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Abstract 10 

Evapotranspiration (ET) is a major component of the land surface process involved in energy fluxes and energy 11 

balance, especially in the hydrological cycle of agricultural ecosystems. While many models have been 12 

developed as powerful tools to simulate ET, there is no agreement on which model best describing the loss of 13 

water to the atmosphere. This study focuses on two aspects, evaluating the performance of four widely used ET 14 

models, and identifying parameters, as well the physical mechanisms that have significant impacts on the model 15 

performance. The four tested models are Shuttleworth Wallace (SW) model, Penman-Monteith (PM) model, 16 

Priestley-Taylor and Flint-Childs (PT-FC) model, and Advection-Aridity (AA) model. By incorporating the 17 

mathematically rigorous thermodynamic integration algorithm, the Bayesian model evidence (BME) approach is 18 

adopted to select the optimal model with half-hourly ET observations obtained at a spring maize field in an arid 19 

region. Our results reveal that SW has the best performance and the extinction coefficient is not merely 20 

partitioning the total available energy into the canopy and surface, but also including the energy imbalance 21 

correction. The extinction coefficient is well constrained in the SW model and poorly constrained in the PM 22 

model, but not considered in PT-FC and AA models. This is one of the main reasons that the SW model 23 

outperforming the other models. Meanwhile, the good fitting of SW model to observations can counterbalance 24 

its higher complexity. In addition, the detailed analysis of the discrepancies between observations and model 25 

simulations during the crop growth season indicate that explicit treatment of energy imbalance and energy 26 

interaction will be the primary way to further improve ET model performance. 27 
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1. Introduction 29 

Surface energy fluxes are an important component of Earth’s global energy budget and a primary 30 

determinant of surface climate. Evapotranspiration (ET), as a major energy flux process for energy balance, 31 

accounts for about 60-65% of the average precipitation over the surface of the Earth (Brutsaert, 2005). In 32 

agricultural ecosystems, more than 90% of the total water losses are due to ET (Morison et al., 2008). Therefore, 33 

robust ET estimation is crucial to a wide range of problems in hydrology, ecology, and global climate change 34 

(Xu and Singh, 1998). In practice, much of our understanding of how land surface processes and vegetation 35 

affect weather and climate is based on numerical modeling of surface energy fluxes and the 36 

atmospherically-coupled hydrological cycle (Bonan, 2008). Several models are commonly used in agricultural 37 

systems to evaluate ET. The Penman-Monteith (PM) and Shuttleworth-Wallace (SW) models are physically 38 

sound and rigorous (Zhu et al., 2013), and thus widely used to simulate ET for seasonally varied vegetations. 39 

The models consider the relationships between net radiation, all kinds of heat flux (such as latent heat, sensible 40 

heat, and heat from soil and canopy), and surface temperature. The Priestley-Taylor and Flint-Childs (PT-FC) 41 

model (based on radiation) and the advection-aridity (AA) model (based on meteorological variables) have also 42 

been widely used because they only require a small number of ground-based measurements to set up the models 43 

(Ershadi et al., 2014). 44 

Comparing the performance of the competing ET models and evaluating and understanding the 45 

discrepancies between simulations of the models and corresponding observed surface-atmosphere water flux are 46 

remain challenging problems (Legates, 1999). Both non-Bayesian analysis (Szilagyi and Jozsa, 2008; Vinukollu 47 

et al., 2011; Li et al., 2013; Ershadi et al., 2015) and Bayesian analysis have been used to evaluate the 48 

performance of ET models (Zhu et al., 2014; Chen et al., 2015; Liu et al., 2016; Zhang et al., 2017; Elshall et al., 49 

2018; Samani et al., 2018; Zeng et al., 2018) . Li et al. (2013) compared the ET simulations of the PM, SW and 50 

adjusted SW models under film-mulching conditions of maize growth in an arid region of China. They found 51 

that the half-hourly ET was overestimated by 17% by the SW model. In contrast, the PM and adjusted SW 52 

models underestimated the daily ET by 6% and 2%, respectively. Therefore, the performances of PM and 53 

adjusted SW models are better than that of the SW model in their case study. Ershadi et al. (2014) evaluated the 54 

surface energy balance system (SEBS), PM, PT-JPL (a modified Priestley–Taylor model) and AA models. 55 

Based on the average value of EF and RMSE, the model ranking from worst to best was AA, PM, SEBS, and 56 
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PT-JPL. Ershadi et al. (2015) also compared the response of the models to different formulations of 57 

aerodynamic and surface resistances with global FLUXNET data. Their results showed considerable variability 58 

in model performance among and within biome types. Currently, ET model selection and comparison have been 59 

still conducted using traditional error metrics. It is known that error metrics are not adequate to provide a 60 

reasonable result of model ranking for disregarding model complexity (Marshall et al., 2005; Samani et al., 61 

2018). The focus of this study is to use a Bayesian approach to evaluate the performance of the PM, SW, PT-FC, 62 

and AA models, which is a novelty contribution of this study. In ET models, the land surface energy system is 63 

governed by presumably infinite-dimensional physics. However, considering the ET models as 64 

finite-dimensional can be more precisely by covering all relevant relations. Therefore, employing consistent 65 

criteria for model selection might be justified when the aim is to better understand the processes involved (Höge 66 

et al., 2018). When using consistent model selection, Bayesian model evidence (BME), also known as marginal 67 

likelihood, measures the average fit of model simulations to their corresponding observations over a model’s 68 

prior parameter space. This feature enables BME to consider model complexity (in terms of the number of 69 

model parameters) for model performance evaluation. When comparing several alternative conceptual models, 70 

the model with the largest marginal likelihood is selected as the best model (Lartillot and Philippe, 2006). BME 71 

can thus be used for evaluating the model fit (over the parameter space) and for comparing alternative models. 72 

In previous studies, the Bayesian information criterion (BIC; Schwarz, 1978) and the Kashyap information 73 

criterion (KIC; Kashyap, 1982) have been used to approximate BME by using maximum likelihood theories to 74 

reduce the computational cost of evaluating BME (Ye et al., 2004). However, these approximations have 75 

theoretical and computational limitations (Ye et al., 2008; Xie et al., 2011; Schöniger et al., 2014), and a 76 

numerical evaluation (not a likelihood approximation) of BME is necessary, especially for complex models 77 

(Lartillot and Philippe, 2006). Lartillot and Philippe (2006) advocated the use of thermodynamic integration (TI) 78 

for estimating BME, also known as path sampling (Gelman and Meng, 1998; Neal, 2000), in order to avoid 79 

sampling solely in the prior or posterior parameter space. TI uses samples that are systematically generated from 80 

the prior to the posterior parameter space by conducting path sampling with several discrete power coefficient 81 

values (Liu et al., 2016). It is numerically accurate than the generally used harmonic mean method (Xie et al., 82 

