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I thank Nicolas Rodriguez (hereafter NR) for his comments. I have reproduced
those comments below (in normal type), with my responses (in bold).

This paper has been really pleasant to read. The quality of the writing, of the fig-
ures, and of the mathematics is really high. The amount of meaningful explanations
is impressive. I think the paper will have a strong impact on the isotope hydrology
community. I think we need more approaches such as this one in tracer hydrology.

Thanks.
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That being said, I would like to mention two things that could be discussed.

The first one is more context about travel time modeling. While the introduction and
the discussion compare well this ensemble approach to the traditional hydrograph sep-
aration, a large part of the paper also deals with determining travel time distributions
(TTDs). Yet, only little is said about travel time modeling, especially in the introduction.

This is because the paper does not deal with simulation modeling (nor is it in-
tended to).

I think it should be mentioned that the ensemble approach deals with a current need
in isotope hydrology to have more data-driven approaches and non-parametric TTDs.
I think this is exactly what the proposed approach brings compared to already existing
approaches, but not more. Unlike reviewer n?1, I believe we should not try to formally
compare methods which have different purposes. This approach calculates only the
streamflow average TTD suggested by the tracer data, without assuming its shape.
This is novel and important. Yet the proposed method can only be used for the period
covered by training data (i.e. " backwards"), and for streamflow only.

As with any technique for analyzing the behavior of a natural system, yes, this
method does use data, and thus "can only be used for the period covered by the
training data".

But the statement that the method is useful "for streamflow only" is puzzling,
given that Section 5.4 explicitly mentions that "these methods could potentially
be applied to infer transit times in other catchment fluxes, such as groundwater
seepage or evapotranspiration." Of course, one would first need tracer data from
those fluxes (as would also be required for any other method with the same
objectives).

Using StorAge Selection (SAS) functions with assumed shapes allows one to obtain the
time-varying TTDs at every moment and in every flux (backwards), and the Residence
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Time Distributions (RTDs). But more importantly, SAS function allow one to simulate
other time-varying solute fluxes (e.g. Benettin et al., 2015) with the calibrated model in
a forward way (even outside the period covered by training data). Note that a model
based on SAS functions can consist of just a handful of parameters (e.g. Benettin et al.
2017) which makes it really competitive. Yet, I also agree that there are clear limitations
in approaches based on SAS functions.

This is a misleading comparison. Of course with a simulation model one can
simulate all kinds of things (without any real-world constraint), but analysis
of real-world data is a fundamentally different task. With a simulation model,
of course one can simulate age distributions "at every moment and in every
flux", including times and fluxes for which one has no data (and thus for which
one has no idea whether the simulations are realistic or not). But what does
one learn from doing so? One primarily learns about the consequences of one’s
modeling assumptions, but not about whether they accurately describe the real-
world system.

My second comment relates to the potential limitations of the proposed approach. I
think that all the choices made to derive the mathematical solutions were presented as
if they are the best choices for any tracer data set, or the only choices possible.

I presented the choices that were actually made, along with the rationales for
them. I neither stated nor implied that they are the best choices for any tracer
data set, or the only choices possible, as NR claims.

This may not be true in all cases. The discussion would benefit from an objective
assessment of the problems that could occur when trying to apply the approach to real
tracer data.

I don’t know what NR means by an "objective" assessment. The whole point of
the paper is to quantitatively test the approach using a benchmark model (so
that we know what the right answer would be), using data that are a reasonable
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approximation to real tracer data. The results are presented in 17 figures and
extensive discussion. What more "objective assessment" would one want?

In my opinion, this ensemble approach will be accurate only for the left tail of the TTDs,
while it truncates (cf. equation 30) older ages.

It is not correct to say that this approach "truncates" the TTD; instead it (cor-
rectly) makes no assumption about the TTD beyond the specified range of lag
times.

This is a critical problem in travel time modeling in general (Stewart et al., 2012; Stewart
& Morgenstern, 2016). It is already mentioned in the reply to reviewer n?1, but I think
it should be clearly written in the discussion as well.

