Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-434-SC1, 2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.



# Interactive comment on "Assessment of Precipitation Error Propagation in Multi-Model Global Water Resources Reanalysis" by Md Abul Ehsan Bhuiyan et al.

T. Heus

toine.heus@wur.nl

Received and published: 2 November 2018

Note to the editor and authors: As part of an introductory course to the Master programme Earth Environment at Wageningen University, students get the assignment to review a scientific paper. Since several years, students have been reviewing papers that are in open online discussion for HESS or BGS, and they have been asked to submit their reports to the discussion in order to help the review process. While these reports are written in the form of official (invited) reviews, they were not requested for by the editor, and we leave it up to the editor and authors to use these reports to their advantage. While several students were often asked to review the same paper, this

C1

was not done with the aim to provide the authors with much extra work. We hope that these reports will positively contribute to the scientific discussion and to the quality of papers published in HESS. This report/review was supervised by dr. Ryan Teuling (teacher within the ITEE course at Wageningen University and also associated editor with HESS).

The main objective of the article is the assessment of both uncertainty in precipitation forcing and in the structure of several land-surface models by simulating hydrological variables. Methodology proceeds by studying the relative differences of three simulated hydrological variables by running five state-of—the-art models each forced by six precipitation datasets of various source. I think there is a strong need of capturing the relative influence of uncertainty from as well the datasets as the model structure to increase efficiency in hydrological predictions for water resources and to explore the possible usefulness of multi-model/multi-forcing ensembles. Therefore, the assessment of integrated structural errors would be an addition to the scientific literature on this topic and would definitely be a topic of interest for HESS audience.

The paper is generally well-written in an understandable way, and the use of English is good. However, I my view the manuscript in its current state of is yet ready for publication and needs revision before it can be accepted. I hope the authors are willing to modify their manuscript, also taking into account the comments provided here. I feel the paper might benefit from a thorough restructuring to assure the manuscript meets the expected quality for HESS publications. Specific comments of three more major issues are described below, followed by discussion of a few minor issues

# **Major recommendations**

The introduction starts very clear and leads correctly to a certain problem statement. Although, the research question and aim of the paper which are following, are very broad and besides I do not get a clear view of the specific objective of the authors. The integration between precipitation error and model structure error is important and should be assessed, but the question raised in this paper needs a more precise aim.

Momentarily, the aim of this paper leads to general results and a broad discussion and conclusion. For example, the conclusion partly states that the interaction between precipitation characteristics and different modelling schemes is very complex and the uncertainties in model simulations are due to precipitation and modelling structure errors. This conclusion is not a contribution to the scientific literature of this topic (Haddeland et al. 2011), while this subject has the competence to deliver a valuable product.

To be more precise, in the introduction a problem is sketched which needs attention but the following query is too broad. In my opinion, the paper should focus on a smaller and more specific subject to deliver an enhanced final product. The decision for coming to an alternative/specific aim is completely in hands of the original authors. Several suggestions to narrow this subject:

- Decreasing the number of precipitation forcings to one. As a consequence, more
  detailed results will be provided and a quantification of how the precipitation uncertainties behave or affect the different model-structures of the land-surface
  models. Via this way, the integration of the precipitation and model structure
  uncertainty will remain the main subject of the paper, but it will limit the scope.
- The other way around is also possible. By decreasing the number of land-surface models to one, the paper will show how the different precipitation forcings will influence the model structure uncertainty (in terms of hydrological variables).
- If, according to the authors, the essence of the article is damaged by reducing
  the number of forcings or models, the relative same procedure as before can be
  used. The disadvantage of this method is the huge amount of workload, because
  the results require a distinct end product, like quantifications of uncertainties,
  distinguished per model or per forcing.