2011). 83 

Most applications of Bayesian methods have focused on the calibration of individual models, while the 84 

comparison of alternative models continues to be performed using traditional error metrics. More generally, 85 
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Bayesian approaches to model calibration, comparison, and analysis have been used far less used in the 86 

evaluation of ET models than in other areas of environmental science. In this study, the Bayesian approach is 87 

used to calibrate and evaluate the four ET models (PM, SW, PT-FC, and AA) based on an experiment over a 88 

spring maize field in an arid area of northwest China, from 3 June to 27 September 2014. The objectives of the 89 

study are as follows: (1) to calibrate ET model parameters using the DiffeRential Evolution Adaptive Metropolis 90 

(DREAM) algorithm (Vrugt et al., 2008, 2009); (2) to identify which parameters had a greater impact on the 91 

model performance and to explain why the selected optimal model performed best; (3) to evaluate the 92 

performance of the models using traditional error metrics and BME; and (4) to analyze discrepancies between 93 

model simulations and observation data in order to better understand model performance and identify ways to 94 

improve these models. We expect that the study will not only boost the development of model parameterization 95 

and model selection but also contribute to the improvement of the ET models. 96 

2. Data and methodology 97 

2.1. Description of the study area 98 

The experiment of maize growth was conducted at Daman Superstation, located in Zhangye City, Gansu 99 

province, northwest China. Daman Oasis is located in the middle Heihe River basin, which is the second largest 100 

inland river basin in the arid region of northwest China. The midstream area of the Heihe River basin is 101 

characterized by oases with irrigated agriculture and is a region that consumes a large amount of water for both 102 

domestic and agricultural uses. The annual average precipitation and temperature are 125 mm and 7.2 ℃ 103 

(1960–2000), respectively. The annual accumulated temperature (>10 ℃) is 3,234 ℃, and the annual average 104 

potential evaporation is about 2,290 mm. The average annual duration of sunshine is 3,106 h with 148 frost-free 105 

days. The predominant soil type is silty-clay loam and the depth of the frozen layer is about 143 mm. The study 106 

area is a typical irrigated agricultural region, and the major source of water is snowmelt from the Qilian 107 

Mountains. Maize and spring wheat are the principal crops grown in the region. Maize is generally sown in late 108 

April and harvested in mid-September and is planted with a row spacing of 40 cm and a plant spacing of 30 cm. 109 

The plant density is about 66,000 plants per hectare in the study area. 110 

2.2. Measurements and data processing 111 

Our data were collected from the field observation systems of the Heihe Watershed Allied Telemetry 112 
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Experimental Research (HiWATER) project as described in Li et al (2013). The observation period was from 113 

DOY (day of the year) 154 to DOY 270 in 2014. An open-path eddy covariance (EC) system was installed in a 114 

maize field, with the sensors at a height of 4.5 m. Maize is the main crop in the study region, and thus covers 115 

sufficient planting area to set the EC measurements. The EC data was logged at a frequency of 10 HZ and then 116 

processed with an average time interval of 30 min. Sensible and latent heat fluxes were computed by the EC 117 

approach of Baldocchi (2003). Flux data measured by EC were controlled by traditional methods, including 118 

three-dimensional rotation (Aubinet et al., 2000), Webb-Penman-Leuning (WPL ) density fluctuation correction 119 

(Webb et al., 1980), frequency response correction (Xu et al., 2014), and spurious data removal caused by 120 

rainfall, water condensation, and system failure. About 85% of the energy balance closure was observed in the 121 

EC data (Liu et al., 2011). 122 

Standard hydro-meteorological variables, including rainfall, air temperature, wind speed, and wind 123 

direction, were continuously measured at the heights of 3, 5, 10, 15, 20, 30 and 40 m above the ground. Soil 124 

temperature and moisture were measured at heights of 2, 4, 10, 20, 40, 80, 120 and 160 cm. Photosynthetically 125 

active radiation was measured at a height of 12 m. Net radiation, including downward, upward and longwave 126 

radiation, was measured by a four-component net radiometer. An infrared thermometer was installed at a height 127 

of 12 m. Leaf Area Index (LAI) was measured approximately every 10 days during the growing season. 128 

2.3. Model description 129 

In this section, we summarize the mathematical definitions forming the basis of each of the four models. 130 

Appendix A contains a summary of the names and physical meanings of the model parameters. 131 

2.3.1 Penman-Monteith (PM) model 132 

The PM model can be formulated in the following way (Monteith, 1965): 133 
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134 

where ε=Δ/γ; and A is defined to be nA R G  . 135 

In the present study, ga is parameterized in the way suggested by Leuning (2008) and gs is defined as: 136 
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137 

where 1−τ and τ are the fractions of the total available energy absorbed by the canopy and by the soil, and τ = 138 

exp (˗ KaLAI), and gi and c

sg are defined in equations (3) and (4), respectively (Monteith, 1965): 139 
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where f(θ) represents water stress and is expressed as: 142 
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and θa is set as θa=0.75 θb. Aerodynamic conductance ga is calculated as: 144 
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145 

where the quantities d, z0m and z0v are calculated using d = 2h/3, z0m= 0.123h and z0v = 0.1z0m (Allen 1998).  146 

2.3.2. Shuttleworth-Wallace (SW) model 147 

The SW model comprises a one-dimensional model of plant transpiration and a one-dimensional model of 148 

soil evaporation. The two terms are calculated by the following equations: 149 

    s s c cET ET ETE T C C                                                     (7)
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152 

where the available energy input above the soil surface is defined as
s ns=A R G . 153 

Rns can be calculated using the Beer’s law relationship: 154 

     ns n exp LAIaR R K 
 

(10) 155 

The coefficients Cs and Cc are obtained as follows: 156 
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where 
 159 

      a

a aR r  
 

(13) 160 

      s s

s a sR r r    
 

(14)    161 

      c c

c a sR r r    
 

(15) 162 

Soil surface resistance is expressed as: 163 
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164 

In this study, we consider the reciprocal of bulk stomatal resistance, known as canopy conductance. The 165 

calculation of gs
c is the same as in the PM model. The two aerodynamic resistances (ra

a and ra
s) and the 166 

boundary layer resistance (ra
c) are modeled following the approach proposed by Shuttleworth and Gurney 167 

(1990). 168 

2.3.3. Priestley–Taylor and Flint-Childs (PT-FC) model 169 

The Priestley-Taylor model (Priestley and Taylor, 1972) was introduced to estimate evaporation from an 170 
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extensive wet surface under conditions of minimum advection (Stannard, 1993; Sumner and Jacobs, 2005). The 171 

ET is expressed as: 172 

 PT nET R G 



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
 

(17)  

 

