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Abstract 

  

This study focuses on the Iberian Peninsula and investigates the propagation of precipitation uncertainty, 

and its interaction with hydrologic modelling, in global water resources reanalysis. Analysis is based on 5 

ensemble hydrologic simulations for a period spanning 11 years (2000–2010). To simulate the 

hydrological variables of surface runoff, subsurface runoff, and evapotranspiration, we used four land 

surface models—JULES (Joint UK Land Environment Simulator), ORCHIDEE (Organizing Carbon and 

Hydrology in Dynamic Ecosystems), SURFEX (Surface Externalisée), and HTESSEL (Hydrology-Tiled 

ECMWF Scheme for Surface Exchange over Land)—and one global hydrological model, WaterGAP3 10 

(Water–Global Assessment and Prognosis). Simulations were carried out for five precipitation products—

CMORPH, PERSIANN, 3B42 (V7), ECMWF reanalysis, and a machine learning-based blended product. 

As reference, we used a ground-based observation-driven precipitation dataset, named SAFRAN, 

available at 5 km/1 h resolution. We present relative performances of hydrologic variables for the different 

multi-model/multi-forcing scenarios. Overall, results reveal the complexity of the interaction between 15 

precipitation characteristics and different modelling schemes and show that uncertainties in the model 

simulations are attributed to both uncertainty in precipitation forcing and the model structure. Surface 

runoff is strongly sensitive to precipitation uncertainty and the degree of sensitivity depends significantly 

on the runoff generation scheme of each model examined. Evapotranspiration fluxes are comparatively 

less sensitive for this study region. Finally, our results suggest that there is no single model/forcing 20 

combination that can outperform all others consistently for all variables examined and thus reinforce the 

fact that there are significant benefits in exploring different model structures as part of the overall 

modelling approaches used for water resources applications.  

 

  25 
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1. Introduction 

Improved estimation of global precipitation is important to the analysis of continental water resources 

and dynamics. Over the past few decades, several studies have described the use of different precipitation 

algorithms to develop precipitation products (http://ipwg.isac.cnr.it/algorithms.html and 

http://reanalyses.org) at high spatial and temporal resolution on a quasi-global scale and for different 5 

hydrological applications, such as flood early warning and control, and drought monitoring (Hong et al., 

2010; Wu et al., 2012; and Vernimmen et al.,  2011 amongst others). Precipitation estimates suffer, 

however, from various sources of error that consequently impact hydrologic investigations (Mei et al., 

2015; Mei et al., 2016; Seyyedi et al., 2014, 2015; Bhuiyan et al., 2017, Nikolopoulos et al., 2013).  

  10 

Over the last decade, an increasing number of studies have contributed to the development of global 

precipitation estimation (Pan et al., 2010; Beck et al., 2017a; Kirstetter et al., 2014; Carr et al., 2015; Dee 

et al., 2011) aiming at the overall improvement of the hydrological applications and global water resource 

reanalysis. Numerous models of varying complexity can be used to generate an array of hydrological 

products from precipitation forcing datasets (Vivoni et al., 2007; Ogden et al., 1994; Carpenter et al., 15 

2001; Borga, 2002; Schellekens et al., 2017). Different hydrological models have different applications 

depending on the spatial and temporal scales of interest, as well as the simulated variables of interest, 

such as subsurface runoff, surface runoff, and evapotranspiration. Past studies (Fekete et al., 2004; 

Biemans et al., 2009) have revealed that the uncertainty in simulated hydrological variables mainly 

depends on the uncertainty in precipitation and model parametrisation, and suggested subsequent 20 

exploration of different model structures as part of the overall modelling approach.  

 

So far there are several studies that have analysed uncertainty in precipitation forcing and its impact on 

hydrologic simulations by usually evaluating hydrologic simulations based on multiple forcing applied 

on a single model (Falck et al., 2015; Bitew et al., 2012; Behrangi et al., 2011; Mei et al. 2016; Bhuiyan 25 

et al., 2018; Gelati et al., 2018 among others). On the other hand, there are also past studies that have 

evaluated the model structural uncertainty and its impact on hydrologic simulations, usually by analysing 

the simulation outputs from multiple models and a single forcing dataset (Breuer et al., 2009; Haddeland 
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et al. 2011; Gudmundsson et al., 2012; Smith et al. 2013; Huang et al. 2017; Beck et al., 2017b). However, 

fewer studies have been dedicated on the analysis of the integrated impact of both forcing and model 

uncertainty on hydrologic simulations and from the existing ones most of them were focused on a single 

hydrologic variable such as streamflow (see for example Qi et al. 2016), evapotranspiration (Vinukollu 

et al., 2011) or a given hydrologic index such as drought index (Prudhomme et al., 2014; Samaniego et 5 

al. 2017). Findings from these past investigations have demonstrated that both forcing and model structure 

uncertainty have a great impact on hydrologic predictions and therefore highlight that using multi-

model/multi-forcing ensemble is a more appropriate path forward for advancing the use of hydrologic 

model outputs. This conclusion raises at the same time the need for better understanding, characterizing 

and quantifying the uncertainty associated to multi-model/multi-forcing hydrologic ensembles. Thus, a 10 

better understanding of the ensemble spread of precipitation and simulated hydrological variables is 

necessary to improve water resource management and planning. This additionally means that there is also 

a need to assess hydrologic uncertainty in more than a single variable to be able to have a better and more 

integrative view on the interaction between forcing uncertainty, model uncertainty and hydrologic 

variable of interest that will allow to make hydrologic predictions more effective for water resources 15 

applications at large. 

