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Abstract.  Decades of hydrograph separation studies have estimated the proportions of recent precipitation in streamflow 

using end-member mixing of chemical or isotopic tracers.  Here I propose an ensemble approach to hydrograph separation 10 

that uses regressions between tracer fluctuations in precipitation and discharge to estimate the average fraction of new water 

(e.g., same-day or same-week precipitation) in streamflow across an ensemble of time steps.  The points comprising this 

ensemble can be selected to isolate conditions of particular interest, making it possible to study how the new water fraction 

varies as a function of catchment and storm characteristics.  Even when new water fractions are highly variable over time, 

one can show mathematically (and confirm with benchmark tests) that ensemble hydrograph separation will accurately 15 

estimate their average.  Because ensemble hydrograph separation is based on correlations between tracer fluctuations rather 

than on tracer mass balances, it does not require that the end-member signatures are constant over time, or that all the end-

members are sampled or even known, and it is relatively unaffected by evaporative isotopic fractionation.  Ensemble 

hydrograph separation can also be extended to a multiple regression that estimates the average (or "marginal") transit time 

distribution directly from observational data.  This approach can estimate both "backward" transit time distributions (the 20 

fraction of streamflow that originated as rainfall at different lag times) and "forward" transit time distributions (the fraction 

of rainfall that will become future streamflow at different lag times), with and without volume-weighting.  It makes no 

assumption about the shapes of the transit time distributions, nor does it assume that they are time-invariant, and it does not 

require continuous time series of tracer measurements.  Benchmark tests with a nonlinear, nonstationary catchment model 

confirm that ensemble hydrograph separation reliably quantifies both new water fractions and transit time distributions 25 

across widely varying catchment behaviors, using either daily or weekly tracer concentrations as input.  Numerical 

experiments with the benchmark model also illustrate how ensemble hydrograph separation can be used to quantify the 

effects of rainfall intensity, flow regime, and antecedent wetness on new water fractions and transit time distributions. 
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1 Introduction  

For nearly 50 years, chemical and isotopic tracers have been used to quantify the relative contributions of different water 

sources to streamflow following precipitation events (Pinder and Jones, 1969; Hubert et al., 1969); see also reviews by 

Buttle (1994) and Klaus and McDonnell (2013), and references therein.  As reviewed by Klaus and McDonnell (2013), 

chemical and isotopic hydrograph separation studies have led to many important insights into runoff generation.  Foremost 5 

among these has been the realization that even at stormflow peaks, stream discharge is often composed primarily of "old" 

catchment storage rather than "new" recent precipitation (Sklash et al., 1976; Sklash, 1990; Neal and Rosier, 1990; Buttle, 

1994).  The previous dominant paradigm, based on little more than intuition, had held that because streamflow responds 

promptly to rainfall, the storm hydrograph must consist primarily of precipitation that reaches the channel quickly.  Isotope 

hydrograph separations showed that this intuition is often wrong, because the isotopic signatures of stormflow often 10 

resemble baseflow or groundwater rather than recent precipitation.  These observations have not only overthrown the 

previous dominant paradigm, but also launched decades of research aimed at unraveling the paradox of how catchments 

store water for weeks or months, but release it within minutes following the onset of rainfall (Kirchner, 2003). 

 

The foundations of conventional two-component hydrograph separation are straightforward.  If one assumes that streamflow 15 

is a mixture of two end-members of fixed composition, which I will call for simplicity "new" and "old" water, then at any 

time 𝑗 the mass balance for the water itself is 

𝑄௝ ൌ 𝑄୬ୣ୵ೕ
൅ 𝑄୭୪ୢೕ

         , ሺ1ሻ 

and the mass balance for a conservative tracer is 

𝑄௝𝐶୕ೕ
ൌ 𝑄୬ୣ୵ೕ

𝐶୬ୣ୵ ൅ 𝑄୭୪ୢೕ
𝐶୭୪ୢ        ,    ሺ2ሻ 20 

where 𝑄 denotes water flux and 𝐶 denotes the concentration of a passive chemical tracer or the δ value of 18O or 2H.  One 

can straightforwardly solve Eqs. (1) and (2) to express the fraction of new water in streamflow at any time 𝑗 as: 

𝐹୬ୣ୵಻ ൌ
𝑄୬ୣ୵ೕ

𝑄௝
ൌ

𝐶୕ೕ
െ 𝐶୭୪ୢ

𝐶୬ୣ୵ െ 𝐶୭୪ୢ
       .   ሺ3ሻ 

In typical applications, the "new" water is recent precipitation and the tracer signature of the "old" water is obtained from 

pre-event baseflow, which is generally assumed to originate from long-term groundwater storage. 25 

 

The assumptions underlying conventional hydrograph separation can be summarized as follows: 

1. Streamflow is a mixture formed entirely from the sampled end-members; contributions from other possible 

streamflow sources (such as vadose zone water or surface storage) are negligible.   
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2. The samples of the end-members are representative (e.g., the sampled precipitation accurately reflects all 

precipitation, and the sampled baseflow reflects all pre-event water).   

3. The tracer signatures of the end-members are constant through time, or their variations can be taken into account. 

4. The tracer signatures of the end-members are significantly different from one another. 

As reviewed by Rodhe (1987), Sklash (1990), Buttle (1994) and Klaus and McDonnell (2013), each of these assumptions 5 

can be problematic in practice: 

1. Hydrograph separation studies often lead to implausible (including negative) inferred contributions of new water, 

and such anomalous results are sometimes attributed to contributions from un-sampled end-members (e.g., von 

Freyberg et al., 2017).  In such cases, assumption #1 is clearly not met.   

2. The isotopic composition of precipitation can vary considerably within an event, both spatially and temporally, even 10 

in small catchments (e.g., McDonnell et al., 1990; McGuire et al., 2005; Fischer et al., 2017; von Freyberg et al., 

2017).  Likewise, the isotopic signature of the baseflow or groundwater end-member has been shown to vary in 

space and time during snowmelt and rainfall events (e.g., Hooper and Shoemaker, 1986; Rodhe, 1987; Bishop, 

1991; McDonnell et al., 1991).  In these cases, assumptions #2 and #3 are not met.  Various schemes have been 

proposed to address this spatial and temporal variability by weighting the isotopic compositions of individual 15 

samples, but the validity of these schemes typically rests on strong assumptions about the nature of the runoff 

generation process and the heterogeneity to be averaged over. 

3. When the difference between 𝐶୬ୣ୵ and 𝐶୭୪ୢ is not large compared to their uncertainties, Eq. (3) becomes unstable 

and the resulting hydrograph separations become unreliable.  This problem can be detected using Gaussian error 

propagation (Genereux, 1998), but Bansah and Ali (2017) report that less than 20% of the hydrograph separation 20 

studies they reviewed have used it.   

 

One can agree with Buttle (1994) that "despite frequent violations of some of its underlying assumptions, the isotopic 

hydrograph separation approach has proven to be sufficiently robust to be applied to the study of runoff generation in an 

increasing number of basins," at least as a characterization of the community's widespread acceptance of the technique.  25 

Nonetheless, there is clearly room for new and different ways to quantify stormflow generation.  In addition, weekly or even 

daily isotope measurements are now becoming available for many catchments, sometimes spanning periods of many years, 

and despite their many uses (particularly for calibrating hydrological models), there is an obvious need for new ways to 

extract hydrological insights from such time series. 

 30 

Here I propose a new method for using isotopes and other conservative tracers to quantify the origins of streamflow.  This 

method is based on statistical correlations among tracer fluctuations in streamflow and one or more candidate water sources, 

rather than mass balances.  As such, it exploits the temporal variability in candidate end-members, rather than requiring them 

to be constant.  It also does not require strict mass balance, and thus is relatively insensitive to the presence of unmeasured 
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end-members.  Because this method quantifies the average proportions of source waters in streamflow across an ensemble of 

events or time steps, it does not answer the same question that traditional hydrograph separation does (namely, how fractions 

of new and old water change over time during individual storm events).  Instead, it can answer new and different questions, 

such as how the average fractions of new and old water vary with stream discharge or precipitation intensity, antecedent 

moisture, etc.  The proposed method is designed to provide insights into stormflow generation from regularly sampled time 5 

series, even if those time series have gaps and even if they are sampled at frequencies much lower than the storm response 

timescale of the catchment.   

 

The purpose of this paper is to describe the method, document its mathematical foundations, and test it against a benchmark 

model, in which the method's results can be verified by age tracking.  Applications to real-world catchments will follow in 10 

future papers.  Because the proposed method is new and thus must be fully documented, several parts of the presentation 

(most notably Sects. 4.2-4.4 and Appendix B) necessarily contain strong doses of math.  The math can be skipped, or lightly 

skimmed, by those who only need a general sense of the analysis.  A table of symbols is provided at the end of the text. 

2 Estimating new water fractions by ensemble hydrograph separation 

Here I propose a new type of hydrograph separation based on correlations between tracer fluctuations in streamflow and in 15 

one or more end-members.  This new approach to hydrograph separation does not have the same goal as conventional 

hydrograph separation.  It does not estimate the contributions of end-members to streamflow for each time step (as in Eq. 3).  

Instead, it estimates the average end-member contributions to streamflow over an ensemble of time steps; hence its name, 

ensemble hydrograph separation.  The ensemble of time steps may be chosen to reflect different catchment conditions, and 

thus used to map out how those catchment conditions influence end-member contributions to streamflow.   20 

2.1 Basic equations 

I will first illustrate this approach with a simple example of a time-varying mixing model.  Let's assume that we have 

measured tracer concentrations in streamflow, and in at least one contributing end-member, over an ensemble of time 

intervals 𝑗.  The simplest possible mass balance for the water that makes up streamflow would be 

𝑄௝ ൌ 𝑄୬ୣ୵ೕ
൅ 𝑄୭୪ୢೕ

         ,   ሺ4ሻ 25 

where 𝑄୬ୣ୵ represents the water flux in streamflow 𝑄 that originates from recent precipitation (or, potentially, any other 

end-member in which tracers can be measured) during time interval 𝑗.  All other contributions to streamflow are lumped 

together as 𝑄୭୪ୢ.  Conservative mixing implies that 

𝑄௝ 𝐶୕ೕ
ൌ 𝑄୬ୣ୵ೕ

 𝐶୬ୣ୵ೕ
൅ 𝑄୭୪ୢೕ

 𝐶୭୪ୢೕ
        , ሺ5ሻ 
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where 𝐶୕ and 𝐶୬ୣ୵ are the tracer concentrations in the stream and the new water, and 𝐶୭୪ୢ is the tracer signature of all other 

sources that contribute to streamflow.  Combining (4) and (5), we directly obtain 

𝐶୕ೕ
ൌ 𝐹୬ୣ୵ೕ

 𝐶୬ୣ୵ೕ
൅ ቀ1 െ 𝐹୬ୣ୵ೕ

ቁ 𝐶୭୪ୢೕ
        , ሺ6ሻ 

where 𝐹୬ୣ୵ೕ
ൌ 𝑄୬ୣ୵ೕ

𝑄௝⁄  is the fractional contribution of 𝑄୬ୣ୵ to streamflow 𝑄.  Equation (6) can be rewritten as 

𝐶୕ೕ
െ 𝐶୭୪ୢೕ

ൌ 𝐹୬ୣ୵ೕ
ቀ𝐶୬ୣ୵ೕ

െ 𝐶୭୪ୢೕ
ቁ        , ሺ7ሻ 5 

which in turn could be rearranged as a conventional mixing model (Eq. 3), with the important difference that the new and old 

water concentrations are time-varying rather than constant.  If we represent the "old" water composition using the 

streamwater concentration during the previous time step, equation (7) becomes 

𝐶୕ೕ
െ 𝐶୕ೕషభ

ൌ 𝐹୬ୣ୵ೕ
ቀ𝐶୬ୣ୵ೕ

െ 𝐶୕ೕషభ
ቁ        , ሺ8ሻ 

The lagged concentration 𝐶୕ೕషభ
 serves as a reference level for measuring fluctuations in precipitation and streamflow tracer 10 

concentrations and the correlations between them.  Thus, it is not necessary that 𝐶୕ೕషభ
 consists entirely of "old water" as 

defined in conventional hydrograph separations (i.e., groundwater or baseflow water).  It is only necessary that 𝐶୕ೕషభ
 

contains no "new" water (that is, no precipitation that fell during time step 𝑗), and this condition is automatically met because  

𝐶୕ೕషభ
 is determined during the previous time step.  

 15 

The ensemble hydrograph separation approach is based on the observation that (8) is similar to the conventional linear 

regression equation,  

𝑦௝ ൌ 𝛽 𝑥௝ ൅ 𝛼 ൅ 𝜀௝     ,      𝑦௝ ൌ 𝐶୕ೕ
െ 𝐶୕ೕషభ

      ,      𝑥௝ ൌ 𝐶୬ୣ୵ೕ
െ 𝐶୕ೕషభ

    , ሺ9ሻ  

where the intercept 𝛼 and the error term 𝜀௝ can be viewed as subsuming any bias or random error introduced by measurement 

noise, evapoconcentration effects, and so forth.  The analogy between (9) and (8) suggests that it may be possible to estimate 20 

the average value of 𝐹୬ୣ୵ೕ
 from the regression slope of a scatterplot of the streamflow concentration 𝐶୕ೕ

 against the new 

water concentration 𝐶୬ୣ୵ೕ
, both expressed relative to the lagged streamflow concentration 𝐶୕ೕషభ

. 

 

However, astute readers will notice an important difference between (8) and (9): the regression slope 𝛽 is a constant in (9), 

whereas in (8), 𝐹୬ୣ୵ೕ
 varies from one time step to the next.  It is not obvious how an estimate of the (constant) slope 𝛽 will 25 

be related to the (non-constant) 𝐹୬ୣ୵ೕ  or whether this relationship could be affected by the other variables in Eq. (8).  The 

answer to this question can be derived analytically and tested using numerical experiments (see Appendix A).  As explained 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-429
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 27 August 2018
c© Author(s) 2018. CC BY 4.0 License.



6 
 

in Appendix A, the regression slope in a scatterplot of 𝐶୕ೕ
െ 𝐶୕ೕషభ

 versus 𝐶୬ୣ୵ೕ
െ 𝐶୕ೕషభ

 (Fig. A1d) will closely approximate 

the average value of 𝐹୬ୣ୵ೕ
 (averaged over the ensemble of time steps 𝑗), under rather general conditions: 

1. The slope of the relationship between 𝐹୬ୣ୵ೕ
 and 𝐶୬ୣ୵ೕ

െ 𝐶୕ೕషభ
, times the mean of 𝐶୬ୣ୵ೕ

െ 𝐶୕ೕషభ
, should be small.  

This will usually be true for conservative tracers, for two reasons.  First, because all streamflow is ultimately 

derived from new water, mass conservation implies that the mean of 𝐶୬ୣ୵ೕ
െ 𝐶୕ೕషభ

 should be nearly zero.  Second, 5 

unless there is a correlation between storm size and tracer concentration (not just between storm size and tracer 

variance), the slope of the relationship between 𝐹୬ୣ୵ೕ
 and 𝐶୬ୣ୵ೕ

െ 𝐶୕ೕషభ
 should also be small. Thus the product of 

these two small terms should be small. 

2. Points with large leverage in the scatterplot (i.e., with 𝐶୬ୣ୵ೕ
െ 𝐶୕ೕషభ

values far above and below the mean) should 

not be systematically associated with either high or low values of 𝐹୬ୣ୵ೕ
.  Such a systematic association is unlikely 10 

unless large storms (which are likely to generate large new water fractions) are also associated with both very high 

and very low tracer concentrations. 

3. As expected for typical sampling and measurement errors, the error term 𝜀௝ should not be strongly correlated with 

𝐶୬ୣ୵ೕ
െ 𝐶୕ೕషభ

. 

Thus the analysis in Appendix A shows that an ensemble average estimate of Fnew should, under typical conditions, be 15 

obtainable from the regression slope 𝛽መ  of a plot of 𝑥௝ ൌ 𝐶୕ೕ
െ 𝐶୕ೕషభ

 versus 𝑦௝ ൌ 𝐶୬ୣ୵ೕ
െ 𝐶୕ೕషభ

 (i.e., Eq. 9; Fig. A1d).  

 

The least-squares solution of Eq. (9) can be expressed in several equivalent ways.  For consistency with the analysis that will 

be developed in Sect. 4 below, I will use the following formulation, which is mathematically equivalent to those more 

commonly seen: 20 

𝐹௡௘௪ ൌ 𝛽መ ൌ
cov൫𝑦௝,  𝑥௝൯

var൫𝑥௝൯
     , ሺ10ሻ 

where 𝛽መ  is the least-squares estimate of 𝛽, and 𝐹୬ୣ୵ is the average of the 𝐹୬ୣ୵ೕ
 over the ensemble of points 𝑗.  Values of 𝑦௝ 

that lack a corresponding 𝑥௝, or vice versa (due to sampling gaps, for example, or lack of precipitation), are omitted.   

2.2 Uncertainties 

The uncertainty in 𝐹୬ୣ୵, expressed as a standard error, can be written as 25 

s. e. ሺ𝐹௡௘௪ሻ ൌ s. e. ൫𝛽መ൯ ൌ
𝑠௬

𝑠௫

ඥ1 െ 𝑟௫௬
ଶ

ඥ𝑛ୣ୤୤ െ 2
ൌ

𝛽መ

ඥ𝑛ୣ୤୤ െ 2
ඨ

1
𝑟௫௬

ଶ െ 1       , ሺ11ሻ 
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where 𝑠௫ and 𝑠௬ are the standard deviations of 𝑥 and 𝑦, 𝑟௫௬ is the correlation between them, and 𝑛ୣ୤୤ is the effective sample 

size, which can be adjusted to account for serial correlation in the residuals (Bayley and Hammersley, 1946; Brooks and 

Carruthers, 1953; Matalas and Langbein, 1962): 

𝑛ୣ୤୤ ൎ  𝑛୶୷ ቈ
1 ൅ 𝑟ୱୡ

1 െ 𝑟ୱୡ
 െ 

2
𝑛୶୷

 
𝑟ୱୡ ሺ1 െ 𝑟ୱୡ

௡ሻ
ሺ1 െ 𝑟ୱୡሻଶ ቉

ିଵ

      , ሺ12ሻ 

where 𝑛୶୷ is the number of pairs of 𝑥௝ and 𝑦௝, and 𝑟ୱୡ is the lag-1 serial correlation in the regression residuals 𝑦௝ െ 𝛽መ 𝑥௝ െ 𝛼.  5 

For large 𝑛୶୷,  Eq. (12) can be approximated as (Mitchell et al., 1966) 

𝑛ୣ୤୤ ൎ  𝑛୶୷  ൤
1 െ 𝑟ୱୡ

1 ൅ 𝑟ୱୡ
൨      , ሺ13ሻ 

where for all positive 𝑟ୱୡ, Eq. (13) is conservative (it underestimates 𝑛ୣ୤୤ from Eq. 12), and for 𝑟ୱୡ ൌ 0.5, and 𝑛୶୷ ൐ 50, for 

example, Eqs. (12) and (13) differ by less than 3%.  If the scatterplot of 𝑦௝ ൌ 𝐶୕ೕ
െ 𝐶୕ೕషభ

 versus 𝑥௝ ൌ 𝐶୬ୣ୵ೕ
െ 𝐶୕ೕషభ

 

contains outliers, a robust fitting technique such as Iteratively Reweighted Least Squares (IRLS) may yield more reliable 10 

estimates of Fnew than ordinary least squares regression.  However, the analyses presented here are based on outlier-free 

synthetic data generated from a benchmark model (see Sect. 3), so in this paper I have used conventional least squares (Eqs. 

10-11) instead. 

2.3 New water fraction for time steps with precipitation 

The meaning of the new water fraction 𝐹୬ୣ୵ depends on how the new water and streamwater are sampled.  For example, if 15 

the new water concentrations 𝐶୬ୣ୵ are measured in daily bulk precipitation samples and the stream water concentrations 𝐶୕ 

are measured in instantaneous grab samples taken at the end of each 24-hour precipitation sampling period, then 𝐹୬ୣ୵ will 

estimate the average fraction of streamflow that is composed of precipitation from the preceding 24 hours.  If the sampling 

interval is weekly instead of daily, then 𝐹୬ୣ୵ will estimate the average fraction of streamflow that consists of precipitation 

from the preceding week.  This will generally be larger than the 𝐹୬ୣ୵ calculated from daily sampling, for the obvious reason 20 

that on average more precipitation will have fallen during the previous week than during the previous 24 hours, so this 

precipitation will comprise a larger fraction of streamflow.  Also, if the weekly streamflow concentrations are measured in 

integrated composite samples rather than instantaneous grab samples, then 𝐹୬ୣ୵ will estimate the fraction of same-week 

precipitation in average weekly streamflow rather than in the instantaneous end-of-week streamflow.  The general rule is: 

𝐹୬ୣ୵ should generally estimate whatever new water has been sampled as 𝐶୬ୣ୵, expressed as a fraction of whatever 25 

streamflow has been sampled as 𝐶୕. 
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In all of these cases, 𝛽መ  from Eq. (10) estimates the average fraction of new water in streamflow during time steps with 

precipitation, because time steps without precipitation lack a "new water" tracer concentration 𝐶୬ୣ୵ೕ
 and thus must be left 

out from the regression in Eq. (9). Using Qp to denote discharge during periods with precipitation, we can represent this 

"event new water fraction" as 𝐹୕୮
୬ୣ୵. 

2.4 New water fraction for all time steps 5 

Periods without precipitation will inherently lack same-day (or same-week) precipitation in streamflow.  Thus we can 

calculate the average fraction of new water in streamflow during all time steps, including those without precipitation, as 

𝐹୕
୬ୣ୵ ൌ  𝐹୕୮

୬ୣ୵
𝑛୮

𝑛
ൌ  𝛽መ  

𝑛୮

𝑛
       , ሺ14ሻ 

where 𝐹୕
୬ୣ୵ is the new water fraction of all discharge, 𝐹୕୮

୬ୣ୵ is the new water fraction of discharge during time steps with 

precipitation (as estimated by the regression slope 𝛽መ , from Eq. 10), and 𝑛୮/𝑛 is the fraction of time steps that have 10 

precipitation.  The ratio 𝑛୮/𝑛 in Equation (14) accounts for the fact that during time steps without rain, the new-water 

contribution to stream flow is inherently zero.  The same ratio is also used to estimate the uncertainty in 𝐹୕
୬ୣ୵:  

s. e. ൫ 𝐹୕
୬ୣ୵൯ ൌ

𝑛୮

𝑛
  s. e. ൫𝛽መ൯ ൌ  

𝐹୕
୬ୣ୵

ඥ𝑛ୣ୤୤ െ 2
ඨ

1
𝑟௫௬

ଶ െ 1       . ሺ15ሻ 

2.5 Volume-weighted new water fractions 

The regression derived through Eqs. (4)-(9) gives each time interval 𝑗 equal weight.  As a result, 𝛽መ  from Eq. (10) can be 15 

interpreted as estimating the time-weighted average new water fraction.  To estimate the volume-weighted new water 

fraction instead, one simply weights the regression equation by discharge.  To do so, one weights 𝑥௝ and 𝑦௝ in Eqs. (9)-(10) 

by ඥ𝑄௝ :  

𝑦௝ ൌ 𝛽∗ 𝑥௝ ൅ 𝛼 ൅ 𝜀௝     ,      𝑦௝ ൌ ට𝑄௝  ቀ𝐶୕ೕ
െ 𝐶୕ೕషభ

ቁ      ,      𝑥௝ ൌ ට𝑄௝  ቀ𝐶୬ୣ୵ೕ
െ 𝐶୕ೕషభ

ቁ      . ሺ16ሻ 

Weighting 𝑥௝ and 𝑦௝ by ඥ𝑄௝ has the effect of weighting the residual sum of squares (which is minimized in least-squares 20 

regression) by 𝑄௝ (equivalently, it also weights the covariance and variance in Eq. 10 by 𝑄௝).  We can denote the resulting 

regression slope 𝛽መ∗ as 𝐹୕୮
୬ୣ୵
∗ , the volume-weighted new water fraction of time intervals with precipitation, where 

(following von Freyberg et al., manuscript in review) the asterisk indicates volume-weighting.   
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If, instead, one wants to estimate the new water fraction in all discharge (during periods with and without precipitation), 

following the approach in Sect. 2.4 one simply rescales this regression slope by the sum of discharge during time steps with 

precipitation, divided by total discharge: 

𝐹୕
୬ୣ୵
∗ ൌ  𝐹୕୮

୬ୣ୵
∗  

𝑄ത୮

𝑄ത
 
𝑛୮

𝑛
ൌ  𝛽መ∗  

𝑄ത୮

𝑄ത
 
𝑛୮

𝑛
     , ሺ17ሻ 

where 𝐹୕
୬ୣ୵
∗  is the volume-weighted new water fraction of all discharge, 𝐹୕୮

୬ୣ୵
∗  is the fitted regression slope 𝛽መ  from Eq. 5 

(16), 𝑄ത୮ is the average discharge for time steps with precipitation, 𝑄ത is the average discharge for all time steps (including 

during rainless periods), and 𝑛୮/𝑛 is the fraction of time steps with rain.  