As I have already replied to reviewer #1, the problem with estimating long tails
is intrinsic to the use of conservative tracers. It is a problem of the (low) infor-
mation content in the tracer data on those time scales, and that problem cannot
be solved by clever analytical tricks. This can be mentioned in the discussion.
Whether it is "a critical problem" depends on whether one is interested in the
long tail and the mean transit time (which are difficult or impossible to constrain
with conservative tracers), or the shorter-term behavior (which is the focus of
my approach, and which we can actually learn a lot about from tracer data).

1. To give more context in the introduction you could mention and describe briefly
the common methods to estimate TTDs, namely the Lumped Parameter Models
(e.g McGuire & McDonnell, 2006, and references therein), flux tracking in con-
ceptual models (e.g. Hrachowitz et al., 2013), SAS functions applied to a single
control volume (e.g. Benettin et al., 2017), and particle tracking in distributed
models (e.g. Davies et al., 2013; Danesh-Yazdi et al., 2018). Doesn’t the ensem-
ble approach answer the need to have alternatives to these methods, which all
need to assume an underlying model for water transport?
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Yes, exactly. These methods not only require a physically correct underlying
model for water transport (which can be highly problematic in practice), they
also require continuous input data (because in any time-integrating model, er-
rors accumulate). These methods can be briefly mentioned in the introduction
or discussion, but the paper is not (and should not become) a review and com-
ment on the broad topic of transit time modeling.

2. P7, L11-13: Least squares regression means that any real data set with " outliers"
(which may just be tracer values one did not expect) is likely to adversely affect
the results from the ensemble approach, as it is suggested here. Same for the
least squares solution in equation 38. This is in my opinion one of the limitations
of the proposed method.

A limitation compared to what? Every other method for separating hydrographs,
estimating TTD’s, or calibrating SAS functions (etc.) is also potentially vulner-
able to outliers. And of course parameter calibrations in simulation models are
also affected by outliers, in ways that are often poorly understood.

This should perhaps be mentioned in the discussion. Can iteratively reweighted least
squares or another robust regression technique be used instead?

This is something I am investigating. Briefly, although iteratively reweighted
least squares (IRLS) can be applied straightforwardly to conventional multiple
regressions (where you have complete data), the same is not true when you have
missing data (because then you have missing residuals too, and thus no obvious
way to identify outliers). In principle IRLS can be used term-by-term to estimate
each of the covariances in a multiple regression (in place of Eqs. 40 and 41), but
the effects of doing so are not easy to determine a priori. As always, the choice
between robust methods (like IRLS) and non-robust methods (like least squares)
represents a tradeoff: with robust methods, you get reliable results even if your

C5

data are messy, but you lose precision and sensitivity if your data are not messy.

I agree that this approach assumes no model for the transport of tracers, yet it does
assume a model for the errors between the regression and the measurements (i.e. the
residuals).

So does any data analysis method (although technically we are not minimizing
a sum of squares, because we will always have missing data during rainless
periods).

This is similar to the choice of an objective function in traditional model calibration,
and deserves attention. For example, commonly used assumptions about streamflow
residuals were shown to be often violated, because of autocorrelation, non-normality,
and heteroscedasticity (Schoups & Vrugt, 2010). Are the tracer residuals in this work
likely to show non-normality, autocorrelation, and heteroscedasticity as well?

This rhetorical question chooses to ignore the fact that I have
explicitly provided a framework for quantifying the effects of autocorrelation.

In any case, having taught environmental data analysis for many years, I can
reassure NR that I am quite familiar with the statistical assumptions underlying
regression. I am also familiar with the rather large literature on how badly one
needs to violate those assumptions in order to substantially affect the results
(which is really the question in practice, not whether some theoretically ideal
assumptions exactly hold or not - they almost never do). The general message
from that literature is that standard regression is surprisingly robust unless its
assumptions are very badly violated, or unless you are trying to make inferences
about extremely improbable events (very small p-values), or unless you don’t es-
timate standard errors (and keep them in mind in your interpretation), or unless
you are overfitting (in which case you have lots of problems to worry about).