 

This study builds upon a unique numerical experiment that was carried out, as part of the activities of the 

Earth2Observe project (Schellekens et al. 2017), to investigate the impact of precipitation uncertainty 

propagation and its dependence on model structure and hydrologic variable. In this investigation, we used 20 

different precipitation forcing datasets based on (i) reanalysis, (ii) satellite estimates, as well as (iii) a 

“combined” stochastic precipitation dataset (Bhuiyan et al., 2018).  To consider model structure and 

parameters, we examined simulations from five state-of-the-art global-scale hydrological and Land 

Surface Models (LSMs). With regard to water cycle variables, we evaluated precipitation uncertainty 

propagation to surface runoff, subsurface runoff, and evapotranspiration fluxes. The study area for this 25 

investigation is the Iberian Peninsula, which has precipitation and climate variability due to complex 

orography influenced by both Atlantic and Mediterranean climates (Rodríguez-Puebla et al., 2001; de 

Luis et al., 2010; Herrera et al., 2010). The analysis comprised two main parts: (1) performance and 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-434
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 1 October 2018
c© Author(s) 2018. CC BY 4.0 License.



5 

 

sensitivity evaluation of the different model/forcing scenarios and (2) precipitation uncertainty 

propagation to the hydrological variables. We analysed hydrological simulation with a comparative 

assessment of the hydrological products and provided a detailed analysis of uncertainty in hydrological 

simulations for the different global hydrological and land surface models used in the multi-model global 

water resources reanalysis. Finally, we examined the performance of precipitation products in 5 

hydrological applications and potential uncertainty attributed to precipitation error propagations. 

 

The paper is structured as follows: section 2 presents the different types of forcing datasets used for the 

study and section 3 details the methodology we used for our model development and hydrological model 

analysis. Section 4 summarizes the hydrological results, section 5 discusses the results and section 6 draws 10 

conclusions from the research conducted. 

 

2. Study area and forcing data 

This study is focused on the Iberian Peninsula (Figure 1). The climate of the peninsula is primarily 

Mediterranean, with mostly oceanic at northern and semiarid at southern parts. The topography in the 15 

Pyrenees varies from near sea-level to 3,500 meters. The meteorological forcing datasets used are 

described below.  

 

2.1. Reference Precipitation (SAFRAN) 

The reference precipitation dataset, hereafter referred to as SAFRAN (Système d’analyse fournissant des 20 

renseignements atmosphériques à la neige), was recently created by Quintana-Seguí et al. (2016, 2017) 

using the SAFRAN meteorological analysis system (Durand et al., 1993). Spatially, SAFRAN 

precipitation data are presented at hourly time scale on a regular grid of 5 km resolution, spanning 35 

years and covering mainland Spain, Portugal and the Balearic Islands (Quintana-Seguí et al, 2016). 

SAFRAN used an optimal interpolation algorithm (Gandin, 1966) to produce a quality controlled gridded 25 

dataset of precipitation which combines ground observations and outputs of a meteorological model 
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(Quintana-Seguí et al, 2017). On the other hand, several factors—including rainfall intermittency, discrete 

temporal sampling, and censoring of reference values for required quality—reduce the number of 

comparison samples for reference and satellite estimates. Therefore, the quality controlled SAFRAN 

dataset which is designed to force Land surface model is chosen as reference dataset for the study area 

(Quintana-Seguí et al, 2017).   5 

2.2. Satellite-Based Precipitation 

Satellite-based simulations were based on three quasi-global satellite precipitation products. Among them 

CMORPH (Climate Prediction Center Morphing technique of the National Oceanic and Atmospheric 

Administration, or NOAA) is  developed from passive microwave (PMW) satellite precipitation fields 

which is generated form motion vectors derived from Infrared (IR) data (Joyce et al., 2004). A neural 10 

network technique is used in PERSIANN (Precipitation Estimation from Remotely Sensed Information 

using Artificial Neural Networks) where IR observations are connected to PMW rainfall estimates 

(Sorooshian et al., 2000). Merged IR and PMW precipitation product from NASA are gauge adjusted for 

TMPA (Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis), or 3B42 (V7), which 

is available in near-real time and post-real time (Huffman et al., 2010). The satellite precipitation products 15 

have spatial resolution is 0.250 x 0.250 and time resolution of 3-hourly. 

 

2.3. Atmospheric Reanalysis 

The reanalysis product (EI_GPCC) is based on original ERA-Interim 3-hourly data, after rescaling based 

on GPCC (Global Precipitation Climatology Center) data. Note that total precipitation has been rescaled 20 

at monthly scale with a multiplicative factor to match GPCCv7 for the period 1979–2013 and GPCC 

monitoring for 2013–15. Data are further downscaled to 0.250 x 0.250 grid resolution by distributing the 

coarse grid precipitation according to CHPclim (Climate Hazards Group’s Precipitation Climatology) 

high-resolution information for each calendar month. A similar approach was performed in the generation 

of ERA-Interim/Land (Balsamo et al., 2015), but using GPCP (Global Precipitation Climatology Project). 25 

In this study we used GPCC due to its higher spatial resolution when compared with GPCP.    
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2.4. Combined Product 

The combined product is based on the application of a nonparametric statistical technique for blending 

multiple satellite and reanalysis precipitation datasets.  Specifically, a machine learning technique, 

Quantile Regression Forests (QRF) (Meinshausen, 2006), was used to generate stochastically an 

improved precipitation ensemble. The technique optimally merged global precipitation datasets and 5 

characterized the uncertainty of the combined product. Details on the methodology and data used to 

develop the combined product are presented in Bhuiyan et al. (2018).  