173 

where αPT is a unitless coefficient. The Priestley-Taylor model was modified by Flint and Childs (1991) in order 174 

to scale the Priestley-Taylor potential ET to actual ET for nonpotential conditions (hereafter the PT-FC model): 175 
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176 

where α is as a function of the environmental variables, which could be related to any process that limits ET 177 

(e.g., soil hydraulic resistance, aerodynamic resistance, stomatal resistance); however, only soil moisture status 178 

was considered to simplify ET estimation in the PT-FC model (Flint and Childs, 1991). In this model, α is 179 

defined as: 180 
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2.3.4. Advection-aridity (AA) model 183 

The AA model was first proposed by Brutsaert and Stricker (1979) and further improved by Parlange and 184 

Katul (1992). The model relies on the feedback between actual (λET) and potential ET, which assumes that 185 

actual potential ET should converge to wet surface ET at wet surface conditions. Its general form is: 186 
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187 

where αPT is the Priestley-Taylor coefficient, usually taken as 1.26 (Priestley and Taylor, 1972); and ra is similar 188 

to that used for the Penman-Monteith model (Brutsaert and Stricker, 1979; Brutsaert, 2005; Ershadi et al., 2014). 189 

This model is based mainly on meteorological variables and does not require any information related to soil 190 

moisture, canopy resistance or other measures of aridity (Ershadi et al., 2014). In this study, we changed αPT to α, 191 
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which is calculated using the same equation as in the PT-FC model.  192 

2.4 BME Estimation 193 

The Bayesian model evidence (BME) of a model, M, is defined as (Schöniger et al., 2014): 194 

     BME ,D D θ θ θp M p M p M d                                   (21) 195 

where D is observed or estimated data, θ is the vector of parameters associated with model M,  p Mθ  is 196 

the prior density of θ under model M,  ,p MD θ is the joint likelihood of model M and its parameters θ . 197 

Estimating BME using power posterior estimators such as thermodynamic integration (TI) (Lartillot and 198 

Philippe, 2006) depends mainly on the calculation of the marginal likelihood ( )p MD . The main idea of power 199 

posterior sampling is to define a path that links the prior to the unnormalized posterior. Thus, using an 200 

unnormalized power posterior density 201 

( ) ( , ) ( )q p M p M

 θ D θ θ
 

(22) 202 

the power coefficient [0,1]   is a scalar parameter for discretizing a continuous and differentiable path 203 

linking two unnormalized power posterior densities. The unnormalized power posterior density ( )q θ in 204 

Equation (22) uses the normalizing constant Z  to yield the normalized power posterior density: 205 
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such that 207 
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The above integral takes a simplified form by the potential: 209 
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thus, the integral can be directly estimated by the following way: 211 

   
1

1

0
0

exp ln ( , )
Z

p M E p M d
Z

     D D θ

 

(26) 212 

The one-dimensional integral with respect to β is evaluated by using numerical methods by discretizing β into a 213 

set of βk. Since there is no theoretical method for selecting βk values (Liu et al., 2016), we determined these 214 

values using an empirical but straightforward method. Following Xie et al. (2011), a schedule of the power 215 

posterior coefficients βk is generated by 216 

1( / )k k K  
 

(27) 217 

for k =0, 1, 2…, K. Using 0.3   and 20K   is a reasonable initial choice. By using the trapezoidal rule of 218 

numerical inregration, equation (26) is evaluated via  219 
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such that 221 
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(30) 224 

where n is the number of random samples of 
kθ  corresponding to βk, and ,k iθ  is the i-th sample.  225 

The random samples, ,k iθ , are drawn by using the MCMC method implemented in the DREAM code. See 226 

Appendix B for further details on Bayesian inference and the DREAM algorithm. In the DREAM-based 227 

calculation, the Metropolis acceptance ratio is  ,,min 1,[ ]k power posteriork k prior    with the power 228 

posterior ratio given by  , ,

k

k power posterio k posterir or



   . The prior probability ratio 229 

, , ,Pr( | ) / Pr( | )θ θk prior k new k oldM M  is the ratio of the probability of the newly proposed sample 230 

,k newθ and the probability of the previously accepted sample ,k oldθ . The posterior probability ratio 231 
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, , ,( | , ) / ( | , )D θ D θk posterior k new k oldL M L M  is the likelihood ratio of samples ,k newθ and ,k oldθ , and 232 

k  is the power posterior coefficient. Thus, to use the DREAM algorithm to sample any power posterior 233 

distribution, the regular Metropolis acceptance ratio  min 1,[ ]posterior prior   is changed to 234 

 , ,min 1,[ ]k power postriork k prior   in DREAM.  235 

2.5 Traditional statistical metrics of evaluating model performance 236 

The traditional error metrics for evaluating model performance include R2and slope (correlation-based 237 

measures), index of agreement (IA) and model efficiency (EF) (relative error measures), and the root mean 238 

square error (RMSE) and mean bias error (MBE) (Poblete-Echeverria and Ortega-Farias, 2009). The definitions 239 

of the listed metrics are: 240 
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(34) 244 

where ( )O t is the observation and ( )O t  is the mean observation at time t; ( )M t  is the modeled value and 245 

( )M t  is the mean modeled value estimated by the posterior median parameter values; and n is the total number 246 

of the observed values.  247 

3. Results 248 

3.1 Parameter estimation 249 
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The PM model has five parameters gmax, D50, Q50, Kq and Ka; the SW model has seven parameters – the five 250 

used in the PM model and parameters b1 and b2. The PT-FC and AA models each include two parameters, 251 

denoted by β1 and β2 (Table 1). The prior probability density of each parameter is specified as an uniform 252 

distribution with the ranges listed in Table 1. A total of 50,000 realizations were generated with the DREAM 253 

algorithm, which was used to estimate the posterior probability density function of each parameter with the 254 

calibration period data from DOY 154 to DOY 202. In the calculations, the chain number, N, was equal to the 255 

number of parameters in the associated model. Therefore, N is equal to 5, 7, 2 and 2 for the PM, SW, PT-FC and 256 

AA models, respectively. For each model, the first 10,000 samples were discarded as burn-in data, and the 257 

remaining 40,000 samples were used for calibration. In total, 40,000×N realizations were used to set up 258 

posterior density functions for each model. To illustrate the efficiency and convergence of DREAM for the ET 259 

models, Figure 1 shows the trace plots of the G-R statistic for each of the different parameters in the PM and 260 

SW models using a different color. The algorithm required about 8,000 generations to make the G-R statistic 261 

close to 1.0 for the two models. The acceptance rates for the PM and SW models were about 15.3% and 18.9%, 262 

respectively.  263 

Histograms of the DREAM-derived marginal distributions of the parameters are presented in Figure 2 and 264 

summarized in Table 2 by Maximum Likelihood Estimates (MLEs), posterior medians and 95% probability 265 

intervals. Figures 2a-2e, 2f-2l, 2m-2n, and 2o-2p show histograms of the PM, SW, PT-FC and AA models, 266 

respectively. Parameter gmax (Fig. 2a) in the PM model, parameters gmax, Ka, b2 (Fig. 2f, 2j, 2l) in the SW model, 267 

and parameter β1 (Fig. 2m) in the PT-FC model and AA model (Fig. 2o) were well constrained and occupied a 268 

relatively small range. These parameters displayed a unimodal distribution and appeared approximately 269 

