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Abstract 10 

Evapotranspiration (ET) is a major component of the land surface process involved in energy fluxes and energy 11 

balance, especially in the hydrological cycle of agricultural ecosystems. While many models have been 12 

developed as powerful tools to estimate ET, there is no agreement on which model best describing the loss of 13 

water to the atmosphere. In this study, we present a solid study to evaluate four widely used ET models and their 14 

parameter contributions using half-hourly ET observations obtained at a spring maize field in an arid region. 15 

The four tested models are Shuttleworth Wallace (SW) model, Penman-Monteith (PM) model, Priestley-Taylor 16 

and Flint-Childs (PT-FC) model, and Advection-Aridity (AA) model. The parameters in each model were first 17 

calibrated using DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, and then were analyzed to 18 

identify their impacts on the model performance. The Bayesian model evidence (BME) approach, was further 19 

adopted to select the optimal model by incorporating the mathematically rigorous thermodynamic integration 20 

algorithm. Our results revealed that the extinction coefficient was the most significant parameter in the ET 21 

models. It was not merely partitioning the total available energy into the canopy and surface, but also including 22 

the energy imbalance correction. The extinction coefficient is well constrained in the SW model and poorly 23 

constrained in the PM model, but not considered in PT-FC and AA models. This is the main reason that the SW 24 

model outperforming the other models. Although the SW model with seven parameters is sophisticated, it’s 25 

good fitting to observations can counterbalance its higher complexity. In addition, the discrepancies between 26 

observations and model simulations were evaluated using traditional error metrics. The mismatch analysis 27 

indicated that explicit treatment of energy imbalance and energy interaction will be the primary way to further 28 

improve ET model performance. 29 
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1. Introduction 31 

Surface energy fluxes are an important component of Earth’s global energy budget and a primary 32 

determinant of surface climate. Evapotranspiration (ET), as a major energy flux process for energy balance, 33 

accounts for about 60-65% of the average precipitation over the surface of the Earth (Brutsaert, 2005). In 34 

agricultural ecosystems, more than 90% of the total water losses are due to ET (Morison et al., 2008). Therefore, 35 

robust ET estimation is crucial to a wide range of problems in hydrology, ecology, and global climate change 36 

(Xu and Singh, 1998). In practice, much of our understanding of how land surface processes and vegetation 37 

affect weather and climate is based on numerical modeling of surface energy fluxes and the 38 

atmospherically-coupled hydrological cycle (Bonan, 2008). Several models are commonly used in agricultural 39 

systems to evaluate ET. The Penman-Monteith (PM) and Shuttleworth-Wallace (SW) models are physically 40 

sound and rigorous (Zhu et al., 2013), and thus widely used to estimate ET for seasonally varied vegetations. 41 

The models consider the relationships between net radiation, all kinds of heat flux (such as latent heat, sensible 42 

heat, and heat from soil and canopy), and surface temperature. The Priestley-Taylor and Flint-Childs (PT-FC) 43 

model (based on radiation) and the advection-aridity (AA) model (based on meteorological variables) have also 44 

been widely used because they only require a small number of ground-based measurements to set up the models 45 

(Ershadi et al., 2014). 46 

These ET models are generally complex, because of the coupling of the land surface and atmospheric 47 

processes, and high-dimensional with a large number of parameters. Comparing the performance of competing 48 

models and evaluating and understanding the discrepancies between simulations of the models and 49 

corresponding observed surface-atmosphere water flux are remain challenging problems (Legates, 1999). Both 50 

non-Bayesian analysis (Szilagyi and Jozsa, 2008; Vinukollu et al., 2011; Li et al., 2013; Ershadi et al., 2015) and 51 

Bayesian analysis have been used to evaluate the performance of ET models (Zhu et al., 2014; Chen et al., 2015; 52 

Liu et al., 2016; Zhang et al., 2017; Elshall et al., 2018; Samani et al., 2018; Zeng et al., 2018) . Li et al. (2013) 53 

compared the ET simulations of the PM, SW and adjusted SW models under film-mulching conditions of maize 54 

growth in an arid region of China. They found that the half-hourly ET was overestimated by 17% by the SW 55 

model. In contrast, the PM and adjusted SW models underestimated the daily ET by 6% and 2%, respectively. 56 

Therefore, the performances of PM and adjusted SW models are better than that of the SW model in their case 57 
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study. Ershadi et al. (2014) evaluated the surface energy balance system (SEBS), PM, PT-JPL (a modified 58 

Priestley–Taylor model) and AA models. Based on the average value of EF and RMSE, the model ranking from 59 

worst to best was AA, PM, SEBS, and PT-JPL. Ershadi et al. (2015) also compared the response of the models 60 

to different formulations of aerodynamic and surface resistances with global FLUXNET data. Their results 61 

showed considerable variability in model performance among and within biome types. Currently, ET model 62 

selection and comparison have been still conducted using traditional error metrics. It is known that error metrics 63 

are not adequate to provide reasonable result of model ranking for disregarding model complexity (Marshall et 64 

al., 2005; Samani et al., 2018). The focus of this study is to use a Byesian approach to evaluate the performance 65 

of the PM, SW, PT-FC, and AA models, which is a novelty contribution of this study. In ET models, the land 66 

surface energy system is governed by presumably infinite-dimensional physics. However, considering the ET 67 

models as finite-dimensional can be more precisely by covering all relevant relations. Therefore, employing 68 

consistent criteria for model selection might be justified when the aim is to better understand the processes 69 

involved (Höge et al., 2018). When using consistent model selection, Bayesian model evidence (BME), also 70 

known as marginal likelihood, measures the average fit of model simulations to their corresponding 71 

observations over a model’s prior parameter space. This feature enables BME to consider model complexity (in 72 

terms of number of model parameters) for model performance evaluation. When comparing several alternative 73 

conceptual models, the model with the largest marginal likelihood is selected as the best model (Lartillot and 74 

Philippe, 2006). BME can thus be used for evaluating the model fit (over the parameter space) and for 75 

comparing alternative models. In previous studies, the Bayesian information criterion (BIC; Schwarz, 1978) and 76 

the Kashyap information criterion (KIC; Kashyap, 1982) have been used to approximate BME by using 77 

maximum likelihood theories to reduce computational cost of evaluating BME (Ye et al., 2004). However, these 78 

approximations have theoretical and computational limitations (Ye et al., 2008; Xie et al., 2011; Schöniger et al., 79 

