: doi:10.1029/2001WR000748, 2003.
- 20 Cai, Y., Wang, H.X., Wang, H.R. and Wang, H.L.: Water footprint in the Yellow River basin. Journal of Beijing Normal
- 21 University (Natural Science) 45, 616-620, 2009.
- 22 Cao, X.C., Wu, P.T., Wang, Y.B. & Zhao, X.N.: Assessing blue and green water utilisation in wheat production of China
- from the perspectives of water footprint and total water use. Hydrol. Earth Syst. Sc., 18,3165-3178, 2014.
- 24 Chapagain, A.K., Hoekstra, A.Y. & Savenije, H.H.G.:2006), Water saving through international trade of agricultural
- 25 products. Hydrol. Earth Syst. Sc., 10, 455-468, 2006.
- 26 Chapagain, A.K.: Exploring methods to assess the value of water: a case study on the Zambezi basin, Value of Water
- 27 Research Report Series No.1, IHE Delft, The Netherlands, 2000.
- 28 Chouchane, H., Hoekstra, A.Y., Krol, M.S. and Mekonnen, M.M.: Water footprint of Tunisia from an economic perspective,
- 29 Ecol. Indic., 52, 311-319, 2015.
- 30 Chukalla, A.D., Krol, M.S. & Hoekstra, A.Y.: Green and blue water footprint reduction in irrigated agriculture: effect of
- irrigation techniques, irrigation strategies and mulching. Hydrol. Earth Syst. Sc., 19,4877-4891, 2015.

Manuscript under review for journal Hydrol. Earth Syst. Sci.

Discussion started: 20 September 2018

- 1 Chukalla, A.D., Krol, M.S. & Hoekstra, A.Y.: Marginal cost curves for water footprint reduction in irrigated agriculture:
- 2 guiding a cost-effective reduction of crop water consumption to a permit or benchmark level. Hydrol. Earth Syst. Sc.,
- 3 21, 3507-3524, 2017.
- 4 CYFD: China Yearbooks Full-text Database. China Academic Journals Electronic Publishing House Co., Ltd., 2017.
- 5 Available at: http://epub.cnki.net/kns/brief/result.aspx?dbPrefix=CYFD.
- 6 Dalin, C., Suweis, S., Konar, M., Hanasaki, N. & Rodriguez-Iturbe, I.: Modeling past and future structure of the global
- 7 virtual water trade network. Geophys. Res. Lett., 39, L24402, 2011.
- 8 Dalin, C., Hanasaki, N., Qiu, H., Mauzerall, D. L. & Rodriguez-Iturbe, I.: Water resources transfer through Chinese
- 9 interprovincial and foreign food trade. P. Natl. Acad. Sci. USA, 111(27), 9774–9779, 2014.
- 10 Dalin, C., Wada, Y., Kastner, T. & Puma, M.J.: Groundwater depletion embedded in international food trade. Nature, 543,
- 11 700-705, doi: 10.1038/nature21403, 2017.
- 12 De Fraiture, C., Wichelns, D., Rockstrom, J., Kemp-Benedict, E., Eriyagama, N., Gordon, L.J., Hanjra, M.A., Hoogeveen, J.,
- Huber-Lee, A. and Karlberg, L.: Water for food, water for life: a Comprehensive Assessment of Water Management in
- Agriculture. Molden, D. (ed), pp. 91-145, Earthscan, London, UK; International Water Management Institute, Colombo,
- 15 Sri Lanka, 2007.
- 16 Dellink, R., Chateau, J., Lanzi, E. & Magne, B.: Long-term economic growth projections in the Shared Socioeconomic
- 17 Pathways. Global Environ. Chang., 42, 200–214, 2017.
- 18 Erb, K.-H., Haberl, H., Krausmann, F., Lauk, C., Plutzar, C., Steinberger, J.K., Müller, C., Bondeau, A., Waha, K. & Pollack,
- 19 G.: Eating the Planet: Feeding and fuelling the world sustainably, fairly and humanely a scoping study. Commissioned
- 20 by Compassion in World Farming and Friends of the Earch UK. Institute of Social Ecology and PIK Potsdam, Vienna,
- 21 Potsdam, 2009.
- 22 Evans, R.G. & Sadler, E.J.: Methods and technologies to improve efficiency of water use. Water Resour. Res., 44, W00E04.
- 23 doi: 10.1029/2007WR006200, 2008.
- 24 Fan, S.: On reform of water price in Shanxi Province. Journal of Economics of Water Resources, 6, 25-33, 2005.
- 25 FAO: FAOSTAT on-line database. http://faostat.fao.org, 2014.
- 26 Feng, K.S., Hubacek, K., Pfister, S., Yu, Y. and Sun, L.X.: Virtual Scarce Water in China. Environ. Sci. Technol., 48(14),
- 27 7704-7713, 2014.
- 28 Feng, K., Siu, Y.L., Guan, D. & Hubacek, K.: Assessing regional virtual water flows and water footprints in the Yellow
- 29 River Basin, China: A consumption based approach. Appl. Geogr., 32, 691-701, 2012.
- 30 Fu, H.: Investigation and analysis of the cost of water supply at the final canal system in the gravity irrigation area of the
- 31 Yellow River in Ningxia. Journal of Agricultural Sciences, 28(3), 48-51, 2007.
- 32 Gleick, P.H., Cooley, H., Famiglietti, J.S., Lettenmaier, D.P., Oki, T., Vörösmarty, C.J. & Wood, E.F.: Improving
- 33 understanding of the global hydrologic cycle: observation and analysis of the climate system: the global water cycle. In