 

2.5 Other atmospheric variables 

Apart from precipitation forcing, the rest of atmospheric forcing variables required for the hydrologic 10 

simulations were derived from the original ERA-Interim 3hourly data as used in ERA-Interim/Land 

(Balsamo et al. 2015) bilinearly interpolated to 0.25°. It includes a topographic adjustment to temperature, 

humidity and pressure using a spatially-temporally varying environmental lapse rate (ELR) computed 

similarly to Gao et al (2012). The correction is the following: (i) relative humidity is computed from the 

uncorrected forcing; (ii) air temperature is corrected using the ELR and altitude differences (ERA-Interim 15 

topography versus 0.25 topography); (iii) surface pressure is corrected assuming the altitude difference 

and updated temperature; and (iv) specific humidity is computed using the new surface pressure and 

temperature assuming no changes in relative humidity.     

3. Methodology 

3.1 Hydrological Simulations 20 

The hydrological simulations for this study were carried out by different collaborators within the 

framework of Earth2Observe, a European Union (EU) funded project using a number of global scale land 

surface/hydrological models. In this study, simulations from four land surface models—JULES (Joint UK 

Land Environment Simulator), ORCHIDEE (Organizing Carbon and Hydrology in Dynamic 

Ecosystems), SURFEX (Surface Externalisée), and HTESSEL (Hydrology Tiled ECMWF Scheme for 25 

Surface Exchanges over Land)—and one global hydrological model, the distributed global hydrological 

model of the WaterGAP3 (Water–Global Assessment and Prognosis) modeling framework (hereinafter 
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referred to as WaterGAP3) were considered. All models were forced with the various precipitation 

datasets described in the previous section for an 11-year period (March 2000–December 2010). A 

summary of some basic characteristics of the models structure is presented in Table 1 and a short 

description is provided below. For more details on the modelling systems, the interested reader is referred 

to Schellekens et al. (2017) and references therein.   5 

3.1.1 JULES 

JULES (Best et al., 2011; Clark et al., 2011) is a physically-based land surface model. JULES uses an 

exponential rainfall intensity distribution to calculate throughfall through the canopy first (altered by 

interception), then the water reaching the surface is divided into infiltration into the soil and surface 

runoff. Surface runoff is generated either through infiltration excess or saturation excess. Infiltration 10 

excess runoff will be generated by JULES if the water flux reaching the surface exceeds the maximum 

infiltration rate of the soil (based on the saturated hydraulic conductivity). Saturation excess runoff is 

based on subgrid soil moisture variability, as a fraction of the grid is saturated and water flux over this 

fraction is converted to surface runoff (Probability Distribution Model; Blyth, 2002). Once infiltrated into 

the soil, water flows through the column resolved using Darcy's Law and the Richards' equation. 15 

Subsurface runoff is calculated using the free drainage approach, with water flowing at the bottom of the 

resolved soil column at a rate determined by the soil hydraulic conductivity. Further details on hydrology 

processes in JULES can be found in Best et al. (2011) and Blyth et al. (2018).     

3.1.2 ORCHIDEE 

ORCHIDEE (Krinner et al., 2005) is a complex land surface scheme that consists of a hydrological 20 

module, a routing (Ngo-Duc et al., 2007) and floodplain module (d’Orgeval et al., 2008). It also describes 

the vegetation dynamics and biological cycles but these features were not activated for the present study. 

The most relevant parametrisation of ORCHIDEE for the sensitivity of the model to rainfall is the one for 

partitioning between infiltration and surface runoff. In order to represent correctly the fast progression of 

the moisture front during a rainfall event when the time step is above 15 minutes, a time-splitting 25 

procedure is used (d’Orgeval 2006). The parametrisation also takes into account reinfiltration in case of 

slopes below 0.5% or dense vegetation. Furthermore, as ORCHIDEE represents sub-grid soil moisture 
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by simulating separately the soil moisture column below bare soil, low and high vegetation, the infiltration 

process will display different sensitivities in each column.    

3.1.3 SURFEX 

The SURFEX modeling system of Météo-France (SURFace Externalisée, Masson et al., 2013) includes 

the ISBA LSM (Interactions between Soil, Biosphere, and Atmosphere, Noilhan and Mahfouf, 1996) that 5 

can be fully coupled to the CNRM (Centre National de Recherches Météorologiques) version of the Total 

Runoff Integrating Pathways (TRIP, Oki et al., 1998) continental hydrological system (Decharme et al., 

2010). This study uses ISBA multi-layer soil diffusion scheme (ISBA-Dif) as well as its 12-layers explicit 

snow scheme (Boon et al., 2001, Decharme et al., 2016). ISBA total runoff is contributed by both the 

surface runoff and a free drainage as bottom boundary condition soil layer. The soil evaporation is 10 

proportional to its relative humidity. Furthermore, the Dunne runoff and lateral subsurface flow are 

computed using a topographic subgrid distribution. 

