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Abstract. The link between streamflow extremes and climatology has been widely studied during the last decades. However, 

a study investigating the effect of large-scale circulation variations on the distribution of seasonal discharge extremes at the 10 

European level is missing. Here we fit a climate-informed Generalized Extreme Value distribution (GEV) to about 600 

streamflow records in Europe for each of the standard seasons, i.e. to winter, spring, summer and autumn maxima, and compare 

it with the classical GEV with parameters invariant in time. The study adopts a Bayesian framework and covers the period 

1950 to 2016. Five indices with proven influence on the European climate are examined independently as covariates, namely 

the North Atlantic Oscillation (NAO), the East Atlantic pattern (EA), the East Atlantic / West Russian pattern (EA/WR), the 15 

Scandinavia pattern (SCA) and the Polar-Eurasian pattern (POL).  

It is found that for a high percentage of stations the climate-informed model is preferred to the classical model. Particularly 

for NAO during winter, a strong influence on streamflow extremes is detected for large parts of Europe (preferred to the 

classical GEV for 46% of the stations). Climate-informed fits are characterized by spatial coherence and form patterns that 

resemble relations between the climate indices and seasonal precipitation, suggesting a prominent role of the considered 20 

circulation modes for flood generation. For certain regions, such as Northwest Scandinavia and the British Isles, yearly 

variations of the mean seasonal climate indices result in considerably different extreme value distributions and thus in highly 

different flood estimates for individual years that can also persist for longer time periods. 

1. Introduction 

The understanding of extreme streamflow is a key issue for infrastructure design, flood risk management and (re-) insurance, 25 

and the estimation of flood probabilities has been in the focus of the scientific debate during recent decades. Traditionally, 

streamflow has been analyzed with regard to associated hydro-climatic processes acting at the catchment scale. During recent 

years many studies have additionally focused on the link between local streamflow and larger-scale climate mechanisms, 

extending beyond the catchment boundaries (Merz et al., 2014). An early example can be found in Hirschboeck (1988), who 

provides a detailed explanation of relationships between floods and synoptic patterns in the USA. Large-scale atmospheric 30 

patterns acting at global or continental scales have been shown to significantly influence flood magnitude and frequency at the 

local and regional scale. Regional in this context refers to the joint consideration of several gauges. For example, Kiem et al. 

(2003) stratified a regional flood index in Australia according to quantiles of the El Niño/Southern Oscillation (ENSO) index 

and showed that La Niña events are associated with a distinctly higher flood risk compared with El Niño events. Ward et al. 

(2014) found that peak discharges are strongly influenced by ENSO for a large fraction of catchments across the globe. Delgado 35 

et al. (2012) detected a dependence between the variance of the annual maximum flow at stations along the Mekong River and 

the intensity of the Western Pacific monsoon. 

This perception of climate-influenced extremes has been incorporated in flood frequency analysis by including climatic 

variables as covariates of extreme value distribution parameters. It is therefore assumed that the probability density function 

(pdf) of streamflow is not constant in time but it is conditioned on external variables. This framework, usually called 40 
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nonstationary, can be particularly useful for hydro-climatic studies since the influence of the climatic phenomena on the 

distribution of the hydrological target variable, such as extreme streamflow, can be considered (Sun et al., 2014). This means 

that the whole distribution as well as certain parts of the target variable distribution, such as the tails, can be assessed including 

the influence of the large scale climate phenomenon, and used for flood risk management or reinsurance purposes. This 

conditional or nonstationary frequency analysis has been popularized in the field of hydrology and flood research during recent 45 

years. Different covariate types have been examined for their influence on flood extremes, e.g. time (e.g. Delgado et al., 2010; 

Sun et al., 2015), snow cover indices (Kwon et al., 2008), reservoir indices (López and Francés, 2013; Silva et al., 2017), 

population measures (Villarini et al., 2009) and large-scale atmospheric and oceanic fields and indices (Delgado et al., 2014; 

Renard and Lall, 2014). A review of nonstationary approaches for local frequency analyses is given by Khaliq et al. (2006), 

while some of their limitations are discussed by Koutsoyiannis and Montanari (2015) and Serinaldi and Kilsby (2015) and 50 

Serinaldi et al. (2018).  