 

Because the volume-weighting will typically be uneven, the effective sample size will typically be smaller than 𝑛; for 

example, in the extreme case that one sample had nearly all the weight and the other samples had nearly none, the effective 10 

sample size would be roughly 1 instead of 𝑛୶୷.  Thus, uncertainty estimates for these volume-weighted new water fractions 

should take account of the unevenness of the weighting.  One can account for uneven weighting by calculating the effective 

sample size, following Kish (1995), as: 

𝑛ୣ୤୤ ൌ  
൫∑ 𝑄௝ሺ௫௬ሻ൯

ଶ

∑൫𝑄௝ሺ௫௬ሻ
ଶ ൯

      , ሺ18ሻ 

where the notation 𝑄௝ሺ௫௬ሻ indicates discharge at time steps 𝑗 for which pairs of 𝑥௝ and 𝑦௝ exist.  Equation (18) evaluates to 15 

𝑛୶୷ (as it should) in the case of evenly weighted samples, and declines toward 1 (as it should) if a single sample has much 

greater weight than the others.  To obtain an estimate of the effective sample size that accounts for both serial correlation and 

uneven weighting, one can multiply the expressions in Eqs. (18) and (12) or (13).  Combining these approaches, one can 

estimate the standard error of 𝐹୕
୬ୣ୵
∗  as  

s. e. ൫ 𝐹୕
୬ୣ୵
∗ ൯ ൌ

∑ 𝑄୮

∑ 𝑄
 s. e. ൫𝛽መ∗൯ ൌ  

𝐹୕
୬ୣ୵
∗  

ඥ𝑛ୣ୤୤ െ 2
ඨ

1
𝑟௫௬

ଶ െ 1    ൌ     ,       𝑛ୣ୤୤ ൌ  
൫∑ 𝑄௝ሺ௫௬ሻ൯

ଶ

∑൫𝑄௝ሺ௫௬ሻ
ଶ ൯

  ൤
1 െ 𝑟ୱୡ

1 ൅ 𝑟ୱୡ
൨      , ሺ19ሻ 20 

where 𝛽መ∗ is the fitted regression slope from Eq. (16).   

2.6 New water fraction of precipitation 

One can also express the flux of new water as a fraction of precipitation rather than discharge.  Recently, von Freyberg et al. 

(manuscript in review) have noted, in the context of conventional hydrograph separation, that expressing event water as a 

proportion of precipitation rather than discharge may lead to different insights into catchment storm response.  Analogously, 25 
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within the ensemble hydrograph separation framework we can estimate the "new water fraction of precipitation", denoted 
PFnew, as 

𝐹୔
୬ୣ୵ ൌ  𝐹୕୮

୬ୣ୵
𝑄ത୮

𝑃ത୮
        , ሺ20ሻ 

where QpFnew is the new water fraction of discharge during time steps with precipitation (as estimated by the regression slope 

𝛽መ , from Eq. 10), and 𝑄ത୮ and 𝑃ത୮ are the average discharge and precipitation during these time steps.  An alternative strategy is 5 

to re-cast Eq. (8) by multiplying both sides by 𝑄௝ 𝑃௝⁄  , such that the 𝐹୬ୣ୵ on the right-hand-side now expresses new water as 

a fraction of precipitation, 

𝑄௝

𝑃௝
ቀ𝐶୕ೕ

െ 𝐶୕ೕషభ
ቁ ൌ ቆ

𝑄௝

𝑃௝
 𝐹୬ୣ୵ೕ

ቇ ቀ𝐶୬ୣ୵ೕ
െ 𝐶୕ೕషభ

ቁ ൌ   𝐹୬ୣ୵ೕ
୔   ቀ𝐶୬ୣ୵ೕ

െ 𝐶୕ೕషభ
ቁ      . ሺ21ሻ 

This yields a linear regression similar to Eq. (9), but with 𝑦௝ re-scaled, 

𝑦௝ ൌ 𝛽 𝑥௝ ൅ 𝛼 ൅ 𝜀௝     ,      𝑦௝ ൌ
𝑄௝

𝑃௝
ቀ𝐶୕ೕ

െ 𝐶୕ೕషభ
ቁ      ,      𝑥௝ ൌ ቀ𝐶୬ୣ୵ೕ

െ 𝐶୕ೕషభ
ቁ      , ሺ22ሻ 10 

where the regression slope 𝛽መ , which can be calculated from Eq. (10) with the new values 𝑦௝, should approximate the average 

new water fraction of precipitation 𝐹୔
୬ୣ୵.   

 

The approaches represented by Eqs. (20) and (21)-(22) are not equivalent.  Equation (20) is based on the ad hoc assumption 

– which is verified by the benchmark tests in Sects. 3.3-3.5 – that the average of 𝐹୔
୬ୣ୵ೕ

 (new water in streamflow, as a 15 

fraction of precipitation) should approximate the average 𝐹୬ୣ୵ೕ
 (new water in streamflow, as a fraction of discharge), 

rescaled by the ratio of average discharge 𝑄୮ೕ
 to average precipitation 𝑃୮ೕ

.  This is only an approximation, of course; it relies 

on the approximation that appears in the middle of the following chain of expressions,  

𝐹୔
୬ୣ୵ ൌ  〈 𝐹୔

୬ୣ୵ೕ
〉୮ ൌ 〈𝐹୬ୣ୵ೕ

𝑄௝

𝑃௝
〉୮ ൎ 〈𝐹୬ୣ୵ೕ

〉୮  
〈𝑄௝〉୮

〈𝑃௝〉୮
ൌ 𝐹୕୮

୬ୣ୵
𝑄ത୮

𝑃ത୮
        , ሺ23ሻ 

where the "p" subscripts on the angled brackets indicate averages taken only over time intervals with precipitation.  Whether 20 

this is a good approximation will depend on how 𝑃௝, 𝑄௝, and 𝐹୬ୣ୵ೕ
 are distributed, and how they are correlated with one 

another.  By contrast, the approach outlined in Eqs. (21)-(22) is based on the exact substitution of 𝐹୬ୣ୵ೕ
𝑄௝ 𝑃௝⁄  for 𝐹୔

୬ୣ୵ೕ
, 

which requires no approximations.  The same substitution also leads to two other algebraically equivalent formulations of 

Eq. (21), 
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ቀ𝐶୕ೕ
െ 𝐶୕ೕషభ

ቁ ൌ   𝐹୬ୣ୵ೕ
୔  

𝑃௝

𝑄௝
 ቀ𝐶୬ୣ୵ೕ

െ 𝐶୕ೕషభ
ቁ       ሺ24ሻ 

and  

𝑄௝  ቀ𝐶୕ೕ
െ 𝐶୕ೕషభ

ቁ ൌ   𝐹୬ୣ୵ೕ
୔  𝑃௝ ቀ𝐶୬ୣ୵ೕ

െ 𝐶୕ೕషభ
ቁ      . ሺ25ሻ 

But although Eqs. (21), (24), and (25) are algebraically equivalent, their statistical behavior is different when they are used 

as regression equations to estimate the average value of 𝐹୔
୬ୣ୵.  The regression estimate of 𝐹୔

୬ୣ୵ depends on the 5 

distributions of 𝑃௝, 𝑄௝, and 𝐹୬ୣ୵ೕ
 and their correlations with each other, and benchmark testing shows that Eq. (21) yields 

reasonably accurate estimates of 𝐹୔
୬ୣ୵, but Eqs. (24) and (25) do not.  One can also note that the approach outlined in Eq. 

(20) – the other approach that is successful in benchmark tests – represents an ad-hoc time averaging of 𝑃௝ and 𝑄௝ in Eq. 

(21), because it is formally equivalent to  

𝑄ത୮

𝑃ത୮
 ቀ𝐶୕ೕ

െ 𝐶୕ೕషభ
ቁ ൌ   𝐹୬ୣ୵ೕ

୔  ቀ𝐶୬ୣ୵ೕ
െ 𝐶୕ೕషభ

ቁ       . ሺ26ሻ 10 

 

The precise interpretation of 𝐹୔
୬ୣ୵ depends on how streamflow is sampled.  If the streamflow tracer concentrations come 

from integrated composite samples over each day or week, then 𝐹୔
୬ୣ୵ can be interpreted as the fraction of precipitation that 

becomes same-day or same-week streamflow.  If the streamflow tracer concentrations instead come from instantaneous grab 

samples (as is more typical), then 𝐹୔
୬ୣ୵ can be interpreted as the rate of new water discharge at that time (typically the end 15 

of the precipitation sampling interval), as a fraction of the average rate of precipitation.  Adapting terminology from the 

literature of transit time distributions, we can call 𝐹୔
୬ୣ୵ the "forward" new water fraction because it represents the fraction 

of precipitation that will exit the catchment soon (during the same time step), and call 𝐹୕୮
୬ୣ୵ and 𝐹୕

୬ୣ୵ "backward" new 

water fractions because they represent the fraction of streamflow that entered the catchment a short time ago.  Although the 

"backward" new water fraction of discharge comes in two forms ( 𝐹୕୮
୬ୣ୵ or 𝐹୕

୬ୣ୵), depending on whether one includes or 20 

excludes rainless periods, the "forward" new water fraction 𝐹୔
୬ୣ୵ can only be defined for time steps with precipitation 

(otherwise 𝐹୔
୬ୣ୵ represents the ratio between zero new water and zero precipitation, and thus is undefined). 

2.7 Volume-weighted new water fraction of precipitation 

The new water fraction of precipitation as estimated by Eq. (20) is a time-weighted average, in which each day with 

precipitation counts equally.  One may also want to estimate the volume-weighted new water fraction of precipitation, which 25 

we can denote as 𝐹୔
୬ୣ୵
∗ , in keeping with the naming conventions used above.  We can estimate 𝐹୔

୬ୣ୵
∗  at least two different 

ways.  The first method involves recognizing that we are seeking the ratio between the total volume of "new water" – that is, 
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same-day precipitation reaching streamflow – and the total volume of precipitation.  This will equal the volume-weighted 

new water fraction of discharge (total new water divided by total discharge, which has already been derived in Sect. 2.5 

above), rescaled by the ratio of total discharge to total precipitation: 

𝐹୔
୬ୣ୵
∗  ൌ 𝐹୕

୬ୣ୵
∗  

𝑄ത

𝑃ത
 ൌ  𝐹୕୮

୬ୣ୵
∗  

𝑄ത୮

𝑃ത
 
𝑛୮

𝑛
      . ሺ27ሻ 

where 𝑄ത and 𝑃ത are the average rates of discharge and precipitation (averaged over all time steps), 𝑄ത୮ is the average discharge 5 

on days with rain, and 𝑛୮/𝑛 is the fraction of time steps with rain.  An alternative strategy, which yields nearly equivalent 

results in benchmark tests, precipitation-weights the regression for 𝐹୔
୬ୣ୵ (Eq. 21) by multiplying both sides by ඥ𝑃௝ .  This 

yields a linear regression of the form of Eq. (9), but with 𝑥௝ and 𝑦௝ re-scaled: 

𝑦௝ ൌ 𝛽∗ 𝑥௝ ൅ 𝛼 ൅ 𝜀௝     ,      𝑦௝ ൌ
𝑄௝

ඥ𝑃௝
ቀ𝐶୕ೕ

െ 𝐶୕ೕషభ
ቁ      ,      𝑥௝ ൌ ඥ𝑃௝  ቀ𝐶୬ୣ୵ೕ

െ 𝐶୕ೕషభ
ቁ      , ሺ28ሻ 

where the regression slope 𝛽መ∗ should approximate the volume-weighted average new water fraction of precipitation 𝐹୔
୬ୣ୵
∗ . 10 

3 Testing ensemble hydrograph separation with a simple non-stationary benchmark model 

3.1 Benchmark model 

To test the methods outlined in Sect. 2 above, I use synthetic data generated by a simple two-box lumped-parameter 

catchment model.  This model is documented in greater detail in Kirchner (2016b), and will be described only briefly here.  

As shown in Fig. 1a, drainage (𝐿) from the upper box is a power function of the storage (𝑆୳) within the box; a fraction (𝜂) of 15 

this drainage flows directly to streamflow, and the complementary fraction 1-𝜂 recharges the lower box, which drains to 

streamflow at a rate 𝑄௟ that is a power function of its storage 𝑆௟.  The model's behavior is determined by five parameters: the 

equilibrium storage levels 𝑆୳,୰ୣ୤ and 𝑆௟,୰ୣ୤ in the upper and lower boxes, their drainage exponents 𝑏୳ and 𝑏௟, and the drainage 

partitioning coefficient 𝜂.  For simplicity, evapotranspiration is not simulated (alternatively, the precipitation inputs can be 

considered to be effective precipitation, net of evapotranspiration losses).  Discharge from both boxes is assumed to be non-20 

age-selective, meaning that discharge is taken proportionally from each part of the age distribution.  Tracer concentrations 

and mean ages are tracked under the assumption that the boxes are each well-mixed but also distinct from one another, so 

their tracer concentrations and water ages will differ.  Water ages and tracer concentrations are also tracked in daily age bins 

up to an age of 70 days, and mean water ages are tracked in both the upper and lower boxes.   

 25 

The model operates at a daily time step, with the storage evolution of the lower box calculated by a weighted combination of 

the partly implicit trapezoidal method (for greater accuracy) and the fully implicit backward Euler method (for guaranteed 

stability).  Unlike in Kirchner (2016b), here the storage evolution of the upper box is calculated by forward Euler integration 
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at 50 sub-daily time steps of 0.02 days (roughly 30 minutes) each.  At this time step, forward Euler integration is stable 

across the entire parameter ranges used in this paper, and is more accurate than daily time steps of trapezoidal or backward 

Euler integration (which are still adequate for the lower box, where storage volumes change more slowly).  Following 

Kirchner (2016b), the model is driven with three different real-world daily rainfall time series, representing a range of 

climatic regimes: a humid maritime climate with frequent rainfall and moderate seasonality (Plynlimon, Wales; Köppen 5 

climate zone Cfb), a Mediterranean climate marked by wet winters and very dry summers (Smith River, California, USA; 

Köppen climate zone Csb), and a humid temperate climate with very little seasonal variation in average rainfall (Broad 

River, Georgia, USA; Köppen climate zone Cfa).  Synthetic daily precipitation tracer (deuterium) concentrations are 

generated randomly from a normal distribution with a standard deviation of 20 per mil and a lag-one serial correlation of 0.5, 

superimposed on a seasonal cycle with an amplitude of 10 per mil.  The model is initialized at the equilibrium storage levels 10 

𝑆୳,୰ୣ୤ and 𝑆௟,୰ୣ୤, with age distributions and tracer concentrations corresponding to steady-state equilibrium values at the mean 

input fluxes of water and tracer.  The model is then run for a one-year spin-up period; the results reported here are from five-

year simulations following this spin-up period.  

 

For the simulations shown here, the drainage exponents 𝑏୳ and 𝑏௟ are randomly chosen from uniform distributions of 15 

logarithms spanning the range of 1-20, and the partitioning coefficient  is randomly chosen from a uniform distribution 

ranging from 0.1 to 0.9.  The reference storage levels 𝑆୳,୰ୣ୤ and 𝑆௟,୰ୣ୤ are randomly chosen from a uniform distribution of 

logarithms spanning the ranges of 50-200 mm and 200-2000 mm, respectively.  These parameter distributions encompass a 

wide range of possible behaviors, including both strong and damped response to rainfall inputs.   

 20 

I illustrate the behavior of the model using two particular parameter sets, one that gives damped response to precipitation 

(𝑆୳,୰ୣ୤ =100 mm, 𝑆௟,୰ୣ୤ =1000 mm, 𝑏୳=10, 𝑏௟=3, and =0.3), and one that gives a more rapid response (the same parameters, 

except =0.8).  These parameter values are not preferable to others in any particular way; they simply generate strongly 

contrasting streamflow and tracer responses that look plausible as examples of small catchment behavior.  They can be 

interpreted as the behavior of two contrasting model catchments, which for simplicity (but with some linguistic imprecision) 25 

I will call the "damped catchment" and the "flashy catchment", as shorthand for "model catchment with parameters giving 

more damped response" and "model catchment with parameters giving more flashy response". 

 

The model also simulates the sampling process and its associated errors.  I assume that tracer concentrations cannot be 

measured when precipitation rates are below a threshold of 𝑃୲୦୰ୣୱ୦୭୪ୢ=1 mm/day, such that tracer samples below this 30 

threshold will be missing.  I further assume that 5% of all other precipitation tracer measurements, and 5% of all streamflow 

tracer measurements, will be lost at random times due to sampling or analysis failures.  I have also added Gaussian random 

errors (with a standard deviation of 1 per mil) to all tracer measurements.   
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Figure 1.  Schematic diagram of the benchmark model (a), with two-year excerpts from illustrative simulations of its behavior (b-
i).  Model parameters for simulations of damped catchment response (left panels) are Su,ref = 100 mm, Sl,ref = 1000 mm, bu = 10, and 
bl = 3, and η = 0.3.  For simulations of flashy catchment response (right panels), all but one of the parameters are the same; only η 5 
is changed to 0.8 and a different random realization of precipitation isotopes is used.  The same daily precipitation time series 
(Smith River, Mediterranean climate) is used in both cases.  The isotopic composition of streamflow exhibits complex dynamics 
over multiple time scales (blue line in panels d and e), as dominance shifts between the upper and lower boxes (green and orange 
lines, respectively, in panels d and e).  Like the discharge and its isotopic composition, the fraction of discharge comprised of same-
day precipitation (the new water fraction of discharge, QFnew, panels f and g) exhibits complex nonstationary dynamics.  10 
Nonetheless, its long-term average (dashed blue line) is well predicted by ensemble hydrograph separation (solid blue line); the 
same is true of the discharge-weighted average (dashed/solid red lines).  The fraction of precipitation appearing in same-day 
discharge (the forward new water fraction, PFnew, panels h and i) is somewhat less variable, but both its average and precipitation-
weighted average are also well predicted by ensemble hydrograph separation (solid/dashed blue and red lines).  In several cases 
the dashed and solid lines cannot be distinguished because they overlap. 15 

3.2 Benchmark model behavior 

Figure 1b-i shows two years of simulated daily behavior driven by the Smith River daily precipitation record applied to the 

damped and flashy catchment parameter sets.  The simulated stream discharge responds promptly to rainfall inputs, and 

unsurprisingly the discharge response is larger in the flashy catchment (Fig. 1b-c).  The streamflow isotopic response is 

strongly damped in both catchments, with isotope ratios between events returning to a relatively stable baseline value 20 
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composed mostly of discharge from the lower box (Fig. 1d-e).  Like the stream discharge and the isotope tracer time series, 

the instantaneous new water fractions (determined by age tracking within the model) also exhibit complex nonstationary 

dynamics (Fig. 1f-i).  Despite the complexity of the modeled time-series behavior, ensemble hydrograph separation (Eqs. 14, 

17, 20, and 27) accurately predicts the averages of these new water fractions, both unweighted and time-weighted, as can be 

seen by comparing the dashed and solid lines (which sometimes overlap) in Fig. 1f-i. 5 

 

It should be emphasized that the ensemble hydrograph separation and the benchmark model are completely independent of 

one another.  The ensemble hydrograph separation does not know (or assume) anything about the internal workings of the 

benchmark model; it knows only the input and output water fluxes and their isotope signatures.  This is crucial for it to work 

in the real world, where any particular assumptions about the processes driving runoff could potentially be violated.  10 

Likewise, the benchmark model is not designed to conform to the assumptions underlying the ensemble hydrograph 

separation method.  It would be relatively trivial to model a tracer time series assuming that "new water" constituted a fixed 

fraction of discharge, and then demonstrate that this fraction can be retrieved from the tracer behavior.  What Fig. 1 

demonstrates is much less obvious, and more important: that even when the new water fraction is highly dynamic and 

nonstationary, an appropriate analysis of tracer behavior can accurately estimate its mean. 15 

3.3 Benchmark tests: random parameter sets 

This result holds not just for the two parameter sets shown in Fig. 1, but throughout the parameter ranges that are tested in 

the benchmark model.  The scatterplots shown in Fig. 2 show new water fractions estimated by ensemble hydrograph 

separation, compared to the true average new water fractions determined by age tracking in the benchmark model, for 1000 

random parameter sets spanning the parameter ranges described in Sect. 3.1.  Figure 2 shows that ensemble hydrograph 20 

separation yields reasonably accurate estimates of average event new water fractions (Fig. 2a, b), new water fractions of 

discharge (Fig. 2c) and precipitation (Fig. 2d), and volume-weighted new water fractions (Fig. 2e, f).  Estimates derived 

from single years of data (Fig. 2b) understandably exhibit greater scatter than those derived from five years of data (Fig. 2a), 

but in all of the plots shown in Fig. 2 there is no evidence of significant bias (the data clouds cluster around the 1:1 lines).  

The scatter of the points around the 1:1 line generally agrees with the standard errors estimated from Eqs. 11, 15 and 19, 25 

suggesting that these uncertainty estimates are also reliable. 
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Figure 2.  New water fractions predicted from tracer dynamics using ensemble hydrograph separation, compared to averages of 
time-varying new water fractions determined from age tracking in the benchmark model.  Diagonal lines show perfect agreement.  
Each scatterplot shows 1000 points, each of which represents an individual catchment, with its own individual random set of 
model parameters (i.e., catchment characteristics), randomly generated precipitation tracer time series, and random set of 5 
measurement errors and missing values (see Sect. 3.1).  The daily precipitation amounts are the same (Smith River time series; 
Mediterranean climate) in each case. The "event new water fraction" (panels a and b) is the average fraction of new (same-day) 
water in streamflow during time steps with precipitation, as described in Sect. 2.3.  Panel (a) shows event new water fractions 
estimated from five years of simulated tracer data; panel (b) shows the same quantity estimated from single years (each year is 
denoted by a different color).  Averaging over the five years reduces both the range and the scatter, compared to the single-year 10 
estimates.  The new water fraction of discharge (panel c) is the fraction of same-day precipitation in streamflow, averaged over all 
time steps including rainless periods (Eq. 14, Sect. 2.4); its flow-weighted counterpart (panel e) is calculated using Eqs. (16)-(17) of 
Sect. 2.5.  The "forward" new water fraction (the fraction of precipitation that becomes same-day streamflow; panel d) is 
calculated using Eq. (20), and its precipitation-weighted counterpart (panel f) is calculated using Eq. (28).  In all cases there is little 
evidence of bias, and the scatter around the 1:1 line is relatively small. 15 
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Mean transit times have often been estimated in the catchment hydrology literature, often under the assumption that they 

should also describe catchment transport and mixing on other time scales as well.  This naturally leads to the question, in the 

context of the present study, of whether there is a systematic relationship between mean transit times and new water 

fractions, such that they could potentially be predicted from one another.  The benchmark model allows a direct test of this 

conjecture, because it tracks mean water ages as well as new water fractions.  Figure 3a shows that, across the 1000 random 5 

parameter sets from Fig. 2, the relationship between new water fractions and mean transit times is a nearly perfect shotgun 

blast: mean transit times vary from about 40 to 400 days and new water fractions vary from nearly zero to nearly 0.1, with 

almost no correlation between them.  Both of these quantities are estimated from age tracking in the benchmark model, so 

their lack of any systematic relationship does not arise from difficulties in estimating either of them from tracer data.  It 

instead arises because the upper tails of transit time distributions (reflecting the amounts of streamflow with very old ages) 10 

exert strong influence on mean transit times, but have no effect on new water fractions (reflecting same-day streamflow).   

 

I have recently proposed the "young water fraction", the fraction of streamflow younger than about 2.3 months, as a more 

robust metric of water age than the mean transit time (Kirchner, 2016a).  Fig. 3b shows that, like the mean transit time, the 

young water fraction is also a poor predictor of the new water fraction, beyond the obvious constraint that new water (൑1 15 

day old) must be a small fraction of "young" water (൑69 days old).  The new water fraction will only be correlated with the 

young water fraction or mean transit time if the shape of the underlying transit time distribution is held constant, which is not 

the case for the 1000 random parameter sets considered here, and is unlikely to be true in real-world catchments either. 

 

 20 

Figure 3.  Average new water fractions (same-day precipitation in streamflow) for the 1000 simulated catchments (i.e., 1000 model 
parameter sets) shown in Fig. 2, compared to the catchment mean transit time and the young water fraction 𝑭𝐲𝐰 (the fraction of 
streamflow younger than 2.3 months).  All values plotted here are determined from age tracking within the benchmark model, and 
thus are true values, without any errors associated with estimating these quantities from tracer data.  Neither mean transit time 
nor the young water fraction can reliably predict the fraction of new water in streamflow. 25 
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3.4 Benchmark tests: weekly tracer sampling 

Many long-term water isotope time series have been sampled at weekly intervals.  Can new water fractions be estimated 

reliably from such sparsely sampled records?  To find out, I aggregated the benchmark model's daily time series to weekly 

intervals, volume-weighting the isotopic composition of precipitation to simulate the effects of weekly bulk precipitation 

sampling, and sub-sampling streamflow isotopes every seventh day to simulate weekly grab sampling.  I then performed 5 

ensemble hydrograph separation on the aggregated weekly data, using the methods presented in Sect. 2.   