Regarding non-normality and heteroskedasticity, of course these could be
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looked at (at the cost of greatly expanding the length and complexity of the pa-
per), but the results would be highly assumption-dependent. What should you
assume about your sampling and laboratory errors? What should you assume
about the nature of the mis-match between the assumptions that underlie the
method, and the behavior of the real-world system? One could rapidly get lost
in a high-dimensional assumption space.

And, again, I will point out that if these issues are a problem for this approach,
they are likely to be an equally bad (or even worse) problem for many other meth-
ods of estimating transit times.

Look, let’s keep this in perspective. What other hydrograph separation or transit
time methods have been tested as comprehensively as those that are presented
in this paper? One can always ask to investigate an endless list of statistical
conjectures. But why should other approaches get a free pass when they’ve
hardly been tested at all?

Although CQ(j) and Cnew(j) are both " normalized" by subtracting CQ(j-1), there could
be autocorrelation of higher order than just 1.

Of course, but the autocorrelation in the variables isn’t relevant; it’s the autocor-
relation in the residuals that matters.

How does the variance of errors change with larger flashy events.

It’s hard to give a general answer. But remember, these are concentrations, not
water fluxes, so a lot will depend on whether big events have higher or lower
tracer variance in precipitation.

3. P12, L19-20 All the benchmarking is done for a catchment without evapotranspi-
ration.

That is false. See Section 3.6.
C7

This points to a more general concern with the ensemble approach. No assumption
is made explicitly about what happens to the tracer masses between precipitation and
streamflow. This means that the method may try to find direct " connections" (in a loose
statistical sense here) between tracer inputs from the past and current tracer fluctua-
tions in the stream. Intermediary (unconsidered) processes may still be important to
explain the transformation from one to the other. I especially think of processes affect-
ing the lumped catchment tracer mass balance, which is an expression that was not
considered in the approach. In that regard, how are the results expected to change
if ET is actually used in the benchmark tests? Is the approach robust for real catch-
ments where ET can be a major part of the water balance? Here I am not considering
the effects of fractionation which were already dealt with, but the selective removal of
certain tracer masses (associated with particular ages, i.e. different soil/groundwater
mixtures) by ET, which will hence not be available for streamflow.

As the manuscript points out, this approach will determine the lagged fractions
of whatever input is sampled (presumably precipitation, but could be general-
ized to multiple inputs) that appear in whatever output is sampled (presumably
streamflow, but could be something else). There is no requirement that these
are the only inputs and outputs. Specifically, Eq. 29 says that the discharge Q_j
is the sum of contributions to discharge q_jk across each time lag k, but it does
not say that this is the only way that water can leave the system (that is, the q_jk
do not necessarily add up to P).

The method is not based on an input-output mass balance for the catchment.
This implies that there should be no problem if (as often happens in nature) ET
is a significant fraction of the water balance, and if the age distribution of the ET
flux is different from the age distribution of the discharge flux. In such a case,
of course, the age distribution of discharge will be different from what it would
be with ET=0, but that will be reflected in tracer concentrations that correlate
differently with precipitation. Thus the proposed method will estimate the age
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distribution of the sampled output (in this case Q); it will not estimate the age
distribution of the un-sampled output (ET).

4. P20, L4-6: These estimates seem to differ as much as 50% from the known
values for the damped catchment and weekly data on figure 4.

Yes, by cherry-picking one comparison (from among 8 in Fig. 4), one can find
a roughly 50% discrepancy (which is actually a small discrepancy between two
small numbers). This concerns the average "forward" new water fraction (the
blue lines in Fig. 4g). The true value from age tracking in the model is 0.11, and
the estimate from ensemble hydrograph separation is 0.07. One way to look at
this is that ensemble hydrograph separation underestimates the "forward" new
water fraction by about 40% (of the true value), but the other way to look at it is
that the discrepancy is 0.04 in absolute terms.

Putting the matter differently, what would be the likely error of an a priori
"guesstimate" of the forward new water fraction in this system, without any
formal analysis? How does a discrepancy of 0.04 look compared to that?