3.1.4 WATERGAP31 

The modelling framework WaterGAP3 is a tool to assess the global fresh water resources on 30-minutes 

spatial resolution. It combines a spatially distributed rainfall-runoff model with a large-scale water quality 15 

model as well as models for five sectorial water uses (Flörke et al., 2013; Döll et al., 2009). Effective 

precipitation – calculated as superposed effects of snow accumulation, snow melt and interception – is 

split into (i) a fraction that fills up an single-layer soil moisture storage and (ii) a fraction that comprises 

surface runoff and groundwater recharge. Groundwater recharge is the input of a single linear 

groundwater reservoir that is drained by base flow. Water for evapotranspiration, estimated with the 20 

Priestley-Taylor approach, is abstracted from the soil storage. The WaterGAP3 setting used in this study 

is calibrated and validated against measured river discharge from 2446 stations of the Global Runoff data 

Center data repository. Thereby, calibration only concerns the separation of effective precipitation into 

runoff and soil moisture filling. For a detailed model description see Eisner (2015). 

3.1.5 HTESSEL 25 

The land surface model (LSM) HTESSEL is part of the European Centre for Medium Range Weather 

Forecasts (ECMWF) numerical weather prediction model. The model represents the temporal evolution 

of the snowpack, soil moisture and temperature and vegetation water content, as well as the turbulent 
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exchanges of water and energy with the atmosphere. The soil column is discretized in four layers (7, 21, 

72 and 189 cm thickness), and the unsaturated vertical movement of water follows Richards’s equation 

and Darcy’s law. The van Genuchten formulation is used to derive the diffusivity and hydraulic 

conductivity using 6 predefined soil textures. In case of partially or fully frozen soil, the water movement 

in the soil column is limited by reducing the diffusivity and hydraulic conductivity. The model assumes 5 

free drainage as bottom boundary condition (sub-surface runoff) while the top boundary condition 

considers precipitation minus surface runoff and bare ground evaporation. Evapotranspiration is removed 

from the different soil layers following a prescribed root distribution (dependent on the vegetation type). 

Surface runoff generation is estimated as a function of the local orography variability, soil moisture state 

and rainfall intensity. Soil saturation state and rainfall intensity define the maximum infiltration rate which 10 

is modulated by a variable infiltration rate related to orography variability (Balsamo et al 2009). 

 

3.2. Evaluation metrics  

To examine the magnitude and variability of differences among hydrological variables, we used relative 

difference (RD) defined as:  15 

 

 
𝑅𝐷 = (

𝑦𝑖 − 𝑦𝑖

𝑦𝑖
), 

 

(1) 

where 𝑦𝑖 denotes reference variables (SAFRAN-driven simulations) and 𝑦𝑖 denotes simulated variables 

(based on the other forcing data considered) for each time step i. RD indicates the magnitude and direction 

of error with positive (negative) value indicating overestimation (underestimation). 

 20 

To collectively assess the performance of various precipitation forcing datasets, models and simulated 

hydrological variables, we used a normalized version of the Taylor diagram (Taylor, 2001). Specifically, 

we normalized the values of the centered root mean square error (CRMSE) and the standard deviation 
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with the standard deviation of the reference. Therefore, the reference (that is, the target point to which the 

model outputs should be closest) corresponds to the point on the graph with the normalized CRMSE equal 

to zero, while both the correlation coefficient and normalized standard deviation equal one.  

 

To evaluate the degree of variation of various precipitation datasets and simulated hydrological variables, 5 

we used coefficient of variation (CV) and coefficient of variation ratio (CVr). CV is a measure of 

variability defined as the ratio of the standard deviation to the mean. To compare the degree of variation 

from one data series to another, we used CV where we considered distributions with CV < 1 as low 

variance, while we considered those with CV > 1 as high variance. We defined CVr as the ratio of the CV 

of model to the CV of reference. The defined parameters are expressed as follows: 10 

 

  

𝐶𝑉𝑚 =  
𝜎𝑚

𝑚̅
 

 

                                                              

(2) 

 

  

𝐶𝑉𝑜 =  
𝜎𝑜

𝑜̅
 

 

                                                              

(3) 

 

  

𝐶𝑉𝑟 =  
𝐶𝑉𝑚

𝐶𝑉𝑜
 

 

                                                              

(4) 
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𝐶𝑉𝑚 and 𝐶𝑉𝑜 indicate coefficient of variation of model and coefficient of variation of reference, with 

the means 𝑚̅ and 𝑜̅ and standard deviations 𝜎𝑚  and 𝜎𝑜, respectively. The CVr includes two components: 

the ratio of the means and ratio of the standard deviation. Details on the statistical metrics, including name 

conventions and mathematical formulas, are provided in the Appendix. 5 

 

3.3. Metrics of uncertainty propagation 

The random error component was based on the normalized centered root mean square error (NCRMSE). 