 

 

Figure 4.  Illustrative simulations of weekly water fluxes, deuterium concentrations, and new water fractions.  The benchmark 
model, precipitation forcing, and parameter values are identical to those in Fig. 1.  Although the isotope tracer concentrations and 10 
new water fractions exhibit complex nonstationary dynamics, ensemble hydrograph separation yields reasonable estimates of the 
average "backward" and "forward" weekly new water fractions, as shown in panels (e-f) and (g-h), respectively.  Panels (a-b) 
show weekly average rates of precipitation and discharge.  Panels (c-d) show the weekly volume-weighted isotopic composition of 
precipitation (mimicking what would be collected in a weekly rain sample), and the instantaneous composition of discharge at the 
end of each week (mimicking what would be collected in a weekly grab sample).  Panels (e-f) show the fraction of discharge that is 15 
composed of same-week precipitation (the weekly new water fraction; yellow lines), as determined from model age tracking, and 
its long-term average (dashed blue line), compared to the new water fraction predicted by ensemble hydrograph separation (solid 
blue line) from the weekly samples shown in panel (b).  Panels (g-h) show the fraction of precipitation that becomes same-week 
discharge (the weekly new water fraction of precipitation, or "forward" new water fraction, yellow lines) as determined from 
model age tracking, and its long-term average (dashed blue line), compared to the new water fraction predicted by ensemble 20 
hydrograph separation (solid blue line).  Discharge-weighted and precipitation-weighted average new water fractions, and their 
predicted values, are shown by red solid and dashed lines. 
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Figure 5.  New water fractions estimated from weekly tracer dynamics using ensemble hydrograph separation, compared to 
averages of time-varying new water fractions determined from age tracking in the benchmark model.  Plots are similar to those in 
Fig. 2, except here they are derived from simulated weekly sampling of tracer concentrations in precipitation and streamflow.  5 
Diagonal lines show perfect agreement.  Each scatterplot shows 1000 points, each representing an individual random set of 
parameters, a randomly generated precipitation tracer time series, and a random set of measurement errors and missing values 
(see Sect. 3.1).  The daily precipitation amounts are the same (Smith River time series) in each case. The "event new water 
fraction" (panels a and b) is the average fraction of new (same-day) water in streamflow during time steps with precipitation, as 
described in Sect. 2.3.  Panel (a) shows event new water fractions estimated from five years of simulated weekly tracer data; panel 10 
(b) shows the same quantity estimated from single years of simulated weekly tracer data (each year is denoted by a different 
color).  Averaging over the five years reduces scatter compared to the individual-year estimates.  The new water fraction of 
discharge (panel c) is the fraction of same-day precipitation in streamflow, averaged over all time steps including rainless periods 
(Eq. 14, Sect. 2.4); its flow-weighted counterpart (panel e) is calculated using Eqs. (16)-(17) of Sect. 2.5.  The "forward" new water 
fraction (the fraction of precipitation that becomes same-day streamflow; panel d) is calculated using Eq. (20), and its 15 
precipitation-weighted counterpart (panel f) is calculated using Eq. (27).  There is only slight visual evidence of bias, and the 
scatter around the 1:1 line is small compared to the range spanned by the new water fractions. 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-429
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 27 August 2018
c© Author(s) 2018. CC BY 4.0 License.



20 
 

Figure 4 shows the behavior of the benchmark model at weekly resolution for both the damped and flashy catchments.  At 

the weekly time scale, the benchmark model exhibits complex nonstationary dynamics in discharge (panels a-b), water 

isotopes (panels c-d), and new water fractions (panels e-h).  Nonetheless – and even though the weekly sampling timescale is 

much longer than the timescales of hydrologic response in the system – ensemble hydrograph separation yields reasonable 

estimates for the mean new water fractions of both precipitation and discharge (both unweighted and flow-weighted), as one 5 

can see by comparing the dashed and solid lines in Fig. 4e-h.   

 

A comparison of Figs. 1 and 4 shows that the isotopic signature of precipitation is less variable among the weekly samples 

than among the daily samples, reflecting the fact that the weekly bulk samples of precipitation will inherently average over 

the sub-weekly variability in daily rainfall.  By contrast, the weekly grab samples of streamflow lose all information about 10 

what is happening on shorter time scales.  The new water fractions calculated from the weekly data are distinctly higher than 

those calculated from the daily data, owing to the fact that the definition of "new" water depends on the sampling frequency: 

the proportion of water ≤7 days old ("new" under weekly sampling) can never be less than the proportion ≤1 day old ("new" 

under daily sampling).   

 15 

Figure 5 shows scatterplots comparing new water fractions estimated by ensemble hydrograph separation and those 

determined by age tracking in the benchmark model, analogous to Fig. 2 but for weekly instead of daily sampling.  The 

weekly new water fractions are larger than the daily ones, for the reasons described above, and exhibit more scatter because 

they are based on fewer data points than their daily counterparts are.  A small overestimation bias is visually evident in Fig. 

2d, and an even smaller underestimation bias in Fig. 2c.  These reservations notwithstanding, Fig. 5 shows that ensemble 20 

hydrograph separation can reliably predict new water fractions of both discharge and precipitation, with and without volume-

weighting, based on weekly tracer samples.   

3.5 Variations in new water fractions with discharge, precipitation, and seasonality 

Ensemble hydrograph separation does not require continuous data as input, so it can be used to estimate 𝐹୬ୣ୵ values for 

(potentially discontinuous) subsets of a time series that reflect conditions of particular interest.  For example, if we split the 25 

time series shown in Fig. 1 into several discharge ranges, we can see that at higher flows, tracer fluctuations in the stream are 

more strongly correlated with tracer fluctuations in precipitation (Fig. 6a-b).  Each of the regression slopes in Fig. 6a-b 

defines the event new water fraction 𝐹୬ୣ୵
୕୮  for the corresponding discharge range.  Repeating this analysis for each 10-

percent interval of the discharge distribution (0-10th percentile, 10th-20th percentile, etc.), plus the 95th-100th percentile, yields 

the profiles of 𝐹୬ୣ୵
୕୮  as functions of discharge, as shown by the blue dots in Fig. 6c-h.  The green squares show the 30 

corresponding "forward" new water fractions 𝐹୬ୣ୵
୔  for comparison.  The light blue and light green lines show the 

corresponding true new water fractions determined by age tracking in the benchmark model.   
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Figure 6.  Variations in new water fractions across ranges of discharge.  (a,b) Relationship between tracer concentrations in 
precipitation and streamflow in the benchmark model run shown in Fig. 1, stratified by percentiles of the frequency distribution of 
discharge, for damped and rapid response parameter sets.  In these coordinates, the slopes of the regression lines through the 
ensembles of points estimate their average event new water fractions 𝑭𝐧𝐞𝐰

𝐐𝐩  (Eq. 10; Sect. 2.3).  (c-h) Variation in new water 5 
fractions across discharge bins in the benchmark model.  Dark blue and green symbols show estimates of the event new water 
fraction of discharge ( 𝑭𝐧𝐞𝐰

𝐐𝐩 ) and the "forward" new water fraction (fraction of precipitation appearing in same-day streamflow, 

𝑭𝐧𝐞𝐰
𝐏 , Eq. 20) for each decile of the daily discharge distribution (the left-most 10 points) and the uppermost 5 percent (the right-

most point).  Error bars show standard errors, where these are larger than the plotting symbols.  Light blue and light green lines 
show the corresponding "true" new water fractions measured by age tracking in the benchmark model.  The three rows (c-d, e-f, 10 
and g-h) show catchment response to three different precipitation climatologies (Smith River, Plynlimon, and Broad River), for 
both the damped response parameter set (left-hand plots c, e, and g) and the flashy response parameter set (right-hand plots d, f, 
and h).  The new water fractions 𝑭𝐧𝐞𝐰

𝐐𝐩  and 𝑭𝐧𝐞𝐰
𝐏  vary strongly with discharge.  Ensemble hydrograph separation accurately 

estimates both 𝑭𝐧𝐞𝐰
𝐐𝐩  and 𝑭𝐧𝐞𝐰

𝐏  across the full range of discharge for all three forcings and both parameter sets. 
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Figure 7.  Variations in new water fractions across ranges of precipitation.  (a,b) Relationship between tracer concentrations in 
precipitation and streamflow in the benchmark model run shown in Fig. 1, stratified by percentiles of the frequency distribution of 
precipitation, for damped and rapid response parameter sets.  In these coordinates, the slope of the regression line through each 
ensemble of points estimates its average event new water fraction 𝑭𝐧𝐞𝐰

𝐐𝐩  (Eq. 10; Sect. 2.3).  (c-h) Variation in new water fractions 5 
across precipitation bins in the benchmark model.  Dark blue and green symbols show estimates of the event new water fraction of 
discharge ( 𝑭𝐧𝐞𝐰

𝐐𝐩 ) and the "forward" new water fraction (PFnew, the fraction of precipitation appearing in same-day streamflow; 

Eq. 20).  Average 𝑭𝐧𝐞𝐰
𝐐𝐩  and 𝑭𝐧𝐞𝐰

𝐏  values are plotted for each decile of the daily precipitation distribution (the left-most 10 
points) and the uppermost 5 percent (the right-most point), excluding precipitation amounts less than 1 mm/day (see text).  Error 
bars show standard errors, where these are larger than the plotting symbols.  Light blue and light green lines show the 10 
corresponding "true" new water fractions measured by age tracking in the benchmark model.  The three rows (c-d, e-f, and g-h) 
show catchment response to three different precipitation climatologies (Smith River, Plynlimon, and Broad River), for both the 
damped response parameter set (left-hand plots c, e, and g) and the flashy response parameter set (right-hand plots d, f, and h).  
The new water fractions 𝑭𝐧𝐞𝐰

𝐐𝐩  and 𝑭𝐧𝐞𝐰
𝐏  vary strongly with daily precipitation.  Ensemble hydrograph separation accurately 

estimates both 𝑭𝐧𝐞𝐰
𝐐𝐩  and 𝑭𝐧𝐞𝐰

𝐏  across the full range of precipitation for all three forcings and both parameter sets. 15 
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If, instead, we split the time series shown in Fig. 1 into subsets reflecting ranges of precipitation rates rather than discharge, 

we obtain Fig. 7.  Figure 7 is a counterpart to Fig. 6, but with 𝐹୬ୣ୵
୕୮  and 𝐹୬ୣ୵

୔  plotted functions of rainfall rates rather than 

discharge.  The two figures exhibit broadly similar behavior.  Unsurprisingly, new water fractions are higher at higher 

discharges and rainfall rates, because under these conditions a higher fraction of discharge comes from the upper box, which 

has younger water.  "Forward" new water fractions are typically smaller than event new water fractions, because during 5 

storms the rainfall rate is higher than the streamflow rate, so the ratio between same-day streamflow and the total rainfall rate 

( 𝐹୬ୣ୵
୔ ) will necessarily be smaller than the ratio between same-day streamflow and the total streamflow rate ( 𝐹୬ୣ୵

୕୮ ).  

Exceptions to this rule arise when rainfall rates are lower than discharge rates, such as during periods of light rainfall while 

streamflow is still undergoing recession from previous heavy rain.  Thus the green and blue curves cross over one another at 

the left-hand edges of Figs. 7c-h, whereas in Figs. 6c-h they do not. 10 

 

Three conclusions can be drawn from Figs. 6 and 7.  First, in these model catchments, new water fractions vary dramatically 

between low flows and high flows, and between low and high precipitation rates, with the event new water fraction 𝐹୬ୣ୵
୕୮  

and the forward new water fraction 𝐹୬ୣ୵
୔  diverging from one another more at higher flows and higher rainfall forcing.  

Second, different catchment parameters (different columns in Fig. 6) and different precipitation forcings (different rows in 15 

Fig. 6) yield different patterns in the relationships between the new water fractions 𝐹୬ୣ୵
୕୮  and 𝐹୬ୣ୵

୔  on the one hand, and 

precipitation and discharge on the other.  And third, these patterns are accurately quantified by ensemble hydrograph 

separation, which matches the age tracking results (shown by the solid lines) within the estimated standard errors in most 

cases.   

 20 

Thus the patterns describing how new water fractions change with precipitation and discharge may be useful as signatures of 

catchment transport behavior, and can be estimated directly from tracer time series using ensemble hydrograph separation.  

These observations raise the question of whether any of these signatures of behavior, as inferred from the patterns in these 

plots (if not the individual numerical values) might imply something useful about the characteristics of the catchments 

themselves, ideally in a way that is not substantially confounded by precipitation climatology.  A comprehensive answer is 25 

not possible within the scope of this paper, since it focuses mostly on just two parameter sets and three precipitation records.  

But as a first approach, one can try superimposing the results in Figs. 6 and 7 on consistent axes (note that the axes in these 

figures' various panels differ from one another in order to show the full range of behavior).  Doing so yields Fig. 8, which 

overlays the age tracking results from Figs. 6c-h and 7c-h in its left- and right-hand panels, respectively.  In Fig. 8, 

catchments with the damped and flashy parameter sets are denoted by green and blue curves, respectively, with different 30 

levels of brightness corresponding to the three different precipitation climatologies.  The key question is: are there patterns in 

𝐹୬ୣ୵
୕୮  or 𝐹୬ୣ୵

୔  that clearly distinguish the flashy catchment from the damped catchment, regardless of the precipitation 

forcing?  Figure 8a shows an example where this is clearly not the case; instead, the two catchments' behaviors largely 
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overlap in a tangle of blue and green lines.  In the other three panels, however (and particularly for the trends in 𝐹୬ୣ୵
୔  as a 

function of precipitation rates, as shown in Fig. 8d), the blue and green curves are relatively distinct from one another, but 

the different climatologies largely overlap for each catchment.  This result suggests that these traces may be useful as 

diagnostic signatures of catchment characteristics, which are relatively insensitive to precipitation climatology.  However, 

Fig. 8 can only be considered a preliminary indication of what might be possible, rather than a definitive demonstration. 5 

 

 

Figure 8.  Effects of precipitation climatology and catchment properties on discharge- and precipitation-dependence of new water 
fractions.  The lines plotted here superimpose the model age tracking results (solid lines) from Figs. 6 and 7.  Left and right panels 
show how event new water fractions ( 𝑭𝐐𝐩

𝐧𝐞𝐰, Sect. 2.3) and "forward" new water fractions ( 𝑭𝐏
𝐧𝐞𝐰, Sect. 2.6) vary as functions of 10 

discharge and precipitation, respectively.  Green and blue lines show benchmark model behavior under the flashy and damped 
parameter sets, with three levels of brightness corresponding to the three different precipitation climatologies: Mediterranean 
climate (Smith River, lightest colors), humid maritime climate (Plynlimon, intermediate colors), and humid temperate climate 
(Broad River, darkest colors).  When event new water fractions are plotted as functions of discharge (panel a), different 
catchments and precipitation climatologies overlap.  By contrast, in the other three panels (and particularly in panel d, which 15 
shows "forward" new water fractions as functions of precipitation), the lines for the flashy catchment and the damped catchment 
are clearly distinct from one another, regardless of precipitation climatology.  This suggests that these patterns may be diagnostic 
of the internal workings of the catchment, but relatively insensitive to the particular rainfall forcing. 

 

The behavior summarized in Figs. 6-8 shows that in general, new water fractions are functions of both catchment 20 

characteristics and precipitation climatology.  Moreover, new water fractions will obviously depend on the sequence of 

precipitation events, not just on their frequency distribution, because they will depend on antecedent wetness.  Thus although 

the ensemble hydrograph separation approach does not require continuous data, and thus can be applied to time series with 

data gaps, any inferred new water fractions will obviously represent only the particular time intervals that are included in the 

analysis. 25 
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Figure 9.  Seasonality in new water fractions under Mediterranean climate precipitation forcing.  (a) Relationship between tracer 
concentrations in precipitation and streamflow in the flashy benchmark model run shown in Fig. 1, stratified by season.  Each 
season's event new water fraction can be estimated from the slope of the regression line fitted to the corresponding set of points.  
(b,c,d) Average event new water fractions ( 𝑭𝐧𝐞𝐰

𝐐𝐩 ), new water fractions of discharge ( 𝑭𝐧𝐞𝐰
𝐐 ), and "forward" new water fractions 5 

of precipitation ( 𝑭𝐧𝐞𝐰
𝐏 ) calculated from ensembles of all points within each month, across the five years of benchmark model 

simulations.  Error bars show standard errors, where these are larger than the plotting symbols.  Curves are drawn through true 
monthly average new water fractions, as determined by age tracking in the benchmark model.  Ensemble hydrograph separation 
reproduces this seasonal pattern in new water fractions reasonably well.  The uncertainty estimates also realistically predict the 
average deviation of the ensemble hydrograph separation estimates from the "true" age tracking determinations.  Values shown 10 
here are generated by the benchmark model with the flashy catchment parameter set and Smith River (Mediterranean climate) 
precipitation forcing.  The new water fractions would exhibit less pronounced seasonality if the rainfall forcing were less strongly 
seasonal or the catchment response were less flashy.   

 

One implication of the forgoing considerations is that seasonal differences in storm size and frequency should also be 15 

reflected in seasonal variations in new water fractions.  Figure 9a shows a scatterplot of tracer fluctuations in streamflow and 
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precipitation, color-coded by season, for the "flashy" catchment simulation shown in Fig. 1.  The regression lines (whose 

slopes define the event new water fractions 𝐹୬ୣ୵
୕୮  for the corresponding seasons) show that tracer concentrations in 

streamflow and precipitation are more tightly coupled in winter and spring than in summer and autumn.  Figures 9b-d 

demonstrate large variations in the event new water fraction 𝐹୬ୣ୵
୕୮ , the new water fraction of discharge 𝐹୬ୣ୵

୕ , and the 

"forward" new water fraction of precipitation 𝐹୬ୣ୵
୔  from month to month, with a broad seasonal trend towards larger young 5 

water fractions in winter and spring.  The month-to-month variations in the age tracking results (the smooth curves) are 

usually quantified by the ensemble hydrograph separation estimates (the solid dots) within their calculated uncertainties (as 

shown by the error bars).  Thus Fig. 9 suggests that ensemble hydrograph separation can be used to quantify how catchment 

transport behavior is shaped by seasonal patterns in precipitation forcing. 

3.6 Effects of evaporative fractionation 10 

Any analysis based on water isotopes must deal with the potential effects of isotopic fractionation due to evaporation (e.g., 

Laudon et al., 2002; Taylor et al., 2002; Sprenger et al., 2017; Benettin et al., 2018).  A detailed treatment of evaporative 

fractionation would necessarily be site-specific and thus beyond the scope of this paper.  Nonetheless, it is possible to make a 

simple first estimate of how much evaporative fractionation could affect new water fractions estimated from ensemble 

hydrograph separation.  I first adjusted the isotope values of infiltration entering the model in Fig. 1 to mimic the effects of 15 

seasonally varying evaporative fractionation.  I assumed that evaporative fractionation was a sinusoidal function of the time 

of year, ranging from zero in mid-winter to 20 per mil in mid-summer.  Thus the assumed evaporative fractionation 

effectively doubled the seasonal isotopic cycle in the water entering the model catchment (but not the sampled rainfall itself, 

since any fractionation that occurs in both the measured precipitation and the water entering the catchment will not distort 

the ensemble hydrograph separation).  I then calculated new water fractions based on the time series of sampled precipitation 20 

tracer concentrations (assumed to be unaffected by evaporative fractionation) and streamflow tracer concentrations (altered 

by the lagged and mixed effects of evaporative fractionation), and compared these to the "true" new water fractions 

calculated by age tracking within the model. 

 

The results are shown in Fig. 10, which compares 1000 Monte Carlo trials with evaporative fractionation (the blue dots) and 25 

another 1000 Monte Carlo trials without evaporative fractionation (the gray dots).  One can see that in these simulations, 

evaporative fractionation leads to a slight tendency to underestimate new water fractions.  Nonetheless, the blue and gray 

dots largely overlap, and both generally follow the 1:1 lines, even though the modeled fractionation effects were designed to 

be a worst-case scenario.  Because ensemble hydrograph separation is based on patterns of fluctuations in precipitation and 

streamflow tracers, any fractionation process that created a constant offset between inputs and outputs would introduce no 30 

bias.  For the same reason, any fractionation process that was uncorrelated to the input isotopic signature would likewise 

introduce no bias; thus, for example, the modeled seasonal fractionation cycle would have had no effect if there were no 
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seasonal pattern in the precipitation isotopes themselves.  Figure 10 thus suggests that ensemble hydrograph separation 

should yield realistic estimates of new water fractions, even in a worst-case scenario of confounding by evaporative 

fractionation. 

 

 5 

Figure 10.  Effects of seasonally varying evaporative fractionation on new water fractions estimated by ensemble hydrograph 
separation.  Points show new water fractions predicted from tracer fluctuations in precipitation and streamflow (on the y-axis), 
compared to averages of time-varying new water fractions determined by age tracking in the benchmark model (on the x-axis).  
Blue points show 1000 model runs in which precipitation undergoes seasonally varying evaporative fractionation ranging from 
zero in winter to 20 per mil in summer.  Gray background points show 1000 model runs without evaporative fractionation 10 
(analogous to Fig. 2).  Each model run has a different random set of model parameters, measurement errors, and missing values, 
but the precipitation driver (Smith River daily precipitation) is the same in all cases.  The blue data clouds closely follow the 1:1 
line, indicating that ensemble hydrograph separation can reliably estimate new water fractions even in the presence of substantial 
evaporative fractionation.   

4 Estimating transit time distributions by ensemble hydrograph separation 15 

A natural extension of the approach outlined in Sect. 2 would be to quantify the contributions of precipitation to streamflow 

over a range of lag times: to quantify, in other words, the catchment transit time distribution.  In principle this should be 

straightforward, although in practice several challenges must be overcome.  Below, I describe these issues and outline 

techniques for addressing them. 
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4.1 Definitions 

I assume that catchment inputs and outputs are sampled at the same fixed time interval ∆𝑡, and define the time that a parcel 

of water enters the catchment (via rainfall, snowmelt, etc.) as 𝑡௜ and the time that it exits via streamflow as 𝑡௝.  The lag 

interval between precipitation and streamflow is indexed as 𝑘 ൌ 𝑗-𝑖.  𝑃௜ is the rate that precipitation or snowmelt (net of 

evaporative losses) enters the catchment at time 𝑡௜, and 𝑄௝ is the rate of discharge that exits the catchment at time 𝑡௝.  𝐶୔೔
 and 5 

𝐶୕ೕ
 are the tracer concentrations in precipitation and streamflow, respectively.  The water flux that enters as precipitation at 

time 𝑡௜ and leaves as streamflow 𝑘 time steps later (at time 𝑡௝ ൌ 𝑡௜ା௞) is represented as 𝑞௝௞.  The sum of 𝑞௝௞ over all lag times 

k (corresponding to all previous entry times 𝑖 ൌ 𝑗-𝑘) is the total discharge 𝑄௝.  Each of the 𝑞௝௞ will be a fraction of the total 

precipitation falling at time 𝑡௜ୀ௝-௞ and a (typically different) fraction of the total discharge at time 𝑡௝.  The fraction of 

discharge exiting at time 𝑡௝ that entered 𝑘 time steps earlier is 𝑞௝௞ 𝑄௝⁄ , and the distribution of 𝑞௝௞ 𝑄௝⁄  over lag time 𝑘 is the 10 

transit time distribution conditioned on the exit time 𝑡௝ (also called the "backward" transit time distribution).  The fraction of 

precipitation entering at time 𝑡௜ that subsequently leaves 𝑘 time steps later is 𝑞௝௞ 𝑃௝ି௞⁄ ൌ 𝑞௜ା௞,௞ 𝑃௜⁄ , and the distribution of 

𝑞௜ା௞,௞ 𝑃௜⁄  over lag time 𝑘 is the transit time distribution conditioned on the entry time 𝑡௜ (also called the "forward" transit 

time distribution).  The water fluxes 𝑃௜, 𝑄௝, and 𝑞௝௞ are assumed to be in units of water depth per time (e.g., mm/day), and 

thus the transit time distributions are dimensionless functions of lag time. 15 

 

In practice, precipitation fluxes are typically measured as averages over discrete time intervals, and tracer concentrations in 

precipitation are likewise volume-averaged over discrete intervals (such as a day or a week) during which the sample is 

accumulated.  By contrast, discharge fluxes are typically measured instantaneously, and discharge tracer concentrations are 

typically measured in instantaneous grab samples.  In most of what follows, I will assume that 𝑃௜ and 𝐶୔೔
 are averages over 20 

the interval 𝑡ሺ௜-ଵሻ ൏  𝑡 ൑  𝑡௜, and 𝑄௝ and 𝐶୕ೕ
 are instantaneous values at 𝑡 ൌ  𝑡௝.  However, in a few catchment studies, 

discharge concentrations have instead been measured in time-integrated samples.  The analysis presented below is the same, 

whether the discharge tracer concentrations 𝐶୕ೕ
 are instantaneous at 𝑡 ൌ  𝑡௝ or are integrated over each time interval 

𝑡ሺ௜-ଵሻ ൏  𝑡 ൑  𝑡௜.  The interpretation is slightly different, however, because the average lag time corresponding to a given lag 

interval k will depend on how precipitation and streamflow are sampled.  Usually, streamwater samples are collected more-25 

or-less instantaneously (grab sampling), and precipitation samples are integrated over the time interval that the sampler is 

open.  A typical daily sampling scheme, for example, might involve collecting a precipitation sample at noon (which 

integrates precipitation that fell over the previous 24 hours), and also collecting a grab sample of streamflow at noon.  In this 

case, the average lag time between a raindrop falling as precipitation and being sampled in the same day's streamflow (i.e., 

𝑘 ൌ 0) would be 12 hours, assuming that on average, the probability of rainfall is independent of the time of day.  Thus in 30 

this conventional sampling scheme, the average lag time will be ሺ𝑘 ൅ 0.5ሻ∆𝑡, where ∆𝑡 is the sampling interval.  If, instead, 

the stream samples were daily composites, then (for example) the "same day" raindrops appearing the first hour's subsample 
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of streamflow would have an average lag time of 30 minutes, the second hour's would be 60 minutes, and so forth, and 

therefore the daily average lag time would be 6 hours.  Thus if stream samples are time-integrated composites, the average 

lag time will be ሺ𝑘 ൅ 0.25ሻ∆𝑡.   