Many tracer data sets are at weekly resolution and come from " damped" catchments
(e.g. Tetzlaff et al., 2009; Pfister et al., 2017). Data-driven approaches are by nature
highly sensitive to the quality of data (e.g. variability, resolution, and measurement
uncertainty). The proposed approach could thus show some limitations due to its strict
data needs in some cases. This could be mentioned in the discussion.

I don’t know what NR means by "strict data needs". Strict compared to what? I’ve
demonstrated that the method yields quantitatively realistic estimates across a
wide range of catchment behaviors, with both weekly and daily data (that con-
tain both errors and gaps). Thus the data needs here are considerably less strict
than those of many other approaches. I will also note that among the few other
benchmark tests that have been published, some make the remarkably unreal-

C9

istic assumption that the input data (and sometimes also the output data) are
completely error-free.

Thus it’s not clear how to respond to NR’s comment, beyond noting that of
course any empirical approach requires data, and thus will depend on the quality
of the data. (Conversely, any approach that does not depend on data, and thus
is free of data quality concerns, probably doesn’t teach us much about the real
world!).

5. P20, L19-20: A weekly sampling routine is likely to contain more " baseflow"
samples which reflect older water contributions.

That is not correct. In regular weekly sampling, baseflow will be sampled pro-
portionally to its frequency of occurrence, because regular sampling does not
preferentially include or exclude baseflow samples.

This results in an underestimation of QFnew as shown here.

The premise of that statement is incorrect. The underestimation in the figure has
nothing to do with preferential oversampling of base flow, because that oversam-
pling did not occur.

Yet how can the fraction of new water with respect to discharge be under- estimated
while the fraction of new water with respect to precipitation is overestimated? These
quantities refer to the same mass of water in streamflow.

Yes, they are the same mass of water, but expressed as a ratio to two different
things (discharge and precipitation). One can be overestimated while the other
is underestimated because uncertainties propagate differently in Eq. 9 vs. Eq.
28.

6. P28, L2: Here it is assumed that values of Cp and CQ at all times corresponding
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to indexes j or j-k are known (except a few, which require the solutions proposed
in 4.2 and 4.3).

That is not correct. There is no requirement that Cp or CQ is sampled at all
times, or that the number of missing values is just "a few". The benchmark tests
here assume 5% missing values from rainfall and streamflow, in addition to the
much larger number of rainfall samples that are missing because there was not
enough rain to make an isotope measurement. One can change the percentage
of missing values from 5% to 10%, 20%, or more, of course. The uncertainties
will grow accordingly (depending in part on how large m is).

In practice it is very likely that the sampling interval is irregular, such that there is not a
perfect correspondence between measurement times, and required times indexed by j
or j-k. Any recommendation on how to best adjust the measurement time series so that
these terms are defined properly would be welcome. Similarly, the method requires the
same number of measurements in precipitation and in streamflow.

That is not correct. Nothing in the text or the math states this or implies it.
The calculations presented here assume for convenience that the time bases of
the measurements are the same (that is, if precipitation is sampled weekly then
streamflow is also sampled weekly). But there is no requirement that even if
(for example) streamflow is sampled every week, precipitation must be sampled
every week.

How could we deal with this in various research catchments as this is often not the
case?

The only general answer is to say that one can use benchmark tests to look at
the effects of various scenarios of missing data. It is difficult to generalize about
the wide range of possible scenarios.

7. P29, L12: Here it is assumed that the most recent precipitation events have more
C11

weight in the current tracer fluctuations in the stream than older inputs.

That is not correct. The math does not assume this, the text does not say this,
and counter-examples are presented (See, for example, Figure 12b-c).

This is implicitly reflected by the truncation of the sum in equation 30.

That is not correct. The truncation of the sum does not assume that the remain-
ing terms are necessarily small.

This is also reflected by the estimated travel times that mostly stay below a few months.
Although this assumption about tracer contributions is likely to be valid, catchment
travel times are known to be generally in the order of magnitude of a few years and
even decades (McGuire & McDonnell, 2006). This is all the more true when age esti-
mates are based on tritium measurements (Stewart et al., 2010). Would the ensemble
approach be robust in catchments where streamflow is volumetrically dominated by
water older than a few months?