In this study, we focus on the European continent and the relation between streamflow extremes and the large-scale 

atmospheric circulation. The European climate is mainly influenced by pressure patterns acting at the broader region covering 

Europe and the northern Atlantic. In particular, five circulation modes have been shown to significantly modify the moisture 

fluxes into the European domain: the North Atlantic Oscillation (NAO), the East Atlantic (EA), the East Atlantic/Western 55 

Russia (EA/WR), the Scandinavia (SCA) and the Polar/Eurasia (POL) patterns (Bartolini et al., 2010; Casanueva et al., 2014; 

Rust et al., 2015; Steirou et al., 2017). These patterns represent the first five pressure modes north of 50°, derived by means of 

a rotated principle component analysis of monthly mean 500hPa geopotential height fields (Barnston and Livezey, 1987). The 

modes indicate the position and magnitude of large-scale atmospheric waves and thus control the strength and location of the 

northern hemispheric Jetstream. All modes are characterized by a particular pattern of large-scale winds and moisture fluxes 60 

and strongly affect near-surface climate conditions over vast parts of the northern hemisphere. Particularly NAO has been 

shown to significantly influence the European winter climate: its positive state has been linked to positive (negative) anomalies 

of moisture fluxes, cyclone passages and precipitation over northern (southern) Europe (Hurrell and Deser, 2009; Wibig, 1999). 

A seasonal shift of the NAO pressure centers and moisture fluxes towards north during summer has been detected (Hurrell and 

Deser, 2009). EA, often referred to as a southward shifted NAO, is characterized by distinctly defined geopotential height 65 

anomalies and an associated influence on westerly moisture fluxes and local climate conditions over Great Britain (Comas-

Bru and McDermott, 2014; Moore and Renfrew, 2012). EA/WR features two centers of action over Central Europe and Central 

Russia. During its positive state, a planetary ridge is located over north-western Europe, and this reduces the advection of 

moist air masses (Krichak and Alpert, 2005). SCA is particularly active over northern Europe and triggers atmospheric 

blocking during its positive phase (Bueh and Nakamura, 2007). POL represents the strength of the pressure gradient between 70 

the polar regions and the mid-latitudes and thus controls the westerly circulation, particularly over northern Europe (Claud et 

al., 2007). Correlation maps, demonstrating links between these circulation modes and seasonal precipitation and temperature, 

are included in the Supplementary Material (Fig. S1-S4). 

Apart from Northern Hemisphere modes, the El Niño-Southern Oscillation (ENSO) has been suggested to influence the 

European hydrology. Significant relations have been found with precipitation and different discharge indices (Guimarães 75 

Nobre et al., 2017; Mariotti et al., 2002; Steirou et al., 2017). However, in contrast to the above described circulation modes, 

ENSO does not shape the European climate and hydrology directly, but rather indirectly through the regulation of the phase 

of other large-scale modes, such as the EA (Iglesias et al., 2014). Other patterns acting at a smaller scale, such as the 

Mediterranean Oscillation (MO) and the Western Mediterranean Oscillation (WMO), have also been related with hydrological 

variables in Europe (Criado-Aldeanueva and Soto-Navarro, 2013; Dünkeloh and Jacobeit, 2003; Martin-Vide and Lopez-80 

Bustins, 2006). However, such modes seem to have limited importance at the continental scale.  

While the relation between European hydrology and large-scale circulation has attracted much attention and has been widely 

studied, only few studies have adopted a conditional flood frequency framework for the investigation of climate-flood 
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interactions. Villarini et al. (2012) conducted a frequency analysis of annual maximum and peak-over-threshold discharge in 

Austria with NAO as a covariate. López and Francés (2013) examined maximum annual flows in Spain conditioned on the 85 

principal components of four winter climate modes: NAO, AO, MO and WMO. Still, a comprehensive study on streamflow 

extremes at the European scale has not been conducted. 