2014), and a numerical evaluation (not a likelihood approximation) of BME is necessary, especially for complex 80 

models (Lartillot and Philippe, 2006). Lartillot and Philippe (2006) advocated the use of thermodynamic 81 

integration (TI) for estimating BME, also known as path sampling (Gelman and Meng, 1998; Neal, 2000), in 82 

order to avoid sampling solely in the prior or posterior parameter space. TI uses samples that are systematically 83 

generated from the prior to the posterior parameter space by conducting path sampling with several discrete 84 

power coefficient values (Liu et al., 2016). It is numerically accurate than the generally used harmonic mean 85 

method (Xie et al., 2011). 86 
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Most applications of Bayesian methods have focused on the calibration of individual models, while the 87 

comparison of alternative models continues to be performed using traditional error metrics. More generally, 88 

Bayesian approaches to model calibration, comparison, and analysis have been used far less used in the 89 

evaluation of ET models than in other areas of environmental science. In this study, the Bayesian approach is 90 

used to calibrate and evaluate the four ET models (PM, SW, PT-FC, and AA) based on an experiment over a 91 

spring maize field in an arid area of northwest China, from 3 June to 27 September 2014. The objectives of the 92 

study are as follows: (1) to calibrate ET model parameters using the DiffeRential Evolution Adaptive Metropolis 93 

(DREAM) algorithm (Vrugt et al., 2008, 2009); (2) to identify which parameters had a greater impact on the 94 

model performance and to explain why the selected optimal model performed best; (3) to evaluate the 95 

performance of the models using traditional error metrics and BME; and (4) to analyze discrepancies between 96 

model simulations and observation data in order to better understand model performance and identify ways to 97 

improve these models. We expect that the study will not only boost the development of model parameterization 98 

and model selection but also contribute to the improvement of the ET models. 99 

2. Data and methodology 100 

2.1. Description of the study area 101 

The experiment of maize growth was conducted at Daman Superstation, located in Zhangye City, Gansu 102 

province, northwest China. Daman Oasis is located in the middle Heihe River basin, which is the second largest 103 

inland river basin in the arid region of northwest China. The midstream area of the Heihe River basin is 104 

characterized by oases with irrigated agriculture, and is a region that consumes large amount of water for both 105 

domestic and agricultural uses. The annual average precipitation and temperature are 125 mm and 7.2 ℃ (1960–106 

2000), respectively. The annual accumulated temperature (>10 ℃) is 3,234 ℃, and the annual average potential 107 

evaporation is about 2,290 mm. The average annual duration of sunshine is 3,106 h with 148 frost-free days. 108 

The predominant soil type is silty-clay loam and the depth of the frozen layer is about 143 mm. The study area 109 

is a typical irrigated agricultural region, and the major source of water is snowmelt from the Qilian Mountains. 110 

Maize and spring wheat are the principal crops grown in the region. Maize is generally sown in late April and 111 

harvested in mid-September, and is planted with a row spacing of 40 cm and a plant spacing of 30 cm. The plant 112 

density is about 66,000 plants per hectare in the study area. 113 
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2.2. Measurements and data processing 114 

Our data were collected from the field observation systems of the Heihe Watershed Allied Telemetry 115 

Experimental Research (HiWATER) project as described in Li et al (2013). The observation period was from 116 

DOY (day of the year) 154 to DOY 270 in 2014. An open-path eddy covariance (EC) system was installed in a 117 

maize field, with the sensors at a height of 4.5 m. Maize is the main crop in the study region, and thus covers 118 

sufficient planting area to set the EC measurements. The EC data was logged at a frequency of 10 HZ and then 119 

processed with an average time interval of 30 min. Sensible and latent heat fluxes were computed by the EC 120 

approach of Baldocchi (2003). Flux data measured by EC were controlled by traditional methods, including 121 

three-dimensional rotation (Aubinet et al., 2000), WPL (Webb-Penman-Leuning) density fluctuation correction 122 

(Webb et al., 1980), frequency response correction (Xu et al., 2014), and spurious data removal caused by 123 

rainfall, water condensation, and system failure. About 85% of the energy balance closure was observed in the 124 

EC data (Liu et al., 2011). 125 

Standard hydro-meteorological variables, including rainfall, air temperature, wind speed, and wind 126 

direction, were continuously measured at the heights of 3, 5, 10, 15, 20, 30 and 40 m above the ground. Soil 127 

temperature and moisture were measured at heights of 2, 4, 10, 20, 40, 80, 120 and 160 cm. Photosynthetically 128 

active radiation was measured at a height of 12 m. Net radiation, including downward, upward and longwave 129 

radiation, was measured by a four-component net radiometer. An infrared thermometer was installed at a height 130 

of 12 m. Leaf Area Index (LAI) was measured approximately every 10 days during the growing season. 131 

2.3. Model description 132 

In this section, we summarize the mathematical definitions forming the basis of each of the four models. 133 

Appendix A contains a summary of the names and physical meanings of the model parameters. 134 

2.3.1 Penman-Monteith (PM) model 135 

The PM model can be formulated in the following way (Monteith, 1965): 136 
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where ε=Δ/γ; and A is defined to be nA R G  . 138 

In the present study, ga is parameterized in the way suggested by Leuning (2008) and gs is defined as: 139 
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140 

where 1˗τ and τ are the fraction of the total available energy absorbed by the canopy and by the soil, and τ = exp 141 

(˗ KaLAI), and gi and c

sg are defined in equations (3) and (4), respectively (Monteith, 1965): 142 
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where f(θ) represents water stress and is expressed as: 145 
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and θa is set as θa=0.75 θb. Aerodynamic conductance ga is calculated as: 147 
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148 

where the quantities d, z0m and z0v are calculated using d = 2h/3, z0m= 0.123h and z0v = 0.1z0m (Allen 1998).  149 

2.3.2. Shuttleworth-Wallace (SW) model 150 

The SW model comprises a one-dimensional model of plant transpiration and a one-dimensional model of 151 

soil evaporation. The two terms are calculated by the following equations: 152 
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155 

where the available energy input above the soil surface is defined as
s ns=A R G . 156 

Rns can be calculated using the Beer’s law relationship: 157 

     n s ne x p L A IaR R K 
 

(10) 158 

The coefficients Cs and Cc are obtained as follows: 159 
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Soil surface resistance is expressed as: 166 
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167 

In this study, we consider the reciprocal of bulk stomatal resistance, known as canopy conductance. The 168 

calculation of gs
c is the same as in the PM model. The two aerodynamic resistances (ra

a and ra
s) and the 169 

boundary layer resistance (ra
c) are modeled following the approach proposed by Shuttleworth and Gurney 170 
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(1990). 171 

2.3.3. Priestley–Taylor and Flint-Childs (PT-FC) model 172 

The Priestley-Taylor model (Priestley and Taylor, 1972) was introduced to estimate evaporation from an 173 

extensive wet surface under conditions of minimum advection (Stannard, 1993; Sumner and Jacobs, 2005). The 174 

ET is expressed as: 175 

 PT nET R G 
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176 

where αPT is a unitless coefficient. The Priestley-Taylor model was modified by Flint and Childs (1991) in order 177 

to scale the Priestley-Taylor potential ET to actual ET for nonpotential conditions (hereafter the PT-FC model): 178 

 nET R G 



 