Gaussian. In contrast, the distributions of the other parameters differed significantly from a Gaussian 270 

distribution, as shown by the corresponding histograms. The distributions of all but one of these parameters 271 

concentrated most of the probability mass at their upper limits. The exception was parameter b1 for the SW 272 

model (Fig. 2k), which clearly does not follow a normal distribution with most of the mass concentrated in the 273 

lower bounds. In contrast, Q50 was not only poorly constrained (Fig. 2g) but was also the upper edge-hitting 274 

parameter in the SW model. Moreover, the corresponding distributions of the same parameter in different 275 

models were slightly different. For example, the mean of gmax in the PM model (0.04 mm s-1) was less than that 276 

in the SW model (0.01 mm s-1) (Fig. 2a and 2f, Table 2), except that D50 in the PM and SW models and β2 in the 277 

PT-FC and AA models exhibited similar regions. It is interesting to observe that the distribution of Ka in PM 278 
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model (Figure 2e) has a truncated distribution with highest probability mass at the upper bound, whereas the 279 

distribution of Ka in the SW model (Figure 2j) tends to become approximately normal. Overall, the marginal 280 

posterior probability density function of most of the individual parameters occupied only a relatively small 281 

region compared with the uniform prior distributions, and exhibited relatively large uncertainty reduction.  282 

3.2 Performance of the models 283 

The performance of each of the four ET models was evaluated over the course of the whole season in 2014. 284 

The calibrated parameters of the four models were used and individual ET models were run to estimate the 285 

half-hourly λET values. Table 3 summarizes the statistical results for the performance of the models using 286 

regression line slope, R2, RMSE, MBE, IA, and EF. The regressions between measured and modeled λET values 287 

and MBE are shown in Figures 3 and 4, respectively. 288 

In general, the four models produced slightly better fits to the measured λET for all the seasons with R2 289 

larger than 0.75 (Fig. 3). However, obvious discrepancies in the predictions made by the models were detected 290 

by comparing measured and modeled λET. According to the regression line slope and MBE, the PM model 291 

overestimated ET by 1% with a MBE of -9.52 W m−2, and the SW model overestimated ET by 5% with a 292 

relatively higher MBE of -19.07 W m−2 compared to the PM model. The PT-FC and AA models tended to 293 

underestimate λET by 9% and 8% with an MBE of 25.42 and 23.29 W m−2, respectively. From a comparison 294 

between the slope and MBE, the PM model performance was higher than that of the other three models, with a 295 

slope almost equal to 1 and relatively lower MBE. The SW model was ranked second, while the performance of 296 

the AA model was slightly higher than that of the PT-FC model. However, if R2, RMSE, IA, and EF were used 297 

to evaluate performance, the SW model had the best overall performance with R2=0.83, RMSE= 76.34 W m−2, 298 

IA = 0.95 and EF = 0.79. The second-best model was the PM model, and the PT-FC was ranked third, while the 299 

AA model ranked fourth. Based on the analysis of these traditional error metrics, the PT-FC and AA models 300 

yielded similar results. The observed and modeled λET for the four ET models were tightly grouped along the 301 

regression lines (Figure 3), and the PT-FC and AA models had similar modeled ET values with a similar degree 302 

of point scattering along the regression lines (Figure 3c-3d).  303 

Figure 4 shows that large seasonal variations arise in MBE for the four ET models. From the variations in 304 

MBE, the estimated λET values for all models were generally lower than the measured values before the early 305 
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jointing stage of maize growth (DOY 154-177, left dashed line) and after the late maturity stage (DOY 256-265, 306 

right dash line) with the corresponding LAI < 2.5 m2 m-2. More positive MBE values for the PT-FC and AA 307 

models after the late maturity stage indicate their underestimated performances; however, these estimations 308 

appeared even more consistent with a symmetrical scattering of points along the 0-0 line (Figure 4c, 4d) during 309 

DOY 177-256 with LAI > 2.5 m2 m-2.  310 

3.3 Comparison of the models using BME 311 

Since there is currently no theoretical method for selecting power posterior β values, we determined these 312 

values using empirical but straightforward methods. For any power coefficient of [0,1]  , a sample was drawn 313 

from the distribution pβ (Eq. 23) through running DREAM. Although adding more βk values might improve the 314 

BME estimation, this was not done because of the computational cost. For each βk value, at least 150,000 315 

DREAM simulations were large enough to ensure convergence. Figure 5 shows the evolution of ln p(D|θ, M) 316 

for the four models as a function of β for a dataset covering the entire period. The BME for the SW model was 317 

substantially larger than that for the other three models, and the BME for the AA model was the smallest. The 318 

BME-based model ranking (from the best to the worst) is SW, PM, PT-FC, and AA. The PT-FC and AA models, 319 

which consist of the same number of parameters, had similar potential patterns of evolution with respect to the 320 

coefficient βk. The results illustrate that with the addition of parameters, the model complexity and the model 321 

performance are both increased. 322 

4. Discussion 323 

4.1 Parameter uncertainty analysis 324 

With regard to the efficiency of the DREAM algorithm, the acceptance rates of the PM (15.3%) and SW 325 

(18.9%) models were much higher than those obtained by some Markov Chian Mote Carlo (MCMC) algorithms 326 

that have been used in previous studies (Sadegh et al., 2014). The posterior parameter bounds exhibit a larger 327 

reduction using the DREAM algorithm compared with other studies using the Metropolis–Hasting algorithm. 328 

This demonstrates that DREAM could efficiently handle problems involving high-dimensionality, multimodality 329 

and nonlinearity. 330 

The results showed that the assumed prior uncertainty ranges from most parameters in the four models 331 
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were significantly reduced. This indicates that the observed ET data contained sufficient information to estimate 332 

these parameters. Surface conductance gs and modeled ET in the PM model are relatively insensitive to Q50, D50 333 

and Kq. Hence, these parameters could not be well constrained, and further relaxing the ranges for these 334 

parameters could not result in physically realistic behavior of the model. The calculation of c

sg in the SW model 335 

is the same as in the PM model, and thus, c

sg and modeled ET in the SW model are also insensitive to 336 

parameters of Q50, D50, Kq. Therefore, these three parameters were also not well constrained in the SW model. In 337 

addition, the uncertainties present in the edge-hitting parameters may be the outcome of model biases or 338 