Manuscript under review for journal Hydrol. Earth Syst. Sci.

- 1 Climate Science for Serving Society: Research, Modeling and Prediction Priorities, Asrar G, Hurrell J (eds). Springer:
- 2 New York, NY, USA; 151–184. doi:10.1007/978-94-007-6692-16, 2013.
- 3 Guan, D. and Hubacek, K.: Assessment of regional trade and virtual water flows in China. Ecol. Econ., 61(1), 159-170, 2007.
- 4 Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H.: Updated high-resolution grids of monthly climatic observations the
- 5 CRU TS3.10 Dataset, Int. J. Climatol., 34(3), 623–642, 2014.
- 6 Hsiao, T.C., Heng, L., Steduto, P., Rojas-Lara, B., Raes, D., Fereres, E.: AquaCrop—The FAO crop model to simulate yield
- 7 response to water. III. Parameterization and testing for maize, Agro. J., 101(3), 448-459, 2009.
- 8 Hoekstra, A.Y. (Ed.): Proceedings of the International Expert Meeting on Virtual Water Trade. IHE Delft, the Netherlands,
- 9 12-13 December 2002. Value of Water Research Report Series No. 12. UNESCO-IHE, Delft, the Netherlands, 2003.
- 10 Hoekstra, A.Y.: The global dimension of water governance: why the river basin approach is no longer sufficient and why
- 11 cooperative action at global level is needed. Water, 3(1), 21–46, 2011.
- 12 Hoekstra, A.Y.: Water footprint assessment: Evolvement of a new research field, Water Resour. Manag., 31(10), 3061–3081.
- doi:10.1007/s11269-017-1618-5, 2017.
- 14 Hoekstra, A. Y., Chapagain, A. K. & Van Oel, P.R.: Advancing water footprint assessment research: challenges in
- monitoring progress towards Sustainable Development Goal 6. Water, 9 (438), w9060438. DOI: 10.3390/w9060438,
- 16 2017.
- 17 Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M. & Mekonnen, M. M.: The water footprint assessment manual: Setting the
- global standard. Earthscan, London, UK, 2011.
- 19 Hoekstra, A.Y. & Mekonnen, M.M.: The water footprint of humanity. P. Natl. Acad. Sci. USA, 109(9), 3232-3237, 2012.
- 20 Hoekstra, A.Y., Mekonnen, M.M., Chapagain, A.K., Mathews, R.E. & Richter, B.D.: Global monthly water scarcity: blue
- water footprints versus blue water availability. PLoS One, 7(2), e32688, 2012.
- 22 Hoekstra, A.Y., Savenije, H.H.G. & Chapagain, A.K.: An integrated approach towards assessing the value of water: A case
- study on the Zambezi basin. Integrated Assessment, 2,199-208, 2001.
- 24 IIASA: SSP Database. https://secure.iiasa.ac.at/web-apps/ene/SspDb/dsd, 2013.
- 25 Jägermeyr, J., Pastor, A., Biemans, H. & Gerten, D.: Reconciling irrigated food production with environmental flows for
- Sustainable Development Goals implementation. Nat. Commun., 8, 15900. doi: 10.1038/ncomms15900, 2017.
- 27 Konar, M., Evans, T.P., Levy, M., Scott, C.A., Troy, T.J., Vörösmarty, C.J. & Sivapalan, M.: Water resources sustainability
- in a globalizing world: who uses the water? Hydrol. Process., doi: 10.1002/hyp.10843, 2016.
- 29 Lehner, B., Verdin, K., Jarvis. A.: New global hydrography derived from spaceborne elevation data. EOS, Transactions
- 30 American Geophysical Union. 89, 93-4, 2008.
- 31 Ma, J., Hoekstra, A.Y., Wang, H., Chapagain, A.K. and Wang, D.: Virtual versus real water transfers within China. Philos. T.
- 32 R. Soc. B., 361(1469), 835-842, 2006.
- 33 Mao, C.: Analysis of the relationship between agricultural water price reform and water-saving effect. China Rural Water
- 34 and Hydropower, 4, 2-4, 2005. (In Chinese with English abstract)

Manuscript under review for journal Hydrol. Earth Syst. Sci.