 
 

(18)  

 

179 

where α is as a function of the environmental variables, which could be related to any process that limits ET 180 

(e.g., soil hydraulic resistance, aerodynamic resistance, stomatal resistance); however, only soil moisture status 181 

was considered to simplify ET estimation in the PT-FC model (Flint and Childs, 1991). In this model, α is 182 

defined as: 183 
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2.3.4. Advection-aridity (AA) model 186 

The AA model was first proposed by Brutsaert and Stricker (1979) and further improved by Parlange and 187 

Katul (1992). The model relies on the feedback between actual (λET) and potential ET, which assumes that 188 

actual potential ET should converge to wet surface ET at wet surface conditions. Its general form is: 189 
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where αPT is the Priestley-Taylor coefficient, usually taken as 1.26 (Priestley and Taylor, 1972); and ra is similar 191 

to that used for the Penman-Monteith model (Brutsaert and Stricker, 1979; Brutsaert, 2005; Ershadi et al., 2014). 192 

This model is based mainly on meteorological variables and does not require any information related to soil 193 

moisture, canopy resistance or other measures of aridity (Ershadi et al., 2014). In this study, as for the PT-FC 194 

model, we changed αPT to α, which is calculated using the same equation as in the PT-FC model.  195 

2.4 BME Estimation 196 

The Bayesian model evidence (BME) of a model, M, is defined as (Schöniger et al., 2014): 197 

     BME ,D D θ θ θp M p M p M d                                   (21) 198 

where D is observed or estimated data, θ is the vector of parameters associated with model M,  p Mθ  is 199 

the prior density of θ under model M,  ,p MD θ is the joint likelihood of model M and its parameters θ . 200 

Estimating BME using power posterior estimators such as thermodynamic integration (TI) (Lartillot and 201 

Philippe, 2006) depends mainly on the calculation of the marginal likelihood ( )p MD . The main idea of power 202 

posterior sampling is to define a path that links the prior to the unnormalized posterior. Thus, using an 203 

unnormalized power posterior density 204 

( ) ( , ) ( )q p M p M

 θ D θ θ
 

(22) 205 

the power coefficient [0,1]   is a scalar parameter for discretizing a continuous and differentiable path 206 

linking two unnormalized power posterior densities. The unnormalized power posterior density ( )q θ in 207 

Equation (22) uses the normalizing constant Z  to yield the normalized power posterior density: 208 
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The above integral takes a simplified form by the potential: 212 

      
 ln q

U












 

(25) 213 

thus, the integral can be directly estimated by the following way: 214 
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The one-dimensional integral with respect to β is evaluated by using numerical methods by discretizing β into a 216 

set of βk. Since there is no theoretical method for selecting βk values (Liu et al., 2016), we determined these 217 

values using an empirical but straightforward method. Following Xie et al. (2011), a schedule of the power 218 

posterior coefficients βk is generated by 219 

1( / )k k K  
 

(27) 220 

for k =0, 1, 2…, K. Using 0.3   and 20K   is a reasonable initial choice. By using the trapezoidal rule of 221 

numerical inregration, equation (26) is evaluated via  222 
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(30) 227 

where n is the number of random samples of kθ  corresponding to βk, and 
,k iθ  is the i-th sample.  228 

The random samples, 
,k iθ , are drawn by using the MCMC method implemented in the DREAM code. See 229 

Appendix B for further details on Bayesian inference and the DREAM algorithm. In the DREAM-based 230 

calculation, the Metropolis acceptance ratio is  ,,min 1,[ ]k power posteriork k prior    with the power 231 
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posterior ratio given by  , ,

k

k power posterio k posterir or



   . The prior probability ratio 232 

, , ,Pr( | ) / Pr( | )θ θk prior k new k oldM M  is the ratio of the probability of the newly proposed sample 233 

,k newθ and the probability of the previously accepted sample ,k oldθ . The posterior probability ratio 234 

, , ,( | , ) / ( | , )D θ D θk posterior k new k oldL M L M  is the likelihood ratio of samples ,k newθ and ,k oldθ , and 235 

k  is the power posterior coefficient. Thus, to use the DREAM algorithm to sample any power posterior 236 

distribution, the regular Metropolis acceptance ratio  min 1,[ ]posterior prior   is changed to 237 

 , ,min 1,[ ]k power postriork k prior   in DREAM.  238 

2.5 Traditional statistical metrics of evaluating model performance 239 

The traditional error metrics for evaluating model performance include  R2and slope (correlation-based 240 

measures), index of agreement (IA) and model efficiency (EF) (relative error measures), and the root mean 241 

square error (RMSE) and mean bias error (MBE) (Poblete-Echeverria and Ortega-Farias, 2009). The definitions 242 

of the listed metrics are: 243 

 
2

1

2

1

( ) ( )

IA 1

( ) ( ) ( ) ( )

n

t

n

t

O t M t

O t O t O t M t







 

   
 




 

(31) 244 

      

 
2

1

2

1

( ) ( )

EF 1

( ) ( )

n

t

n

t

O t M t

O t O t







 

  




 

(32) 245 

 
2

1

1
RMSE ( ) ( )

n

t

O t M t
n 

 
 

(33) 246 

 
1

1
MBE ( ) ( )

n

t

O t M t
n 

 
 

(34) 247 

where ( )O t is the observation and ( )O t  is the mean observation at time t; ( )M t  is the modeled value and 248 

( )M t  is the mean modeled value estimated by the posterior median parameter values; and n is the total number 249 
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of the observed values.  250 

3. Results 251 

3.1 Parameter estimation 252 

The PM model has five parameters gmax, D50, Q50, Kq and Ka; the SW model has seven parameters – the five 253 

used in the PM model and parameters b1 and b2. The PT-FC and AA models each include two parameters, 254 

denoted by β1 and β2 (Table 1). The prior probability density of each parameter is specified as a uniform 255 

distribution with the ranges listed in Table 1. A total of 50,000 realizaitions were generated with the DREAM 256 

algorithm, which was used to estimate the posterior probability density function of each parameter with the 257 

calibration period data from DOY 154 to DOY 202. In the calculations, the chain number, N, was equal to the 258 

number of parameters in the associated model. Therefore, N is equal to 5, 7, 2 and 2 for the PM, SW, PT-FC and 259 

AA models, respectively. For each model, the first 10,000 samples were discarded as burn-in data, and the 260 

remaining 40,000 samples were used for calibration. In total, 40,000×N realizations were used to set up 261 

posterior density functions for each model. To illustrate the efficiency and convergence of DREAM for the ET 262 

models, Figure 1 shows the trace plots of the G-R statistic for each of the different parameters in the PM and 263 