Thus, this study aims at a large-scale investigation of circulation-streamflow interactions for the entire European continent by 

adopting a flood frequency framework. We examine seasonal streamflow maxima from more than 600 gauges covering the 

entire European continent and particularly investigate the influence of the five major pressure modes that directly affect the 90 

European climate: NAO, EA, EA/WR, SCA and POL. In order to quantify the effect of important hydro-climatological 

processes for the streamflow regimes, we investigate contemporaneous relationships only, without considering any time lags. 

We identify regions with a consistent influence of each particular circulation index in order to explain the spatial coherence of 

flood frequency. The analysis is conducted at a seasonal scale in order to better account for the intra-annual variations of the 

circulation characteristics and the associated seasonal shift of climate-streamflow relationships. A Bayesian framework is 95 

adopted for the flood frequency analysis because of its advantages concerning the quantification and interpretation of 

uncertainty. Furthermore, prior information about hydrologic extremes exists in the literature and can be used for inference.  

2. Data and Methods 

2.1 Streamflow data and circulation indices 

The time period of our analysis is from 1950 to 2016, defined by the overlap between streamflow data and circulation indices. 100 

Daily streamflow data for the European continent were received from GRDC (Global Runoff Data Centre). From this dataset, 

gauges with record lengths of at least 50 years after 1950 and with a catchment area larger than 200 km2 were selected. Small 

catchments are not considered, as they may be more prone to local phenomena, which could blur the large-scale atmospheric 

influence. In total, 649 stations covering North and Central Europe with the exception of Poland are considered. Due to the 

underrepresentation of Southern Europe, additional data from other sources satisfying the above mentioned criteria are 105 

included in the analysis. Five time series with monthly maximum discharges were obtained for Spain and one station with 

daily discharge was provided for Portugal. For details about these additional stations the reader is referred to Mediero et al. 

(2014, 2015). Finally, one record with daily streamflow data was provided for Pontelagoscuro in Italy (Domeneghetti, 2017, 

personal communication). For each station, the maximum value of mean daily streamflow is derived for the four standard 

boreal seasons: winter (DJF), spring, (MAM), summer (JJA) and autumn (SON). Seasons with more than 20% missing values 110 

are not considered. Overall 586 records in winter, 604 in spring, 599 in summer and 597 for the autumn season are utilized for 

the analysis. 

Time series of monthly circulation indices for the period 1950-2016 were retrieved from the Climate Prediction Center (CPC) 

of the National Oceanic and Atmospheric Administration (NOAA), 

(http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml). We make use of the five indices mentioned in the 115 

introduction, namely, the NAO, EA, EA/WR, SCA and POL patterns. Seasonal mean climate indices are used for the 

adjustment of the extreme value distribution, however, we also examine whether the results differ if monthly values (in 

accordance with the observed flood date) are considered as covariate. The time series of the seasonal indices, along with their 

running mean for a 10-year window, are shown in Fig. S5. Histograms showing the distribution of mean circulation indices 

for each season are provided in Fig. S6. 120 

2.2 Flood frequency analysis – Competing models 

The GEV with parameters invariant in time and with parameters conditioned on the climate indices are fitted to the seasonal 

maximum streamflow data. For the climate-informed models the condition of independent and identically distributed 
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observations of the classical GEV is relaxed to include parameters conditioned on time-varying covariates (Katz et al., 2002). 

For the two types of models we use the terms “classical model” instead of stationary model and “climate-informed model” 125 

rather than “nonstationary model”. It has been suggested that if covariates have a stochastic structure and no deterministic 

component, the resulting distribution is not truly nonstationary (Montanari and Koutsoyiannis, 2014; van Montfort and van 

Putten, 2002; Serinaldi and Kilsby, 2015). As our climate covariates have no distinguishable deterministic component (not 

shown), it is consequently not clear if they result in nonstationary models. Here each streamflow gauge is handled 

independently and site-specific parameters are derived. Let Y(t) denote a streamflow observation at time t and Y = (Y(t1), Y(t2), 130 

… , Y(tn)) denote the vector of streamflow observations at a specific site. Then for the classical case the model is given as: 

ܻሺݐሻ~ܸܧܩሺࣂሻ           (1) 

where θ is the vector of length m of (time-invariant) distribution parameters. The classical GEV comprises m = 3 parameters; 

a location parameter μ, a scale parameter σ and a shape parameter ξ. 