- 1 Mankiw, N.G.: Principles of economics, seventh edition. Cengage Learning. Boston, MA, US, 2015.
- 2 Marston, L., and Konar, M.: Drought impacts to water footprints and virtual water transfers of the Central Valley of
- 3 California, Water Resour. Res., 53, doi:10.1002/2016WR020251, 2017.
- 4 Marston, L., Konar, M., Cai, X. & Troy, T.J.: Virtual groundwater transfers from overexploited aquifers in the United States.
- 5 P. Natl. Acad. Sci. USA, 112(28), 8561-8566. doi: 10.1073/pnas.1500457112, 2015.
- 6 Mekonnen, M.M. & Hoekstra, A.Y.: Water footprint benchmarks for crop production: A first global assessment. Ecol. Ind.,
- 7 46,214-223, 2014.
- 8 Monfreda, C., Ramankutty, N. & Foley, J.A.: Farming the planet: 2. Geographic distribution of crop areas, yields,
- 9 physiological types, and net primary production in the year 2000. Global Biogeochem. Cy., 22(1), GB1022, 2008.
- 10 Molden, D.J., Sakthivadivel, R., Perry, C.J., de Fraiture, C. & Kloezen, W.H.: Indicators for comparing performance of
- 11 irrigated agricultural systems, Research Report 20, International Water Management Institute, Colombo, Sri Lanka,
- 12 1998.
- 13 MWR: Regulation for Economic Evaluation of Water Conservancy Contracture Projects. Ministry of Water Resources of
- 14 China. Beijing, China, 2013.
- 15 NBSC: National Data. National Bureau of Statistics of China. http://data.stats.gov.cn/, 2018. Last access: 12 January 2018.
- 16 NDRC: Compilation of national agricultural product cost and income data for 2003. National Development and Reform
- 17 Commission. China Statistics Press, Beijing, China, 2004.
- 18 NDRC: Compilation of national agricultural product cost and income data for 2004. National Development and Reform
- 19 Commission. China Statistics Press, Beijing, China, 2005.
- 20 NDRC: Compilation of national agricultural product cost and income data for 2006. National Development and Reform
- Commission. China Statistics Press, Beijing, China, 2007.
- 22 Novo, P., Garrido, A. & Varela-Ortega, C.: Are virtual water "flows" in Spanish grain trade consistent with relative water
- 23 scarcity? Ecol. Econ., 68,1454-1464, 2009.
- 24 Obersteiner, M., Walsh, B., Frank, S., Havlik, P., Cantele, M., Liu, J., Palazzo, A., Herrero, M., Lu, Y., Mosnier, A., Valin,
- 25 H., Riahi, K., Kraxner, F., Fritz, S.& van Vuuren, D.: Assessing the land resource-food price nexus of the Sustainable
- 26 Development Goals. Science Advances, 2(9), e1501499-e1501499. doi:10.1126/sciadv.1501499., 2016.
- 27 O'Neill, B.C., Carter, T.R., Ebi, K.L., Edmonds, J., Hallegatte, S., Kemp-Benedict, E., Kriegler, E., Mearns, L., Moss, R.,
- 28 Riahi, K., van Ruijven, B. & van Vuuren, D.: Meeting Report of the Workshop on The Nature and Use of New
- 29 Socioeconomic Pathways for Climate Change Research, Boulder, CO, November 2-4, 2011, 2012.
- 30 Pei, Y., Fang, L. & Luo, L.: Price elasticity of agricultural water demand in China. Resource Science, 25 (6), 26-30, 2003.
- 31 (In Chinese with English abstract)
- 32 PGIMG: Notice of the people's government of Inner Mongolia autonomous region on the issuance and issuance of water
- 33 resources fee collection standards and relevant regulations. People's government of Inner Mongolia autonomous region.
- 34 (2014) No. 127, 2014.

Manuscript under review for journal Hydrol. Earth Syst. Sci.