SW models using a different color. The algorithm required about 8,000 generations to make the G-R statistic 264 

close to 1.0 for thetwo models. The acceptance rates for the PM and SW models were about 15.3% and 18.9%, 265 

respectively.  266 

Histograms of the DREAM-derived marginal distributions of the parameters are presented in Figure 2 and 267 

summarized in Table 2 by Maximum Likelihood Estimates (MLEs), posterior medians and 95% probability 268 

intervals. Figures 2a-2e, 2f-2l, 2m-2n, and 2o-2p show histograms of the PM, SW, PT-FC and AA models, 269 

respectively. Parameter gmax (Fig. 2a) in the PM model, parameters gmax, Ka, b2 (Fig. 2f, 2j, 2l) in the SW model, 270 

and parameter β1 (Fig. 2m) in the PT-FC model and AA model (Fig. 2o) were well constrained and occupied a 271 

relatively small range. These parameters displayed a unimodal distribution and appeared approximately 272 

Gaussian. In contrast, the distributions of the other parameters differed significantly from a Gaussian 273 

distribution, as shown by the corresponding histograms. The distributions of all but one of these parameters 274 

concentrated most of the probability mass at their upper limits. The exception was parameter b1 for the SW 275 

model (Fig. 2k), which clearly does not follow a normal distribution with most of the mass concentrated in the 276 
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lower bounds. In contrast, Q50 was not only poorly constrained (Fig. 2g) but was also the upper edge-hitting 277 

parameter in the SW model. Moreover, the corresponding distributions of the same parameter in different 278 

models were slightly different. For example, the mean of gmax in the PM model (0.04 mm s-1) was less than that 279 

in the SW model (0.01 mm s-1) (Fig. 2a and 2f, Table 2), except that D50 in the PM and SW models and β2 in the 280 

PT-FC and AA models exhibited similar regions. It is interesting to observe that the distribution of Ka in PM 281 

model (Figure 2e) has a truncated distribution with highest probability mass at the upper bound, whereas the 282 

distribution of Ka in the SW model (Figure 2j) tends to become approximately normal. Overall, the marginal 283 

posterior probability density function of most of the individual parameters occupied only a relatively small 284 

region compared with the uniform prior distributions, and exhibited relatively large uncertainty reduction.  285 

3.2 Performance of the models 286 

The performance of each of the four ET models was evaluated over the course of the whole season in 2014. 287 

The calibrated parameters of the four models were used and individual ET models were run to estimate the 288 

half-hourly λET values. Table 3 summarizes the statistical results for the performance of the models using 289 

regression line slope, R2, RMSE, MBE, IA, and EF. The regressions between measured and modeled λET values 290 

and MBE are shown in Figures 3 and 4, respectively. 291 

In general, the four models produced slightly better fits to the measured λET for all the seasons with R2 292 

larger than 0.75 (Fig. 3). However, obvious discrepancies in the predictions made by the models were detected 293 

by comparing measured and modeled λET. According to the regression line slope and MBE, the PM model 294 

overestimated ET by 1% with a MBE of -9.52 W m−2, and the SW model overestimated ET by 5% with a 295 

relatively higher MBE of -19.07 W m−2 compared to the PM model. The PT-FC and AA models tended to 296 

underestimate λET by 9% and 8% with an MBE of 25.42 and 23.29 W m−2, respectively. From a comparison 297 

between the slope and MBE, the PM model performance was higher than that of the other three models, with a 298 

slope almost equal to 1 and relatively lower MBE. The SW model was ranked second, while performance of the 299 

AA model was slightly higher comparable to that of the PT-FC model. However, if R2, RMSE, IA, and EF were 300 

used to evaluate performance, the SW model had the best overall performance with R2=0.83, RMSE= 76.34 W 301 

m−2, IA = 0.95 and EF = 0.79. The second-best model was the PM model, and the PT-FC was ranked third, while 302 

the AA model ranked fourth. Based on the analysis of these traditional error metrics, the PT-FC and AA models 303 

yielded similar results. The observed and modeled λET for the four ET models were tightly grouped along the 304 
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regression lines (Figure 3), and the PT-FC and AA models had similar modeled ET values with a similar degree 305 

of point scattering along the regression lines (Figure 3c-3d).  306 

Figure 4 shows that large seasonal variations arise in MBE for the four ET models. From the variations in 307 

MBE, the estimated λET values for all models were generally lower than the measured values before the early 308 

jointing stageof maize growth (DOY 154-177, left dashed line) and after the late maturity stage (DOY 256-265, 309 

right dash line) with the corresponding LAI < 2.5 m2 m-2. More positive MBE values for the PT-FC and AA 310 

models after the late maturity stage indicate their underestimated performances; however, these estimations 311 

appeared even more consistent with a symmetrical scattering of points along the 0-0 line (Figure 4c, 4d) during 312 

DOY 177-256 with LAI > 2.5 m2 m-2.  313 

3.3 Comparison of the models using BME 314 

Since there is currently no theoretical method for selecting power posterior β values, we determined these 315 

values using empirical but straightforward methods. For any power coefficient of [0,1]  , a sample was 316 

drawn from the distribution pβ (Eq. 25) through running DREAM. Although adding more βk values might 317 

improve the BME estimation, this was not done because of the computational cost. For each βk value, at least 318 

150,000 DREAM simulations were large enough to ensure convergence. Figure 5 shows the evolution of ln 319 

p(D|θ, M) for the four models as a function of β for a dataset covering the entire period. The BME for the SW 320 

model was substantially larger than that for the other three models, and the BME for the AA model was the 321 

smallest.The BME-based model ranking (from the best to the worst) is SW, PM, PT-FC, and AA. The PT-FC 322 

and AA models, which consisting the same number of parameters, had similar potential patterns of evolution 323 

with respect to the coefficient βk. The results illustrate that with the addition of parameters, the model 324 

complexity and the model performance are both increased. 325 

4. Discussion 326 

4.1 Parameter uncertainty analysis 327 

With regard to the efficiency of the DREAM algorithm, the acceptance rates of the PM (15.3%) and SW 328 

(18.9%) models were much higher than those obtained by some Markov Chian Mote Carlo (MCMC) algorithms 329 

that have been used in previous studies.  (Sadegh et al., 2014). The posterior parameter bounds exhibit a larger 330 
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reduction using the DREAM algorithm compared with other studies using the Metropolis–Hasting algorithm. 331 