EC-measured ET data errors, or the characteristic time scale of parameters governing the processes affecting ET 339 

is not exactly on the order of half-hours (Braswell et al., 2005). For example, Q50 and D50 govern changes in 340 

visible radiation flux and the humidity deficit at which stomatal conductance is half its maximum value, 341 

respectively, and these parameters may change over a shorter or longer time scale than half-hours. 342 

The ecophysiological parameter gmax is a variable in the c

sg equation in both the PM and SW models, but 343 

this parameter is sensitive to
c

sg and has a significant impact on the evaluated ET. Its effect is relatively 344 

independent compared to the other meteorological parameters in the models, and therefore this parameter was 345 

well specified in the PM and SW models. The posterior mean value of gmax (0.04 m s−1) in the PM model from 346 

our study was close to that (0.05 m s−1) reported in northwestern China (Li et al., 2013; Zhu et al., 2014), but 347 

gmax (0.01 m s−1) in the SW model was less than the reported value. Parameter β1 was well constrained in the 348 

PT-FC and AA models because it was relatively independent and did not directly relate to other observed 349 

variables.  350 

Parameter Ka implicitly appears in the surface conductance equation (Eq.2) in PM model and Ka is 351 

insensitive to gs and modeled ET (Leuning et al., 2008). In contrast, Ka is contained in the equation of net 352 

radiation flux into the substrate (Eq.10) in the SW model. This parameter can explicitly partition the total 353 

available energy into that absorbed by the canopy and by the soil in the SW model. An analysis of equation (10), 354 

found that the variation of Ka could not only account for the extinction effect but also correct the energy forcing 355 

data errors. This also meant that the estimated value of Ka using calibration data was actually not just the true 356 

extinction coefficient, but also included the energy imbalance correction in the SW model. From this analysis, 357 

we could see that Ka not only involved the distribution of energy between the canopy and the soil surface but 358 
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also the energy imbalance. Therefore, parameter Ka has a great influence on the performance of the SW model. 359 

This is why Ka is poorly constrained in the PM model but well constrained in the SW model. To further illustrate 360 

the insights regarding the influence of parameter Ka on the performance of the SW model, we calibrated the SW 361 

model again and reran the model with a constant value of Ka. The results showed a significant reduction in 362 

model performance when Ka was held constant. This implied that the main reason for the SW model 363 

outperforming the PM model in our study was not only the more physically rigorous structure of the SW model 364 

but also the key parameter Ka being well constrained in the SW model. 365 

In general, parameters related to soil surface resistance in the SW model were well evaluated, while 366 

parameters related to canopy surface resistance in PM and SW models were poorly estimated. Therefore, using a 367 

reliable canopy surface resistance equation in the ET model was crucial for improving its performance. In 368 

addition, in our study, the traditional approach was used to quantify the uncertainty, which assumed that the 369 

uncertainty mainly arose because of the parameter uncertainty. However, this method cannot explicitly consider 370 

errors in the input data and model structural inadequacies. This is unrealistic for real applications, and it is 371 

desirable to develop a more reliable inference method to treat all sources of uncertainty separately and 372 

appropriately (Vrugt et al., 2008). Moreover, simultaneous direct measurement by micro-lysimeter of sap flow 373 

and daily soil evaporation will further help to constrain the model parameters. 374 

4.2 Evaluation and selection of the models 375 

In this study, the traditional statistical measures and BME were chosen to evaluate and compare the 376 

performance of four ET models. From the respective composition of these measures, the statistical measures can 377 

be divided into residual-based metrics (such as regression slope and MBE) and squared-residual-based measures 378 

(such as R2, RMSE, IA, and EF). The rankings of the models obtained using the same type of metric 379 

(residual-based or squared-residual-based) are similar. Slope and MBE, for example, which are both 380 

residual-based measures, produce identical rankings. However, the rankings produced by metrics of different 381 

types are not the same. For example, the PM model outperforms the SW model according to the residual-based 382 

metrics, but the performance of the PM model is worse than the SW model based on the squared-residual-based 383 

measures. The comparative analysis shows consistency between BME and the squared-residual-based metrics 384 

(hence the residual-based metrics disagreed with the BME measures). This reveals that the more complex SW 385 

model is the best model based on BME and squared-residual-based statistics. The rank order of overall 386 
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performance of the models from best to worst is SW, PM, PT-FC, and AA model. 387 

Previous studies had shown that BME evaluated by TI provided estimates similar to the true values, and 388 

selected the true model if the true model was included within the candidate models (Marshall et al., 2005; 389 

Lartillot and Philippe, 2006). Meanwhile, some have argued that Bayesian analysis would choose the simplest 390 

model (Jefferys and Berger, 1992; Xie et al., 2011) because of the best trade-off between good fit with the data 391 

and model complexity (Schöniger et al., 2014). In this case, the most complex SW model had the highest BME 392 

and was chosen as the model with the best performance. This probably resulted from the fact that the complex 393 

SW model is indeed the most reliable model among the alternative ET models and can provide a good fit to 394 

justify its higher complexity. The SW model is a two-layer model, and simulates soil evaporation and plant 395 

transpiration separately, whereas the PM model is a single-layer model in which the plant transpiration and soil 396 

evaporation cannot be separated (Monteith, 1965). The PT-FC model is a simplified version of the PM model, 397 

and only requires meteorological and radiation information (Priestley and Taylor, 1972), whereas the AA model 398 

only relies on the feedback between actual ET and potential ET (Brutsaert and Stricker, 1979). 399 

The results indicate that the squared-residual-based measures yielded the same rank order as the BME 400 

consistently, which makes the squared-residual-based metrics seemed to identify a reasonable rank order. 401 

However, this has not been the general case, since the error metrics and BME belong to different types of model 402 

selection and there are differences in the behavior and optimality of the two types of model selection. BME is a 403 

consistent model selection which tries to identify which of the models produced the observed data. Conversely, 404 

nonconsistent model selection uses the available data to estimate which of the models might be best in 405 

predicting future data. In fact, the error metrics are essentially nonparsimonious model selection, which is a 406 

special case of nonconsistent model selection. The simple traditional statistical measures were known to usually 407 

provide a biased view of the efficacy of a model (Kessler and Neas, 1994; Legates and McCabe, 1999), where 408 

only the goodness of fit is used for rating models without penalizing the model complexity and thus lacking 409 

consistency for the selected model (Höge et al., 2018). In addition, sensitivity to outliers is associated with these 410 

metrics and leads to relatively high values due to the squaring of the residual terms (Willmott, 1981). 411 

Furthermore, these traditional statistical metrics ignore the priors, which is in fact used in Bayesian analysis. 412 