- 1 Portmann, F.T., Siebert, S. & Doll, P.: MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000:
- A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochem. Cy., 24, GB1011, 2010.
- 3 Qin, C., Zhao, Y. & Pei, Y.: Study on utility of generalized water resources utilization by adjustment of agricultural water
- 4 price. SHUILI XUEBAO, 41(9), 1094-1100, 2010. (In Chinese with English abstract)
- 5 Raes, D., Steduto, P., Hsiao, T.C., Fereres, E. (2009), AquaCrop The FAO crop model to simulate yield response to water.
- 6 II. Main algorithms and software description, Agro. J., 101(3), 438-477, 2009.
- 7 Ramirez-Villegas, J. and Jarvis, A.: Downscaling global circulation model outputs: the delta method decision and policy
- 8 analysis Working Paper No. 1. Policy Analysis 1, 1-18, 2010.
- 9 Rockström, J., Karlberg, L., Wani, S. P., Barron, J., Hatibu, N., Oweis, T., Bruggeman, A., Farahani, J., Qiang, Z.:Managing
- water in rainfed agriculture—The need for a paradigm shift. Agr. Water Manage., 97, 543-550, 2010.
- Rulli, M. C., Saviori, A. & D'Odorico, P.: Global land and water grabbing. P. Natl. Acad. Sci. USA, 110(3), 892-897. doi:
- 12 10.1073/pnas.1213163110, 2013.
- 13 Savenije, H.H.G., Hoekstra, A.Y. & Van der Zaag, P.: Evolving water science in the Anthropocene. Hydrol. Earth Syst. Sc.,
- 14 18, 319-332, 2014.
- 15 Schyns, J.F. & Hoekstra, A.Y.: The added value of water footprint assessment for national water policy: A case study for
- Morocco. *PLoS ONE*, 9(6), e99705. doi:10.1371/journal.pone.0099705, 2014.
- 17 Schmitz, C., Lotze-Campen, H., Gerten, D., Dietrich, J.P., Bodirsky, B., Biewald, A. and Popp, A.: Blue water scarcity and
- the economic impacts of future agricultural trade and demand, Water Resour, Res., 49, 3601-3617,
- 19 doi:10.1002/wrcr.20188, 2013.
- 20 Schwarz, J., Mathijs, E. & Maertens, M.: Changing patterns of global agri-food trade and the economic efficiency of virtual
- 21 water flows. Sustainability, 7:5542-5563, 2015.
- 22 Semenov, M.A. & Stratonovitch, P.: Use of multi-model ensembles from global climate models for assessment of climate
- change impacts. Climate Research 41(1), 1-14, 2010.
- 24 Seyam, I. M., Hoekstra, A. Y. & Savenije, H. H. G.: The water value-flow concept, Physics and Chemistry of the Earth, 28,
- 25 175–182, 2003.
- 26 Song, J., Guo, Y., Wu, P. & Sun, S.: The agricultural water rebound effect in China. Ecol. Econ., 146, 497-506, 2018.
- 27 Steduto, P., Hsiao, T.C., Raes, D., Fereres, E.: AquaCrop the FAO crop model to simulate yield response to water. I.
- 28 Concepts and underlying principles, *Agro. J.*, 101(3), 426–437, 2009.
- 29 Sun, S., Wu, P., Wang, Y., Zhao, X., Liu, J., Zhang, X.: The impacts of interannual climate variability and agricultural
- inputs on water footprint of crop production in an irrigation district of China. Sci. Total Envrion., 444, 498-507, 2013.
- 31 Sun, S., Wu, P., Wang, Y. & Zhao, X.: Impact of changing cropping pattern on the regional agricultural water productivity.
- 32 The Journal of Agricultural Science, 153(05),767-778, 2014.
- 33 Tamea, S., Carr, J.A., Laio, F. & Ridolfi, L.: Drivers of the virtual water trade. Water Resour. Res., 50, 17-28, 2014.

Manuscript under review for journal Hydrol. Earth Syst. Sci.