This demonstrates that DREAM could efficiently handle problems involving high-dimensionality, multimodality, 332 

nonlinearity. 333 

The results showed that the assumed prior uncertainty ranges from most parameters in the four models 334 

were significantly reduced. This indicates that the observed ET data contained sufficient information to estimate 335 

these parameters. Surface conductance gs and modeled ET in the PM model are relatively insensitive to Q50, D50 336 

and Kq. Hence, these parameters could not be well constrained, and further relaxing the ranges for these 337 

parameters could not result in physically realistic behavior of the model. The calculation of c

sg in the SW model 338 

is the same as in the PM model, and thus, c

sg and modeled ET in the SW model are also insensitive to 339 

parameters of Q50, D50, Kq. Therefore, these three parameters were also not well constrained in the SW model. In 340 

addition, the uncertainties present in the edge-hitting parameters, may be the outcome of model biases or 341 

EC-measured ET data errors, or the characteristic time scale of parameters governing the processes affecting ET 342 

is not exactly on the order of half-hours (Braswell et al., 2005). For example, Q50 and D50 govern changes in 343 

visible radiation flux and the humidity deficit at which stomatal conductance is half its maximum value, 344 

respectively, and these parameters may change over a shorter or longer time scale than half-hours. 345 

The ecophysiological parameter gmax is a variable in the c

sg equation in both the PM and SW models, but 346 

this parameter is sensitive to 
c

sg and has a significant impact on the evaluated ET. Its effects is relatively 347 

independent compared to the other meteorological parameters in the models, and therefore this parameter was 348 

well specified in the PM and SW models. The posterior mean value of gmax (0.04 m s−1) in the PM model from 349 

our study was close to that (0.05 m s−1) reported in northwestern China (Li et al., 2013; Zhu et al., 2014), but 350 

gmax (0.01 m s−1) in the SW model was less than the reported value. Parameter β1 was well constrained in the 351 

PT-FC and AA models because it was relatively independent and did not directly relate to other observed 352 

variables.  353 

Parameter Ka implicitly appears in the surface conductance equation (Eq.2) in PM model and Ka is 354 

insensitive to gs and modeled ET (Leuning et al., 2008). In contrast, Ka is contained in the equation of net 355 

radiation flux into the substrate (Eq.10) in the SW model. This parameter can explicitly partition the total 356 

available energy into that absorbed by the canopy and by the soil in the SW model. An analysis of equation (10), 357 
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found that the variation of Ka could not only account for the extinction effect but also correct the energy forcing 358 

data errors. This also meant that the estimated value of Ka using calibration data was actually not just the true 359 

extinction coefficient, but also included the energy imbalance correction in the SW model. From this analysis, 360 

we could see that Ka not only involved the distribution of energy between the canopy and the soil surface but 361 

also the energy imbalance. Therefore, parameter Ka has a great influence on the performance of the SW model. 362 

This is why Ka is poorly constrained in the PM model but well constrained in the SW model. To further illustrate 363 

the insights regarding the influence of parameter Ka on the performance of the SW model, we calibrated the SW 364 

model again and reran the model with a constant value of Ka. The results showed a significant reduction in 365 

model performance when Ka was held constant. This implied that the main reason for the SW model 366 

outperforming the PM model in our study was not only the more physically rigorous structure of the SW model 367 

but also the key parameter Ka being well constrained in the SW model. 368 

In general, parameters related to soil surface resistance in the SW model were well evaluated, while 369 

parameters related to canopy surface resistance in PM and SW models were poorly estimated. Therefore, using a 370 

reliable canopy surface resistance equation in the ET model was crucial for improving its performance. In 371 

addition, in our study, the traditional approach was used to quantify the uncertainty， which assumed that the 372 

uncertainty mainly arose because of the parameter uncertainty. However, this method cannot explicitly consider 373 

errors in the input data and model structural inadequacies. This is unrealistic for real applications, and it is 374 

desirable to develop a more reliable inference method to treat all sources of uncertainty separately and 375 

appropriately (Vrugt et al., 2008). Moreover, simultaneous direct measurement by micro-lysimeter of sap flow 376 

and daily soil evaporation will further help to constrain the model parameters. 377 

4.2 Evaluation and selection of the models 378 

In this study, the traditional statistical measures and BME were chosen to evaluate and compare the 379 

performance of four ET models. From the respective composition of these measures, the statistical measures can 380 

be divided into residual-based metrics (such as regression slope and MBE) and squared-residual-based measures 381 

(such as R2, RMSE, IA, and EF). The rankings of the models obtained using the same type of metric 382 

(residual-based or squared-residual-based) are similar. Slope and MBE, for example, which are both 383 

residual-based measures, produce identical rankings. However, the rankings produced by metrics of different 384 

types are not the same. For example, the PM model outperforms the SW model according to the residual-based 385 
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metrics, but the performance of the PM model is worse than SW model based on the squared-residual-based 386 

measures. The comparative analysis shows a consistency between BME and the squared-residual-based metrics 387 

(hence the residual-based metrics disagreed with the BME measures). This reveals that the more complex SW 388 

model is the best model based on BME and squared-residual-based statistics. The rank order of overall 389 

performance of the models from best to worst is: SW, PM, PT-FC, and AA model. 390 

Previous studies had shown that BME evaluated by TI provided estimates similar to the true values, and 391 

selected the true model if the true model was included within the candidate models (Marshall et al., 2005; 392 

Lartillot and Philippe, 2006). Meanwhile, some have argured that Bayesian analysis would choose the simplest 393 

model (Jefferys and Berger, 1992; Xie et al., 2011) because of the best trade-off between good fit with the data 394 

and model complexity (Schöniger et al., 2014). In this case, the most complex SW model had the highest BME 395 

and was chosen as the model with the best performance. This probably resulted from the fact that the complex 396 

SW model is indeed the most reliable model among the alternative ET models and can provide a good fit to 397 

justify its higher complexity. The SW model is a two-layer model, and simulates soil evaporation and plant 398 

transpiration separately, whereas the PM model is a single-layer model in which the plant transpiration and soil 399 

evaporation cannot be separated (Monteith, 1965). The PT-FC model is a simplified version of the PM model, 400 

and only requires meteorological and radiation information (Priestley and Taylor, 1972), whereas the AA model 401 

only relies on the feedback between actual ET and potential ET (Brutsaert and Stricker, 1979). Based on these 402 

physical mechanisms and processes that each of these ET models take into account, the rank order of the models 403 

is reasonable.  404 

The results indicate that the SW model is the best performing model in terms of squared-residual-based 405 

metrics, which results from the ability of the model to fit the measured data, irrespective of model complexity. It 406 

was interesting to note that both the squared-residual-based measures and the BME consistently yielded the 407 

same rank order. Although the squared-residual-based metrics seemed to identify a reasonable rank order, this 408 

has not been the case, since the simple traditional statistical measures were known to usually provide a biased 409 

view of the efficacy of a model (Kessler and Neas, 1994; Legates and McCabe, 1999). In addition, sensitivity to 410 

outliers is associated with these metrics and leads to relatively high values due to the squaring of the residual 411 

terms (Willmott, 1981). Furthermore, these traditional statistical metrics ignores the priors, without penalizing 412 

model complexity, which is in fact used in a Bayesian analysis. PT-FC and AA, provide identical estimates of 413 
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R2 and IA. This is most likely because both models had the same dimension and a similar model structure. 414 