To demonstrate how error in precipitation forcing translates to error in the simulated hydrological 

variables—surface runoff (Qs), subsurface runoff (Qsb), and evapotranspiration (ET)—we used the 10 

NCRMSE error metric ratio as follows: 

 

𝑁𝐶𝑅𝑀𝑆𝐸 =

√1
𝑛

∑ [𝑦𝑖 − 𝑦𝑖 −
1
𝑛

∑ (𝑦𝑖 − 𝑦𝑖)𝑛
𝑖=1 ]

2
𝑛
𝑖=1

 √
1
𝑛

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

,                       (5) 

 

 
𝛼𝑁𝐶𝑅𝑀𝑆𝐸 =  

𝑁𝐶𝑅𝑀𝑆𝐸(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠)

𝑁𝐶𝑅𝑀𝑆𝐸(𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛)
, 

                                                                 

(6) 

 

 

where NCRMSE is normalized centered root mean square error and 𝛼𝑁𝐶𝑅𝑀𝑆𝐸 is NCRMSE error metric 

ratio. The 𝛼𝑁𝐶𝑅𝑀𝑆𝐸 metric quantifies the changes in the random error from precipitation to simulated 15 

hydrological variables (Qs, Qsb, and ET) and can thus be used to assess magnification (𝛼𝑁𝐶𝑅𝑀𝑆𝐸>1) or 

damping (𝛼𝑁𝐶𝑅𝑀𝑆𝐸<1). 
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3.4. Analysis of Ensemble Spread 

To assess how variability in precipitation ensemble translates to variability of the various hydrological 

simulations (Qs, Qsb, and ET) for the different modeling systems, we performed an analysis of ensemble 

spread (∆) formulated as 

 5 

 
∆=  

∑(𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛)

∑ 𝑅
, 

(7) 

in which 𝑋𝑚𝑎𝑥   and   𝑋𝑚𝑖𝑛 represent, respectively, the maximum and minimum of ensemble values at 

each time step, while 𝑅 is the corresponding value of the reference. Note that the members of ensemble 

constitute a sequence for each time step (𝑋1  , 𝑋2 … … . 𝑋20 ). Therefore, the ensemble spread provides a 

measurement of the expected prediction intervals relative to the reference value and the larger the 

ensemble spread (∆) indicates relatively wider ranges of prediction intervals. 10 

4. Results  

4.1 Variability of Multiple Hydrological Model Simulations 

To examine the magnitude and variability of the differences among both models and forcing datasets, we 

analysed the multi-model simulation results for three hydrological variables including surface runoff (Qs), 

subsurface runoff (Qsb), and evapotranspiration (ET). Throughout this analysis, we used the SAFRAN-15 

based simulation as the reference for comparison. Figures 2 to 4 present spatial maps of annual average 

values for each model, along with the relative differences of annual average estimates of the different 

hydrological variables for all the precipitation forcing datasets and models.  

 

Examination of SAFRAN-based annual average values of surface runoff show that WaterGAP3, of which 20 

parametrisation is based (in present study) on a calibration that was done with WFDI forcing dataset 

(Weedon et al., 2014) and measured runoff data, estimates considerably higher surface runoff than the 

rest of the models particularly in the north and north-western part of the study area (Figure 2). 

Consequently, subsurface runoff (Figure 3) and evapotranspiration (Figure 4) from WaterGAP3 were 
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lower in that part of the study area. All these results display substantial differences in the spatial pattern 

of relative differences, which suggests that simulations are sensitive to both precipitation forcing and 

model uncertainty. Certain models seem to be more sensitive for given variables. For example, HTESSEL 

and ORCHIDEE are the models with the largest relative difference of Qs and both models exhibited 

different behaviour, relative to the other models, when forced by the satellite precipitation. This suggests 5 

a distinct structural difference on the way precipitation is partitioned into surface/subsurface runoff 

between the two groups.  

 

Looking at the variability of results for combined and reanalysis (EI_GPCC) forcing datasets, no 

substantial differences occurred between reference and simulated surface runoff (Qs). However for the 10 

satellite-based simulations, there were significant deviations. Specifically, the CMORPH-based 

simulation showed significant overestimation for ORCHIDEE and HTESSEL, but this pattern was 

reversed for JULES, SURFEX, and WaterGAP3, an outcome that highlights the impact of model structure 

on precipitation error propagation.  

 15 

For subsurface runoff, similar spatial patterns (with respect to Qs) were exhibited for the reference and 

the rest of simulations (Figure 3), which were also affected substantially by precipitation uncertainty. For 

example, looking at the different model simulations we can see that WaterGAP3 results reveal the lowest 

relative differences of Qs for almost all the precipitation forcings. In addition, CMORPH-based 

simulation underestimated substantially for all the models. Figure 4 presents the spatial pattern of the 20 

results for evapotranspiration. For the combined product and EI_GPCC, results were consistent with low 

relative difference (<25%). On the other hand, CMORPH-based simulation showed an overall 

underestimation and deviated considerably from the results of the other precipitation products.  

We also present a comparison of cumulative probability of the relative differences among precipitation 

forcings (Figure 5) and the simulated hydrological variables (Figure 6). The distribution of relative 25 

differences, both in terms of type (denoted by the shape of the Cumulative Density Function-CDF) and 

magnitude, differed as a function of precipitation forcing, model, and the variable considered. The CDF 

of precipitation relative differences shows that CMORPH deviated significantly from the other 
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precipitation products (Figure 5). The surface runoff based on ORCHIDEE/HTESSEL displayed a clear 

separation of the CDF for combined product/EI_GPCC and satellite-based precipitation forcing (Figure 

6). Specifically, it is interesting to note how 3B42 (V7) responds very differently from other precipitation 

forcing datasets for ORCHIDEE, highlighting again the sensitivity of runoff response to precipitation 

structure (space/time variability) and its dependence on the rainfall-runoff generation mechanism.  5 

Boxplots of the relative difference of different hydrological variables for the various forcing 

datasets/models at daily scale are shown in Figure 7. Note the inclusion of the relative difference of 

precipitation forcing to allow the comparison between relative differences in precipitation with that in the 

other hydrological variables. For each model, the boxplot shows a lower interquartile range (IQR), 

marking lower variability for Qsb and ET compared to Qs. Results for combined product/EI_GPCC–10 

based simulations showed less variability than the satellite based simulations. The SURFEX and 

WaterGAP3 exhibited the lowest variability compared to the other models. Overall, with the exception 

of few cases (e.g. 3B42(V7) for ORCHIDEE/HTESSEL and CMORPH for ORCHIDEE), uncertainty 

reduces progressively from precipitation to surface runoff, subsurface runoff and finally ET. 