- 1 Tian, Y.: Research on the agriculture water price in Yellow River irrigation area of Shandong. Master thesis, Shandong
- 2 University. Doi:10.7666/d.y1790966, 2010.
- 3 Tuninetti, M., Tamea, S., D'Odorico, P., Laio, F. & Ridolfi, L.: Global sensitivity of high-resolution estimates of crop water
- 4 footprint. Water Resour. Res., 51, WR017148, 2015.
- 5 United Nations (UN): Transforming our world: the 2030 agenda for sustainable development. A/RES/70/1, 2015.
- 6 V ör ösmarty, C.J., Hoekstra, A.Y., Bunn, S.E., Conway, D. & Gupta, J.: Fresh water goes global. Science, 349 (6247), 478-
- 7 479, 2015.
- 8 Wang, D. & Lou. X., Thoughts on current agricultural water prices. Sichuan Provincial Water Resources Department.
- 9 <u>http://www.scwater.gov.cn/main/wqhg1/dfss36/75334/index.html</u>, 2016.
- 10 Wang, R., Hertwich, E. & Zimmerman, J.B.: (Virtual) water flows uphill toward money. Environ. Sci. Technol., 50,
- 11 12320–12330, 2016.
- 12 Ward, F. A. & Pulido-Velazquez, M.: Water conservation in irrigation can increase water use, P. Natl. Acad. Sci. USA, 105
- 13 (47),18215-18220, 2008.
- Wen, B., Chai, S. & Li, S.: Investigation report on agricultural water cost in Qinghai province. Qinghai Economic Research,
- 15 6, 41-42, 2008.
- 16 Wu, P., Gao, X., Zhao, X., Wang, Y. & Sun, S.: Framework of "two-dimension three-element" coupling flow of real water
- and virtual water. Transactions of the Chinese Society of Agricultural Engineering, 32(12),1-10, 2016. (in Chinese with
- 18 English abstract).
- 19 Yang, Z.: Comprehensive reform of agricultural water price in Henan province and its countermeasures. ECONOMIC
- 20 RESEARCH GUIDE, 35, 44-46.
- 21 Yin, J., Wang, H. and Cai, Y.: Water Footprint Calculation on the Basis of Input-Output Analysis and a Biproportional
- Algorithm: A Case Study for the Yellow River Basin, China. Water, 8,363. doi:10.3390/w8090363, 2016.
- 23 YRCC: Yellow River water resource bulletin 2004-2007, Yellow River Conservancy Commission, Zhengzhou, China,
- 24 <u>www.yellowriver.gov.cn</u>, 2011. (in Chinese; last access: November, 2016).
- 25 YRCC: Comprehensive planning of the Yellow River Basin for 2012-2030. Yellow River Conservancy Commission,
- 26 Zhengzhou, China, 2013.
- 27 YRCC: Yellow River water resource bulletin 2016, Yellow River Conservancy Commission, Zhengzhou, China, 2017.
- 28 Zhang, C. and Anadon, L.D., A multi-regional input-output analysis of domestic virtual water trade and provincial water
- 29 footprint in China. Ecol. Econ. 100, 159-172, 2014.
- 30 Zhao, C. & Chen, B.: Driving Force Analysis of the Agricultural Water Footprint in China Based on the LMDI Method.
- 31 Environ. Sci. Technol., 48, 12723-12731, 2014.
- 32 Zhao, X., Liu, J., Liu, Q., Tillotson, M.R., Guan, D. & Hubacek, K.: Physical and virtual water transfers for regional water
- 33 stress alleviation in China. P. Natl. Acad. Sci. USA, 112(4), 1031-1035, 2015.

Manuscript under review for journal Hydrol. Earth Syst. Sci.

Discussion started: 20 September 2018 © Author(s) 2018. CC BY 4.0 License.

- 1 Zheng S. & Zhang Z.: Observation on comprehensive agricultural water price reform in Gansu Hexi corridor. China Water
- 2 Resources, 16, 6-11, 2017.
- 3 Zhuo, L., Mekonnen, M.M. & Hoekstra, A.Y.: The effect of inter-annual variability of consumption, production, trade and
- 4 climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978–
- 5 2008). Water Res., 94, 73-85, 2016a.
- 6 Zhuo, L., Mekonnen, M.M., Hoekstra, A.Y. & Wada, Y.: Inter- and intra-annual variation of water footprint of crops and
- 7 blue water scarcity in the Yellow River basin (1961–2009). Adv. Water Resour.,87, 29-41, 2016b.
- 8 Zhuo, L., Mekonnen, M.M. & Hoekstra, A.Y.: Consumptive water footprint and virtual water trade scenarios for China—
- 9 With a focus on crop production, consumption and trade. *Environ. Int.*, 94,211-223, 2016c.
- 10 Zou, X., Li,Y., Cremades, R., Gao, Q., Wan, Y. & Qin, X.: Cost-effectiveness analysis of water-saving irrigation
- technologies based on climate change response: A case study of China. *Agr. Water Manage.*, 129, 9-20, 2013.

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-436 Manuscript under review for journal Hydrol. Earth Syst. Sci. Discussion started: 20 September 2018

© Author(s) 2018. CC BY 4.0 License.