PT-FC and AA, provide identical estimates of R2 and IA. This is most likely because both models had the same 413 

dimension and a similar model structure. Marshall et al. (2005) argued that EF would provide an incorrect 414 
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conclusion, and Samani et al. (2018) suggested that RMSE would select the complex model as the best 415 

performing model. As for the slope and MBE, the rankings produced by these residual-based metrics were in 416 

obvious disagreement with the one based on BME. Part of the lower simulation values could be 417 

counter-balanced by the higher values of that in the slope and MBE methods, thus these criteria provide an 418 

erroneous and unreliable evaluation of the models. Therefore, the squared-residual-based and residual-based 419 

measures were not certain to provide reasonable results in terms of model ranking. The consistency between 420 

BME and the squared-residual-based metrics only indicates that the optimal model evaluated by BME would 421 

also provide the best predictions, and thus consistent model selection should also be asymptotically efficient 422 

(Leeb & Pötscher, 2009; Shao, 1997). 423 

4.3 Analysis of model-data mismatch 424 

Conceptual and structural inadequacies of the hydrological model together with measurement errors of the 425 

model input (forcing) and output (calibration) data introduce errors in the estimated parameters and model 426 

simulations (Laloy, 2015). Hydrological systems are indeed heavily input-driven and errors in forcing data can 427 

dramatically impair the quality of calibration results and model output (Bardossy and Das, 2008; Giudice, 2015). 428 

Measurement errors occur for a variety of reasons, including unreasonable gap-filling in rainy days; dew and fog; 429 

inadequate areal coverage of point-scale soil water measurement; mechanical limitations of the EC system; and 430 

inaccurate measurements of wind-speed, soil water, radiation and vapor pressure deficit. ET process is described 431 

using equations that can only capture parts of the complex natural processes and any ET model is an inherent 432 

simplification of the real system. These inadequacies can thus lead to biased parameters and implausible 433 

predictions.  434 

In our study, the results indicated that the PM and SW models overestimated the half-hourly ET compared 435 

to the measured ET. Several studies also indicated that ET was overestimated by the PM model (Fisher et al., 436 

2005; Ortega-Farias et al., 2006; Li et al., 2015) and the SW model (Li et al., 2013; Li et al., 2015; Zhang et al., 437 

2008). Possible reasons for the inaccurate estimates included the following: (1) Anisotropic turbulence with 438 

weak vertical and strong horizontal fluctuation leads to energy imbalance. The total turbulent heat flux was 439 

lower by ~10–30% compared to the available energy in many land surface experiments (Tsvang et al., 1991; 440 

Beyrich et al., 2002; Oncley et al., 2007; Foken et al., 2010) and influx networks (Franssen et al., 2010). Liang 441 

et al. (2017) also showed an energy imbalance result in the semiarid area in China, and indicated that the energy 442 
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balance closure ratio ranged from 0.52 to 0.90 during the day, whereas it was about 0.25 at night. However, the 443 

measured ET only included vertical flux and not horizontal flux, leading to the measured ET being lower than 444 

that of ET predicted by the PM and SW models using the available energy. (2) The absence of a mechanistic 445 

representation of the physiological response to plant hydrodynamics makes it difficult for the available ET 446 

models to resolve the dynamics of intradaily hysteresis, producing patterns of diurnal error, while the imbalance 447 

or lack of between-leaf water demand and soil water supply imposes hydrodynamic limitations on stomatal 448 

conductance (Thomsen et al., 2013; Zhang et al., 2014; Matheny et al., 2014). Li et al. (2015) also concluded 449 

that neglecting the restrictive effect of the soil on water transport in empirical canopy resistance equations can 450 

result in large errors in the partial canopy stage. However, these equations can estimate ET accurately under the 451 

full canopy stage (Alves and Pereira, 2000; Katerji and Rana, 2006; Katerji et al., 2011; Rana et al., 2011). Li et 452 

al. (2015) showed that the PM model combined with canopy resistance overestimated maize ET during the 453 

partial and dense canopy stages by 16% and 13%, respectively. Moreover, in a study of ET in vineyards, 454 

Leuning (2008) found that the PM model coupled with canopy resistance overestimated ET during the entire 455 

growth stage by 29%.  456 

The estimates for ET produced by the PT-FC and AA models were generally lower than the measured 457 

values during the entire season. In addition, the four models also underestimated ET during periods of partial 458 

cover (LAI < 2.5 m2 m-2). The PT-FC and AA models consistently underestimated ET, especially during the late 459 

maturity stage. The underestimation probably resulted from the following: (1) Non classical situations, such as 460 

the oasis effect, may occur in the study area. Strong evaporation from the moist ground and plants results in 461 

latent heat cooling. However, this upward latent heat flux was opposed by a downward sensible heat flux from 462 

the warm air to the cool ground, and thus the latent heat flux was positive while the sensible heat flux is 463 

negative. Therefore, the latent heat flux can be greater in magnitude than the solar heating, because of the 464 

additional energy extracted from the warm air by evaporation (Stull, 1988). (2) The lack of mechanistic 465 

representation of rainfall interception in ET models probably led to inaccurate simulation for periods soon after 466 

rainy days. Bohn and Vivoni (2016) found that evaporation of canopy interception accounted for 8% of the 467 

annual ET across the North American monsoon region. Comparing the AA and PT-FC models, the former 468 

includes forcing data of available radiation, soil water content and relative humidity, but the PT-FC model only 469 

requires available radiation and soil water content and is independent of relative humidity. However, the similar 470 

statistical results and similar degrees of MBE scatter indicate that relative humidity has little influence on the 471 
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AA model simulation. The consistent and consecutive underestimation of ET by the PT-FC and AA models 472 

during the late maturity stage show that the model-data disagreement is not caused by regional advection and 473 

rainfall interception, because atmospheric processes and thermally-induced circulation can only occur at certain 474 

times and during certain days. Therefore, we think that the consistent underestimation of ET by the PT-FC and 475 

AA models results primarily from conceptual and structural inadequacies, energy imbalance, and soil water 476 

stress. Although the PM and SW models share a common theoretical basis and the PT-FC model is a 477 

simplification of the PM model, these models perform significantly differently. Part of the overestimation of ET 478 

by the PM and SW models, caused by coupling with the canopy resistance, may be offset by underestimation 479 

caused by energy imbalance and soil water stress. However, underestimation of ET by the PT-FC and AA 480 

models cannot be counterbalanced by overestimation during the later maturity stage because the PT-FC and AA 481 

models are independent of the canopy resistance. Consequently, the half-hourly patterns of errors in the 482 

estimates of ET by the PM and SW models are characterized by symmetry and a low degree of scatter, but the 483 