4.2 Performance of Multi-model Simulations 15 

The normalized Taylor diagrams summarize the results for two different temporal scales. Figure 8 shows 

the results for the 3-hourly scale only for the two models with output available at that resolution (JULES 

and SURFEX), while Figure 9 presents results at daily scale for all five models. We aggregated the 3-

hourly results from JULES and SURFEX to daily to compare them with the nominal daily output of 

ORCHIDEE, WaterGAP3 and HTESSEL. Results improved with the temporal aggregation in reducing 20 

random error for JULES and SURFEX. As shown in the two figures, for the surface runoff the point 

representing 3B42 (V7) was always the farthest from the reference (NCRMSE>0.75), which means 3B42 

(V7) was always associated with the worst performance. Simulations based on combined 

product/EI_GPCC were always consistent with significantly reduced NCRMSE values in the range of 

0.25-0.8 for all the hydrological models. Results for simulated ET are more consistent among the various 25 

precipitation forcing datasets exhibiting normalised standard deviations in the range of 0.8-1.2. NCRMSE 

reduced significantly (<0.35) for each forcing dataset; accordingly, the correlation coefficient (CC) also 
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raised considerably (>0.9) showing a very high degree of agreement with reference-based simulations. 

For surface/subsurface runoff, SURFEX and WaterGAP3 models performed comparatively better than 

other models by reducing NCRMSE values especially for the combined product and EI_GPCC.  

To illustrate the relative variability between precipitation and individual hydrological variables, we 

calculated the coefficient of variation (CV) and the coefficient of variation ratio (CVr) for all the 5 

hydrological models. To provide an understanding of the impact of precipitation uncertainty in 

hydrological simulations, we produced boxplots of CV and CVr for precipitation forcing datasets and 

individual hydrological variables for all the models, as shown in Figure 10. From the boxplots of CV from 

reference-based simulations, the distributions of ET showed low variability (CV < 1), while the variability 

for all the other hydrological variables was high (CV > 1).  In terms of CVr, the SURFEX model 10 

consistently displayed low medians, which were close to 1 for all the precipitation forcing datasets but 

CMORPH. Moreover, the variability of ET was much lower than that of the other variables examined and 

well captured in all the simulation scenarios.  

A precipitation-forcing-wise comparison indicates that, the combined product/reanalysis underestimated 

precipitation variability more than other precipitation forcings, which affected the corresponding 15 

variability in Qs, for all the models except ORCHIDEE.  Although there were no significant differences 

in terms of variability for combined product and reanalysis based simulations for the four models (JULES, 

SURFEX, WaterGAP3, and HTESSEL), substantial differences in variability between precipitation and 

Qs were observed for ORCHIDEE model. Satellite products overestimated precipitation variability, 

leading to overestimation of the variability of surface and subsurface runoff.  20 

 

4.3 Assessment of Precipitation Error Propagation 

To investigate the possible amplification, or dampening, of the precipitation error to the hydrologic 

variables examined, we quantified the NCRMSE error metric ratio (𝛼𝑁𝐶𝑅𝑀𝑆𝐸) and results are 

demonstrated in Figures 11 and 12. For all the scenarios (at 3-hourly and daily scales) and almost all 25 

models, 𝛼𝑁𝐶𝑅𝑀𝑆𝐸 values were less than 1, which highlighted the damping effect on the random error of 

precipitation in simulated variables. In general, the damping effect increases (i.e. 𝛼𝑁𝐶𝑅𝑀𝑆𝐸 reduces) 

moving from surface to subsurface runoff and ET, highlighting once again the interaction between the 
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different runoff generating mechanisms as well as coupled water-energy balance processes and 

precipitation uncertainty. Interestingly, the relationship between error propagation among the different 

hydrologic variables varied greatly between models and precipitation forcing. Values of 𝛼𝑁𝐶𝑅𝑀𝑆𝐸 for 

surface and subsurface runoff are generally close for the SURFEX model but distinctly different for 

satellite-based results of ORCHIDEE and WaterGAP3. 5 

 

4.4 Stochastic Precipitation Ensemble and Corresponding Simulated Hydrological Variables 

Analysis Results 

The following summarizes the results of our analysis of ensemble precipitation (20 members), generated 

stochastically according to the algorithm used for the “combined” product, and their corresponding 10 

hydrological simulations. To show the relationship between the precipitation ensemble and simulated 

hydrological variables (generated ensemble), we presented an analysis of ensemble spread. Figure 13 

depicts density plots between ensemble spread of precipitation and the simulated hydrological variables 

(Qs, Qsb, and ET) at monthly scale. A strong correlation between ensemble spread of Qs and precipitation 

is found for almost all models. For the other variables (ET, Qsb), ensemble spread was significantly 15 

narrower and rather independent of the ensemble spread of precipitation, manifested as the horizontal 

structure of contours in Figure 13. The ensemble spread of Qs was higher (ORCHIDEE and HTESSEL) 

or lower (SURFEX, WaterGAP3) depending on the model, elucidating again the impact of modelling 

structure on the propagation of precipitation uncertainty. 