Marshall et al. (2005) argued that EF would provide an incorrect conclusion, and Samani et al. (2018) suggested 415 

that RMSE would selecte the complex model as the best performing model. As for slope and MBE, the rankings 416 

produced by these residual-based metrics were in obvious disagreement with the one based on BME. Part of the 417 

lower values of slope and MBE may be counter-balanced by the higher values of slope and MBE, thus these 418 

criteria provide an erroneous and unreliable evaluation of the models. Therefore, the squared-residual-based and 419 

residual-based measures were not certain to provide reasonable results in terms of model ranking.  420 

BME is a consistent model selection which tries to identify which of the models produced the observed 421 

data. Conversely, nonconsistent model selection uses the available data to estimate which of the models might 422 

be best in predicting the future data. In fact, the error metrics are essentially nonparsimonious model selection, 423 

which is a special case of nonconsistent model selection, where only the goodness of fit is used for rating 424 

models without penalizing the model complexity and thus lacking consistency for the selected model (Höge et 425 

al., 2018). The consistency between BME and the squared-residual-based metrics only indicates that the optimal 426 

model evaluated by BME would also provide the best predictions, and thus consistent model selection should 427 

also be asymptotically efficient (Leeb & Pötscher, 2009; Shao, 1997). 428 

4.3 Analysis of model-data mismatch 429 

Conceptual and structural inadequacies of the hydrological model together with measurement errors of the 430 

model input (forcing) and output (calibration) data introduce errors in the estimated parameters and model 431 

simulations (Laloy, 2015). Hydrological systems are indeed heavily input-driven and errors in forcing data can 432 

dramatically impair the quality of calibration results and model output (Bardossy and Das, 2008; Giudice, 2015). 433 

Measurement errors occur for a variety of reasons, including unreasonable gap-filling in rainy days; dew and fog; 434 

inadequate areal coverage of point-scale soil water measurement; mechanical limitations of the EC system; and 435 

inaccurate measurements of wind-speed, soil water, radiation and vapor pressure deficit. ET processe is 436 

described using equations that can only capture parts of the complex natural processes and any ET model is an 437 

inherent simplification of the real system. These inadequacies can thus lead to biased parameters and 438 

implausible predictions.  439 

In our study, the results indicated that the PM and SW models overestimated the half-hourly ET compared 440 
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to the measured ET. Several studies also indicated that ET was overestimated by the PM model (Fisher et al., 441 

2005; Ortega-Farias et al., 2006; Li et al., 2015) and the SW model (Li et al., 2013; Li et al., 2015; Zhang et al., 442 

2008). Possible reasons for the inaccurate estimates included the following: (1) Anisotropic turbulence with 443 

weak vertical and strong horizontal fluctuation leads to energy imbalance. The total turbulent heat flux was 444 

lower by ~10–30% compared to the available energy in many land surface experiments (Tsvang et al., 1991; 445 

Beyrich et al., 2002; Oncley et al., 2007; Foken et al., 2010) and influx networks (Franssen et al., 2010). Liang 446 

et al. (2017) also showed an energy imbalance result in the semiarid area in China, and indicated that the energy 447 

balance closure ratio ranged from 0.52 to 0.90 during the day, whereas it was about 0.25 at night. However, the 448 

measured ET only included vertical flux and not horizontal flux, leading to the measured ET being lower than 449 

that of ET predicted by the PM and SW models using the available energy. (2) The absence of a mechanistic 450 

representation of the physiological response to plant hydrodynamics makes it difficult for the available ET 451 

models to resolve the dynamics of intradaily hysteresis, producing patterns of diurnal error, while the imbalance 452 

or lack of between-leaf water demand and soil water supply imposes hydrodynamic limitations on stomatal 453 

conductance (Thomsen et al., 2013; Zhang et al., 2014; Matheny et al., 2014). Li et al. (2015) also concluded 454 

that neglecting the restrictive effect of the soil on water transport in empirical canopy resistance equations can 455 

result in large errors in the partial canopy stage. However, these equations can estimate ET accurately under the 456 

full canopy stage (Alves and Pereira, 2000; Katerji and Rana, 2006; Katerji et al., 2011; Rana et al., 2011). Li et 457 

al. (2015) showed that the PM model combined with canopy resistance overestimated maize ET during the 458 

partial and dense canopy stages by 16% and 13%, respectively. Moreover, in a study of ET in vineyards, 459 

Leuning (2008) found that the PM model coupled with canopy resistance overestimated ET during the entire 460 

growth stage by 29%.  461 

The estimates for ET produced by the PT-FC and AA models were generally lower than the measured 462 

values during the entire season. In addition, the four models also underestimated ET during periods of partial 463 

cover (LAI < 2.5 m2 m-2). The PT-FC and AA models consistently underestimated ET, especially during the late 464 

maturity stage. The underestimation probably resulted from the following: (1) Non classical situations, such as 465 

the oasis effect, may occur in the study area. Strong evaporation from the moist ground and plants results in 466 

latent heat cooling. However, this upward latent heat flux was opposed by a downward sensible heat flux from 467 

the warm air to the cool ground, and thus the latent heat flux was positive while the sensible heat flux is 468 

negative. Therefore, the latent heat flux can be greater in magnitude than the solar heating, because of the 469 
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additional energy extracted from the warm air by evaporation (Stull, 1988). (2) The lack of mechanistic 470 

representation of rainfall interception in ET models probably led to inaccurate simulation for periods soon after 471 

rainy days. Bohn and Vivoni (2016) found that evaporation of canopy interception accounted for 8% of the 472 

annual ET across the North American monsoon region. Comparing the AA and PT-FC models, the former 473 

includes forcing data of available radiation, soil water content and relative humidity, but the PT-FC model only 474 

requires available radiation and soil water content and is independent of relative humidity. However, the similar 475 

statistical results and similar degrees of MBE scatter indicate that relative humidity has little influence on the 476 

AA model simulation. The consistent and consecutive underestimation of ET by the PT-FC and AA models 477 

during the late maturity stage show that the model-data disagreement is not caused by regional advection and 478 

rainfall interception, because atmospheric processes and thermally-induced circulation can only occur at certain 479 

times and during certain days. Therefore, we think that the consistent underestimation of ET by the PT-FC and 480 