 

I now outline the fundamentals of the ensemble hydrograph separation approach to estimating transit time distributions.  5 

Conservation of water mass requires that the discharge at time step j equals the contributions from all lag times 𝑘 

(corresponding to all previous entry times 𝑖 ൌ 𝑗-𝑘): 

𝑄௝ ൌ ෍ 𝑞௝௞

௞ஹ଴

        .   ሺ29ሻ 

Because tracing contributions to streamflow from all previous time steps would be impractical, it will be necessary to 

truncate the summation in (29) at some maximum lag, which I will denote as 𝑚, and to combine the unmeasured older 10 

contributions in a water flux 𝑄୭୪ୢୣ୰ೕ
: 

𝑄௝ ൌ ෍ 𝑞௝௞

௠

௞ୀ଴

൅ 𝑄୭୪ୢୣ୰ೕ
         ,          𝑄୭୪ୢୣ୰ೕ

ൌ ෍ 𝑞௝௞

ஶ

௞ୀ௠ାଵ

 ൌ  𝑄௝ െ ෍ 𝑞௝௞

௠

௞ୀ଴

          . ሺ30ሻ 

Conservation of tracer mass requires that the tracer fluxes add up similarly, again with a catch-all flux 𝑄୭୪ୢୣ୰ೕ
𝐶୭୪ୢୣ୰ೕ

: 

𝑄௝ 𝐶୕ೕ
ൌ ෍ 𝑞௝௞ 𝐶୔ೕషೖ

௠

௞ୀ଴

൅ 𝑄୭୪ୢୣ୰ೕ
𝐶୭୪ୢୣ୰ೕ

ൌ ෍ 𝑞௝,௞ 𝐶୔ೕషೖ

௠

௞ୀ଴

൅ ൭𝑄௝ െ ෍ 𝑞௝௞

௠

௞ୀ଴

൱ 𝐶୭୪ୢୣ୰ೕ
              . ሺ31ሻ 

Dividing (31) by 𝑄௝ and rearranging terms directly yields: 15 

ቀ𝐶୕ೕ
െ 𝐶୭୪ୢୣ୰ೕ

ቁ ൌ ෍
𝑞௝௞

𝑄௝ 

௠

௞ୀ଴

 ቀ𝐶୔ೕషೖ
െ 𝐶୭୪ୢୣ୰ೕ

ቁ         , ሺ32ሻ 

which readers will recognize as the multi-lag counterpart of Eq. (7).   

 

Analogous to the approach in Sect. 2, here I account for the concentration of older inputs 𝐶୭୪ୢୣ୰ೕ
 using the streamflow 

concentration at lag 𝑚 ൅ 1, just beyond the longest lag 𝑚, with the goal of filtering out long-term patterns that could 20 

otherwise distort the correlations between 𝐶୔ೕషೖ
 and 𝐶୕ೕ

.  Thus 𝐶୕ೕష೘షభ
 serves as a reference level for measuring 

fluctuations in precipitation and streamflow tracer concentrations, analogous to 𝐶୕ೕషభ
 in Eq. (8).  Adding a bias term 𝛼 and 

an error term 𝜀௝ yields 

ቀ𝐶୕ೕ
െ 𝐶୕ೕష೘షభ

ቁ ൌ ෍
𝑞௝௞

𝑄௝ 
ቀ𝐶୔ೕషೖ

െ 𝐶୕ೕష೘షభ
ቁ

௠

௞ୀ଴

  ൅ 𝛼 ൅ 𝜀௝       , ሺ33ሻ 
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which almost looks like a conventional multiple linear regression equation, 

𝑦௝ ൌ ෍  𝛽௞ 𝑥௝௞

௠

௞ୀ଴

  ൅ 𝛼 ൅ 𝜀௝       ,    ሺ34ሻ 

where 

𝑦௝ ൌ ቀ𝐶୕ೕ
െ 𝐶୕ೕష೘షభ

ቁ          and      𝑥௝௞ ൌ ቀ𝐶୔ೕషೖ
െ 𝐶୕ೕష೘షభ

ቁ          , ሺ35ሻ 

with the difference that the coefficients 𝛽௞ in (34) are constant over all exit times 𝑗 and differ only as a function of the lag 5 

time 𝑘, whereas the 𝑞௝௞ 𝑄௝⁄  terms in (33) can differ among both lag times 𝑘 and exit times 𝑗.  Nonetheless, by analogy with 

the mathematical arguments in Appendix A and those at the end of Appendix B, one can expect that 𝛽௞ will closely 

approximate the average of the time-varying contributions 𝑞௝௞ 𝑄௝⁄  to streamflow over the ensemble of exit times j (please 

note that this is not the same as assuming that the transit time distribution is time-invariant!).  Substituting 𝛽௞ as an ensemble 

estimate of 𝑞௝௞ 𝑄௝⁄ , one obtains the ensemble hydrograph separation equation for estimating transit time distributions,  10 

ቀ𝐶୕ೕ
െ 𝐶୕ೕష೘షభ

ቁ ൌ ෍  𝛽௞  ቀ𝐶୔ೕషೖ
െ 𝐶୕ೕష೘షభ

ቁ

௠

௞ୀ଴

  ൅ 𝛼 ൅ 𝜀௝       . ሺ36ሻ 

When appropriately re-scaled as described in Sects. 4.5-4.7 below, the coefficients 𝛽௞ in Eq. (36) – or more precisely, their 

regression estimates 𝛽መ௞ – can be used to estimate the time-averaged (also sometimes called the "marginal") transit time 

distribution.  

4.2 Solution method 15 

Using 𝒀 to represent the vector of reference-corrected streamflow tracer concentrations 𝑦௝ ൌ 𝐶୕ೕ
െ 𝐶୕ೕష೘షభ

 and 𝐗 to 

represent the matrix of reference-corrected input tracer concentrations 𝑥௝௞ ൌ 𝐶௉ೕషೖ
െ 𝐶_𝑄௝ି௠ିଵ, we can rewrite (36) in the 

array form of a multiple regression equation: 

𝒀 ൌ ෍  𝛽௞ 𝑿௞

௠

௞ୀ଴

 ൅ 𝛼 ൅ 𝜺        , ሺ37ሻ 

where 𝑿௞ is the 𝑘୲୦ column vector of 𝐗, and 𝜺 is the vector of the errors 𝜀௝.  The least-squares solution for multiple 20 

regressions like (37) can be expressed in matrix form as 
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⎝

⎜⎜
⎛

𝛽መ଴

𝛽መଵ

𝛽መଶ
⋮

𝛽መ௠⎠

⎟⎟
⎞

ൌ

⎝

⎜
⎛

covሺ𝑿଴, 𝑿଴ሻ covሺ𝑿଴, 𝑿ଵሻ covሺ𝑿଴, 𝑿ଶሻ ⋯ covሺ𝑿଴, 𝑿௠ሻ
covሺ𝑿ଵ, 𝑿଴ሻ covሺ𝑿ଵ, 𝑿ଵሻ covሺ𝑿ଵ, 𝑿ଶሻ ⋯ covሺ𝑿ଵ, 𝑿௠ሻ
covሺ𝑿ଶ, 𝑿଴ሻ covሺ𝑿ଶ, 𝑿ଵሻ covሺ𝑿ଶ, 𝑿ଶሻ ⋯ covሺ𝑿ଶ, 𝑿௠ሻ

⋮ ⋮ ⋮ ⋱ ⋮
covሺ𝑿௠, 𝑿଴ሻ covሺ𝑿௠, 𝑿ଵሻ covሺ𝑿௠, 𝑿ଶሻ ⋯ covሺ𝑿௠, 𝑿௠ሻ⎠

⎟
⎞

ିଵ

⎝

⎜
⎛

covሺ𝑿଴, 𝒀ሻ
covሺ𝑿𝟏, 𝒀ሻ
covሺ𝑿ଶ, 𝒀ሻ

⋮
covሺ𝑿௠, 𝒀ሻ⎠

⎟
⎞

        , ሺ38ሻ 

where the regression coefficients 𝛽መ௞ are the least-squares estimators of the true (but unknowable) coefficients 𝛽௞.  Equation 

(38) is the multi-dimensional counterpart to Eq. (10).  The first term on the right-hand side of (38) is the inverse of the 

matrix of the covariances of the 𝑿௞ at each lag with each other lag, and the second term is a vector of the covariances 

between 𝒀 and the 𝑿௞ at each lag.  Equation (38) is equivalent to the more widely known "normal equation" for solving 5 

multiple regressions, 

𝜷෡ ൌ ሺ𝐗୘𝐗ሻିଵ 𝐗୘𝒀      , ሺ39ሻ 

if one first normalizes 𝒀 and each of the 𝑿௞ by subtracting their respective means; doing so has no effect on the estimates of 

the regression coefficients 𝛽መ௞.  (The elements of the square matrix 𝐗୘𝐗 are the covariances between the 𝑿௞ 's at each pair of 

lags, multiplied by the number of samples; likewise the elements of the column matrix  𝐗୘𝒀 are the covariances between 10 

each of the 𝑿௞ 's and 𝒀, multiplied by the number of samples.) 

 

Astute readers will immediately notice a fundamental problem with applying Eqs. (38) or (39) in practice, namely that they 

require precipitation tracer concentrations 𝐶௉ೕషೖ
 for all time steps 𝑗 and lags 𝑘.  In every practical case, many precipitation 

tracer concentrations will be missing, for two reasons.  Some tracer concentrations will be missing due to sampling or 15 

measurement failures, and many more will be inherently missing because precipitation tracer concentrations cannot exist for 

time steps without precipitation.  As we will see shortly, missing measurements that arise for these two different reasons 

must be handled in two different ways.  But regardless of its origins, each missing tracer concentration 𝐶୔೔
 at time step 𝑖 will 

create a diagonal line of missing values in the matrix 𝑥௝௞, causing a missing value in the first column (𝑘 ൌ 0) at 𝑗 ൌ 𝑖, and 

another in the second column (𝑘 ൌ 1) at 𝑗 ൌ 𝑖 ൅ 1, and so on up to the last column (𝑘 ൌ 𝑚) at 𝑗 ൌ 𝑖 ൅ 𝑚.   20 

 

So-called "missing data problems" arise frequently in the statistical literature, and several approaches have been proposed for 

handling them (Little, 1992).  One approach, termed "listwise deletion" or "complete-case analysis", involves discarding all 

cases (meaning all rows 𝑗 in the matrix 𝑥௝௞) in which any variables are missing, and analyzing only the remaining (complete) 

cases.  In our situation, this would mean analyzing only exit times 𝑡௝ that are preceded by unbroken series of rainy periods, 25 

up to the maximum lag 𝑚 for which we want to estimate the coefficients 𝛽መ௞.  Such ensembles of points would be 

mathematically convenient, but they would also be very strongly biased in a hydrological sense, because they would 

represent periods of unusually consistent rainfall (and thus unusually wet catchment conditions).  Furthermore, if the 
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maximum lag 𝑚 is sufficiently long, records with continuous rainfall over all 𝑚 ൅ 1 lags (𝑘 ൌ 0. . . 𝑚) will become 

impossible to find.  For these reasons, complete case analysis is not a feasible approach to our problem. 

 

A second class of approaches to the missing data problem involves imputing values to the missing data (Little, 1992).  In our 

case, however, many of the missing data are not simply unmeasured, but cannot exist at all (because rainless days have no 5 

rainfall concentrations), so it is not obvious how to impute the missing values. 

 

A third approach, termed "pairwise deletion" or "available-case analysis", first proposed by Glasser (1964), entails 

evaluating each of the covariances in (38) using any cases for which the necessary pairs of observations exist.  Thus the 

covariances in (38) are replaced by 10 

covሺ𝑿௞, 𝑿ℓሻሺ௞ℓሻ ൌ
1

𝑛ሺ௞ℓሻ െ 1
෍ ൫𝑥௝௞ െ 𝑥̅௞ሺ௞ℓሻ൯൫𝑥௝ℓ െ 𝑥̅ℓሺ௞ℓሻ൯

௝∈ሺ௞ℓሻ

ሺ40ሻ 

and  

covሺ𝑿௞, 𝒀ሻሺ௞௬ሻ ൌ
1

𝑛ሺ௞௬ሻ െ 1
෍ ൫𝑥௝௞ െ 𝑥̅௞ሺ௞௬ሻ൯൫𝑦௝ െ 𝑦തሺ௞௬ሻ൯

௝∈ሺ௞௬ሻ

    , ሺ41ሻ 

 

where the notation ሺ𝑘ℓሻ indicates terms that are evaluated over all cases 𝑗 for which both 𝑥௝௞ and 𝑥௝ℓ exist (e.g., 𝑥̅௞ሺ௞ℓሻ is the 15 

mean of the column vector 𝑿௞ for rows 𝑗 where neither 𝑥௝௞ nor 𝑥௝ℓ is missing, and 𝑛ሺ௞ℓሻ is the number of such cases), and 

ሺ𝑘𝑦ሻ indicates terms that are evaluated over all cases 𝑗 for which 𝑥௝௞ and 𝑦௝ exist.   

 

Glasser's approach can potentially handle the problem of tracer measurements that are missing at random due to sampling or 

analysis failures.  However, it will not correctly handle the problem of tracer concentrations that are missing due to a lack of 20 

sufficient precipitation, because it assumes that the missing values occur randomly and therefore that Eqs. (40)-(41) are 

unbiased estimators of the covariances that one would obtain if no samples were missing.  But when little or no precipitation 

falls on the catchment, it delivers little or no tracer to subsequent streamflow, and thus its contribution to the covariance 

between precipitation and streamflow concentrations will be nearly zero.  Therefore different handling is required for 

precipitation tracer concentrations that are missing because they were not measured, versus those that are missing because 25 

they never existed at all (because no rain fell).  As shown in Appendix B, periods without precipitation must be taken into 

account with weighting factors on the off-diagonal elements of the covariance matrix (because the tracer covariances will be 

less strongly coupled to one another, the less frequently precipitation falls).  When the approach outlined in Appendix B is 

combined with Glasser's method for estimating each of the covariances, the end result is  
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⎝

⎜⎜
⎛

𝛽መ଴

𝛽መଵ

𝛽መଶ
⋮

𝛽መ௠⎠

⎟⎟
⎞

ൌ

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

covሺ𝑿଴, 𝑿଴ሻሺ଴,଴ሻ
𝑛௫బ௫భ

𝑛௫బ

covሺ𝑿଴, 𝑿ଵሻሺ଴,ଵሻ
𝑛௫బ௫మ

𝑛௫బ

covሺ𝑿଴, 𝑿ଶሻሺ଴,ଶሻ ⋯
𝑛௫బ௫೘

𝑛௫బ

covሺ𝑿଴, 𝑿௠ሻሺ଴,௠ሻ

𝑛௫భ௫బ

𝑛௫భ

covሺ𝑿ଵ, 𝑿଴ሻሺଵ,଴ሻ covሺ𝑿ଵ, 𝑿ଵሻሺଵ,ଵሻ
𝑛௫భ௫మ

𝑛௫భ

covሺ𝑿ଵ, 𝑿ଶሻሺଵ,ଶሻ ⋯
𝑛௫భ௫೘

𝑛௫భ

covሺ𝑿ଵ, 𝑿௠ሻሺଵ,௠ሻ

𝑛௫మ௫బ

𝑛௫మ

covሺ𝑿ଶ, 𝑿଴ሻሺଶ,଴ሻ
𝑛௫మ௫భ

𝑛௫మ

covሺ𝑿ଶ, 𝑿ଵሻሺଶ,ଵሻ covሺ𝑿ଶ, 𝑿ଶሻሺଶ,ଶሻ ⋯
𝑛௫మ௫೘

𝑛௫మ

covሺ𝑿ଶ, 𝑿௠ሻሺଶ,௠ሻ

⋮ ⋮ ⋮ ⋱ ⋮
𝑛௫೘௫బ

𝑛௫೘

covሺ𝑿௠, 𝑿଴ሻሺ௠,଴ሻ
𝑛௫೘௫భ

𝑛௫೘

covሺ𝑿௠, 𝑿ଵሻሺ௠,ଵሻ
𝑛௫೘௫మ

𝑛௫೘

covሺ𝑿௠, 𝑿ଶሻሺ௠,ଶሻ ⋯ covሺ𝑿௠, 𝑿௠ሻሺ௠,௠ሻ
⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

ିଵ

⎝

⎜⎜
⎛

covሺ𝑿଴, 𝒀ሻሺ଴,௬ሻ

covሺ𝑿ଵ, 𝒀ሻሺଵ,௬ሻ

covሺ𝑿ଶ, 𝒀ሻሺଶ,௬ሻ

⋮
covሺ𝑿௠, 𝒀ሻሺ௠,௬ሻ⎠

⎟⎟
⎞

  ,

ሺ42ሻ

 

where the covariance terms are defined by Eqs. (40)-(41), 𝑛௫ೖ
 is the number of time steps 𝑗 for which precipitation fell at 

time 𝑖 ൌ 𝑗 െ 𝑘 (whether or not that precipitation was sampled and analyzed), and 𝑛௫ೖ௫ℓ
 is the number of time steps 𝑗 for 

which precipitation fell at both 𝑗 െ 𝑘 and 𝑗 െ ℓ (again, whether or not those precipitation events were sampled and analyzed).  

As explained in Appendix B, the estimated coefficients 𝛽መ௞ will closely approximate the average of the time-varying 5 

coefficients 𝛽௝,௞ ൌ 𝑞௝௞ 𝑄௝⁄ , averaged over times 𝑗 for which precipitation fell at times 𝑖 ൌ 𝑗 െ 𝑘 (but not over rainless 

periods, from which no streamflow can originate and thus 𝛽௝,௞ ൌ 𝑞௝௞ 𝑄௝⁄  must be zero).  In practice, a single droplet of mist 

does not make a rainstorm, so there will be some threshold rate of precipitation (here I have used 1 mm/day) below which 

there will be too little water to have any detectable effect on streamflow (and too little water to analyze).  Thus 𝑛௫ೖ
 and 𝑛௫ೖ௫ℓ

 

will be determined by counting the time steps that exceed this precipitation threshold: 10 

 𝑛௫ೖ
ൌ ෍ ൜

 1 ∶ 𝑃௝ି௞ ൒ 𝑃୲୦୰ୣୱ୦୭୪ୢ

 0 ∶ 𝑃௝ି௞ ൏ 𝑃୲୦୰ୣୱ୦୭୪ୢ
                       

௡

௝ୀଵ

 𝑛௫ೖ௫ℓ
ൌ ෍ ൜

 1 ∶ 𝑃௝ି௞ ൒ 𝑃୲୦୰ୣୱ୦୭୪ୢ  and  𝑃௝ିℓ ൒ 𝑃୲୦୰ୣୱ୦୭୪ୢ

 0 ∶ 𝑃௝ି௞ ൏ 𝑃୲୦୰ୣୱ୦୭୪ୢ    or   𝑃௝ିℓ ൏ 𝑃୲୦୰ୣୱ୦୭୪ୢ

௡

௝ୀଵ

   , ሺ43ሻ

 

Note that some measurements will usually also be missing due to sampling or measurement failures in addition to 

precipitation intermittency. Thus 𝑛ሺ௞௬ሻ and 𝑛ሺ௞ℓሻ in Eqs. (40)-(41), which account for both types of missing data, will 

typically be smaller than 𝑛௫ೖ
 and 𝑛௫ೖ௫ℓ

 in Eq. (42).  

4.3 Tikhonov-Phillips regularization 15 

Gaps in the underlying data imply that, unlike covariance matrices in conventional multiple regressions, the covariance 

matrix in (38) is not guaranteed to be positive definite (and thus may not be invertible).  Even when the covariance matrix is 

invertible, it may be ill-conditioned, making its inversion unstable.  This issue arises frequently in inversion problems 

whenever different combinations of lagged inputs will have nearly equivalent effects on the output, making it difficult for the 

inversion to decide among them (this is the multi-dimensional analogue to nearly dividing by zero in Eq. 10).  In minimizing 20 

the sum of squared deviations from the observations, inversions like Eq. (38) can potentially yield wildly oscillating 

solutions, with huge negative values of 𝛽መ௞ at some lags delicately balancing huge positive values at other lags.  Such results 
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are not just unrealistic; they are also unstable, with tiny differences in the underlying data potentially having huge effects on 

the 𝛽መ௞ estimates.  

 

A standard therapy for this disease is Tikhonov-Phillips regularization (Phillips, 1962; Tikhonov, 1963).  This technique 

(also known by many other names, including Tikhonov regularization, Tikhonov-Miller regularization, and the Phillips-5 

Twomey method) is commonly used to solve ill-conditioned geophysical inversion problems (Zhadanov, 2015) but is less 

widely known in hydrology.  Whereas conventional least-squares inversion finds the set of parameters 𝛽መ௞ that will minimize 

the misfit between the predicted and observed 𝑦௝, no matter how strange those 𝛽መ௞ values may be, Tikhonov-Phillips 

regularization adds a second criterion that quantifies the strangeness of the 𝛽መ௞ values themselves, and finds the set of 

parameters 𝛽መ௞ that will minimize the sum of both criteria.  Phillips (1962) first showed how this joint minimization could be 10 

formulated as a simple extension of the normal matrix approach to solving linear inversion problems.  This formulation, 

applied to our problem, is: 

⎝

⎜
⎛

𝛽መ୩

⎠

⎟
⎞

ൌ

⎝

⎜
⎛

𝐂 ൅ 𝜆𝐇

⎠

⎟
⎞

ିଵ

⎝

⎜
⎛

covሺ𝑿௞, 𝒀ሻሺ௞௬ሻ

⎠

⎟
⎞

        , ሺ44ሻ 

where 𝐂 is the matrix of covariance terms in Eq. (42), and the parameter 𝜆 controls the relative weight given to the two 

criteria, namely the mean squared deviations of the predicted and observed 𝑦௝ values (controlled by the covariance matrix 𝐂) 15 

and the deviations from ideal behavior of the 𝛽መ௞ values (controlled by the matrix 𝐇).   

 

The form of 𝐇 is determined by the criterion of reasonableness that is applied to the 𝛽መ௞.  One possible criterion (among many 

that can be found in the literature) can be called parsimony: minimize the mean square of the 𝛽መ௞, thus penalizing solutions 

with large 𝛽መ௞values.  Minimizing the functional 〈𝛽መ௞
ଶ〉 yields the identity matrix for 𝐇 (Tikhonov, 1963): 20 

𝐇 ൌ

⎝

⎜
⎛

1 0 0 ⋯ 0
0 1 0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0 1 0
0 ⋯ 0 0 1⎠

⎟
⎞

     .   ሺ45ሻ 

This approach, also called "ridge regression" because it adds a "ridge" of extra weight along the diagonal of the covariance 

matrix, was Tikhonov's original regularization criterion and is widely used in geophysical inversions (including unit 

hydrograph estimation).  In our case, however, it would have the undesirable effect of creating a systematic underestimation 

bias in our estimates of recent contributions to streamflow, by always making the 𝛽መ௞ smaller than they would be otherwise.   25 
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A second possible criterion is consistency: minimize the variance of the 𝛽መ௞, thus penalizing solutions with individual 𝛽መ௞ 

values that differ greatly from the mean of all the 𝛽መ௞.  Minimizing the functional  〈൫𝛽መ௞ െ 〈𝛽መ௞〉൯
ଶ

〉 , where angled brackets 

indicate averages from 𝑘 ൌ 1 to 𝑘 ൌ 𝑚, leads to an 𝐇 matrix of the form (Press et al., 1992), 

𝐇 ൌ

⎝

⎜
⎜
⎜
⎛

1 െ1 0 0 0 ⋯ 0
െ1 2 െ1 0 0 ⋯ 0
0 െ1 2 െ1 0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0 െ1 2 െ1 0
0 ⋯ 0 0 െ1 2 െ1
0 ⋯ 0 0 0 െ1 1 ⎠

⎟
⎟
⎟
⎞

     . ሺ46ሻ 

Like (45), this minimum-variance criterion is also widely used, and has the advantage that, unlike (45), it does not lead to 5 

systematic biases in the average 𝛽መ௞ values.  However, if the transit time distribution is strongly skewed, with large 

contributions to streamflow at short lags, minimizing the variance of the 𝛽መ௞ will tend to suppress this short-lag peak in the 

transit time distribution.  This distortion of the transit time distribution is undesirable when one seeks to quantify recent 

contributions to streamflow. 

 10 

A third possible criterion is smoothness: minimize the mean square of the second derivatives of the 𝛽መ௞, thus penalizing 𝛽መ௞ 

values that deviate greatly from their neighbors.  Minimizing the second derivative functional 〈൫𝛽መ௞ିଵ െ 2𝛽መ௞ ൅ 𝛽መ௞ାଵ൯
ଶ

〉, 

where the angled brackets indicate an average from 𝑘 ൌ 1 to 𝑘 ൌ 𝑚-1, leads to an 𝐇 matrix of the form (Phillips, 1962; 

Press et al., 1992), 

𝐇 ൌ

⎝

⎜
⎜
⎜
⎜
⎜
⎛

1 െ2 1 0 0 0 0 ⋯ 0
െ2 5 െ4 1 0 0 0 ⋯ 0
1 െ4 6 െ4 1 0 0 ⋯ 0
0 1 െ4 6 െ4 1 0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0 1 െ4 6 െ4 1 0
0 ⋯ 0 0 1 െ4 6 െ4 1
0 ⋯ 0 0 0 1 െ4 5 െ2
0 ⋯ 0 0 0 0 1 െ2 1 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

     . ሺ47ሻ 15 

This criterion, first used by Phillips (1962) has the advantage of strongly suppressing rapid oscillations in the 𝛽መ௞ while barely 

affecting the larger-scale structure of the inferred transit time distribution.  Therefore this will be the regularization criterion 

employed here. 

 

The solution to Eq. (44) will obviously depend on the value of the parameter 𝜆, which determines the relative weight given 20 

to the regularization criterion versus the goodness-of-fit criterion.  How should the value of 𝜆 be chosen?  One can first note 

that for 𝜆𝐇 to be dimensionally consistent with the covariance matrix, 𝜆 must have the same dimensions as the variance of 

𝑿௞.  The second point to note is that the regularization criterion and the goodness-of-fit criterion will have roughly equal 

weight in determining the 𝛽መ௞ if the trace of 𝜆𝐇 equals the trace of the covariance matrix 𝐂 (Press et al., 1992).  Combining 
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these two considerations, we can define a dimensionless parameter ν that ranges between 0 and 1 and expresses the fractional 

weight given to the regularization criterion, and then calculate the corresponding value of 𝜆 as, 

𝜆 ൌ
𝜈

1 െ 𝜈
 
Trሺ𝐂ሻ

Trሺ𝐇ሻ
   . ሺ48ሻ 

As one can see from Eq. (48), when 𝜈 ൌ 0.5, the trace of 𝜆𝐇 will equal the trace of the covariance matrix 𝐂, and the two 

criteria will have roughly equal weight in determining the 𝛽መ௞.  As 𝜈 grows toward 1, the solution will be increasingly 5 

dominated by the regularization criterion; conversely, if 𝜈 ൌ 0 the regularization criterion will be ignored, and Eq. (44) will 

become equivalent to Eq. (38).   