 20 

5. Discussion 

Precipitation from different satellite and reanalysis datasets exhibits considerable differences in pattern 

and magnitude, which result in significant differences in hydrologic simulations. Results presented in this 

paper demonstrated clearly that magnitude and dynamics of uncertainty in hydrologic simulations depend 

not only on the uncertainty of the forcing variable, but also on the model and examined hydrologic 25 

variable.  
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For example, surface runoff (Qs) appears to be highly sensitive to precipitation differences, while ET was 

not for this semi-arid study region (Figures 2 to 4). Particularly, ET exhibited reduced sensitivity to 

precipitation forcing, which potentially suggests that the water volume available to be converted to ET 

did not deviate significantly among the precipitation scenarios. This is expected for ET, because, it is 

primarily controlled by atmospheric demand, plant and soil hydraulic constraints, and solar radiation 5 

(Wallace et al., 2010). When sufficient energy is available for rainfall to evaporate directly without 

contributing to surface/subsurface runoff, simulation of ET is not only affected by precipitation 

uncertainty, but also other atmospheric constrains. 

Consequently, results (Figures 5 to 6) for ET were more consistent among the various model/precipitation 

forcing scenarios, indicating a smaller degree of uncertainty in ET (relative to Qs and Qsb). These results 10 

suggest that precipitation has a stronger influence on surface runoff, in particular precipitation intensity, 

i.e. the same amount of precipitation distributed over 3 hours or over 1 day will impact mostly surface 

runoff, and this is associated with the model representation of this fast process.  Similarly, if we look at 

the distribution of precipitation relative difference, CMORPH tends to decrease in magnitude compared 

to other precipitation products. Therefore, for subsurface runoff, CMORPH-based simulations displayed 15 

a gross underestimation compared to other precipitation forcing.  

Precipitation-to-surface runoff sensitivity is strongly controlled by the corresponding runoff generation 

scheme in each model. For example, in the case of HTESSEL and ORCHIDDE, precipitation intensity 

has a great effect on the generation of surface runoff. The satellite precipitation datasets have higher 

precipitation intensities (Figure 5), when compared to the remaining datasets, which explains the different 20 

behaviour of these two models.  However, in the case of JULES, the infiltration excess mechanism is 

rarely invoked when the drivers are provided at a 3-hourly time step, as the maximum infiltration rate is 

not reached. Therefore, the significance of differences that HTESSEL and ORCHIDEE show with more 

intense rainfall are not shown by JULES due to distinct differences of their corresponding surface runoff 

generation modules. 25 
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Evaluation of the performance of the various simulations, relative to SAFRAN-based, emphasized the 

issues due to low correlation and increased random error from satellite products. On the other hand, the 

reanalysis (EI_GPCC) and combined product resulted in reduction of random error, suggesting that 

relying on gauge adjusted reanalysis or blended (satellite and reanalysis) products offers improvement 

relative to satellite-alone products. 5 

 

Certain dynamics resolved from this analysis were generally consistent among different models such as 

the fact that uncertainty reduced systematically from precipitation to surface runoff to subsurface runoff 

and eventually to ET simulations. This is also in accordance to our expectations given that soil moisture 

(storage) integrates in time the precipitation variability. Surface runoff exhibits high correlation to 10 

precipitation while uncertainty in subsurface runoff is modulated by storage capacity of the soils. In 

addition ET is affected only if water availability deviates significantly from the water demand in terms of 

potential evapotranspiration. Our findings related to the surface runoff uncertainty (due to model structure 

and precipitation) suggest that the use of surface runoff (e.g. flash floods diagnostics) should be carefully 

considered in each application in view of each model formulation. 15 

 

6. Conclusions 

This study investigated the propagation of precipitation uncertainty in hydrological simulations and its 

interaction with hydrologic modelling, which was based on satellite and reanalysis precipitation forcing 

of a number of global hydrological and land surface models for the Iberian Peninsula. The following are 20 

the major conclusions from this study. 

 

Simulation of surface runoff was shown to be highly sensitive to precipitation forcing, but the direction 

(that is, overestimation/underestimation) and the magnitude of relative differences indicated strong 

dependence on the modeling system. Hydrological simulations based on reanalysis and combined product 25 

forcing datasets performed overall better than satellite precipitation–driven simulations. Moreover, 

simulation-results using CMORPH as forcing exhibit overall overestimation for ORCHIDEE/ HTESSEL 
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which is totally opposite to the results from the other models (JULES, SURFEX and WaterGAP3). These 

types of differences highlight the complexity of the interaction between precipitation characteristics and 

different modelling schemes and should be used as a “reference for caution” for when generalizing 

findings produced from single model simulations. 

 5 

Modeling uncertainty appeared to be much less important for evapotranspiration than for surface and 

subsurface runoff. The sensitivity of hydrological simulations to different precipitation forcing datasets 

was shown to depend on the hydrological variable use and model parameterization scheme. Finally, based 

on our evaluation of the performance of the different hydrological models and five precipitation 

products—CMORPH, PERSIANN, 3B42 (V7), reanalysis, and combined product—we could not identify 10 

a single model that consistently outperformed others i.e. certain models appeared more successful on the 

simulation of certain variables.  