AA models results primarily from conceptual and structural inadequacies, energy imbalance, and soil water 481 

stress. Although the PM and SW models share a common theoretical basis and the PT-FC model is a 482 

simplification of the PM model, these models perform significantly differently. Part of the overestimation of ET 483 

by the PM and SW models, caused by coupling with the canopy resistance, may be offset by underestimation 484 

caused by energy imbalance and soil water stress. However, underestimation of ET by the PT-FC and AA 485 

models cannot be counterbalanced by overestimation during the later maturity stage because the PT-FC and AA 486 

models are independent of the canopy resistance. Consequently, the half-hourly patterns of errors in the 487 

estimates of ET by the PM and SW models are characterized by symmetry and a low degree of scatter, but the 488 

PT-FC and AA models exhibit consistently asymmetrical error patterns.By contrast, other studies showed that 489 

the PM model (Kato et al., 2004) and the SW model (Chen et al., 2015) underestimated half-hourly ET. As for 490 

the PT-FC and AA models, some studies reported that the PT-JPL (Zhang et al., 2017) and the AA model 491 

showed an overall poor performance (Zhang et al., 2017). While other studies have indicated that the AA 492 

method performed well for both maize and canola crops (Liu et al., 2012). Therefore, the performance of the 493 

four ET models appears to vary not only for different crops and locations but also for different meteorological, 494 

physiological and soil conditions. Moreover, the performance is also related to the stage of crop growth. Note 495 

that these conclusions about the ET models evaluation are derived from traditional error metrics rather than 496 

those based on BME model selection. It would be desirable to use available data from other study areas or from 497 

other crops for BME-based model selection to confirm whether the SW model is the optimal model under other 498 
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conditions.Overall, combined with the parameter uncertainty analysis described in Section 4.1, we conclude that 499 

energy imbalance and energy interaction between canopy and soil surface have a greater impact on the model 500 

performance. And thus, explicitly treating of energy error, and incorporating the elements of existing hydrologic 501 

theory about energy interaction between canopy and surface or conceptually correcting the energy interaction 502 

are a practicable option for model improvement and application. 503 

5. Conclusions 504 

This study illustrated the application of the Bayesian approach on the statistical analysis and model 505 

selection of four widely used ET models. The results showed that the DREAM algorithm successfully reduced 506 

the assumed prior uncertainties for most of the parameters in the four models. In the model calibration, the key 507 

parameters which had a significant influence on ET simulations were well constrained. The main reasons for the 508 

outperforming of SW model were its physically rigorous structure and the extinction coefficient parameter, 509 

which is sensitive and has a significant impact on the performance of the model, being well constrained. BME is 510 

a consistent model selection to identify the best fitting to the observed data.Although the squared-residual-based 511 

metrics, including R2, IA, RMSE, and EF, produced a ranking identical to that of BME, it must be noted that 512 

these squared-residual-based metrics do not allow using prior information and do not penalize the model 513 

complexity when comparing the models. Therefore, some cautions are needed when using these statistical 514 

methods to compare different models. 515 

The model–data discrepancies were analyzed to facilitate model improvement after Bayesian model 516 

calibration and comparison. The results indicate that the discrepancies arose mainly as a result of energy 517 

imbalance caused by anisotropic turbulence, additional energy induced by advection processes, the absence of a 518 

mechanistic representation of the physiological response to plant hydrodynamics and the energy interaction 519 

between canopy and surface. Among these causes, energy imbalance and additional energy are related to forcing 520 

data errors rather than to an unreasonable model structure. Thus, understanding the process of the physiological 521 

response to plant hydrodynamics and the interaction between canopy and surface is essential for improving the 522 

performance of evapotranspiration models. Overall, the applications of Bayesian calibration, Bayesian model 523 

evaluation and analysis of model–data discrepancies in our study, provide a promising framework for reducing 524 

uncertainty and improving the performance of ET models. It would be desirable to confirm whether the SW is 525 

the optimal model using data of other crops.or other climate regions.  526 
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Appendix A: List of symbols and physical characteristics in ET models 739 

A Available energy for the whole canopy (Wm−2) 

As Available energy (W m-2) 

Rn Net radiation fluxes into the canopy (W m-2) 

Rns Net radiation flux into the substrate (W m-2) 

G Soil heat flux (W m-2) 

λET  Sum of the latent heat flux from the crop (λT) and soil (λE) (W m-2) 

ETc Canopy transpiration (W m-2) 

ETs Soil evaporation (W m-2) 

Cc Canopy resistance coefficient (dimensionless) 

Cs Soil surface resistance coefficient (dimensionless) 

LAI Leaf area index 

Q50  Visible radiation flux (W m-2) 

D50  Vapor pressure deficit (kPa) 

Da Vapor pressure deficit at the reference height (Da=es-ea) (kPa) 

Qh Flux density of visible radiation at the top of the canopy  (W m-2) 

Kq Extinction coefficient  

Ka Extinction coefficient  

f  Fraction of evaporation soil and total evaporation 

λ Latent heat of water evaporation (MJ kg-1) 

Δ Slope of the saturated vapour pressure curve (Pa K−1) 

γ  Psychrometric constant (kPa K-1) 

ρ  Density of air (kg m-3) 

k Karman constant (0.41) 

es Saturated vapor pressure (kPa) 

ea Actual vapor pressure (kPa) 

q* Saturation-specific humidity at air temperatur (kg kg-1) 

q Specific humidity of the atmosphere (kg kg-1) 

b1 Empirical constant  (s m-1) 

b2  Empirical constant  (s m-1) 

β1  empirical constant 

β2 empirical constant 

θ Soil water content (m3 m-3) 

θa Critical water content at which plant stress starts (m3 m-3) 

θb Water content at the wilting point (m3 m-3) 

θr Residual soil water content (m3 m-3) 

θs Saturated water content (m3 m-3) 

Θ Relative water saturation 
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d Zero plane displacement height (m) 

zm Height of the wind speed and humidity measurements (3 m) 

z0m Roughness length governing the transfer of momentum (m) 

z0v Roughness length governing the transfer of water vapor (m) 

h Canopy height (m) 

uz Wind speed at height zm (m s−1) 

ga Aerodynamic conductance (m s-1) 

gs Surface conductance (m s-1) 

gmax  Maximum stomatal conductance of leaves at the top of the canopy (m s-1) 

gs
c Canopy conductance (m s-1) 

ra Aerodynamic resistance (s m-1) 

ra
a  Aerodynamic resistance between canopy source height and a reference level (s m-1) 

ra
s Aerodynamic resistance between the substrate and the canopy source height (s m-1) 

ra
c Bulk boundary layer resistance of the vegetation element in the canopy (s m-1) 

rs
s Surface resistance of the canopy (s m-1); 

rs
c Bulk stomatal resistance of the canopy (s m-1) 

 740 

Appendix B: Bayesian inference and the DREAM algorithm 741 

The posterior probability distribution of the parameter is calculated by Bayes’ theorem: 742 
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where ( )θ | M  represents the prior density of θ under model M; ( )θp D ,M  is the joint likelihood of 744 

model M and its parameters θ; and 745 
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746 

is the marginal likelihood, or Bayesian model evidence (BME).  747 

The likelihood function, p(D|θ, M), used for parameter estimation, is specified according to the 748 

distributions of observation errors. Error e(t) in each observation D(t) at time t is expressed by 749 