 

The question remains as to what the most appropriate value of 𝜈 (or 𝜆) would be for any particular situation.  An appropriate 

degree of regularization will prevent the predicted values of 𝑦௝ from fitting the data more closely than they should (that is, it 10 

will prevent "fitting the noise" with unrealistic values of 𝛽መ௞).  Thus a theoretically optimal value of 𝜈 or 𝜆 would be one that 

makes the variance of the prediction errors of the 𝑦௝ similar to the expected variance of the 𝜀௝ (Press et al., 1992).  This 

approach will not work for our problem, for three reasons.  First, the variance of the 𝜀௝ is not known a priori.  Second, 

directly calculating the predicted 𝑦௝, and thus the prediction errors, is impossible if many values of 𝑥௝௞ are missing, as will 

usually be the case.  Third, and perhaps most importantly, equation (37) is, strictly speaking, structurally incorrect for our 15 

system, because 𝛽መ௞ is only an approximation to the time-varying 𝑞௝௞ 𝑄௝⁄ .  Therefore in our case a more pragmatic approach 

(which is also taken in many geophysical applications of regularization methods) is to follow the advice of Phillips (1962) 

that "in practice several values... should be tried and the best value should be the one that appears to take out the oscillation 

without appreciably smoothing the [solution]", while keeping in mind that an element of subjectivity is inevitably 

introduced.  In the analyses presented here, unless otherwise noted, 𝜈 ൌ 0.5 and thus the regularization criterion and the 20 

least-squares criterion have roughly equal weight in determining the values of the 𝛽መ௞.  Regularization usually has little effect 

on the estimated transit time distributions presented below, but it can serve as a safeguard against obtaining wildly 

unrealistic results, particularly with large fractions of missing measurements. 

4.4 Uncertainties 

In conventional multiple regression analysis, calculating the uncertainties in the 𝛽መ௞ requires estimating the variance 𝑠ఌ
ଶ of the 25 

prediction errors 𝜀௝,   

𝑠ఌ
ଶ ൌ

𝑛 െ 1
𝑛 െ ሺ𝑚 ൅ 1ሻ െ 1

 var൫𝜀௝൯

𝜀௝ ൌ 𝑦௝ െ ෍  𝛽መ௞ 𝑥௝௞

௠

௞ୀ଴

 െ 𝛼 ൌ  ቀ𝐶୕ೕ
െ 𝐶୕ೕష೘షభ

ቁ െ ෍  𝛽መ௞  ቀ𝐶୔ೕషೖ
െ 𝐶୕ೕష೘షభ

ቁ

௠

௞ୀ଴

 െ 𝛼       . ሺ49ሻ
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It may seem that calculating (49) is impossible in our case, because values of 𝐶୔ೕషೖ
 are missing for all days 𝑖 ൌ 𝑗-𝑘 without 

rain.  However, as noted in Sect. 4.2 above, for those points the true value of 𝛽௝,௞ is known to be zero, so the rainless terms 

can simply be ignored because they will have no effect on the predicted 𝑦௝.  Thus if sampling and measurement failures 

account for only a small fraction of the missing tracer concentrations, Eq. (49) may yield adequate estimates of 𝑠ఌ
ଶ.  Where 

there are many sampling and measurement failures, we can use the error variance formula of Glasser (1964), adapted to our 5 

problem as  

𝑠ఌ
ଶ ൌ

𝑛 െ 1
𝑛 െ ሺ𝑚 ൅ 1ሻ െ 1

 ൭𝑠௬
ଶ െ ෍ 𝛽መ௞

௠

௞ୀ଴

൬
𝑛௫ೖ

𝑛
൰  covሺ𝑿௞, 𝒀ሻሺ௞௬ሻ൱      , ሺ50ሻ 

which is the mean square error of the estimated 𝑦௝ values.  The factor 𝑛௫ೖ
𝑛⁄  accounts for the fact that there are 𝑛 values of 

𝑦௝, but only 𝑛௫ೖ
 of them are affected by 𝛽መ௞; for the other 𝑛 െ 𝑛௫ೖ

, 𝑥௝௞ is missing and 𝛽መ௞ has no influence on 𝑦௝.  In both (49) 

and (50), the factor 
௡ିଵ

௡ିሺ௠ାଵሻିଵ
 corrects for degrees of freedom.  If one removes this degree-of-freedom correction, one gets 10 

the "population" mean square error (i.e., the error variance of the fit to these particular data).  With the degree-of-freedom 

correction, one gets the "sample" mean square error (i.e., an estimate of the prediction error for data drawn from the same 

population, but not used to fit the model in the first place).  When applied to complete data sets (without missing values, and 

without regularization), Eq. (50) equals the conventional error variance for multiple regression, and it usually works 

reasonably well with missing values and with unbiased regularization, e.g., with the consistency criterion of Eq. (46) or the 15 

smoothness criterion of Eq. (47).  However, unlike in conventional multiple regression, there is no absolute guarantee that 

the variance of the predicted values (the summation in Eq. 50) will be smaller than the variance of the observed values of 𝑦௝.  

Users should therefore be aware that Eq. 50 could potentially yield nonsensical negative values (or unrealistically small 

positive values) for the error variance in particular cases.   

 20 

In conventional multiple regression, the covariance matrix of the coefficients 𝛽መ௞ equals the inverse of the covariance matrix 

𝐂, scaled by the error variance 𝑠ఌ
ଶ divided by the sample size 𝑛.  This approach must be adapted to account for the effects of 

regularization, yielding the following expression for the covariances of the 𝛽መ௞:  

ቌ cov൫𝛽መ௞, 𝛽መℓ൯ ቍ ൌ
𝑠ఌ

ଶ

𝑛ୣ୤୤
 ൭ 𝐂 ൅ 𝜆𝐇 ൱

ିଵ

൭ 𝐂 ൱    ൭ 𝐂 ൅ 𝜆𝐇 ൱

ିଵ

  , ሺ51ሻ 

where 𝑠ఌ
ଶ is the error variance as estimated in Eq. (49) or (50), and 𝑛ୣ୤୤ is the sample size 𝑛, adjusted to account for serial 25 

correlation in the residuals using Eq. (13).  (Where there are so many measurement or analysis failures that residuals cannot 

be calculated reliably, it is better to guess a reasonable value for their serial correlation than to assume it is zero, which will 

typically lead to overestimates of 𝑛ୣ୤୤ and thus underestimates of the associated uncertainties.)  The standard errors of the 𝛽መ௞ 

will be the square roots of the diagonal elements of the matrix defined by Eq. (51),  

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-429
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 27 August 2018
c© Author(s) 2018. CC BY 4.0 License.



38 
 

s. e. ൫𝛽መ௞൯ ൌ
𝑠ఌ

ඥ𝑛ୣ୤୤
  ඩ቎൭ 𝐂 ൅ 𝜆𝐇 ൱

ିଵ

൭ 𝐂 ൱    ൭ 𝐂 ൅ 𝜆𝐇 ൱

ିଵ

቏

௞௞

    , ሺ52ሻ 

Benchmark data sets verify that Eqs. (51) and (52) perform as they should: the root-mean-square averages of the calculated 

s. e. ൫𝛽መ௞൯ are close to the root-mean-square averages, over many replicate data sets, of the deviation of the fitted coefficients 

𝛽መ௞ from the true 𝛽௞ used to generate the synthetic data.  This result holds both with and without substantial fractions of 

missing values, strong correlations among the 𝑿௞, and substantial additive noise.   5 

 

There is one important caveat to this generalization, however: it holds only if the assumptions underlying the regularization 

criterion are actually true.  For example, if the true 𝛽௞ vary smoothly with 𝑘, then regularization using Eq. (47) will retrieve 

a set of smoothly varying coefficients 𝛽መ௞ that deviate from the true 𝛽௞ by amounts that are well approximated by the 

calculated standard errors s. e. ൫𝛽መ௞൯.  But if (say) the true 𝛽௞ oscillate wildly from one 𝑘 to the next, regularization using Eq. 10 

(47) will generate a smoothly varying set of 𝛽መ௞ which will deviate from the true (wildly oscillating) 𝛽௞ by much more than 

the calculated standard errors s. e. ൫𝛽መ௞൯ as calculated from Eq. (52).  Regularization methods are forced to assume that the 𝛽௞ 

obey the regularization criterion (with the strength of this assumption determined by the parameter 𝜆), and thus they cannot 

be used to test whether this assumption is true.  Thus what the calculated standard errors tell us is that if the true 𝛽௞ vary 

smoothly over 𝑘, then the estimation errors of the 𝛽መ௞ should be on the order of s. e. ൫𝛽መ௞൯.   15 

4.5 Transit time distribution of discharge 

The coefficients 𝛽መ௞ determined by Eqs. (38)-(52) estimate the average contribution to discharge 𝑄௝ that originated as 

precipitation 𝑘 time steps earlier; that is, they estimate the average of 𝑞௝௞ 𝑄௝⁄  for combinations of times 𝑗 and 𝑘 for which 

precipitation occurred at 𝑖 ൌ 𝑗 െ 𝑘.  They do not account for times 𝑖 when no precipitation occurred, and thus for which 

𝑞௝௞ ൌ 0 at the corresponding time steps 𝑗 ൌ 𝑖 ൅ 𝑘.   20 

 

To estimate the average contribution 𝑞௝௞ 𝑄௝⁄  of precipitation to discharge across all time steps, both with and without 

precipitation, we need to include values of 𝑞௝௞ ൌ 0 for times without precipitation (and thus without any contribution of 

precipitation to discharge).  This is done by re-scaling the coefficients 𝛽መ௞ and their uncertainties s. e. ൫𝛽መ௞൯ by 𝑛௫ೖ
𝑛⁄ , the ratio 

of "event" time steps (those with precipitation) to all time steps; doing so yields the transit time distribution of discharge 25 

𝑇୕ 𝑇𝐷௞ (also termed the "backward" transit time distribution, or the transit time distribution conditioned on exit time): 

𝑇𝑇𝐷୕
௞ ൌ  𝛽መ௞  

𝑛௫ೖ

𝑛
       ,      s. e. ൫ 𝑇𝑇𝐷୕

௞൯ ൌ  s. e. ൫𝛽መ௞൯ 
𝑛௫ೖ

𝑛
       . ሺ53ሻ 
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Figure 11.  Transit time distributions of discharge estimated by ensemble hydrograph separation based on both daily and weekly 
tracer sampling, versus true transit time distributions determined by benchmark model age tracking (light blue curves).  Upper 
and lower rows show TTD's for the modeled flashy and damped catchments, both driven by Smith River (Mediterranean climate) 
precipitation.  Dark blue symbols show transit time distributions estimated from one time series.  Data clouds (light gray) show 5 
200 different realizations of random precipitation tracer values, random missing data, and random measurement errors.  
Ensemble hydrograph separation correctly reveals the shapes of the transit time distributions and also quantifies their values, 
within the calculated uncertainties, at most lags.  It can clearly distinguish the transit time distributions of the two catchments 
under either daily or weekly tracer sampling. 

 10 

These transit time distributions can be tested by comparing them to time-averaged streamwater age distributions calculated 

by age tracking in the benchmark model (Sect. 3.1).  Figure 11 shows the results of several such tests, using both daily and 

weekly tracer data as input (left and right columns, respectively).  The light blue curves indicate the true time-averaged 

transit time distribution (determined from age tracking in the benchmark model), the dark blue symbols show transit time 

distributions estimated from one tracer time series, and the gray data clouds show 200 more transit time distributions from 15 

the same model with different realizations of the random inputs.  The weekly TTD's are larger, in absolute terms, than the 

daily TTD's, because streamflow will always contain at least as much water that originated as precipitation during the 

previous week as during the previous day (for the simple reason that the previous day is part of the previous week).  Figure 

11 shows that ensemble hydrograph separation correctly estimates the general shapes of the TTD's, and their quantitative 

values.  Furthermore, the gray data clouds show that no TTD estimates deviate too wildly from the age tracking curves.   20 
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Figure 12.  Transit time distributions (TTD's) of discharge estimated by ensemble hydrograph separation based on daily sampling, 
compared to true TTD's determined by benchmark model age tracking (light blue curves), for four model parameter sets yielding 
diverse patterns of transport behaviour.  Dark blue symbols show transit time distributions estimated from one time series.  Data 
clouds (light gray) show 200 different realizations of random precipitation tracer values, random missing data, and random 5 
measurement errors.  Vertical axis scales differ greatly.  Ensemble hydrograph separation correctly reveals the shapes of the 
TTD's and also quantifies their values at most lags.  However, panels b and c show that standard errors are overestimated for 
TTD's that result in strong serial correlation in the modelled time series (see text). 

 

Real-world transit time distributions could potentially have different shapes from those shown in Fig. 10.  To test whether 10 

ensemble hydrograph separation can correctly estimate transit time distributions with more widely varying shapes, I explored 

the benchmark model's parameter space, in some cases venturing beyond the nominal parameter ranges outlined in Sect. 3.1.  

As Fig. 12 illustrates, widely differing time-averaged (or "marginal") transit time distributions generated by the benchmark 

model (solid lines) are well approximated by the ensemble hydrograph separation estimates (blue dots) calculated from the 

tracer time series.  The standard errors are overestimated for humped TTD's, which generate strongly autocorrelated time 15 

series.  The reason appears to be that when the benchmark model's parameters generate a strongly autocorrelated tracer time 

series, the residuals will also be strongly autocorrelated; thus the effective sample size 𝑛ୣ୤୤ will be small (Eq. 13) and the 

resulting uncertainties s. e. ൫ 𝑇୕ 𝑇𝐷௞൯ will be correspondingly large (Eqs. 52-53).  Also, in some TTD's the last few lags can 

exhibit substantial deviations from the age tracking results (e.g., Fig. 12b).  This may be an aliasing effect that arises when 

𝐶୕ೕష೘షభ
 does not adequately capture the effects of the unmeasured older fluxes (see Eqs. 30-33).  One would expect this 20 

aliasing effect to be strongest in time series for which the TTD does not approach zero at the longest measured lags (such as 

in Fig. 12b).  Pragmatic solutions to this problem could include ignoring the last few lags of the estimated TTD, and/or 

estimating the TTD over a wider range of lags so that it converges to nearly zero.  These caveats notwithstanding, Figs. 11 
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and 12 demonstrate that ensemble hydrograph separation can reliably quantify transit time distributions with widely varying 

shapes. 

4.6 Volume-weighted transit time distribution 

The transit time distributions defined in Eq. (53) are ensemble averages in which each day counts equally; that is, for a given 

lag k, 𝑇୕ 𝑇𝐷௞ estimates the average of the ratio 𝑞௝௞ 𝑄௝⁄  across all time steps, including zeroes at time steps for which there 5 

was no precipitation at the corresponding time step 𝑖 ൌ 𝑗 െ 𝑘.  Thus Eq. (53) estimates time-weighted average TTD's, the 

distribution of temporal origins of an average day of discharge.   

 

For many purposes, it would be useful to estimate the temporal origins of an average liter of discharge instead, that is, the 

volume-weighted TTD, which we can denote 𝑇୕ 𝑇𝐷௞
∗ (where, following the convention in Sect. 2, the asterisk indicates 10 

volume-weighting). Instead of estimating the average of the ratio 𝑞௝௞ 𝑄௝⁄  (the time-weighted average), a volume-weighted 

TTD approximates the ratio of the average 𝑞௝௞ to the average 𝑄௝ across all time steps (the ratio of the averages rather than 

the average of the ratios).  This is the multi-dimensional analogue to the volume-weighted new water fraction presented in 

Sect. 2.4, and is handled similarly.  The multiple regression in Eq. (34) can be volume-weighted by multiplying the 𝑦௝ and 

𝑥௝௞ by ඥ𝑄௝: 15 

𝑦௝ ൌ ෍ 𝛽௞
∗  𝑥௝௞

௠

௞ୀ଴

  ൅ 𝛼 ൅ 𝜀௝       ,      𝑦௝ ൌ ට𝑄௝  ቀ𝐶୕ೕ
െ 𝐶୕ೕష೘షభ

ቁ      ,      𝑥௝௞ ൌ ට𝑄௝  ቀ𝐶୔ೕషೖ
െ 𝐶୕ೕష೘షభ

ቁ      . ሺ54ሻ 

This volume-weighted regression can be solved by the same procedures described in Sects. 4.2-4.4, yielding volume-

weighted estimates of the coefficients 𝛽መ௞
∗ (where, as above, the asterisk indicates volume-weighting).  Following the 

approach of Sect. 2.5, one should account for the unevenness of the weighting when calculating the effective sample size 𝑛ୣ୤୤ 

to be used in estimating the uncertainties in the 𝛽መ௞
∗,  20 

𝑛ୣ୤୤ೖ
ൌ  

൫∑ 𝑄௝ሺ௞௬ሻ൯
ଶ

∑൫𝑄௝ሺ௞௬ሻ
ଶ ൯

                   ,   ሺ55ሻ 

where 𝑛ୣ୤୤ೖ
 is the effective sample size at lag 𝑘, and 𝑄௝ሺ௞௬ሻ denotes discharge during time steps 𝑗 for which pairs of 𝑦௝ and 

𝑥௝௞ exist (for a given lag 𝑘).   

 

To estimate the volume-weighted TTD, we must average over all discharge (including discharge after time steps with no 25 

precipitation).  Thus the coefficients 𝛽መ௞
∗ and their uncertainties should be re-scaled, following the approach in Sect. 2.5, as 

follows: 
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𝑇𝑇𝐷௞
∗୕ ൌ

𝑄ത௫ೖ

𝑄ത
  

𝑛௫ೖ

𝑛
 𝛽መ௞

∗      ,      s. e. ൫ 𝑇𝑇𝐷௞
∗୕ ൯ ൌ  

𝑄ത௫ೖ

𝑄ത
  

𝑛௫ೖ

𝑛
  s. e. ൫𝛽መ௞

∗൯          ሺ56ሻ 

where 𝑄ത௫ೖ
 is the average discharge during the 𝑛௫ೖ

 time steps 𝑗 for which precipitation fell at 𝑖 ൌ 𝑗 െ 𝑘, 𝑄ത is the average 

discharge over all time steps (including rainless periods), 𝑛௫ೖ
𝑛⁄  is the fraction of time steps with precipitation, and 𝛽መ௞

∗ and 

s. e. ൫𝛽መ௞
∗൯ are estimated from the multiple regression in Eq. (54), with the effective sample size 𝑛ୣ୤୤ೖ

 defined in Eq. (55).  The 

ratio 𝑄ത௫ೖ
/𝑄ത corrects for any differences in average discharge during sampled and un-sampled time steps, and the ratio 𝑛௫ೖ

𝑛⁄  5 

corrects for rain-free periods, which contribute no "new" water to streamflow. 

 

 

Figure 13.  Volume-weighted transit time distributions (TTD's) of discharge estimated by ensemble hydrograph separation (Eq. 
56) compared to benchmark model age tracking.  Upper and lower panels show TTD's for rapid and damped response 10 
parameters, respectively; model is driven by Smith River precipitation in both cases.  Ensemble hydrograph separation estimates 
from tracer fluctuations (dark blue symbols) are broadly consistent with true TTD from age tracking in benchmark model (solid 
curve).  Data clouds show ensemble hydrograph separation results (slightly jittered on x-axis) from 200 different realizations of 
random precipitation tracer values, random missing data, and random measurement errors.  Dashed curve is unweighted 
benchmark model TTD from Fig. 11 for comparison. 15 

 

4.7 Forward transit time distribution 

In addition to the "backward" transit time distributions 𝑞௝௞ 𝑄௝⁄ , which estimate the fraction of streamflow that originated as 

precipitation 𝑘 time steps earlier, it may also be useful to estimate "forward" transit time distributions 𝑞௝௞ 𝑃௝ି௞⁄ ൌ 𝑞௜ା௞,௞ 𝑃௜⁄ , 

which estimate the fraction of precipitation that becomes streamflow 𝑘 time steps later.  Instantaneous, time-varying forward 20 

and backward transit time distributions can differ markedly at any point in time.  For example, today's backward transit time 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-429
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 27 August 2018
c© Author(s) 2018. CC BY 4.0 License.



43 
 

distribution strongly depends on the timing and magnitude of previous precipitation supplying today's streamflow, whereas 

the forward transit time distribution strongly depends on how future precipitation mobilizes water stored from today's 

rainfall.  These individual differences become less prominent when averaged over a large ensemble of events.  Systematic 

differences nonetheless persist, because forward transit time distributions are defined only during periods with precipitation 

(otherwise both 𝑞௝௞ and 𝑃௝ି௞ are both zero and their ratio is undefined), and during these periods precipitation must be 5 

higher, on average, than discharge (otherwise there can be no recharge of storage to supply discharge during rainless periods. 

 

Forward transit time distributions are less straightforward to estimate from tracers than backward distributions are, for the 

simple reason that although streamflow is a mixture of contributions from previous precipitation events, the converse does 

not hold: that is, precipitation cannot be expressed as a mixture of subsequent streamflows.  Although it is algebraically 10 

straightforward to rewrite Eq. (33) as either  

ቀ𝐶୕ೕ
െ 𝐶୕ೕష೘షభ

ቁ ൌ ෍  
𝑞௝௞

𝑃௝ି௞
  ൭

𝑃௝ି௞

𝑄௝
 ቀ𝐶୔ೕషೖ

െ 𝐶୕ೕష೘షభ
ቁ൱

௠

௞ୀ଴

  ൅ 𝛼 ൅ 𝜀௝ ሺ57ሻ 

or 

𝑄௝ ቀ𝐶୕ೕ
െ 𝐶୕ೕష೘షభ

ቁ ൌ ෍  
𝑞௝௞

𝑃௝ି௞
 ൬𝑃௝ି௞ ቀ𝐶୔ೕషೖ

െ 𝐶୕ೕష೘షభ
ቁ൰

௠

௞ୀ଴

  ൅ 𝛼 ൅ 𝜀௝       , ሺ58ሻ 

regressions based on these equations do not reliably predict the average of 𝑞௝௞ 𝑃௝ି௞⁄  when applied to synthetic data from the 15 

benchmark model.  (Note that these are the multi-dimensional counterparts to Eqs. (24) and (25), which likewise fail 

benchmark tests.)     

 

Instead, by analogy Eq. (20), we can estimate the forward transit time distribution from the regression coefficients 𝛽መ௞ of Eq. 

(42), rescaled as  20 

𝑇୔ 𝑇𝐷௞ ൌ  𝛽መ௞  
𝑄ത௫ೖ

𝑃ത௫ೖ

   ,     s. e. ൫ 𝑇୔ 𝑇𝐷௞൯ ൌ   s. e. ൫𝛽መ௞ ൯ 
𝑄ത௫ೖ

𝑃ത௫ೖ

ሺ59ሻ 

where 

𝑃ത௫ೖ
ൌ

1
𝑛௫ೖ

  ෍ ൜
 𝑃௝ି௞ ∶ 𝑃௝ି௞ ൒ 𝑃୲୦୰ୣୱ୦୭୪ୢ

    0   ∶ 𝑃௝ି௞ ൏ 𝑃୲୦୰ୣୱ୦୭୪ୢ
  

௡

௝ୀଵ

ሺ60ሻ 

 is the average precipitation rate during time steps with precipitation, and 
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𝑄ത௫ೖ
ൌ  

1
𝑛௫ೖ

   ෍ ൜
 𝑄௝ ∶ 𝑃௝ି௞ ൒ 𝑃୲୦୰ୣୱ୦୭୪ୢ

  0   ∶ 𝑃௝ି௞ ൏ 𝑃୲୦୰ୣୱ୦୭୪ୢ
  

௡

௝ୀଵ

ሺ61ሻ 

is the average of the discharges that occur 𝑘 time steps after each of these precipitation intervals.  Figure 14 shows that 

forward transit time distributions estimated with Eq. (59) are broadly consistent with true forward TTD's calculated by age 

tracking in the benchmark model. 

 5 

 

Figure 14.  Forward transit time distributions (the fraction of precipitation that leaves the catchment within one time step, two 
time steps, and so on) estimated by ensemble hydrograph separation (Eq. 59) compared to benchmark model age tracking.  Upper 
and lower panels show TTD's for flashy and damped catchments, respectively; the model is driven by Smith River (Mediterranean 
climate) precipitation in both cases.  Ensemble hydrograph separation estimates from tracer fluctuations (dark blue symbols) are 10 
broadly consistent with true TTD's from age tracking in the benchmark model (solid curve).  Data clouds show ensemble 
hydrograph separation results (slightly jittered on x-axis) from 200 different realizations of random precipitation tracer values, 
random missing data, and random measurement errors.  Dashed curve is the benchmark model backward TTD from Fig. 11 for 
comparison. 