PT-FC and AA models exhibit consistently asymmetrical error patterns.By contrast, other studies showed that 484 

the PM model (Kato et al., 2004) and the SW model (Chen et al., 2015) underestimated half-hourly ET. As for 485 

the PT-FC and AA models, some studies reported that the PT-JPL (Zhang et al., 2017) and the AA model showed 486 

an overall poor performance (Zhang et al., 2017). While other studies have indicated that the AA method 487 

performed well for both maize and canola crops (Liu et al., 2012). Therefore, the performance of the four ET 488 

models appears to vary not only for different crops and locations but also for different meteorological, 489 

physiological and soil conditions. Moreover, the performance is also related to the stage of crop growth. Note 490 

that these conclusions about the ET models evaluation are derived from traditional error metrics rather than 491 

those based on BME model selection. It would be desirable to use available data from other study areas or from 492 

other crops for BME-based model selection to confirm whether the SW model is the optimal model under other 493 

conditions.Overall, combined with the parameter uncertainty analysis described in Section 4.1, we conclude that 494 

energy imbalance and energy interaction between canopy and soil surface have a greater impact on the model 495 

performance. And thus, explicitly treating of energy error, and incorporating the elements of existing hydrologic 496 

theory about energy interaction between canopy and surface or conceptually correcting the energy interaction 497 

are a practicable option for model improvement and application. 498 

5. Conclusions 499 

This study illustrated the application of the Bayesian approach on the statistical analysis and model 500 
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selection of four widely used ET models. The results showed that the DREAM algorithm successfully reduced 501 

the assumed prior uncertainties for most of the parameters in the four models. In the model calibration, the key 502 

parameters which had a significant influence on ET simulations were well constrained. The main reasons for the 503 

outperforming of SW model were its physically rigorous structure and the extinction coefficient parameter, 504 

which is sensitive and has a significant impact on the performance of the model, being well constrained. BME is 505 

a consistent model selection to identify the best fitting to the observed data.Although the squared-residual-based 506 

metrics, including R2, IA, RMSE, and EF, produced a ranking identical to that of BME, it must be noted that 507 

these squared-residual-based metrics do not allow using prior information and do not penalize the model 508 

complexity when comparing the models. Therefore, some cautions are needed when using these statistical 509 

methods to compare different models. 510 

The model–data discrepancies were analyzed to facilitate model improvement after Bayesian model 511 

calibration and comparison. The results indicate that the discrepancies arose mainly as a result of energy 512 

imbalance caused by anisotropic turbulence, additional energy induced by advection processes, the absence of a 513 

mechanistic representation of the physiological response to plant hydrodynamics and the energy interaction 514 

between canopy and surface. Among these causes, energy imbalance and additional energy are related to forcing 515 

data errors rather than to an unreasonable model structure. Thus, understanding the process of the physiological 516 

response to plant hydrodynamics and the interaction between canopy and surface is essential for improving the 517 

performance of evapotranspiration models. Overall, the applications of Bayesian calibration, Bayesian model 518 

evaluation and analysis of model–data discrepancies in our study, provide a promising framework for reducing 519 

uncertainty and improving the performance of ET models. It would be desirable to confirm whether the SW is 520 

the optimal model using data of other crops or other climate regions.  521 
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Appendix A: List of symbols and physical characteristics in ET models 734 

A Available energy for the whole canopy (Wm−2) 

As Available energy for the soil surface (W m-2) 
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Rn Net radiation fluxes into the canopy (W m-2) 

Rns Net radiation flux into the substrate (W m-2) 

G Soil heat flux (W m-2) 

λET  Sum of the latent heat flux from the crop (λT) and soil (λE) (W m-2) 

ETc Canopy transpiration (W m-2) 

ETs Soil evaporation (W m-2) 

Cc Canopy resistance coefficient (dimensionless) 

Cs Soil surface resistance coefficient (dimensionless) 

LAI Leaf area index 

Q50  Visible radiation flux when stomatal conductance is half its maximum value (W m-2) 

D50  Vapor pressure deficit at which stomatal conductance is half its maximum value (kPa) 

Da Vapor pressure deficit at the reference height (Da=es-ea) (kPa) 

Qh Flux density of visible radiation at the top of the canopy  (W m-2) 

Kq Extinction coefficient  

Ka Extinction coefficient  

f  Fraction of evaporation soil and total evaporation 

λ Latent heat of water evaporation (MJ kg-1) 

Δ Slope of the saturated vapour pressure curve (Pa K−1) 

γ  Psychrometric constant (kPa K-1) 

ρ  Density of air (kg m-3) 

k Karman constant (0.41) 

es Saturated vapor pressure (kPa) 

ea Actual vapor pressure (kPa) 

q* Saturation-specific humidity at air temperatur (kg kg-1) 

q Specific humidity of the atmosphere (kg kg-1) 

b1 Empirical constant  (s m-1) 

b2  Empirical constant  (s m-1) 

β1  empirical constant 

β2 empirical constant 

θ Soil water content (m3 m-3) 

θa Critical water content at which plant stress starts (m3 m-3) 

θb Water content at the wilting point (m3 m-3) 

θr Residual soil water content (m3 m-3) 

θs Saturated water content (m3 m-3) 

Θ Relative water saturation 

d Zero plane displacement height (m) 

zm Height of the wind speed and humidity measurements (3 m) 

z0m Roughness length governing the transfer of momentum (m) 

z0v Roughness length governing the transfer of water vapor (m) 

h Canopy height (m) 

uz Wind speed at height zm (m s−1) 

ga Aerodynamic conductance (m s-1) 

gs Surface conductance (m s-1) 

gmax  Maximum stomatal conductance of leaves at the top of the canopy (m s-1) 

gs
c Canopy conductance (m s-1) 

ra Aerodynamic resistance (s m-1) 

ra
a  Aerodynamic resistance between canopy source height and a reference level (s m-1) 

ra
s Aerodynamic resistance between the substrate and the canopy source height (s m-1) 
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ra
c Bulk boundary layer resistance of the vegetation element in the canopy (s m-1) 

rs
s Surface resistance of the canopy (s m-1); 

rs
c Bulk stomatal resistance of the canopy (s m-1) 

 735 

Appendix B: Bayesian inference and the DREAM algorithm 736 

The posterior probability distribution of the parameter is calculated by Bayes’ theorem: 737 
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where ( )θ | M  represents the prior density of θ under model M; ( )θp D ,M  is the joint likelihood of 739 

model M and its parameters θ; and 740 
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741 

is the marginal likelihood, or Bayesian model evidence (BME).  742 

The likelihood function, p(D|θ, M), used for parameter estimation, is specified according to the 743 

distributions of observation errors. Error e(t) in each observation D(t) at time t is expressed by 744 
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. Assuming e(t) follows a Gaussian distribution with a zero mean, and the likelihood function can be 746 

expressed as 747 
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where n is the number of observations and σ represents the error variances. 749 