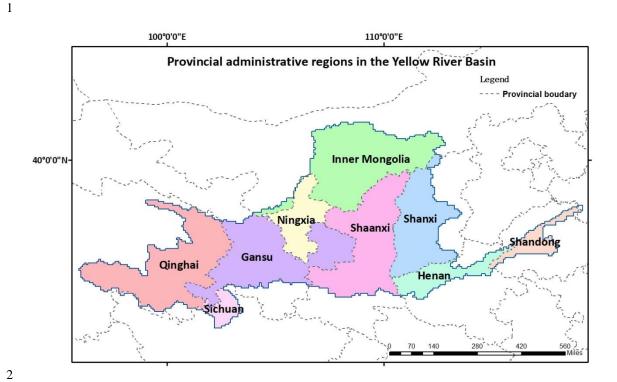
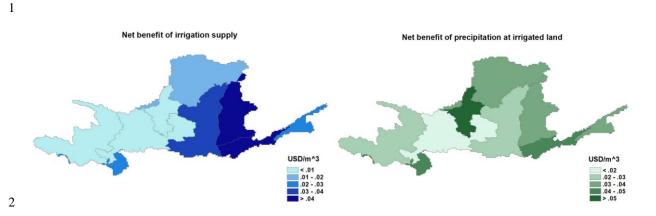
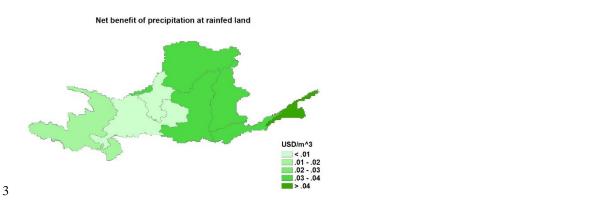


Figure 1. Provincial administrative regions in the Yellow River Basin.


5


Discussion started: 20 September 2018 © Author(s) 2018. CC BY 4.0 License.

6

4 Figure 2. Net benefit of green and blue water supplied for, crop production among provinces across the Yellow River Basin. Year: 5 2004 (average).

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-436 Manuscript under review for journal Hydrol. Earth Syst. Sci. Discussion started: 20 September 2018

© Author(s) 2018. CC BY 4.0 License.

1

3

Economic values of crop-related virtual water flows of provinces within Yellow River Basin

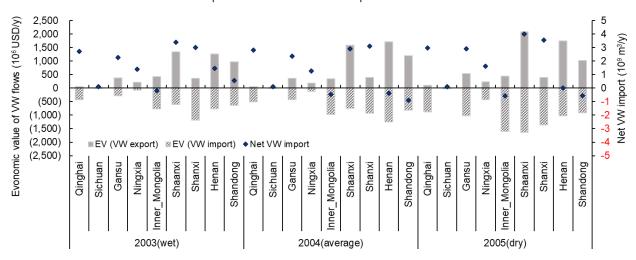
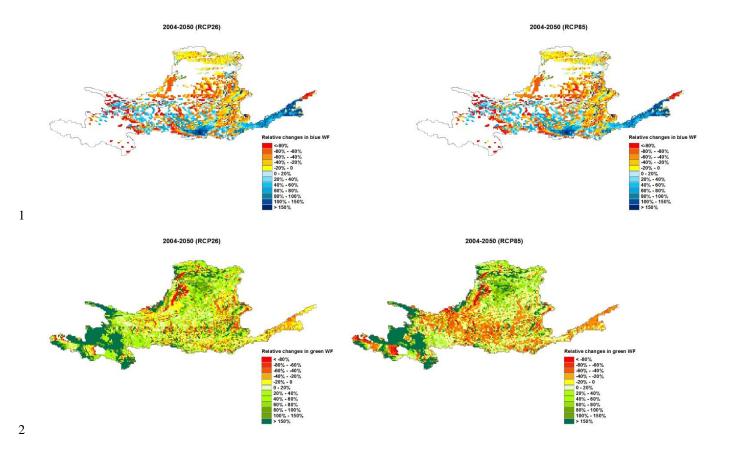
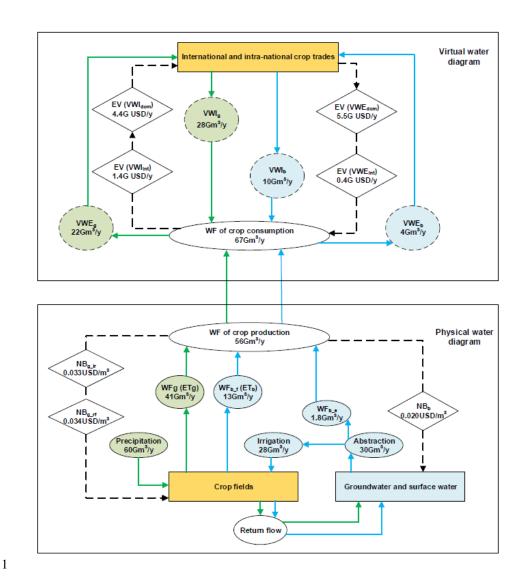


Figure 3. Economic values of crop-related virtual water flows per province within the Yellow River Basin.