The mean transit times reported by McGuire and McDonnell (2006) are mostly
baseflow mean transit times, whereas Fig. 3 reports mean transit times
only for rainy days (so that these can be directly compared to the new water
fraction). The distinction is important, because baseflow mean transit times will
always be longer (sometimes much longer) than mean transit times that are av-
eraged over all flows, which in turn will always be longer than mean transit times
averaged over rainy days.

For example, the mean transit time as shown in Fig. 3 for the benchmark
model with the "flashy" parameter set is 189 days (or about six months), but
the baseflow mean transit time (defined for these purposes as the mean transit
time when precipitation has been less than 1 mm/day for the previous three days)
is 563 days, almost three times longer. Among the Monte Carlo parameter sets
underlying Figures 2, 3, 5, and 10, baseflow mean transit times range as high as
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three years or more.

8. P29, L12: Regarding the linear algebra, how large can the truncation index m
be in practice, given that computationally intensive large matrix operations are
carried out? This is especially of interest since the matrices grow with the number
of measurements in both dimensions, while m needs to be as large as possible
for the ensemble method to work well.

The premise is false. Nowhere does the paper say that m "needs to be as large
as possible for the ensemble method to work well", for the simple reason that
it isn’t true. If m is too large, the TTD estimates will become too uncertain (and
the standard error estimates will show this). Conversely, the ensemble method
works very well for m=1 (that is, calculations of Fnew), thus rather clearly demon-
strating that there is no need for m to be large.

Solving matrix problems is computationally intensive, but not at a scale that mat-
ters for this problem (geophysicists routinely solve matrices that are orders of
magnitude larger than those that will be relevant here). Even an excel spread-
sheet can do these calculations for matrices with dimensions of m>100 (I know
because I’ve done it), and scripting languages like R or python invoke fast low-
level solvers that can efficiently handle much, much larger problems. The prac-
tical limitation on m will be data, not computer power.

In my opinion, the discussion should encourage the reader to consider if this approach
shows limitations for his/her considered travel times, which may be up to a decade.
Can this approach go beyond the left-hand tail of the TTDs or is it limited to the left
tail?

By definition the approach handles the left tail of the distribution, because it esti-
mates TTDs to some maximum lag m. The question is how much of the interest-
ing behavior of the TTD is within the range of m for which the TTD can be reliably
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estimated. That will depend on many factors, including (a) what behaviors one
considers to be interesting, (b) how many tracer samples are available, and at
what frequency, and (c) perhaps most importantly, the timescales of variability
in the input tracer time series (for any fluctuation-based analysis, the input must
be variable on the relevant time scales). These limitations are inherent in the use
of stable isotope tracers. There is no intrinsic time limit in the method itself.

9. P33, L8: Over several years of data, doesn’t neglecting 1 mm of precipitation per
day sum up to a large value? It could be useful to include some discussion on
the effect of that threshold on the results. Are the results highly sensitive to that
choice or not?

Remember, the method does not rely on mass balances (this is essential, be-
cause any method based on mass balance - and there are many - will be in-
herently vulnerable to biases from ET and from the un-representativeness of
precipitation measurements). Neglecting small precipitation inputs has almost
no effect on the results, except for "forward" new water fractions calculated by
Eqs. 21 and 22 under certain circumstances (where a precipitation threshold is
needed to avoid giving huge weight to tiny precipitation inputs). Remember, too,
that the real-world catchment will also "neglect" small precipitation inputs be-
cause they will typically evaporate from the canopy or ground surface, and thus
contribute next-to-nothing to streamflow and stream tracer concentrations.

10. P39, Figure 11: Deviations between the benchmark TTDs and the estimated
ones are visible here. How could these deviations be described more quantita-
tively to be more objective?

Of course one could quantify the deviations in terms of a root-mean-square er-
ror or median absolute deviation, if one wanted to. This seems obvious enough
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that it doesn’t need to be explicitly stated. The deviations are generally within
the reported standard errors, so there is not much to be learned from them (be-
cause any measurements of the deviations would themselves have uncertainties
of roughly 100%).