 15 

The volume-weighted forward transit time distribution 𝑇𝑇𝐷୔
௞
∗ can similarly be calculated by rescaling arguments, analogous 

to the approach in Sect. 2.7.  The key is to recognize that we are seeking the ratio between the total volume of precipitation 

that will leave the catchment 𝑘 days after falling as precipitation (the sum of 𝑞௝௞ over all 𝑗), and the total volume of 

precipitation that fell on the catchment during the corresponding rainy days.  The numerator of this ratio is identical to the 

numerator of the volume-weighted "backward" transit time distribution 𝑇𝑇𝐷୕
௞
∗, but the denominator is total precipitation 20 

rather than total discharge.  Thus the precipitation-weighted forward transit time distribution can be estimated as  
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𝑇୔ 𝑇𝐷௞
∗  ൌ

𝑄ത

𝑃ത
𝑇୕ 𝑇𝐷௞

∗  ൌ
𝑄ത௫ೖ

𝑃ത
 
𝑛௫ೖ

𝑛
 𝛽መ௞

∗       ,      s. e. ൫ 𝑇𝑇𝐷௞
∗୔ ൯ ൌ

𝑄ത

𝑃ത
 s. e. ൫ 𝑇𝑇𝐷௞

∗୔ ൯ ൌ  
𝑄ത௫ೖ

𝑃ത
  

𝑛௫ೖ

𝑛
  s. e. ൫𝛽መ௞

∗൯            . ሺ62ሻ 

Because the benchmark model in Fig. 1 has no evaporative losses and thus 𝑄ത ൌ 𝑃ത, benchmark tests of the precipitation-

weighted forward TTD ( 𝑇𝑇𝐷୔
௞
∗) and the discharge-weighted backward TTD ሺ 𝑇𝑇𝐷୕

௞
∗) will yield identical results; thus the 

benchmark test of 𝑇𝑇𝐷୕
௞
∗ (Fig. 13) will not be repeated here as a test of 𝑇𝑇𝐷୔

௞
∗ .  

4.8 Variations in transit time distributions with discharge, precipitation, antecedent moisture, and seasonality 5 

Like the new water fraction 𝐹୬ୣ୵, estimating the transit time distribution 𝑇୕ 𝑇𝐷௞ does not require unbroken time series.  

Thus, using approaches similar to those outlined in Sect. 3.5, one can estimate transit time distributions for subsets 

(including discontinuous subsets) of the precipitation and streamflow time series that reflect conditions of particular interest.  

In the case of new water fractions, subdividing the source data is relatively simple, because new water fractions are 

estimated from precipitation and streamflow tracers at the same time steps; thus when one subdivides the streamflow time 10 

series one also subdivides the precipitation time series, and vice versa.  Transit time distributions are not so simple, because 

each discharge time 𝑗 is potentially affected by 𝑘 ൌ 1 … 𝑚 precipitation time steps 𝑖 ൌ 𝑗 െ 𝑘; thus the precipitation and 

streamflow time series can be subdivided differently, according to different criteria. 

 

For example, we can choose to subdivide the data set according to the discharge time 𝑗, thus evaluating Eq. (34) only for 15 

time steps 𝑗 that meet particular criteria (for example, to analyze time steps with high or low flows separately).  Doing so has 

the effect of creating blank rows in the vector 𝒀 and matrix 𝐗 in Eq. (37) for each excluded value of 𝑗.  Figure 15 shows the 

results of estimating transit time distributions 𝑇୕ 𝑇𝐷௞ using only the highest 20% of discharges (the corresponding 𝑇୕ 𝑇𝐷௞ 's 

calculated from the entire time series are also shown for comparison).  Because large inputs of recent precipitation are likely 

to result in high flows, one would intuitively expect that high flows should contain larger contributions from recent 20 

precipitation.  But how much larger?  As Fig. 15 shows, this question can be answered, at least on average, by examining the 

transit time distributions of high-flow discharges.  Figure 15 shows that ensemble hydrograph separation can accurately 

estimate the transit time distributions of both high flows and normal flows, and thus can accurately quantify how transport 

behavior is different under high-flow conditions. 

 25 
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Figure 15.  Transit time distributions 𝑻𝑻𝑫𝒌
𝐐  for high flows (the highest 20% of daily discharges; solid curve and solid circles), 

compared to transit time distributions for all flows (dashed curve and open squares).  Solid circles and open squares show 𝑻𝑻𝑫𝒌
𝐐  

estimates from ensemble hydrograph separation (Eq. 53); solid and dashed curves show true 𝑻𝑻𝑫𝒌
𝐐  determined by age tracking 

in the benchmark model.  Left and right panels show TTD's for flashy and damped catchments, respectively; the three rows of 5 
panels represent three different precipitation drivers.  Note that vertical axis scales differ substantially.  High flows have much 
larger contributions of recent precipitation than average flows do.  Ensemble hydrograph separation quantitatively captures this 
behavior across flashy and damped model catchments with all three precipitation drivers.  

 

In a Mediterranean climate (as depicted by, for example, the Smith River precipitation record shown in Fig. 1), one would 10 

intuitively expect rainy-season streamflow to have larger contributions from recent precipitation.  Conversely, one would 

expect that dry-season streamflow will have much smaller contributions from recent rainfall (because there is so little of it, 

among other reasons).  But how big are the differences between rainy-season and dry-season transit time distributions?  As 

an illustration of what may be possible with real-world data, I took the five-year daily and weekly time series for the 

benchmark model driven by the Mediterranean climate (Smith River) precipitation record, and separated them into summer 15 

(dry) and winter (wet) seasons, and analyzed the two seasons separately.  Figure 16 shows that, as expected, the 
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contributions of recent precipitation to streamflow are much larger during the wet season than the dry season.  But more 

importantly, Figure 16 also shows that these differences can be accurately quantified, directly from data. 

 

 

Figure 16.  Backward and forward transit time distributions (upper and lower panels, respectively) compared for summer (May-5 
October) and winter (November-April) months, from benchmark model with Mediterranean (Smith River) precipitation 
climatology and flashy catchment parameters.  Solid circles and open squares show estimates from ensemble hydrograph 
separation (Eqs. 53 and 59); solid and dashed curves show the true TTD's determined by age tracking in the benchmark model.  
Left and right panels show TTD's estimated from daily and weekly sampling, respectively.  Owing to larger and more frequent 
rainfalls during winter (see Fig. 1), transit time distributions calculated for the winter months show a much larger contribution of 10 
recent rainfall to current streamflow (upper panels), and a much larger fraction of current precipitation becoming streamflow in 
the near future (lower panels).  Ensemble hydrograph separation quantitatively captures the seasonal differences in the 
benchmark model's transit time distributions.   

 

The examples above are based on subdividing the data set according to the discharge time 𝑗.  It is also possible to subdivide 15 

the data according to precipitation times 𝑖 ൌ 𝑗 െ 𝑘 that meet particular criteria (for example, to analyze time steps with large 

and small rainstorms separately).  Doing so has the effect of creating diagonal stripes of blanks in the matrix 𝐗 in Eq. (37) at 

𝑗 ൌ 𝑖 ൅ 𝑘 for each excluded value of 𝑖.  These are in addition to the diagonal stripes of missing values that arise because of 

sampling and measurement failures, or more commonly because no rain fell.  Thus they pose no new mathematical 

challenges, and can be handled by the methods outlined in Sect. 4.2.   20 

 

One question that can be explored by subdividing the time series according to precipitation is whether larger rainfall events 

propagate faster through catchments.  Intuition suggests that intense rainfall should lead to larger contributions to streamflow 

from faster flowpaths.  But how much larger?  Figure 17 illustrates how this kind of question could potentially be explored.  
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In Fig. 17, the forward transit time distributions of the highest 20% of precipitation are compared to the average transit time 

distributions of all precipitation events, for the damped and flashy parameter sets and all three precipitation climatologies.  

One can see that large rain events are associated with much larger amounts of water reaching the stream quickly, but this 

effect largely disappears after about 2-3 days.  Moreover, the magnitude and timing of this effect are nearly the same in the 

estimates derived from ensemble hydrograph separation and benchmark model age tracking, suggesting that they could also 5 

be reliably estimated from real-world data. 

 

 

Figure 17.  Forward transit time distributions 𝑻𝑻𝑫𝒌
𝐏  for intense precipitation (the highest 20% of daily precipitation totals; solid 

curve and solid circles), compared to forward transit time distributions for all precipitation (dashed curve and open squares).  10 
Solid circles and open squares show 𝑻𝑻𝑫𝒌

𝐏  estimates from ensemble hydrograph separation (Eq. 59); solid and dashed curves 
show the true 𝑻𝑻𝑫𝒌

𝐏  determined by age tracking in the benchmark model.  Left and right panels show TTD's for flashy and 
damped catchments, respectively; the three rows of panels represent three different precipitation drivers.  Note that vertical axis 
scales differ greatly.  Despite a tendency for ensemble hydrograph separation to over-predict 𝑻𝑻𝑫𝒌

𝐏  for short lag times, the 
differences between the ensemble hydrograph separation estimates for intense precipitation and normal precipitation (open 15 
squares and solid circles) closely mirror the differences between the solid and dashed curves.  Thus ensemble hydrograph 
separation can estimate the relative effect of intense precipitation on forward transit times, across widely differing precipitation 
drivers and catchment characteristics.  
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Antecedent wetness has been recognized as a controlling factor in catchment storm response (e.g., Detty and McGuire, 2010; 

Merz et al., 2006; Penna et al., 2011), but its effects on solute transport at the catchment scale have not been widely 

explored.  To assess whether ensemble hydrograph separation might be helpful in exploring this question, I binned the 

benchmark model time series into ranges of antecedent moisture (as measured by the upper box storage values 𝑆୳ at the end 5 

of the previous day), and estimated the new water fractions 𝐹୕
୬ୣ୵ and 𝐹୔

୬ୣ୵ using ensemble hydrograph separation.  I used 

the upper box storage as a proxy for measurements of soil moisture or shallow groundwater levels, which are commonly 

used as indicators of antecedent wetness in catchment studies (one could use antecedent discharge as a proxy instead; this 

would yield nearly equivalent results).  As Figs. 18a and c show, ensemble hydrograph separation accurately predicts how 

both "backward" and "forward" new water fractions increase as functions of antecedent moisture.   10 

 

To visualize how high antecedent moisture affects transit time distributions, I isolated the discharge times 𝑡௝ associated with 

the highest 10% of antecedent moisture values, and calculated the corresponding backward transit time distribution 𝑇୕ 𝑇𝐷௞ 

(Fig. 18b).  This TTD shows that high antecedent moisture is associated with large contributions of recent rainfall to 

streamflow, up to lags of about 3-4 days.  The peak of the transit time distribution does not come at the shortest possible lag 15 

(same-day precipitation), but instead at a lag of 1.5 days (i.e., previous-day precipitation).  This is the inevitable result of 

selecting points with high previous-day moisture, which are likely to be associated with high previous-day precipitation (and 

thus high contributions of that previous-day precipitation to current streamflow).  Storms typically last about 2-3 days in the 

Smith River precipitation record underlying the simulations in Fig. 18, so much of the backward TTD could potentially just 

reflect the pattern of precipitation, combined with the fact that points with high antecedent moisture have been selected. 20 

 

One can even question why one would expect a backward TTD to help in understanding the effects of antecedent moisture at 

all, given that the backward TTD will mostly reflect precipitation inputs that came before (and, in some cases, created) the 

antecedent moisture conditions themselves.  A forward TTD, on the other hand, might help in quantifying how antecedent 

moisture affects the transmission of future precipitation to streamflow.  I therefore isolated the precipitation times 𝑡௜ ൌ 𝑡௝ି௞ 25 

associated with the highest 10% of antecedent moisture values (thus, as explained above, filtering the matrix 𝐗 in Eq. (37) 

along diagonal lines), and calculated the corresponding forward transit time distribution 𝑇୔ 𝑇𝐷௞ (Fig. 18d).  As Fig. 18d 

shows, in this model system, high antecedent moisture roughly doubles the proportion of precipitation that reaches the 

stream, but only out to lags of approximately two days, beyond which there is no clearly detectable effect.  Naturally, these 

inferences pertain only to the model system, and do not tell us how real-world catchments might behave.  However, because 30 

Fig. 18 shows that new water fractions and transit time distributions can be accurately quantified across a range of 

antecedent moisture conditions using ensemble hydrograph separation, it illustrates how this technique could be used to 

explore the effects of antecedent moisture in real-world catchments. 
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Figure 18.  Effects of antecedent moisture on new water fractions and transit time distributions (upper panels) and their 
"forward" counterparts (lower panels).  Left-hand panels show new water fractions from benchmark model age tracking (solid 
curves) and ensemble hydrograph separation (solid circles) stratified by percentiles of antecedent moisture (previous-day storage 5 
𝑺𝐮 in the benchmark model's upper box).  Right-hand plots show transit time distributions for high antecedent moisture 
conditions (the highest 10% of previous-day storage levels in the upper box of the benchmark model; solid curve and solid circles), 
compared to transit time distributions for all antecedent moisture levels (dashed curve and open squares).  All panels are derived 
from simulations with flashy catchment parameter set driven by Smith River (Mediterranean climate) precipitation time series.  
Error bars are one standard error. 10 

5 Discussion 

Over 20 years ago, Rodhe et al. (1996) wrote that transit times, despite their importance to modeling discharge, were 

"impractical to determine experimentally except in rare manipulative experiments where catchment inputs can be adequately 

controlled."  Despite over two decades of effort, including increasingly elaborate theoretical discussions of transit time 

distributions, the problem identified by Rodhe et al. remains: how can we measure transit times, and transit time 15 

distributions, of real-world catchments under real-world conditions?  And how can we verify whether the estimates we get 

are realistic ones?  The theory and benchmark tests presented in Sects. 2-4 aim to provide a partial answer.   

5.1 Comparisons with other approaches 

Particularly because their names are similar, it is important to recognize how ensemble hydrograph separation contrasts with 

conventional hydrograph separation.  Although one could view Eq. (9) as an algebraic re-arrangement of the conventional 20 
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hydrograph separation equation (Eq. 3), with both sides multiplied by (𝐶୬ୣ୵-𝐶୭୪ୢ) and 𝐶୕ೕషభ
 substituted in place of 𝐶୭୪ୢ, 

there are important differences between the two approaches: 

1. Conventional hydrograph separation estimates the time-varying new water fraction 𝐹୬ୣ୵ೕ
 at each individual point in 

time.  By contrast, ensemble hydrograph separation estimates the average new water fraction 𝐹୬ୣ୵ over an 

ensemble of points (hence the name). 5 

2. Conventional hydrograph separation assumes that the end-member tracer signatures are constant, but ensemble 

hydrograph separation assumes them to be time-varying; indeed, it exploits their variability through time as its main 

source of information. 

3. Conventional hydrograph separation requires that all end-members that contribute to streamflow must be identified, 

sampled, and measured.  Ensemble hydrograph separation, by contrast, requires tracer measurements only from 10 

streamflow and any end-members whose contributions to streamflow are to be estimated.  There is no need to 

assume that all end-members have been identified and measured, just that tracer fluctuations in any un-measured 

end-members are not strongly correlated with those in measured end-members and in streamflow.   

4. Conventional hydrograph separation requires that the end-members' tracer concentrations are distinct from one 

another; otherwise the solution to Eq. (3) becomes unstable because the denominator is nearly zero.  By contrast, 15 

ensemble hydrograph separation estimates the new water fraction by regression, and points where the new water 

and old water concentrations overlap will have almost no leverage on the regression slope (they correspond to 

points near zero on the x-axes of Figs. 6a-b, 7a-b, 9a, or A1d, for example).  

5. Conventional hydrograph separation is vulnerable to biases in tracer measurements, such as could arise from 

isotopic evaporative fractionation.  By contrast, these same biases should have relatively little effect on ensemble 20 

hydrograph separation (e.g., Sect. 3.6), because it is based on regressions between tracer fluctuations, and 

regression slopes are unaffected by constant offsets on either the x or y axes.   

 

It is also useful to contrast ensemble hydrograph separation with other methods for estimating transit time distributions from 

tracer data.  As reviewed by McGuire and McDonnell (2006), these approaches typically convolve the precipitation tracer 25 

time series with an assumed transit time distribution, and then adjust the parameters of that distribution to achieve a best fit 

with the streamflow tracer time series.  This convolution approach differs from ensemble hydrograph separation in several 

important respects: 

1. In the convolution approach, the functional form of the transit time distribution must be assumed (although shape 

parameters often allow the shape of the TTD to be fitted, within a given family of distributions).  By contrast, the 30 

ensemble hydrograph separation approach makes no assumption about the shape of the distribution; instead, the 

TTD values at each lag k are estimated directly from data.  
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2. The convolution approach is based on convolution integrals, and thus errors in the input terms accumulate over 

time.  By contrast, the ensemble hydrograph separation approach is based on local derivatives of the stream tracer 

concentrations, and their covariances with fluctuations in the input tracer concentrations at various lags; as a result, 

errors in the input terms do not accumulate. 

3. Missing input data pose a fundamental problem for convolution integrals, whereas they can be readily 5 

accommodated in the covariances that underlie the ensemble hydrograph separation approach (Sect. 4.2). 

These considerations also generally apply to approaches that use tracer concentrations in rainfall and streamflow to calibrate 

time-invariant storage selection (SAS) functions, instead of time-invariant transit time distributions (e.g., van der Velde et 

al., 2012; Harman, 2015).   

 10 

Yet another approach that is coming into more frequent use is to calibrate a conceptual or physically based model to 

reproduce, as closely as possible, the observed hydrograph and streamflow tracer time series, and then infer the catchment 

transit time distribution from particle tracking within the model (e.g., Benettin et al., 2013; Benettin et al., 2015; Remondi et 

al., 2018).  The validity of these inferences requires that the model is not just a good predictor of the calibration data, but 

also that the underlying processes are the correct ones – in other words, that the model gets the right answers for the right 15 

reasons.  It will generally be difficult to verify whether this is the case.  Thus it will be difficult to know how much the 

inferred transit times are determined by the tracer data or by the structural assumptions of the underlying model.  Nor does a 

good fit to the observational data verify the correctness of the model and the inferences drawn from it, because a good fit can 

imply either that the model is doing everything correctly, or that it is doing multiple things wrong, in offsetting ways.   

 20 

Of course one can argue that every data analysis approach also implies some underlying model, and one might argue that 

ensemble hydrograph separation is based on the (implausible) assumption that the transit time distribution is time-invariant.  

Such an argument would be mistaken.  As I have shown, ensemble hydrograph separation neither assumes nor requires that 

the transit time distribution is stationary (see Appendices A and B).  Instead, ensemble hydrograph separation quantifies the 

ensemble average of a catchment's time-varying transit time distribution, even when that distribution is highly dynamic.   25 

5.2 Benchmark testing 

Considerable effort has been devoted to benchmark tests of the methods proposed in Sects. 2 and 4.  One may naturally ask: 

why bother?  Why not just describe how ensemble hydrograph separation works, and apply it to several field data sets, and 

see whether it gives reasonable results?  One answer is that whether the results seem reasonable only reflects whether they 

agree with our preconceptions, not whether they (or our preconceptions) are correct.  A second answer is that only through 30 

properly designed benchmark tests can we assess how accurate the method is, and what factors might affect its accuracy.  

Yet another answer is that the benchmark model gives the analysis method a precise target to hit, thus better revealing its 

strengths and weaknesses. 
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Benchmark tests also have a role to play in the day-to-day application of data analysis methods like those proposed here.  

Users may wonder: will this approach work with data from my catchment?  Given the data I have, how accurately can I 

estimate the ensemble average transit time distribution?  What kinds of tracer data will be needed to distinguish between two 

different conceptualizations of catchment-scale storage and transport?  Carefully designed benchmark tests with synthetic 5 

data can be helpful in addressing questions such as these. 

 

It should be emphasized that in the tests presented here, the benchmark model knows nothing about how the analysis method 

works; in fact, its nonlinearity and nonstationarity rather badly violate the assumptions that would make the equations 

underlying the analysis exactly true.  Conversely, the analysis method knows nothing about the inner workings of the 10 

benchmark model.  It knows the model inputs and outputs (the water fluxes and tracer concentrations in rainfall and 

streamflow), but it does not know – and, importantly, it does not need to know – how those outputs were generated.  This is 

important because, for ensemble hydrograph separation to be useful in real-world catchments, its validity must not depend 

on the particular mechanisms that regulate flow and transport at the catchment scale. 

 15 

Likewise, its validity must not depend on having unrealistically accurate or complete data.  For this reason, the benchmark 

tests include substantial measurement errors, and substantial numbers of missing values (Sect. 3.1).   

 

Thus these benchmark tests are much stricter than many in the literature.  Some benchmark tests, for example, generate the 

benchmark data set using exactly the same assumptions that underlie the analysis method itself.  That kind of test is 20 

guaranteed to succeed (barring math errors), since it is performing the same calculation twice (first forwards, then 

backwards).  At the same time, such tests are not helpful, because they would only be relevant to real-world cases where all 

of the assumptions underlying the analysis method were exactly true.  Such cases are unlikely to exist. 

 

One could argue that the benchmark model presented here would be more realistic if it were (for example) a spatially-25 

distributed three-dimensional model based on Richards' equation, calibrated to a particular research watershed.  However, 

the benchmark model's purpose is to generate a wide variety of targets for the analysis method to hit, with each target 

precisely defined, rather than to realistically mimic any particular catchment.  All that is essential is that it must generate 

realistically complex patterns of behavior, and exactly compute the "true" new water fractions and transit time distributions 

by age tracking.  The relatively simple two-box conceptual model that has been used here was chosen because it fulfills both 30 

criteria.  These criteria did not include consistency with a particular mechanistic view of flow and transport.  Likewise, 

consistency with the assumptions underlying ensemble hydrograph separation was not one of the criteria, nor should it be. 
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For the same reason, it should be clear that real-world catchments may not necessarily exhibit similar patterns of behavior to 

those of the benchmark model, as shown in Figs. 6-9 and 15-18.  Thus the analyses presented here do not show, for example, 

that new water fractions are roughly linear functions of discharge (Fig. 6), precipitation (Fig. 7), or antecedent moisture (Fig. 

18).  These patterns of behavior are properties of the benchmark model and its precipitation forcing.  Whether real-world 

catchments behave similarly or differently is an open question, and the analysis presented here shows how such questions 5 

could potentially be answered. 

5.3 Errors, biases and uncertainties 

The analysis methods outlined in Sects. 2 and 4 include explicit procedures for estimating the uncertainties (as quantified by 

standard errors) in both new water fractions (Eqs. 11, 15, and 19) and transit time distributions (Eqs. 52, 53, 56, 69, and 62).  

These uncertainties are generally realistic predictors of how much the ensemble hydrograph separation estimates deviate 10 

from the "true" benchmark values determined from age tracking: the scatter in Figs. 2 and 5, for example, is consistent with 

the estimated standard errors, and the error bars in Figs. 6, 7, 9, and 11-18 (one standard error in all cases) are usually 

reasonable estimates of the deviations from the benchmark values (exceptions include the "humped" transit time distributions 

in Fig. 12, where the uncertainties are overestimated).   

 15 

Unsurprisingly, the standard errors scale with the scatter (error variance) in the data, and inversely with the square root of the 

effective number of degrees of freedom.  Thus the uncertainties will be larger when the data set is sparse and noisy, and 

when the new water fraction and/or transit time distribution explains only a small fraction of its variance.  It should also be 

noted that the relative standard error can be large, for example when the TTD is small at long lags.   

 20 

Because ensemble hydrograph separation does not require continuous input data, it can facilitate comparisons among various 

subsets of a catchment time series, as demonstrated in Sects. 3.5 and 4.7.  However, it should be kept in mind that as one cuts 

the data set into more (and thus smaller) pieces, the statistical sampling variability among the data points remaining in each 

piece will become more and more influential, and the inferences drawn on each piece will become correspondingly more 

uncertain.  Thus there will be practical limits to the granularity of the subsampling that can be applied in real-world cases.   25 

 

In some TTD's, the last few lags exhibit unusually large deviations from the "true" TTD curves derived from age tracking 

(e.g. Figs. 12b, 13a and c, 14c, 16b and d, and 17b and d; in several of these cases the last point is below zero and thus does 

not appear on the plot).  As noted in Sect. 4.5, I suspect (but cannot prove) that this is an aliasing effect that arises when the 

effects of fluxes beyond the longest measured lag are not adequately accounted for by the reference concentration 𝐶୭୪ୢୣ୰ೕ
ൌ30 

𝐶୕ೕష೘షభ
.  In practice this means that TTD values for the last few lags should not be taken too literally, particularly if they 

deviate from the trend in the previous lags. 
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Because ensemble hydrograph separation is based on correlations among tracer fluctuations, it is relatively insensitive to 

systematic biases that produce persistent offsets in the underlying data.  For example, isotope ratios in precipitation often 

vary with altitude, leading to potential biases in precipitation tracer samples (depending on the sampling location).  To the 

extent that these biases are constant, however, they should not alter regression slopes between tracer fluctuations in 5 

precipitation and streamflow (e.g., Figs. A1d, 6a-b, and 7a-b), or their multidimensional counterparts that determine the 

TTD.  The same applies to randomly fluctuating precipitation tracer biases, unless they are large compared to the standard 

deviation of the tracer concentrations themselves – i.e., unless the fluctuating biases account for most of the variability in the 

precipitation tracer measurements.  Likewise, confounding by any un-measured end-members should be small, unless the un-

measured end-members are correlated with the measured ones, and have a strong influence on stream tracer concentrations. 10 

 

The uncertainties calculated here, like all error propagation results, depend on the assumptions underlying the analysis (in 

this case, ensemble hydrograph separation).  Under different assumptions, the errors in estimating the average 𝐹୬ୣ୵ by 

regression could be larger.  For example, if the means of 𝐶୭୪ୢೕ
 and 𝐶୬ୣ୵ೕ

 differed by much more than their pooled standard 

deviations, then variations in 𝐶୕ೕ
 would mostly be driven by variations in 𝐹୬ୣ୵ rather than variations in 𝐶୬ୣ୵ೕ

.  This 15 

highlights the important contrast between conventional and ensemble methods of hydrograph separation.  Conventional 

hydrograph separation is based on comparing stream tracer values to constant end-members, and therefore works best when 

the end-members have widely separated means and small variability.  By contrast, ensemble hydrograph separation works 

best when the variations in the end-members are large compared to the differences among their means, because it relies on 

correlating tracer fluctuations in streamflow with fluctuations in measured end-members.   20 

5.4 Potential applications and extensions 

The techniques proposed here quantify the timescales over which catchments store and transport water, and quantify how 

those timescales change with precipitation, discharge, and antecedent moisture.  Such descriptive methods are often grouped 

under the heading of "catchment characterization".  One should keep in mind, however, that a catchment's storage and 

transport behavior also depends on its external forcing.  If its precipitation climatology were wetter (or drier), for example, 25 

its timescales of storage and transport would decrease (or increase) accordingly.  Thus transport and storage timescales are 

not characteristics of the catchment alone, but rather of the catchment and its particular precipitation climatology.  By 

mapping out how a catchment's storage and transport behavior changes with hydrologic forcing (e.g., Figs. 6, 7, 15, 17, and 

18), however, ensemble hydrograph separation can contribute to a more complete picture of catchment response.  