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-436 Manuscript under review for journal Hydrol. Earth Syst. Sci. Discussion started: 20 September 2018 © Author(s) 2018. CC BY 4.0 License.




Figure 4. Multi-GCM average relative changes in green and blue WFs of crop production under climate change scenarios for 2050 as compared to 2004 in the Yellow River Basin.

Discussion started: 20 September 2018 © Author(s) 2018. CC BY 4.0 License.

3 4

2 Figure 5. Crop-related green and blue physical and virtual water diagram within the Yellow River Basin for the year of 2004.

Discussion started: 20 September 2018 © Author(s) 2018. CC BY 4.0 License.

1

Table 1. Climate-socio-economic scenarios for the Yellow River Basin at 2050.

	S1		S2		S3		S4	
	RCP2.6				RCP8.5			
	SSP1		SSP2		SSP2		SSP3	
GCMs	CanESM2	GFDL-CM3	GISS-E2-R	MPI-ESM- MR	CanESM2	GFDL-CM3	GISS-E2-R	MPI- ESM-MR
Relative changes in annual precipitation ^a	25%	29%	11%	19%	31%	25%	16%	18%
Relative changes in annual ET ₀ ^a	5%	11%	1%	2%	6%	13%	3%	5%
Relative changes in CO ₂ concentration	13%				18%			
Total population growth ^b	-5.8%		-5.8%		-2.8%		0.6%	
Yield increase through technology ^c	65%		38%		38%		19%	
Improvement in irrigation network efficiency	30%		30%		20%		10%	
Diet scenarios ^d	'less meat'		'less meat'		'current trer	nd'	'current trend	d'

Sources: a. Ramirez-Villegas and Jarvis (2010); b. IIASA (2013); c. De Fraiture et al. (2007); d. Erb et al. (2009)

3

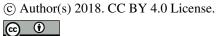
Manuscript under review for journal Hydrol. Earth Syst. Sci.

Discussion started: 20 September 2018 © Author(s) 2018. CC BY 4.0 License.

1 2

3 4

Table 2. Diet scenarios for 2050 and comparisons to the baseline year of 2004.


		2050 b			
unit: Kcal/cap/d	2004ª	'Current trend' scenario	'Less meat' scenario		
Cereal	1473	1552 (5%)	1709 (16%)		
Roots	189	149 (-21%)	201 (6%)		
Sugar crops	59	85 (44%)	124 (110%)		
Oil crops	234	288 (23%)	265 (13%)		
Vegetables and fruits	239	205 (-14%)	219 (-8%)		
Other crops	92	66 (-28%)	82 (-11%)		
Animal products	575	612 (6%)	372 (-35%)		
Total	2286	2957 (29%)	2973		

a. Source: FAOSTAT (FAO,2014)

b. Values are generated according to the scenarios for East Asia by Erb et al. (2009); relative changes from the 2005 level are shown in parentheses.

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-436 Manuscript under review for journal Hydrol. Earth Syst. Sci. Discussion started: 20 September 2018

1

Table 3. Crop-related physical water flows and associated net benefits per drop of water in the Yellow River Basin.

		2003	2004	2006
		(wet)	(average)	(dry)
Physical water	Precipitation on croplands (10 ⁹ m ³ /y)	77	60	49
Supply (10 ⁹ m ^{3/} y)	Irrigation withdrawal (109m3y-1)	29	30	36
	Surface water	22	24	29
	Ground water	7	7	7
Physical water	WF of crop production	52	55	56
consumption	Green WF	39	40	38
(10 ⁹ m ³ /y)	Blue WF	13	15	17
	Blue WF at field level	12	13	15
	Blue WF irrigation network	1.7	1.8	2.1
Net benefit per	Blue water	0.024	0.020	0.019
water (USD/m ³)	Green water for irrigated crops	0.027	0.033	0.033
	Green water for rainfed crops	0.021	0.034	0.027

2

Discussion started: 20 September 2018 © Author(s) 2018. CC BY 4.0 License.

1

Table 4. Basin's average water footprint (WF) in production, producer price and cost of producing each considered crop in the Yellow River Basin.