 

This study suggests important benefits may accrue from exploring different model structures as part of 

the modeling approach. This study assessed the multi-model performances regarding three different 15 

hydrologic variables (surface/subsurface runoff, evapotranspiration). Apart from precipitation forcing, 

other atmospheric forcing variables required for the hydrologic simulations are also essential to 

investigate the significance of hydrological model uncertainty. In addition, the only calibrated model in 

this study WaterGAP3 performs better in specific locations (e.g., hilly) for all the hydrologic variables 

than other models. Therefore, investigation should be performed in calibrating and regionalizing models 20 

for different parameters. Nevertheless, a clear outcome of the current work is that uncertainty in 

hydrologic predictions is significant and should be assessed and quantified in order to foster the effective 

use of the outputs of global land surface/hydrologic models. Considering ensemble representation (e.g. 

multi-model/multi-forcing) of hydrologic variables provides an appropriate path to address this issue.  

 25 

Advancing our understanding on precipitation/model uncertainty and their interaction will potentially also 

aid in the investigation of the impacts of climate change (and associated uncertainty) on hydrological 

cycle components and water resource systems. Finally, this research provides a fine platform to discuss 
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advances in the applications of different precipitation algorithms, hydrology, and water resource 

reanalysis.  

 

Data availability.  
 5 

The datasets are available online for SAFRAN (https://doi.org/10.14768/MISTRALS-HYMEX.1388),  

CMORPH (ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/RAW/0.25deg-3HLY/),  

PERSIANN (http://fire.eng.uci.edu/PERSIANN/data/3hrly_adj_cact_tars/), 

3B42(V7) (https://mirador.gsfc.nasa.gov), atmospheric reanalysis (https://wci.earth2observe.eu/portal/), 

satellite-derived near-surface daily soil moisture data (http://www.esa-soilmoisture-cci.org/node/145/), 10 

and the combined product (https://sites.google.com/uconn.edu/ehsanbhuiyan/research). 
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Figure 1. Map of Iberian Peninsula case study area.  
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Figure 2: Map of SAFRAN-based simulations (Reference) of surface runoff (top row) and relative 

difference for the various models (columns) and precipitation forcing (rows 2-5) analysed. 

 

 5 

 

 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-434
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 1 October 2018
c© Author(s) 2018. CC BY 4.0 License.



32 

 

 

Figure 3: Same as Figure 2 but for subsurface runoff. 
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Figure 4: Same as Figure 2 but for evapotranspiration.  
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Figure 5: Cumulative probability for the precipitation forcing datasets. 
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Figure 6: Cumulative probability for the multi-model, multi-forcing simulations for simulated 

hydrological variables. 
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Figure 7: Relative difference presented for the various products and models at daily scale. In each box, 

the central mark is the median, and the edges are the first and third quartiles 
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Figure 8: Normalized Taylor diagrams for 3-hourly precipitation and simulated hydrological variables 

based on SAFRAN and the satellite/reanalysis precipitation products used. 
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Figure 9: Normalized Taylor diagrams for daily simulated hydrological variables with SAFRAN and the 

satellite/reanalysis precipitation products used. 
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Figure 10: Relationship between coefficient of variation and coefficient of variation ratio of simulated 

hydrological variables and precipitation. 
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Figure 11: NCRMSE error metrics ratios presented for the various products and models at 3-hourly scale. 
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Figure 12: NCRMSE error metrics ratios presented for the various products and models at daily scale. 
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Figure 13: Density contour plot of the relationship between ensemble spread of simulated hydrological 

variables and precipitation at monthly scale. Color scale shows the frequency of occurrence. The black 

line is the 1:1 line. 
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Appendix: 

The statistical metric, coefficient of variation ratio (CVr) used in the model evaluation analysis, was 

computed using following parameters: 
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Here, 𝑜𝑖 and  𝑚𝑖(i = 1,…., N) are the observed and modeled time series of the product for times i, 

with the means 𝑜̅ and 𝑚̅ and standard deviations 𝜎𝑜  and 𝜎𝑚, respectively; and N is the total number of 

data points used in the calculations.  10 
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Table 1: Details on modeling systems. 
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Model Interception  Evapotranspiration  
Soil 

layers 

Ground 

water 
Runoff  

Reservo

irs/ 

lakes 

Routing 

JULES 

Single reservoir, 

potential 

evapotranspiration 

Penman-Monteith 4 No 

Saturati

on and 

infiltrati

on 

excess 

No  No 

ORCHIDEE 

Single reservoir 

structural 

resistance to 

evapotranspiration 

Bulk ETP 

(Barella-Ortiz et 

al. 2013) 

11 Yes 

Green-

Ampt 

infiltrati

on 

No  
linear cascade of 

reservoirs (sub-grid) 

SURFEX 

Single reservoir, 

potential 

evapotranspiration 

Penman-Monteith 14 Yes 

Saturati

on and 

infiltrati

on 

excess 

No  

TRIP with stream 

and deep-water 

reservoir at 0.5° 

WATERGAP

3 
Single reservoir Priestley-Taylor 1 Yes 

Beta 

function 
yes Manning  Strickler 

HTESSEL 

Single reservoir, 

potential 

evapotranspiration 

Penman-Monteith 4 No 

Saturati

on 

excess 

No  CaMa-Flood 
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