11. P40, Figure 12: It looks like the uncertainties are larger for the TTDs which shape
is not a classical " L" anymore. The explanation given here is that the effective
sample size neff (equation 13) is small because of tracer autocorrelation. Can
we not say that an autocorrelation in the tracer time series is universal, as well
as a shape of the TTD far from a simple " L"? This seems related to the issue
described in comment (2).

We certainly cannot say that TTD’s are universally far from L-shaped. In cases
where TTD shapes have been evaluated with methods that are sensitive to the
shape of the TTD (rather than with methods that just assume a given shape a
priori), L-shaped distributions appear to be quite common in real-world water-
sheds.

The actual uncertainties (as reflected in the scatter clouds surrounding each data
point) are not much larger for the humped distributions; they just look larger be-
cause the axis scales are different. However, the standard errors (the error bars)
are indeed overestimated for these humped distributions. As the manuscript
says, I think this has to do with the estimation of n_eff.

12. There are not many data-driven methods that can yield non-parametric TTDs,
which explains why this new approach is really beneficial to estimate TTDs. Yet,
I believe that the problem solved here is somewhat similar to what Turner et
al. (1987) solved as well, using Kalman filtering approaches (see the parallel
between equations 30 and 31 here, and their equations 1 and 2) (see also Turner
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and McPherson, 1990). They unfortunately did not detail the math behind their
approach. Nevertheless, their work present time-varying average transit times,
including uncertainties, also derived without assumptions on the shape of the
TTDs. This is worth mentioning and comparing to the presented approach in the
discussion.

NR is correct that Turner et al.’s equations 1 and 2 and my equations 30 and
31 both express convolutions, but convolutions also underlie essentially every
method for using tracer data to infer transit times. As NR notes, it is not very
clear what Turner et al. actually did. Nonetheless, it’s clear that their approach is
not really nonparametric; instead they have apparently fitted a parametric model
whose parameters are allowed to vary smoothly over time, as estimated with the
Kalman filter. Nonetheless, the fact that their fits to the stream isotope data had
R2>0.999 suggest that the underlying model was massively overfitted.

Furthermore, Klaus et al., (2015) also presented a data-driven approach that could be
worth mentioning and briefly comparing to the presented one.

The Klaus et al. analysis seems to me to be a calibrated model rather than a
data-driven approach. As far as I can tell it appears to assume mass conserva-
tion between input and output (no ET), which, as NR notes, would be problematic
in real-world applications. The "uniform mixing distribution" assumption also
seems nonphysical, since it "gives higher weight to less frequent tracer concen-
trations" (emphasis added).

But most notably, Klaus et al.’s "proof of concept" simply runs their model in for-
ward mode to generate a test time series, and then runs exactly the same model
in inverse mode, on exactly the same time series (without even introducing
any measurement errors). This only demonstrates the mathematical consis-
tency of the forward and inverse models. It does essentially nothing to demon-
strate that the inverse model will give realistic results when applied to real-world
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data (which will not come from the same model, and which will have errors).
Nonetheless, Klaus et al. conclude that, "The virtual and modeled 18O time se-
ries matched exceptionally well. . . ", apparently not recognizing that this result
is mathematically inevitable because they have tested their model against itself.

Finally Kim et al. (2016) could estimate not only TTDs but also SAS functions from
artificial tracer data (of course under well controlled lab conditions). Their work is worth
mentioning because they are able to distinguish the " external" variability of travel times
from the " internal" one, unlike the ensemble approach presented here.

The method used by Kim et al. cannot be applied to real-world field conditions,
and thus is not relevant to the topic of the present paper.

13. P54, L30-32: Doesn’t this mean that m should be set bigger?

Setting m bigger does not make this issue go away. One really should just take
the last few lags with a grain of salt, as the manuscript says. Such edge effects
often arise in various inversion problems.

Small technical comments:

(14) Figure 1 & 4: the colors are not consistent between the legend and the lines in
the lower subplots.

This is intentional. The problem is that if one uses a yellow color in the legend
that is as light as the yellow in the figure, the line in the legend almost disap-
pears, whereas if one uses a dark enough yellow in the figure that it can also be
seen in the legend, then the figure becomes muddy.
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