In this study, we used the DREAM algorithm (Vrugt et al., 2008, 2009) to explore the ET models’ 750 
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parameter space and to estimate BME. The DREAM sampling scheme is an adaptation of the global 751 

optimization algorithm of a shuffled complex evolution metropolis (SCEM-UA). This algorithm was 752 

descripted in more detail in Vrugt et al. (2008, 2009). 753 
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Table 1. Prior distributions and parameter limits for the PM, SW, PT-FC and AA models. The values are 755 

derived from the literature. 756 
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(Lower Limit, Upper Limit). 758 
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Figure 1. Trace plots of the G-R statistic of Gelman and Rubin (Gelman and Rubin, 1992) using DREAM 764 

for the PM model (a) and (b) the SW model. Different parameters are coded with different colors. The 765 

dashed line denotes the default threshold used to diagnose convergence to a limiting distribution. 766 

Figure 2. (a)-(e), (f)-(l), (m)-(n), and (o)-(p) show histograms for the PM (black), SW (cyan), PT-FC 767 

(magenta) and AA (orange) models, respectively. These histograms are constructed from all chains for each 768 

model and a total of 40,000×N realizations are simulated using DREAM. The x axes represent the 769 

prespecified limits of the parameters. 770 

Figure 3. Regressions between measured and modeled half-hourly ET values produced by different 771 

models from DOY 154 to DOY 270: (a) PM, (b) SW, (c) PT-FC and (d) AA. The regressions are: Y = 772 

0.99X (R2 = 0.76), Y = 1.05X (R2 = 0. 82), Y = 0.91X (R2 = 0.75), and Y = 0.92X (R2 = 0.75) for the PM, 773 

SW, PT-FC and AA models, respectively. 774 

Figure 4. Mean bias error (MBE) of predicted and observed ET values for (a) PM, (b) SW, (c) PT-FC and 775 

(d) AA models from DOY 154 to DOY 270. Parameters used for prediction are estimated by DREAM with 776 

the dataset for the calibration period from DOY 154 to DOY 202.  777 

Figure 5. Variation of the mean posterior expectation of the potential yk with βk for the PM, SW, PT-FC 778 

and AA models. The nits denote natural log units. 779 

 780 

Table 1 Prior distributions and parameter limits for the PM, SW, PT-FC and AA models. The values are 781 

derived from the literature. 782 
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Parameter Description 

Prior range  PM   Prior for SW   Prior for PT and AA 

References 

Lower upper   Lower upper   Lower upper 

gmax (mm s-1) 
maximum stomatal 

conductance 
0 50   0 50       Kelliher et al. (1995) 

Q50 (W m-2) visible radiation flux 10 50  10 50    Leuning et al. (2008) 

D50 (kPa) vapor pressure deficit  0.5 3  0.5 3    Leuning et al. (2008) 

Kq extinction coefficient  0 1  0 1    Leuning et al. (2008) 

Ka extinction coefficient 0 1  0 1    Leuning et al. (2008) 

b1 (s m-1) empirical constant    4.5 11.3    Sellers et al. (1992) 

b2 (s m-1) empirical constant    0 8    Sellers et al. (1992) 

β1 empirical constant       0.5 1.5 
Flint et al. (1991); 

Barton. (1979) 
β2 empirical constant        0.1 10 

 783 

Table 2 Maximum Likelihood Estimates (MLEs), Mean Estimates, 95% High-Probability Intervals 784 

(Lower Limit, Upper Limit). 785 

Parameter 

Posterior  for PM Posterior  for SW Posterior for PT and AA  

MLE Mean CI MLE Mean CI MLE Mean CI 

gmax (mm s-1) 0.04  0.04  (0.03, 0.04) 0.01 0.01  (0.005, 0.012)    

Q50 (W m-2) 49.96  48.52  
(39.73, 

49.74) 
47.49 40.32  (11.02, 48.99)    

D50 (kPa) 3.00  2.87  (1.92, 2.97) 2.98 2.88  (2.26, 2.98)    

Kq 1.00  0.99  
(0.911, 

0.998) 
0.99 0.88  (0.06, 0.98)    

Ka 1.00  0.98  
(0.822, 

0.995) 
0.12 0.12  (0.074, 0.184)    

b1 (s m-1)    4.51 4.57  (4.52, 4.96)    

b2 (s m-1)    0.39 0.57  (0.07, 1.38)    

β1        
1.1a                             

1.5b 

1.098a          

1.499b 

(1.06, 1.16)a    

(1.492, 1.499)b 
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β2       
10.00a   

10.00b 

9.75a              

9.94b   

(7.97, 9.95)a     

(9.44, 9.99)b 

a PT-FC model; b AA model. 786 

Table 3 Slope and coefficient of determination (R2) of regression between measured and modeled 787 

half-hourly evapotranspiration values, and statistics of root mean square error (RMSE: W m-2), mean bias 788 

error (MBE: W m-2), index of agreement (IA), model efficiency (EF) and Logarithm of BME for the four 789 

ET models. 790 

Model Slope R2 RMSE MBE IA EF BME 

PM 1.01 0.76 85.38  -9.52  0.93  0.74  -6300.5  

SW 1.05 0.82 76.34  -19.07  0.95  0.79  -6025.1  

PT-FC 0.91 0.75 94.39  25.42  0.92  0.68  -6366.8  

AA 0.92 0.75 95.09  23.29  0.92  0.67  -6390.3  

 791 

 792 

Figure 1 Trace plots of the G-R statistic of Gelman and Rubin (Gelman and Rubin, 1992) using DREAM 793 

for the PM model (a) and (b) the SW model. Different parameters are coded with different colors. The 794 

dashed line denotes the default threshold used to diagnose convergence to a limiting distribution. 795 
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 796 

 797 

 798 

Figure 2 (a)-(e), (f)-(l), (m)-(n), and (o)-(p) show histograms for the PM (black), SW (cyan), PT-FC 799 

(magenta) and AA (orange) models, respectively. These histograms are constructed from all chains for each 800 

model and a total of 40,000×N realizations are simulated using DREAM. The x axes represent the 801 

prespecified limits of the parameters. 802 

 803 
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 804 

Figure 3 Regressions between measured and modeled half-hourly ET values produced by different models 805 

from DOY 154 to DOY 270: (a) PM, (b) SW, (c) PT-FC and (d) AA. The regressions are: Y = 0.99X (R2 = 806 

0.76), Y = 1.05X (R2 = 0. 82), Y = 0.91X (R2 = 0.75), and Y = 0.92X (R2 = 0.75) for the PM, SW, PT-FC 807 

and AA models, respectively. 808 

 809 
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 810 

Figure 4 Mean bias error (MBE) of predicted and observed ET values for (a) PM, (b) SW, (c) PT-FC and 811 

(d) AA models from DOY 154 to DOY 270. Parameters used for prediction are estimated by DREAM with 812 
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the dataset for the calibration period from DOY 154 to DOY 202.  813 

 814 

 815 

Figure 5 Variation of the mean posterior expectation of the potential yk with βk for the PM, SW, PT-FC and 816 

AA models. The nits denote natural log units. 817 
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