Alternatively, these patterns of response to hydrologic forcing can be considered as catchment characteristics in their own 30 

right. 
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Because new water fractions and transit time distributions from ensemble hydrograph separation closely match benchmark 

model age tracking, one might consider using them as a model for catchment transport processes.  This will usually be a bad 

idea.  One must remember that ensemble hydrograph separation quantifies ensemble averages, which will not be good 

models of catchment processes unless the real-world transit time distribution is approximately time-invariant.  That is 

unlikely to be the case.   5 

 

This observation raises an important point.  Ensemble hydrograph separation yields inferences that are phenomenological, 

not mechanistic.  It quantifies how catchments behave, but does not, by itself, explain how they work.  It can nonetheless 

contribute to mechanistic understanding by precisely quantifying catchment transport behavior, and thus facilitating more 

incisive comparisons with models.  Examples of possible comparisons include: 10 

- Do the model and the real-world catchment have similar new water fractions, and "forward" new water fractions 

(Figs. 2 and 5)? 

- Do these new water fractions change similarly as functions of precipitation and discharge (Figs. 6 and 7)? 

- Do they exhibit similar seasonal patterns (Fig. 9)? 

- Do the model and the real-world catchment have similar transit time distributions, including "forward" transit time 15 

distributions (Figs. 11-14)? 

- Do these transit time distributions change similarly as functions of precipitation, discharge, antecedent moisture, 

and seasonality (Figs. 15-18)? 

In this approach to hypothesis testing, key signatures of behavior are extracted from both the model and the data before they 

are compared (Kirchner et al., 1996; Kirchner, 2006).  This approach stands in contrast to the conventional model-testing 20 

paradigm in which model predictions are compared with observational time series through standard goodness-of-fit statistics.  

The conventional approach ignores the important question of in what ways the model predictions deviate from the data.  

Exploring this question requires diagnostic signatures of catchment behavior like those presented here, and is essential to 

improving models of catchment processes. 

 25 

The analysis methods developed here can potentially be extended in several ways.  For example, these methods could 

potentially be applied to infer transit times in other catchment fluxes, such as groundwater seepage or evapotranspiration.  

They could also be applied to other systems where transit times could be inferred from the propagation of fluctuating tracer 

inputs; potential examples include not only lakes, oceans, and aquifers, but also the atmosphere and perhaps even organisms.   

 30 

The multiple regression analysis presented in Sect. 4 demonstrates that one can quantify the contributions of multiple end-

members using a single conservative tracer.  This is not possible in conventional end-member mixing analysis, which 

assumes that the end-members are constant and consequently requires that the number of end-members cannot exceed the 

number of tracers plus one.  But because ensemble hydrograph separation is based on correlations of tracer fluctuations, one 
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tracer can potentially identify many end-members as long as their fluctuations are not too tightly correlated.  This is 

potentially useful, because hydrologists typically have very few truly conservative tracers to work with (arguably only one, 

in the case of stable isotopes, because 18O and 2H are strongly dependent on one another).  In the analysis in Sect. 4, the 

TTD's can be considered to represent 25 different end-members (which are all precipitation, at different lags).  However the 

same approach could be used to analyze (for example) precipitation and snowmelt as sources of streamflow, if tracer time 5 

series are available in both candidate end-members and they are not too strongly correlated with one another.  Similarly, in 

large river basins one could potentially quantify the contributions (and transit time distributions) of waters sourced from 

precipitation in different parts of the catchment – if, again, tracer time series are available for these multiple precipitation 

sources, and are not too strongly correlated with one another. 

 10 

Last but not least, the approach presented here can also, with some modifications, be applied to rainfall and streamflow rates 

in order to quantify the time lags in catchments' hydraulic response to precipitation (reflecting the celerity of hydraulic 

potentials, as distinct from the velocity of water transport).  A follow-up paper describing this "ensemble unit hydrograph" 

analysis is currently in preparation.   

 15 
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Table 1.  Definition of symbols (with defining equation, or equation of first use, in parentheses) 

Symbol Definition 

 
Indices / subscripts 5 
𝑖 index for precipitation time steps 
𝑗 index for discharge time steps 
𝑘 ൌ 𝑗 െ 𝑖 index for lags between precipitation and discharge 
ℓ second index for lags between precipitation and discharge 
ሺ𝑥𝑦ሻ parentheses indicate that analysis applies to cases 𝑗 where neither 𝑥௝ nor 𝑦௝ is missing 10 
ሺ𝑘𝑦ሻ parentheses indicate that analysis applies to cases 𝑗 where neither 𝑥௝௞ nor 𝑦௝ is missing 
ሺ𝑘ℓሻ parentheses indicate that analysis applies to cases 𝑗 where neither 𝑥௝௞ nor 𝑥௝ℓ is missing 
 
Benchmark model variables and parameters 
𝑏୳ , 𝑏௟ upper- and lower-box drainage exponents in benchmark model (Fig. 1) 15 
𝜂 partitioning coefficient for upper-box drainage in benchmark model (Fig. 1) 
𝐿 drainage rate from upper box in benchmark model (Fig. 1) 
𝑄௟ drainage rate from lower box in benchmark model (Fig. 1) 
𝑆୳ , 𝑆௟ upper- and lower-box storage in benchmark model (Fig. 1) 
𝑆୳,୰ୣ୤ , 𝑆௟,୰ୣ୤ reference storage levels in upper and lower boxes of benchmark model (Fig. 1) 20 
 
Other symbols 
𝛼 regression intercept (9) 
𝛽 , 𝛽መ  true regression slope (9), and its regression estimate (10) 
𝛽∗ , 𝛽መ∗ true discharge-weighted regression slope (16), and its regression estimate (17) 25 
𝛽௞ , 𝛽መ௞ true multiple regression slope as function of lag time 𝑘 (34), and its regression estimate (38) 
𝜷෡ vector of regression estimates 𝛽መ௞ (39) 
𝜀௝ regression error term (9) 
𝜺 vector of regression errors 𝜀௝ (37) 
𝐶୕ೕ

 tracer concentration in stream discharge at time step 𝑗 (1) 30 

𝐶୬ୣ୵ , 𝐶୭୪ୢ tracer concentration in new and old water (2) 
𝐶୬ୣ୵ೕ

 , 𝐶୭୪ୢೕ
 time-varying tracer concentration in new and old water (5) 

𝐶୔ೕషೖ
 tracer concentration in precipitation at time step 𝑖 ൌ 𝑗 െ 𝑘 (31) 

𝐶୭୪ୢୣ୰ೕ
 concentration effects of older tracer inputs, beyond maximum lag 𝑚 (31) 

𝐂 covariance matrix (44) 35 
𝐹୬ୣ୵ೕ

 fraction of new water in streamflow at time step 𝑗 (3) 

𝐹୬ୣ୵ ensemble average of 𝐹୬ୣ୵ೕ
 (10) 

𝐹୕୮
୬ୣ୵ ൌ 𝛽መ  ensemble average of new water fraction in discharge during time steps with rain (Sect. 2.3) 

𝐹୕
୬ୣ୵ ensemble average of new water fraction in discharge, including rainless time steps (14) 

𝐹୕୮
୬ୣ୵
∗ ൌ 𝛽መ∗ volume-weighted new water fraction in discharge during time steps with rain (17) 40 

𝐹୕
୬ୣ୵
∗  volume-weighted new water fraction in discharge, including rainless time steps (17) 

𝐹୔
୬ୣ୵ new water fraction of precipitation (20, 26) 

𝐹୔
୬ୣ୵
∗  volume-weighted new water fraction in precipitation (27) 

𝐇 Tikhonov-Philips regularization matrix (44) 
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𝜆 regularization parameter (44) 
𝜈 dimensionless regularization parameter (48) 
𝑚 maximum lag in transit time distribution 
𝑛 number of discharge time steps  
𝑛ୣ୤୤ effective sample size, adjusted for serial correlation and/or uneven weighting (12, 18, 19) 5 
𝑛୮ number of time steps with precipitation (14) 
𝑛୶୷ number of pairs of 𝑥௝ and 𝑦௝ (12) 
𝑛௫ೖ

 number time steps 𝑗 with above-threshold precipitation at time step 𝑖 ൌ 𝑗 െ 𝑘 (43) 
𝑛௫ೖ௫ℓ

 number time steps 𝑗 with above-threshold precipitation at both 𝑖 ൌ 𝑗 െ 𝑘 and 𝑖 ൌ 𝑗 െ ℓ (43) 
𝑃௝ precipitation rate during time step j (21) 10 
𝑃ത୮ average precipitation rate excluding rainless periods (21) 
𝑃୲୦୰ୣୱ୦୭୪ୢ threshold precipitation rate below which tracer inputs are ignored (Sect. 3.1; Eq. 43)  
𝑃ത௫ೖ

 average precipitation rate during time steps 𝑖 ൌ 𝑗 െ 𝑘 with above-threshold precipitation (60) 
𝑄௝ stream discharge at time step 𝑗 (1) 
𝑄୬ୣ୵ೕ

 , 𝑄୭୪ୢೕ
 new-water and old-water components of stream discharge (1) 15 

𝑄ത average stream discharge (17) 
𝑄ത୮ average stream discharge during time steps with precipitation (17) 
𝑄ത௫ೖ

 average stream discharge during time steps 𝑗 with above-threshold precipitation at step 𝑖 ൌ 𝑗 െ 𝑘 (61) 
𝑄௝ሺ௫௬ሻ stream discharge during time steps 𝑗 for which neither 𝑥௝ nor 𝑦௝ is missing (13) 
𝑄୭୪ୢୣ୰ೕ

 unmeasured fluxes from older precipitation inputs, beyond maximum lag 𝑚 (30) 20 

𝑞௝௞ volume of water entering as precipitation in time step 𝑖 ൌ 𝑗 െ 𝑘 and exiting in time step 𝑗 (29) 
𝑟௫௬ correlation between 𝑥௝ and 𝑦௝ (11) 
𝑟ୱୡ lag-1 serial correlation in regression residuals (12) 
𝑠. 𝑒. ሺ ሻ standard error (11) 
𝑠ఌ

ଶ variance of regression prediction errors (49, 50) 25 
𝑇୕ 𝑇𝐷௞ "backward" transit time distribution of discharge, conditioned on exit time (53) 

𝑇𝑇𝐷௞
∗୕  discharge-weighted "backward" transit time distribution (56) 

𝑇୔ 𝑇𝐷௞ "forward" transit time distribution of precipitation, conditioned on entry time (59) 
𝑇𝑇𝐷୔

௞
∗ volume-weighted "forward" transit time distribution (62) 

𝑥௝ explanatory variable in linear regression (9) 30 
𝑥௝௞ explanatory variable in multiple linear regression (34) 
𝐗 matrix of reference-corrected input tracer concentrations 𝑥௝௞ (37) 
𝑦௝ response variable in linear regression (9, 34) 
𝒀 vector of reference-corrected streamflow tracer concentrations 𝑦௝ (37) 

  35 
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Appendix A: Estimating non-constant "constants" via regression 

A conventional linear regression equation has the form 

𝑦௝ ൌ 𝛽 𝑥௝ ൅ 𝛼 ൅ 𝜀௝     ,       ሺA1ሻ  

where 𝑦௝ and 𝑥௝ are response and explanatory variables, respectively, measured for individual cases 𝑗, where 𝛼 and 𝛽 are 5 

(unknown) constants, and where 𝜀௝ is a random (and unknown) additive error term with mean of zero (alternatively, one can 

consider 𝛼 ൅ 𝜀௝ to represent all of the unmeasured factors that influence 𝑦௝).  Under the assumption that these unmeasured 

factors are uncorrelated with 𝑥௝, linear regression obtains unbiased estimates of 𝛽 from any of several functionally equivalent 

formulas, including 

𝛽መ  ൌ  
covሺ𝑦, 𝑥ሻ

varሺ𝑥ሻ
 ൌ  

1
𝑛 െ 1 ∑ ൫𝑦௝ െ 𝑦ത൯൫𝑥௝ െ 𝑥̅൯௡

௝ୀଵ

1
𝑛 െ 1 ∑ ൫𝑥௝ െ 𝑥̅൯

ଶ௡
௝ୀଵ  

 ൌ  
〈𝑦௝ 𝑥௝〉 െ 〈𝑦௝〉 〈𝑥௝〉

〈𝑥௝
ଶ〉 െ 〈𝑥௝〉ଶ ൌ  

〈𝑦௝
ᇱ 𝑥௝

ᇱ〉

〈𝑥௝
ᇱଶ〉

       ,    ሺA2ሻ 10 

where 𝛽መ  denotes the conventional least-squares estimator of 𝛽, primes denote deviations from means, and means over all 𝑗 

may be denoted by either angled brackets or overbars, depending on context.   

 

In many practical situations, the unknown constant 𝛽 may not in fact be constant, but instead may differ among the cases 𝑗.  

In such situations, the true relationship among the variables is not Eq. (A1), but instead 15 

𝑦௝ ൌ 𝛽௝ 𝑥௝ ൅ 𝛼 ൅ 𝜀௝     ,       ሺA3ሻ  

where the small but important difference between (A1) and (A3) is the subscript 𝑗 on 𝛽.  It may be unclear a priori whether 

𝛽 is a constant or not, and therefore whether (A1) or (A3) applies.  In other words, (A1) represents a special case of the more 

general relationship represented by (A3), and it may be unclear whether we are dealing with the special case or the general 

one.   20 

 

Thus, in environmental work, regression equations are often used to estimate "constants" that are not known to be constant, 

or, even more pointedly, "constants" that we know are not constant.  Regression equations are nonetheless used, under the 

assumption that the result will provide a useful estimate of some central tendency of the non-constant "constant".  The basis 

for this assumption and its range of validity are unclear.   25 

 

The problem at hand can be stated like this: if the unknown coefficient 𝛽௝ differs among the cases 𝑗, as in (A3), but one 

nonetheless calculates a conventional least squares estimator 𝛽መ  using (A2), how will the calculated value of 𝛽መ  depend on the 
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properties of the (unknown) 𝛽௝, including their possible relationships with the values 𝑥௝ of the explanatory variable?  The 

answer can be obtained straightforwardly by substituting 𝑦௝ from (A3) into (A2) and solving for 𝛽መ .  The math is streamlined 

somewhat if one separates 𝑥, 𝑦, 𝛽, and 𝜀 into their (sample) means and deviations (replacing 𝑥௝with 𝑥̅ ൅ 𝑥௝
ᇱ, and similarly for 

𝑦, 𝛽, and 𝜀), where primed quantities indicate deviations from means.  One can begin by expressing (A3) in terms of 

deviations from means, 5 

𝑦௝
ᇱ ൌ 𝑦௝ െ 𝑦ത ൌ  𝛽௝ 𝑥௝ െ 〈𝛽௝ 𝑥௝〉 ൅ ൫𝜀௝ െ 𝜀൯̅ ൌ  ൫𝛽̅ ൅ 𝛽௝

ᇱ൯൫𝑥̅ ൅ 𝑥௝
ᇱ൯ െ 〈൫𝛽̅ ൅ 𝛽௝

ᇱ൯൫𝑥̅ ൅ 𝑥௝
ᇱ൯〉 ൅ 𝜀௝

ᇱ      ,      ሺA4ሻ 

and then by multiplying the terms in parentheses, yielding 

𝑦௝
ᇱ ൌ  𝛽̅ 𝑥̅ ൅ 𝛽̅ 𝑥௝

ᇱ ൅ 𝑥̅ 𝛽௝
ᇱ ൅ 𝛽௝

ᇱ 𝑥௝
ᇱ െ 〈𝛽̅ 𝑥̅〉 െ 〈𝛽̅ 𝑥௝

ᇱ〉 െ 〈𝑥̅ 𝛽௝
ᇱ〉 െ  〈𝛽௝

ᇱ 𝑥௝
ᇱ〉 ൅ 𝜀௝

ᇱ      ,      ሺA5ሻ 

The single-underlined terms in (A5) cancel each other, and the double-underlined terms are zero because primed quantities 

will always average to zero (although products of two or more primed quantities usually will not).  Removing all underlined 10 

terms, multiplying by 𝑥௝
ᇱ ൌ 𝑥௝ െ 𝑥̅, averaging over all 𝑗, and dividing by the variance of 𝑥 yields directly: 

𝛽መ  ൌ   
covሺ𝑦, 𝑥ሻ

varሺ𝑥ሻ
 ൌ

〈𝑦௝
ᇱ 𝑥௝

ᇱ〉

〈𝑥௝
ᇱ 𝑥௝

ᇱ〉
ൌ   

𝛽̅ 〈𝑥௝
ᇱ 𝑥௝

ᇱ〉 ൅ 𝑥̅ 〈𝛽௝
ᇱ 𝑥௝

ᇱ〉 ൅ 〈𝛽௝
ᇱ 𝑥௝

ᇱ 𝑥௝
ᇱ〉 ൅ 〈〈𝛽௝

ᇱ 𝑥௝
ᇱ〉 𝑥௝

ᇱ〉 ൅ 〈𝜀௝
ᇱ 𝑥௝

ᇱ〉 

〈𝑥௝
ᇱ 𝑥௝

ᇱ〉 
       .      ሺA6ሻ 

The double-underlined term in the numerator of (A6) is zero, because the inner average is a constant and therefore just re-

scales 𝑥௝
ᇱ, which in turn averages to zero.  Simplifying the remaining terms, one obtains 

𝛽መ  ൌ  𝛽̅ ൅ 𝑥̅  
covሺ𝛽, 𝑥ሻ

varሺ𝑥ሻ
 ൅ 

〈𝛽௝
ᇱ 𝑥௝

ᇱଶ〉

varሺ𝑥ሻ
 ൅ 

covሺ𝜀, 𝑥ሻ

varሺ𝑥ሻ
       .      ሺA7ሻ 15 

Equation (A7) cannot be evaluated in practice, of course, because the true coefficients  𝛽௝ and the errors 𝜀௝ will not be 

known.  Nonetheless it can be useful to understand how their properties influence 𝛽መ , so that regression results can be 

properly interpreted.  In this regard, each of the four terms of (A7) has a story to tell.  The first term of (A7) says that the 

linear regression coefficient 𝛽መ  will be a good approximation to the (sample) mean of the 𝛽௝, if the other terms are negligible.   

 20 

The second term says that the linear regression coefficient 𝛽መ  can also be affected by correlations between 𝛽௝ and 𝑥௝.  The 

magnitude of this effect will be the average value of 𝑥, multiplied by the regression slope of the relationship between 𝑥 and  

𝛽.  This second term will vanish if 𝑥̅ is zero or if there is no correlation between 𝑥௝ and 𝛽௝.   

 

The third term can be viewed as a weighted average of the deviations of the 𝛽௝ from their mean, where the weighting factors 25 

are the squared deviations of the 𝑥௝ from their mean (in statistical terms, these weighting factors are called leverages).  Thus 

the third term of (A7) expresses the effect of a cup-shaped relationship between 𝛽௝ and 𝑥௝; for example, if 𝑥௝ values with 

greater leverage on 𝛽መ  (because they lie farther from 𝑥̅) are also associated with higher values of  𝛽௝ (and thus a steeper 
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relationship between 𝑥௝ and 𝑦௝), the estimate of 𝛽መ  will be biased upward.  Note in particular that the third term could be non-

zero even if the correlation between 𝛽௝ and 𝑥௝ is zero (that is, the relationship between 𝛽௝ and 𝑥௝ could be cup-shaped even if 

it has a slope of zero overall).  Conversely, the third term is insensitive to linear correlations (even strong ones) between 𝛽௝ 

and 𝑥௝. 

 5 

The fourth term says that 𝛽መ could also be biased by correlations between the error term and the explanatory variable; the 

magnitude of this possible bias equals the regression slope of εj as a function of 𝑥௝.  This is the well-known problem of 

artifactual correlation (also called the "third variable problem" or "hidden variable problem"): if hidden (unmeasured) 

variables are correlated with the measured explanatory (𝑥) variable, their effects on the response (𝑦) variable will be falsely 

attributed to the x variable instead, distorting its regression coefficient. 10 

 

It should be noted that the means, variances, and covariances in (A2)-(A7) are sample statistics calculated over the sample 

cases 𝑗, which may differ from the true means, variances, and covariances of the underlying distributions.  Thus there will be 

additional uncertainty resulting from sampling variability (in addition to the biases quantified by the second, third, and fourth 

terms in Eq. A7), if one interprets the regression slope as an estimate of the true mean of 𝛽 rather than the sample mean of 15 

the 𝛽௝ for the particular cases 𝑗 that have been sampled.   

 

To illustrate the analysis outlined above, I conducted a simple numerical experiment based on ensemble hydrograph 

separation.  I created a synthetic data set based on the mixing equation 

𝐶୕ೕ
ൌ 𝐹୬ୣ୵ೕ

𝐶୬ୣ୵ೕ
൅ ቀ1 െ 𝐹୬ୣ୵ೕ

ቁ െ 𝐶୕ೕషభ
        , ሺA8ሻ 20 

where 𝐶୕ೕ
, the concentration in the stream, is a volume-weighted average of the (measured) new-water concentration 𝐶୬ୣ୵ೕ

 

and the old-water concentration 𝐶୕ೕషభ
 from the previous time step, weighted by the new water fraction 𝐹୬ୣ୵ೕ

 and its 

complement 1 െ 𝐹୬ୣ୵ೕ
.   Values of 𝐹୬ୣ୵ೕ

 for each time step j are randomly chosen from a beta distribution, 

Betaሺ𝛼, 𝛽ሻ ൌ
𝑥ఈିଵ ሺ1 െ 𝑥ሻఉିଵ

Bሺ𝛼, 𝛽ሻ
        , ሺA9ሻ 

where 𝑥 is a random variable that, appropriately for a fraction, ranges from 0 to 1, the beta function Bሺ𝛼, 𝛽ሻ ൌ25 

Γሺ𝛼ሻΓሺ𝛽ሻ/Γሺ𝛼 ൅ 𝛽ሻ is a normalization constant that ensures that the cumulative probability is 1, and 𝛼 and 𝛽 are shape 

parameters that are related to the mean (𝜇) by 𝜇 ൌ 1/ሺ1 ൅  𝛽/𝛼ሻ, or equivalently 𝛽 ൌ 𝛼ሾሺ1-𝜇ሻ/𝜇ሿ.  In the simulations shown 

here (Fig. A1a-e), the 𝛼 parameter is fixed at 1. 
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Values of 𝐶୬ୣ୵ೕ
 for each point in time j are randomly chosen from a normal distribution with a standard deviation of 10 (Fig. 

A1b).  Values of 𝐶୕ೕ
 are calculated for the whole time series using Eq. (A8), and measurement errors (normally distributed, 

with a standard deviation of 1) are added to both 𝐶୬ୣ୵ and 𝐶୕.  Then an ensemble estimate of the average 𝐹୬ୣ୵  is obtained 

by linear regression of 𝑦௝ ൌ 𝐶୕ೕ
െ 𝐶୕ೕషభ

 on 𝑥௝ ൌ 𝐶୬ୣ୵ೕ
െ 𝐶୕ೕషభ

, following Eq. (9) in the main text.  A plot of such a 

regression is shown in Fig. A1d.  In this particular ensemble, the individual 𝐹୬ୣ୵ೕ
 values for each time step varied between 5 

0.0001 and 0.71, with a mean of 0.20 and a standard deviation of 0.16.  The ensemble hydrograph separation estimate of the 

average 𝐹୬ୣ୵ was 0.205±0.009 (mean ± standard error), deviating from the true mean value by roughly its standard error, as 

one would expect.  This analysis was repeated 1000 times for mean 𝐹୬ୣ୵ values randomly chosen between 0.025 and 0.975.  

The results are summarized in Fig. A1e, which compares the regression estimates of the average 𝐹୬ୣ୵ against the true means 

of the 𝐹୬ୣ୵ values in each sample.  Although the individual 𝐹୬ୣ୵ೕ
 values that make up each mean vary widely (as indicated 10 

by the horizontal width of the shading in Fig. A1e), the regression estimates of the average 𝐹୬ୣ୵ cluster tightly around the 

1:1 line, with a root-mean-square deviation of less than 0.02 across the full range of average  𝐹୬ୣ୵ (this root-mean-square 

deviation scales, as one would expect, inversely with the square root of the number of data points in the simulated time 

series).   