        ( )e t D t f t                                     (A3) 750 

. Assuming e(t) follows a Gaussian distribution with a zero mean, and the likelihood function can be 751 
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expressed as 752 
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where n is the number of observations and σ represents the error variances. 754 

In this study, we used the DREAM algorithm (Vrugt et al., 2008, 2009) to explore the ET models’ 755 

parameter space and to estimate BME. The DREAM sampling scheme is an adaptation of the global 756 

optimization algorithm of a shuffled complex evolution metropolis (SCEM-UA). This algorithm was 757 

descripted in more detail in Vrugt et al. (2008, 2009). 758 
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(magenta) and AA (orange) models, respectively. These histograms are constructed from all chains for each 772 
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prespecified limits of the parameters. 774 

Figure 3. Regressions between measured and modeled half-hourly ET values produced by different 775 

models from DOY 154 to DOY 270: (a) PM, (b) SW, (c) PT-FC and (d) AA. The regressions are: Y = 776 

0.99X (R2 = 0.76), Y = 1.05X (R2 = 0. 82), Y = 0.91X (R2 = 0.75), and Y = 0.92X (R2 = 0.75) for the PM, 777 

SW, PT-FC and AA models, respectively. 778 
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Figure 4. Mean bias error (MBE) of predicted and observed ET values for (a) PM, (b) SW, (c) PT-FC and 779 

(d) AA models from DOY 154 to DOY 270. Parameters used for prediction are estimated by DREAM with 780 

the dataset for the calibration period from DOY 154 to DOY 202.  781 

Figure 5. Variation of the mean posterior expectation of the potential yk with βk for the PM, SW, PT-FC 782 

and AA models. 783 

 784 

Table 1 Prior distributions and parameter limits for the PM, SW, PT-FC and AA models. The values are 785 

derived from the literature. 786 

Parameter Description 

Prior range  PM   Prior for SW   Prior for PT and AA 

References 

Lower upper   Lower upper   Lower upper 

gmax (mm s-1) 
maximum stomatal 

conductance 
0 50   0 50       Kelliher et al. (1995) 

Q50 (W m-2) visible radiation flux 10 50  10 50    Leuning et al. (2008) 

D50 (kPa) vapor pressure deficit  0.5 3  0.5 3    Leuning et al. (2008) 

Kq extinction coefficient  0 1  0 1    Leuning et al. (2008) 

Ka extinction coefficient 0 1  0 1    Leuning et al. (2008) 

b1 (s m-1) empirical constant    4.5 11.3    Sellers et al. (1992) 

b2 (s m-1) empirical constant    0 8    Sellers et al. (1992) 

β1 empirical constant       0.5 1.5 
Flint et al. (1991); 

Barton. (1979) 
β2 empirical constant        0.1 10 

 787 

Table 2 Maximum Likelihood Estimates (MLEs), Mean Estimates, 95% High-Probability Intervals 788 

(Lower Limit, Upper Limit). 789 

Parameter 

Posterior  for PM Posterior  for SW Posterior for PT and AA  

MLE Mean CI MLE Mean CI MLE Mean CI 

gmax (mm s-1) 0.04  0.04  (0.03, 0.04) 0.01 0.01  (0.005, 0.012)    

Q50 (W m-2) 49.96  48.52  
(39.73, 

49.74) 
47.49 40.32  (11.02, 48.99)    

D50 (kPa) 3.00  2.87  (1.92, 2.97) 2.98 2.88  (2.26, 2.98)    
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Kq 1.00  0.99  
(0.911, 

0.998) 
0.99 0.88  (0.06, 0.98)    

Ka 1.00  0.98  
(0.822, 

0.995) 
0.12 0.12  (0.074, 0.184)    

b1 (s m-1)    4.51 4.57  (4.52, 4.96)    

b2 (s m-1)    0.39 0.57  (0.07, 1.38)    

β1        
1.1a                             

1.5b 

1.098a          

1.499b 

(1.06, 1.16)a    

(1.492, 1.499)b 

β2       
10.00a   

10.00b 

9.75a              

9.94b   

(7.97, 9.95)a     

(9.44, 9.99)b 

a PT-FC model; b AA model. 790 

Table 3 Slope and coefficient of determination (R2) of regression between measured and modeled 791 

half-hourly evapotranspiration values, and statistics of root mean square error (RMSE), mean bias error 792 

(MBE), index of agreement (IA), model efficiency (EF) and Logarithm of BME for the four ET models. 793 

Model Slope R2 RMSE MBE IA EF BME 

PM 1.01 0.76 85.38  -9.52  0.93  0.74  -6300.5  

SW 1.05 0.82 76.34  -19.07  0.95  0.79  -6025.1  

PT-FC 0.91 0.75 94.39  25.42  0.92  0.68  -6366.8  

AA 0.92 0.75 95.09  23.29  0.92  0.67  -6390.3  

 794 
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 795 

Figure 1 Trace plots of the G-R statistic of Gelman and Rubin (Gelman and Rubin, 1992) using DREAM 796 

for the PM model (a) and (b) the SW model. Different parameters are coded with different colors. The 797 

dashed line denotes the default threshold used to diagnose convergence to a limiting distribution. 798 

 799 

 800 
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 801 

Figure 2 (a)-(e), (f)-(l), (m)-(n), and (o)-(p) show histograms for the PM (black), SW (cyan), PT-FC 802 

(magenta) and AA (orange) models, respectively. These histograms are constructed from all chains for each 803 

model and a total of 40,000×N realizations are simulated using DREAM. The x axes represent the 804 

prespecified limits of the parameters. 805 

 806 
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 807 

Figure 3 Regressions between measured and modeled half-hourly ET values produced by different models 808 

from DOY 154 to DOY 270: (a) PM, (b) SW, (c) PT-FC and (d) AA. The regressions are: Y = 0.99X (R2 = 809 

0.76), Y = 1.05X (R2 = 0. 82), Y = 0.91X (R2 = 0.75), and Y = 0.92X (R2 = 0.75) for the PM, SW, PT-FC 810 

and AA models, respectively. 811 

 812 
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 813 

Figure 4 Mean bias error (MBE) of predicted and observed ET values for (a) PM, (b) SW, (c) PT-FC and 814 

(d) AA models from DOY 154 to DOY 270. Parameters used for prediction are estimated by DREAM with 815 
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the dataset for the calibration period from DOY 154 to DOY 202.  816 

 817 

 818 

Figure 5 Variation of the mean posterior expectation of the potential yk with βk for the PM, SW, PT-FC and 819 

AA models. 820 

 821 