	2003			2004			2006					
	Green- blue WF (m³/t)	Blue WF (m³/t)	Producer price ^a (USD/kg)	Cost in production ^a (USD/kg)	Green- blue WF (m³/t)	Blue WF (m³/t)	Producer price (USD/kg)	Cost in production (USD/kg)	Green- blue WF (m³/t)	Blue WF (m³/t)	Producer price (USD/kg)	Cost in production (USD/kg)
Rice	772	165	0.15	0.11	618	153	0.20	0.11	630	224	0.21	0.13
Wheat	1696	514	0.14	0.14	1572	498	0.18	0.15	1573	559	0.19	0.17
Maize	667	163	0.13	0.09	565	139	0.14	0.11	862	263	0.17	0.12
Sorghum	714	41	0.12	0.07	666	36	0.15	0.10	981	72	0.16	0.09
Millet	1495	85	0.20	0.16	1478	81	0.20	0.17	1613	105	0.25	0.26
Barley	702	54	0.12	0.07	623	46	0.15	0.10	909	58	0.16	0.09
Soybean	2183	364	0.36	0.20	2110	409	0.34	0.33	2338	586	0.31	0.36
Potatoes	282	13	0.06	0.04	348	18	0.07	0.04	337	22	0.09	0.08
Cotton	2022	555	1.66	1.04	1585	375	1.37	1.04	1372	434	1.55	1.20
Sunflower	1632	148	0.29	0.21	1188	139	0.32	0.27	1217	210	0.31	0.31
Groundnuts	1935	251	0.39	0.27	1748	205	0.44	0.24	1809	304	0.51	0.34
Sugar beet	236	0	0.03	0.02	177	0	0.03	0.03	252	0	0.04	0.03
Rapeseed	3115	0	0.29	0.21	2823	0	0.32	0.27	2755	0	0.31	0.31
Tomato	272	21	0.08	0.04	161	17	0.10	0.05	252	19	0.12	0.07
Apples	498	51	0.10	0.07	455	50	0.12	0.08	607	71	0.19	0.10
Sweet potatoes	462	158	0.06	0.04	460	143	0.07	0.04	454	189	0.09	0.08

a. Sources: NDRC (2004, 2005, 2007).

Table 5. WF of crop consumption, related VW flows and associated economic values in the Yellow River Basin.

		2003 (wet)	2004 (average)	2006 (dry)
WF of crop consumption	Total WF	67	67	70
(10 ⁹ m³/y)	Green WF	50	49	51
	Blue WF	17	18	19
	External rate	41%	41%	42%
Crop-related net VW import	Total	15	11	14
(10 ⁹ m ³ /y)	International trade related	4	7	8
	Green	4	6	7
	Blue	0.3	0.9	1.1
	Domestic trades related	10	4	6
	Green	7	2	5
	Blue	4	2	1
Economic values of VW flows	International VW export	0.247	0.332	0.535
(USD/m³)	International VW import	0.180	0.278	0.617
	Domestic VW export	0.176	0.239	0.297
	Domestic VW import	0.124	0.132	0.149
Net income of VW flows (106USD/y)	International VW flows	-23	-1005	-3480
· • • • • • • • • • • • • • • • • • • •	Domestic VW flows	267	1048	1135

Table 6. Responses in crop-related physical and VW flows, net benefits of water use and economic values of VW flows to climate-socio-economic scenarios for 2050 of the Yellow River Basin.

	Relative changes from 2004 to 2050				
	S1	S2	S3	S4	
Precipitation on croplands	-1%	-1%	-0.5%	-0.5%	
Irrigation withdrawal	-7%	-2%	-2%	4%	
WF of crop production	5%	5%	1%	1%	
Green WF	1.87%	1.87%	-3%	-3%	
Blue WF	18%	18%	17%	17%	
Blue WF at field level	24%	24%	22%	22%	
Blue WF irrigation network	-32%	-32%	-22%	-12%	
Net benefit of water					
Blue water	69%	34%	39%	-3%	
Green water for irrigated crops	50%	25%	30%	-16%	
Green water for rainfed crops	55%	30%	134%	123%	
WF of crop consumption	-45%	-38%	-35%	-24%	
Green WF	-44%	-37%	-34%	-23%	
Blue WF	-50%	-43%	-40%	-27%	
Net VW import	-304%	-260%	-224%	-155%	
Green water	-266%	-223%	-183%	-117%	
Blue water	-412%	-365%	-343%	-265%	
Economic value (VWE)	286%	194%	233%	154%	
Economic value (VWI)	-25%	-20%	-19%	-11%	

Table 7. Comparison of the blue water footprints and net virtual water flows related to crops for the Yellow River Basin determined in this study with the results of previous studies.

	Current study	Feng et al. (2012)	Hoekstra et al. (2012)
Total blue WF of crop production	15.2 ~ 20.5	9.9	16.6 *
(Gm³/y)			
Crop-related net virtual water	-4.8 ~ -12.9	-8.4	
import (no rice) (Gm ³ /y)			

^{*} Based on the observation that the blue WF of crop production accounts for 73% of the total blue WF in the YRB in terms of the long-term average (Zhuo et al., 2016a).