 15 

In the simulations shown in Fig. A1, 𝐹୬ୣ୵ೕ
 is independent of 𝐶୬ୣ୵ೕ

, 𝐶୕ೕషభ
, and the measurement errors; therefore the biases 

quantified in Eq. A7 are expected to be small.  Nonetheless, one should be aware that in the specific case of Eq. A8 there 

could be two additional sources of bias that Eq. A7 does not account for.  Large measurement errors in 𝐶୬ୣ୵ (meaning 

measurement errors that are not small compared to the standard deviation of 𝐶୬ୣ୵ itself) could potentially create negative 

biases in estimates of the average 𝐹୬ୣ୵, because they would add spurious variation to the x axis of regressions like Fig. A1d.  20 

Conversely, large measurement errors in 𝐶୕ – which again means errors that are not small compared to the standard 

deviation of 𝐶୬ୣ୵ (not 𝐶୕) – could potentially create positive biases in estimates of the average 𝐹୬ୣ୵, because 𝐶୕ೕషభ
 appears 

on both axes of the regression in Fig. A1d, so large errors in 𝐶୕ೕషభ
 would spuriously increase the correlation between the x 

and y axes of regressions like Fig. A1d.  Both of these biases should be negligible in real-world cases, however, because the 

measurement uncertainties in 𝐶୬ୣ୵ and 𝐶୕ are typically much smaller than the variability in 𝐶୬ୣ୵.   25 
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Figure A1.  Benchmark test of regression estimates of mean new water fractions, using data from a simple two-component mixing 
model.  In that mixing model (Eq. A8), a randomly varying new water fraction 𝑭𝐧𝐞𝐰 (a) determines the relative proportions of new 
and old water (𝑪𝐧𝐞𝐰𝒋

 and 𝑪𝐐𝒋ష𝟏
, respectively) which are combined to yield a mixture with concentration 𝑪𝐐𝒋

 (c).  Among the 500-

point time series shown in panels (a)-(c), the new water fraction 𝑭𝐧𝐞𝐰 varies between 0.0001 and 0.71, with a mean of 0.20 and a 5 
standard deviation of 0.15.  Plotting the concentration of the mixture in the stream as a function of the concentration in the new-
water end-member (e) yields a regression slope of 0.205±0.009, which agrees within error with the true average of 𝑭𝐧𝐞𝐰 of μ=0.20.  
Repeating this analysis 1000 times, with mean values of 𝑭𝐧𝐞𝐰 ranging from nearly zero to nearly one, yields regression slopes that 
agree with the means of the 𝑭𝐧𝐞𝐰 for each Monte Carlo trial with an RMS error of only 0.02 (panel e).  In panel (e), the circles 
show the regression slopes and mean 𝑭𝐧𝐞𝐰, and the horizontal light blue lines show the range of 𝑭𝐧𝐞𝐰, for each Monte Carlo trial.  10 
The dark circle and dark line show the results for the individual Monte Carlo trial shown in panels (a)-(d). 
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Appendix B: Accounting for rain-free periods, and estimating non-constant "constants" by multiple regression 

Assume a multiple linear regression equation with non-constant unknown coefficients,  

𝑦௝ ൌ  ෍ 𝛽௝,௞ 𝑥௝,௞

௠

௞ୀ଴

൅ 𝛼 ൅ 𝜀௝     ,       ሺB1ሻ 

which can be more explicitly represented, for a series of sampling times 𝑗 ൌ 1 … 𝑛 as 

𝑦ଵ ൌ 𝛽ଵ,଴ 𝑥ଵ,଴ ൅ 𝛽ଵ,ଵ 𝑥ଵ,ଵ ൅ 𝛽ଵ,ଶ 𝑥ଵ,ଶ ൅ 𝛽ଵ,ଷ 𝑥ଵ,ଷ … ൅ 𝛽ଵ,௠ 𝑥ଵ,௠ ൅ 𝛼 ൅ 𝜀ଵ        
 𝑦ଶ ൌ 𝛽ଶ,଴ 𝑥ଶ,଴ ൅ 𝛽ଶ,ଵ 𝑥ଶ,ଵ ൅ 𝛽ଶ,ଶ 𝑥ଶ,ଶ ൅ 𝛽ଶ,ଷ 𝑥ଶ,ଷ … ൅ 𝛽ଶ,௠ 𝑥ଶ,௠ ൅ 𝛼 ൅ 𝜀ଶ        
𝑦ଷ ൌ 𝛽ଷ,଴ 𝑥ଷ,଴ ൅ 𝛽ଷ,ଵ 𝑥ଷ,ଵ ൅ 𝛽ଷ,ଶ 𝑥ଷ,ଶ ൅ 𝛽ଷ,ଷ 𝑥ଷ,ଷ … ൅ 𝛽ଷ,௠ 𝑥ଷ,௠ ൅ 𝛼 ൅ 𝜀ଷ       
𝑦ସ ൌ 𝛽ସ,଴ 𝑥ସ,଴ ൅ 𝛽ସ,ଵ 𝑥ସ,ଵ ൅ 𝛽ସ,ଶ 𝑥ସ,ଶ ൅ 𝛽ସ,ଷ 𝑥ସ,ଷ … ൅ 𝛽ସ,௠ 𝑥ସ,௠ ൅ 𝛼 ൅ 𝜀ସ       

⋱
𝑦௡ ൌ 𝛽௡,଴ 𝑥௡,଴ ൅ 𝛽௡,ଵ 𝑥௡,ଵ ൅ 𝛽௡,ଶ 𝑥௡,ଶ ൅ 𝛽௡,ଷ 𝑥௡,ଷ … ൅ 𝛽௡,௠ 𝑥௡,௠ ൅ 𝛼 ൅ 𝜀௡      . ሺB2ሻ 

 5 

For simplicity, and without loss of generality, assume that the 𝑦௝ 's and 𝑥௝,௞ 's have means of zero.  Assume further that for 

each 𝑘, the coefficients 𝛽௝,௞ either have a constant value of 𝛽௞ (when precipitation is present at time step 𝑖 ൌ 𝑗 െ 𝑘), or have 

a value of 0 (when precipitation in missing at time step 𝑖 ൌ 𝑗 െ 𝑘).  In the latter case the value of 𝑥௝,௞ will be undefined, but 

it will also be irrelevant because it is multiplied by zero.  The resulting system of equations will then have the following 

form, with missing values along diagonal stripes (this illustration shows just one possible set of missing values): 10 

𝑦ଵ ൌ 𝛽଴ 𝑥ଵ,଴ ൅              ൅𝛽ଶ 𝑥ଵ,ଶ ൅ 𝛽ଷ 𝑥ଵ,ଷ … ൅ 𝛽௠ 𝑥ଵ,௠ ൅ 𝛼 ൅ 𝜀ଵ        
 𝑦ଶ ൌ              ൅ 𝛽ଵ 𝑥ଶ,ଵ ൅             ൅ 𝛽ଷ 𝑥ଶ,ଷ … ൅ 𝛽௠ 𝑥ଶ,௠ ൅ 𝛼 ൅ 𝜀ଶ         
𝑦ଷ ൌ 𝛽଴ 𝑥ଷ,଴ ൅              ൅ 𝛽ଶ 𝑥ଷ,ଶ ൅             … ൅ 𝛽௠ 𝑥ଷ,௠ ൅ 𝛼 ൅ 𝜀ଷ        
𝑦ସ ൌ 𝛽଴ 𝑥ସ,଴ ൅ 𝛽ଵ 𝑥ସ,ଵ ൅              ൅ 𝛽ଷ 𝑥ସ,ଷ … ൅               ൅𝛼 ൅ 𝜀ସ        

⋱     
𝑦௡ ൌ 𝛽଴ 𝑥௡,଴ ൅ 𝛽ଵ 𝑥௡,ଵ ൅ 𝛽ଶ 𝑥௡,ଶ ൅              … ൅ 𝛽௠ 𝑥௡,௠ ൅ 𝛼 ൅ 𝜀௡      . ሺB3ሻ 

 

Multiplying the left and right sides of Eq. (B3) by the transpose of 𝑿଴ (to take one example) yields 

෍൫𝑦௝ 𝑥௝,଴൯
௉ೕషೖவ଴

௡

௝ୀଵ

ൌ  𝛽଴ ෍൫𝑥௝,଴ 𝑥௝,଴൯
௉ೕషబவ଴ 

௡

௝ୀଵ

൅ 𝛽ଵ ෍൫𝑥௝,ଵ 𝑥௝,଴൯
௉ೕషభவ଴, ௉ೕషబவ଴ 

௡

௝ୀଵ

                                  

൅ 𝛽ଶ ෍൫𝑥௝,ଶ 𝑥௝,଴൯
௉ೕషమவ଴, ௉ೕషబவ଴ 

௡

௝ୀଵ

൅ … ൅ 𝛽௠ ෍൫𝑥௝,௠ 𝑥௝,଴൯
௉ೕష೘வ଴, ௉ೕషబவ଴ 

௡

௝ୀଵ

  ,       ሺB4ሻ

 

where the constant 𝛼 and the error term 𝜀௝ drop out because their sums of cross-products with the 𝑥௝,଴ are zero.  One can see 

that each of the summations of cross-products equals the covariance of the respective vectors, multiplied by the number of 15 

points in the summation.  In contrast to a typical multiple regression, these numbers of points are not the same.  For the left-

hand side of Eq. (B4), the summation is taken over the non-missing members of 𝑿଴; if we use 𝑛௫బ to express the number of 

such members, this summation equals 𝑛௫బ covሺ𝑿଴, 𝒀ሻ.  The first term on the right hand side can also be evaluated for all 𝑛௫బ 

non-missing members of 𝑿଴; there are 𝑛௫బ of these, so this term becomes 𝛽଴ 𝑛௫బ covሺ𝑿଴, 𝑿଴ሻ ൌ  𝛽଴ 𝑛௫బ varሺ𝑿଴ሻ.  The 
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second term on the left-hand side, on the other hand, can only be evaluated when both 𝑿଴ and 𝑿ଵ are non-missing.  If we 

denote the number of such cases as 𝑛௫బ௫భ, the second term equals 𝛽ଵ 𝑛௫బ௫భ covሺ𝑿଴, 𝑿ଵሻ, the third term equals 

𝛽ଶ 𝑛௫బ௫మ covሺ𝑿଴, 𝑿ଶሻ, and so forth.  Thus when re-expressed as covariances, Eq. (B3) becomes 

𝑛௫బ
covሺ𝑿଴, 𝒀ሻ ൌ 𝛽଴   𝑛௫బ

 covሺ𝑿଴, 𝑿଴ሻ ൅ 𝛽ଵ 𝑛௫బ௫భ
covሺ𝑿଴, 𝑿ଵሻ ൅ 𝛽ଶ 𝑛௫బ௫మ

covሺ𝑿଴, 𝑿ଶሻ ൅ … 𝛽௠ 𝑛௫బ௫೘
covሺ𝑿଴, 𝑿௠ሻ       

𝑛௫భ
covሺ𝑿ଵ, 𝒀ሻ ൌ 𝛽଴ 𝑛௫భ௫బ

covሺ𝑿ଵ, 𝑿଴ሻ ൅ 𝛽ଵ   𝑛௫భ
 covሺ𝑿ଵ, 𝑿ଵሻ ൅ 𝛽ଶ 𝑛௫భ௫మ

covሺ𝑿ଵ, 𝑿ଶሻ ൅ … 𝛽௠ 𝑛௫భ௫೘
covሺ𝑿ଵ, 𝑿௠ሻ       

𝑛௫మ
covሺ𝑿ଶ, 𝒀ሻ ൌ 𝛽଴ 𝑛௫మ௫బ

covሺ𝑿ଶ, 𝑿଴ሻ ൅ 𝛽ଵ 𝑛௫మ௫భ
covሺ𝑿ଶ, 𝑿ଵሻ ൅  𝛽ଶ   𝑛௫మ

 covሺ𝑿ଶ, 𝑿ଶሻ ൅ … 𝛽௠ 𝑛௫మ௫೘
covሺ𝑿ଶ, 𝑿௠ሻ      

⋱
𝑛௫೘

covሺ𝑿௠, 𝒀ሻ ൌ 𝛽଴ 𝑛௫೘௫బ
covሺ𝑿௠, 𝑿଴ሻ ൅ 𝛽ଵ 𝑛௫೘௫భ

covሺ𝑿௠, 𝑿ଵሻ ൅ 𝛽ଶ 𝑛௫೘௫మ
covሺ𝑿௠, 𝑿ଶሻ ൅  … 𝛽௠ 𝑛௫೘

covሺ𝑿௠, 𝑿௠ሻ    .  ሺB5ሻ 

 

Dividing through by the 𝑛௫ೖ
 terms on the left-hand side, one directly obtains the following system of 𝑚 equations in 𝑚 5 

unknowns,  

covሺ𝑿଴, 𝒀ሻ ൌ 𝛽଴ covሺ𝑿଴, 𝑿଴ሻ ൅ 𝛽ଵ
𝑛௫బ௫భ

𝑛௫బ

covሺ𝑿଴, 𝑿ଵሻ ൅ 𝛽ଶ
𝑛௫బ௫మ

𝑛௫బ

covሺ𝑿଴, 𝑿ଶሻ ൅  … 𝛽௠
𝑛௫బ௫೘

𝑛௫బ

covሺ𝑿଴, 𝑿௠ሻ                

covሺ𝑿ଵ, 𝒀ሻ ൌ 𝛽଴
𝑛௫భ௫బ

𝑛௫భ

covሺ𝑿ଵ, 𝑿଴ሻ ൅ 𝛽ଵ covሺ𝑿ଵ, 𝑿ଵሻ ൅ 𝛽ଶ
𝑛௫భ௫మ

𝑛௫భ

covሺ𝑿ଵ, 𝑿ଶሻ ൅  … 𝛽௠
𝑛௫భ௫೘

𝑛௫భ

covሺ𝑿ଵ, 𝑿௠ሻ                 

covሺ𝑿ଶ, 𝒀ሻ ൌ 𝛽଴
𝑛௫మ௫బ

𝑛௫మ

covሺ𝑿ଶ, 𝑿଴ሻ ൅ 𝛽ଵ
𝑛௫మ௫భ

𝑛௫మ

covሺ𝑿ଶ, 𝑿ଵሻ ൅ 𝛽ଶ covሺ𝑿ଶ, 𝑿ଶሻ ൅  … 𝛽௠
𝑛௫మ௫೘

𝑛௫మ

covሺ𝑿ଶ, 𝑿௠ሻ                

⋱

covሺ𝑿௠, 𝒀ሻ ൌ 𝛽଴
𝑛௫೘௫బ

𝑛௫೘

covሺ𝑿௠, 𝑿଴ሻ ൅ 𝛽ଵ
𝑛௫೘௫భ

𝑛௫೘

covሺ𝑿௠, 𝑿ଵሻ ൅ 𝛽ଶ
𝑛௫೘௫మ

𝑛௫೘

covሺ𝑿௠, 𝑿ଶሻ ൅ … 𝛽௠ covሺ𝑿௠, 𝑿௠ሻ       ,    ሺB6ሻ 

 

which can be solved by the usual matrix inversion approach, yielding: 

⎝

⎜⎜
⎛

𝛽መ଴

𝛽መଵ

𝛽መଶ
⋮

𝛽መ௠⎠

⎟⎟
⎞

ൌ

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

covሺ𝑿଴, 𝑿଴ሻ
𝑛௫బ௫భ

𝑛௫బ

covሺ𝑿଴, 𝑿ଵሻ
𝑛௫బ௫మ

𝑛௫బ

covሺ𝑿଴, 𝑿ଶሻ ⋯
𝑛௫బ௫೘

𝑛௫బ

covሺ𝑿଴, 𝑿௠ሻ

𝑛௫భ௫బ

𝑛௫భ

covሺ𝑿ଵ, 𝑿଴ሻ covሺ𝑿ଵ, 𝑿ଵሻ
𝑛௫భ௫మ

𝑛௫భ

covሺ𝑿ଵ, 𝑿ଶሻ ⋯
𝑛௫భ௫೘

𝑛௫భ

covሺ𝑿ଵ, 𝑿௠ሻ

𝑛௫మ௫బ

𝑛௫మ

covሺ𝑿ଶ, 𝑿଴ሻ
𝑛௫మ௫భ

𝑛௫మ

covሺ𝑿ଶ, 𝑿ଵሻ covሺ𝑿ଶ, 𝑿ଶሻ ⋯
𝑛௫మ௫೘

𝑛௫మ

covሺ𝑿ଶ, 𝑿௠ሻ

⋮ ⋮ ⋮ ⋱ ⋮
𝑛௫೘௫బ

𝑛௫೘

covሺ𝑿௠, 𝑿଴ሻ
𝑛௫೘௫భ

𝑛௫೘

covሺ𝑿௠, 𝑿ଵሻ
𝑛௫೘௫మ

𝑛௫೘

covሺ𝑿௠, 𝑿ଶሻ ⋯ covሺ𝑿௠, 𝑿௠ሻ
⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

ିଵ

⎝

⎜
⎛

covሺ𝑿଴, 𝒀ሻ
covሺ𝑿𝟏, 𝒀ሻ
covሺ𝑿ଶ, 𝒀ሻ

⋮
covሺ𝑿௠, 𝒀ሻ⎠

⎟
⎞

  .

ሺB7ሻ

 

One can see that Eq. (B7) is identical in form to Eq. (38), with the addition of weighting factors on the off-diagonal elements 10 

of the covariance matrix.  One consequence of these leading terms is that the weighted covariance matrix will usually not be 

completely symmetrical, because (for example) 𝑛௫మ௫బ 𝑛௫మ
⁄  will often differ from 𝑛௫మ௫బ 𝑛௫బ

⁄ .   

 

It bears emphasis that Eq. (B7) accounts for gaps in precipitation, but not for precipitation or streamflow samples that are 

missing due to sampling and measurement failures.  A gap in precipitation means that the corresponding tracer values never 15 

existed at all, and had no effect on streamflow, whereas tracer values that are missing due to sampling and measurement 

failures actually did affect streamflow, but are unknown.  Equation (B7) accounts for the fact that the tracer covariances will 

necessarily be less strongly coupled to one another, the less frequently precipitation falls.  Glasser's method, by contrast, 

estimates the covariances themselves from all available pairs of observations, but says nothing about how they are related to 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-429
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 27 August 2018
c© Author(s) 2018. CC BY 4.0 License.



67 
 

one another.  Therefore we can account for both kinds of missing data using Eq. (B7), with the covariances between pairs of 

variables estimated using Glasser's method (Eqs. 40-41).  That approach results in Eq. (42). 

 

Astute readers may notice that Eq. (B3) is equivalent to the normal equations of conventional multiple regression, with the 

cases of missing precipitation replaced by 𝑥௝,௞ ൌ 0  (instead of 𝛽௝,௞ ൌ 0).  This provides a simple procedure for estimating 5 

the 𝛽௞ if tracer values are only missing due to lack of precipitation, with no sampling or measurement failures.  This method 

proceeds as follows: 

1. Normalize 𝒀 and each of the 𝑿௞ to zero by subtracting the mean from each vector (excluding any missing values 

from these means). 

2. Replace any values that are missing due to lack of precipitation with zeroes. 10 

3. Solve for the 𝛽௞ using conventional multiple regression.   

4. Multiply the standard errors of the 𝛽௞ (not the 𝛽௞ themselves!) by ඥ𝑛/𝑛ሺ௞ሻ to account for the fact that the zeroes 

that have been used to in-fill the missing values are not measured values, and thus do not contribute information to 

constrain the 𝛽௞. 

This method is unlikely to be useful in most practical cases, in which occasional sampling and measurement failures are 15 

virtually guaranteed.  However, it can provide a useful consistency check for implementations of the more complex approach 

developed here (Eqs. B7 and 42). 

 

There remains one last important detail.  In transitioning from Eq. (B2) to Eq. (B3), I made the simplifying assumption that 

all of the coefficients 𝛽௝,௞ for a given 𝑘 were either equal to zero or had a constant value of 𝛽௞ instead.  The same assumption 20 

is made in the derivation presented in Sect. 4.  One could naturally ask what happens if the 𝛽௝,௞ vary individually across the 

time steps 𝑗.  Is there is a (nearly) equivalent constant 𝛽௞, and if so, how does it relate to the values of the 𝛽௝,௞?   

 

If we have a variable 𝛽௝,௞ rather than a constant 𝛽௞, each of the terms of Eq. (B4) will be of the form ∑ 𝛽௝,௞ 𝑥௝,௞ 𝑥௝,ℓ instead of 

𝛽௞ ∑ 𝑥௝,௞ 𝑥௝,ℓ, and each of the terms of Eq. (B5) will be of the form 𝑛௫ೖ௫ℓ
 cov൫𝛽௝,௞𝑥௝,௞ , 𝑥௝,ℓ൯ instead of  25 

𝛽௞ 𝑛௫ೖ௫ℓ
 cov൫𝑥௝,௞ , 𝑥௝,ℓ൯.  Thus the effect of a variable vs. constant 𝛽 depends on how cov൫𝛽௝,௞𝑥௝,௞ , 𝑥௝,ℓ൯ differs from 

𝛽௞ cov൫𝑥௝,௞ , 𝑥௝,ℓ൯.  Following the approach in Appendix A, I begin by expanding the three variables into their means and 

deviations, replacing  𝛽௝,௞ with 𝛽̅௞ ൅ 𝛽௝,௞
ᇱ ,  𝑥௝,௞ with 𝑥̅௞ ൅ 𝑥௝,௞

ᇱ , and 𝑥௝,ℓ with 𝑥̅௞ ൅ 𝑥௝,ℓ
ᇱ .  Each covariance on the right-hand side 

of Eq. (B5) would thus become instead 
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cov൫𝛽௝,௞𝑥௝,௞ , 𝑥௝,ℓ൯ ൌ 〈൬൫𝛽̅௞ ൅ 𝛽௝,௞
ᇱ ൯൫𝑥̅௞ ൅ 𝑥௝,௞

ᇱ ൯ െ ൫𝛽̅௞ ൅ 𝛽ఫ,௞
ᇱ ൯൫𝑥̅௞ ൅ 𝑥ఫ,௞

ᇱ ൯തതതതതതതതതതതതതതതതതതതതതതതതതതത൰ ൬൫𝑥̅௞ ൅ 𝑥௝,ℓ
ᇱ ൯ െ ൫𝑥̅௞ ൅ 𝑥ఫ,ℓ

ᇱ ൯തതതതതതതതതതതതത൰〉       

  ൌ 〈ቀ൫𝛽̅௞ ൅ 𝛽௝,௞
ᇱ ൯൫𝑥̅௞ ൅ 𝑥௝,௞

ᇱ ൯ െ 𝛽̅௞ 𝑥̅௞ െ 𝛽ఫ,௞
ᇱ  𝑥ఫ,௞

ᇱതതതതതതതതത ቁ ቀ൫𝑥̅௞ ൅ 𝑥௝,ℓ
ᇱ ൯ െ 𝑥̅௞ቁ〉

ൌ 〈൫𝛽̅௞ 𝑥௝,௞
ᇱ ൅ 𝑥̅௞ 𝛽௝,௞

ᇱ ൅ 𝛽௝,௞
ᇱ  𝑥௝,௞

ᇱ െ 𝛽ఫ,௞
ᇱ  𝑥ఫ,௞

ᇱതതതതതതതതത ൯൫𝑥௝,ℓ
ᇱ ൯〉                                

ൌ 〈𝛽̅௞ 𝑥௝,௞
ᇱ  𝑥௝,ℓ

ᇱ ൅ 𝑥̅௞ 𝛽௝,௞
ᇱ  𝑥௝,ℓ

ᇱ ൅ 𝛽௝,௞
ᇱ  𝑥௝,௞

ᇱ  𝑥௝,ℓ
ᇱ െ 𝛽ఫ,௞

ᇱ  𝑥ఫ,௞
ᇱതതതതതതതതത 𝑥௝,ℓ

ᇱ 〉                   

ൌ 𝛽̅௞〈𝑥௝,௞
ᇱ  𝑥௝,ℓ

ᇱ 〉 ൅ 𝑥̅௞〈𝛽௝,௞
ᇱ  𝑥௝,ℓ

ᇱ 〉 ൅ 〈𝛽௝,௞
ᇱ  𝑥௝,௞

ᇱ  𝑥௝,ℓ
ᇱ 〉                     ,                    ሺB8ሻ

 

where angled brackets and overbars indicate averages over 𝑗.  The final result can thus be written as 

cov൫𝛽௝,௞𝑥௝,௞ , 𝑥௝,ℓ൯ ൌ 𝛽̅௞ cov൫𝑥௝,௞ , 𝑥௝,ℓ൯ ൅ 𝑥̅௞ cov൫𝛽௝,௞ , 𝑥௝,ℓ൯ ൅ 〈𝛽௝,௞
ᇱ  𝑥௝,௞

ᇱ  𝑥௝,ℓ
ᇱ 〉             , ሺB9ሻ 

where the first term on the right-hand side expresses the approximation on which the covariance matrices in (B7) and (42) 

are based; if the second and third terms vanish, then this approximation is exact.  The second term on the right-hand side 5 

should be small, unless there is a strong correlation between 𝛽௝,௞ and 𝑥௝,ℓ (which is unlikely unless storm size is correlated 

with tracer concentrations, as explained in Sect. 2.1), and 𝑥̅௞ is large (which is unlikely because 𝑥̅௞ ൌ 〈𝐶୔ೕషೖ
〉 െ 〈𝐶୕ೕష೘షభ

〉 

(see Eq. 35), and mass conservation implies that the averages of 𝐶୔ and 𝐶୕ should be similar).  The third term on the right-

hand side is a three-way cross-product, technically termed a co-skewness, that bears the same relation to skewness that 

covariance does to variance.  It has the interesting property that its expected value is zero if the three variables have 10 

symmetrical distributions, even if they are strongly correlated (either positively or negatively, in any combination) with one 

another.  This behavior arises because the odd number of terms means that, for symmetrical distributions, the product 

𝛽௝,௞
ᇱ  𝑥௝,௞

ᇱ  𝑥௝,ℓ
ᇱ  is equally likely to be positive or negative for any 𝑗, and thus the positive and negative values of 𝛽௝,௞

ᇱ  𝑥௝,௞
ᇱ  𝑥௝,ℓ

ᇱ  will 

tend to average out when one averages over all 𝑗.  If the last two terms of Eq. (B9) are small compared to the first one, Eq. 

(B9) says that the covariance matrices in (B5)-(B6) will be nearly the same whether 𝛽 is constant or variable, whenever the 15 

constant 𝛽௞ is the average of the variable 𝛽௝,௞.  This in turn implies that the analysis presented in Sect. 4 should result in 

estimated coefficients 𝛽መ௞ that closely approximate the average of the time-varying 𝛽௝,௞, as is confirmed by the benchmark 

tests of Sects. 4.6-4.8.  
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