The second concern is the main methodology of simulation. Although the selection of the several diverse precipitation products and the five state-of-the-art models is proper,

CG

I do not understand why the one hydrological model is calibrated, but the four land-surface models are not. From my point of view, the outcomes of the simulations are only useful (in terms of considering model structure errors) when the models function in the same way, excluding the relative differences caused by alternative parameterization. This is also confirmed by Yin (2018), indicating that calibration of the models is necessary to use the same parameters while only the meteorological data is unique. To eliminate the effect of different parameterization, I expected the models to be calibrated to expose the uncertainties in model structures. Despite the fact that I am not considering myself an expert in the field of model calibration or validation, the main point here is the fact that this essential part of the methodology is rather unclear and additional information will be needed.

Thus, if the authors are able to verify that the current parameterization does not affect the results of the exposure of model structure error, the explanation of this issue is very important to include in the paper. If the results are possibly affected and the land-surface models do contain incomparable parameters, the assessment of model structure uncertainty may be inaccurate and therefore cannot be identified as a certified result. Then I would recommend to perform model calibration and consequently present the improved results. For inspiration of model calibration, I found very intriguing papers, such as the paper of Beven and Binley (1992) about the GLUE framework, and the paper of Clark (2008) about the modular framework FUSE, focussed on model structure.

The last issue is the presentation of the results. Although the approach of the results is very clear, the display of the graphs is quite cluttered and the amount is way too much. This issue relates to the first point of the review, providing the paper a more distinct aim. If the results would be presented more specific, the exact objective will be targeted much more efficient. At this moment, one does not know where to look for between 16 different graphs on one page and it gives the impression the reader needs to search for the results himself.

I would recommend to show only results that are specifically relevant to answer the research question, to prevent clustering of graphs and figures. Just use in the result section no more than one or two graphs of each sort of visual representation to support the corresponding findings. This recommendation does not even revolve around the possible change of the research question; even if the research question does not change, the authors should think of other ways of presenting their results.

### **General comments**

One of the keywords of this paper is "model structure" and its respective uncertainty. However, the definition of this keyword is not thoroughly described and therefore different interpretations are allowed. In addition, there is a fine line between the concept of model structure and their corresponding parametrization. Thus, I would recommend to sharply define this keyword and so delineate its meaning for this paper.

I would recommend to add a line to the section concerning the study area why this area has been chosen. This is especially needed because in the discussion section (line 1-4) the authors insinuate that one of the hydrologic variables (evapotranspiration) is not the best measure of sensitivity for this study area. This is quite logical, because the study area is semi-arid and the amount of evapotranspiration is water-limited instead of energy-limited. Although the location of the study area is not damaging the research, in my opinion it would help to support the choice in this case.

# Further small remarks

Page 4, line 20: Change "hydrologic variable" to "hydrologic variables".

Page 5, line 15: Change "semiarid" to "semi-arid" (for consistency, because at page 18, line 2, also "semi-arid" is used)

Page 6, line 4: remove the capital letter of 'Land surface model"

Page 7, line 11: Change "3hourly" to "3-hourly".

Page 8, line 15: Add comma after "column".

C5

Page 12, line 13: Change "NCRMSE (variables)" to "NCRMSE (hydrologic variables)" or "NCRMSE (simulated variables)".

Page 17, line 23: Change "result" to "results".

Page 18, line 18: Change "ORCHIDDE" to "ORCHIDEE".

Page 32: Please add the full description for the graph, as on page 31.

Page 33: Please add the full description for the graph, as on page 31.

Page 37: Description of the Taylor diagram of SURFEX: change "maen sqaure" to "mean square".

# References

Beven, K. Binley, A. (1992). "The Future of Distributed Models: Model Calibration and uncertainty Prediction". Hydrological Processes, 6, 279-298.

Clark, M. (2008), "Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models". Water Resources Research, 44(12).

Haddeland, I. (2011). "Multimodel Estimate of the Global Terrestrial Water Balance: Setup and First Results". Journal of Hydrometeorology, 12(5), 869-884.

Yin, Z. et al. (2018). "Comparing the Hydrological Responses of Conceptual and Process-Based Models with Varying Rain Gauge Density and Distribution". Sustainability, 10(9).

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-434, 2018.