In the Bayesian framework, the posterior pdf of the parameter vector is computed as follows, based on Bayes theorem: 135 

݂ሺࢅ|ࣂሻ ∝ ݂ሺࣂ|ࢅሻ݂ሺࣂሻ          (2) 

where f(θ) is the prior pdf of distribution parameters and f(Y|θ) is the likelihood function: 

݂ሺࣂ|ࢅሻ ൌ ∏ ݂ሺܻሺݐሻ|ࣂሻ௧            (3) 

For the climate-informed distribution, parameters are assumed to be a function hi of the vector of time-varying climate 

covariates x(t). In the general case, Eq. (1) takes the form: 140 

ܻሺݐሻ~ܸܧܩሺࣂሺݐሻሻ           (4) 

with θ(t) = (θ1(t), θ2(t), … , θm(t)) the collection of m distribution parameters at time t, and  

ሻݐఐሺߠ ൌ ݄௜ሺ࢞ሺݐሻ; ݅												ሻ࢏ࢼ ൌ ሼ1,2, … ,݉ሽ        (5) 

Here βi is the vector of (internal) parameters used in function hi (not to be confused with parameters θi). 

The climate-informed GEV is a generalization of the classical GEV. The likelihood function is then defined as: 145 

݂ሺࣂ|ࢅሻ ൌ ∏ ݂ሺܻሺݐሻ|ߠሺݐሻሻ ൌ ∏ ݂ሺܻሺݐሻ|݄ଵሺ࢞ሺݐሻ, ,૚ሻࢼ ݄ଶሺ࢞ሺݐሻ, ,૛ሻࢼ … , ݄௠ሺ࢞ሺݐሻ, ሻሻ௧௧࢓ࢼ    (6) 

The function hi, linking the distribution parameters with climate covariates, is derived by means of a linear regression. The 

shape parameter is assumed to be constant as its estimation includes large uncertainties, even under the assumption of 

stationarity (Coles, 2001, Papalexiou and Koutsoyiannis, 2013; Silva et al., 2017). A preliminary analysis considering the 

effect of a covariate on both the location and scale parameter (cf. section 2.3 below) did not provide very different results than 150 

those for a covariate on the location parameter only (not shown). Consequently and for reasons of parsimony, we examine 

only conditional extreme value distributions with a time-varying location parameter.  

Conditional distributions of only one covariate at a time are derived, since we are interested in the separate effect of each 

individual climate index on flood quantiles. Based on the above mentioned assumptions concerning model structure and the 

form of the function hi, Eq. (5) can be simplified to:  155 

ሻݐሺߤ ൌ ଴ߤ ൅  ሻ          (7)ݐሺݔଵߤ

where μ(t) is the varying location parameter, μ0 the location intercept, μ1 the location slope and x(t) the single covariate 

examined.  

Consequently, the conditional GEV comprises four parameters: scale and shape parameters, and intercept μ0 and slope μ1 for 

the location parameter. Since five different climate covariates x(t) are investigated, we construct six different models (one 160 

classical and five conditional) for each station and season. The posterior pdf of parameters in Eq. (2) for both the classical and 

conditional model is estimated using a No-U-Turn Sampler (NUTS) - Hamiltonian Monte Carlo (HMC) approach implemented 

in Rstan, the R interface to Stan (Stan Development Team, 2017). NUTS is an extension to HMC, a Markov chain Monte 

Carlo (MCMC) algorithm that avoids the random walk behavior and sensitivity to correlated parameters which characterize 

many MCMC methods (Hoffman and Gelman, 2014). Stan is a state-of-the-art platform for statistical modelling and high-165 

performance statistical computation.  
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For all covariates and seasons, models are fitted independently. No posterior distributions from the classical approach are used 

as priors for the climate-informed case. For all models, non-informative uniform priors are used for the location parameter (for 

both intercept and slope) and for the scale parameter, since no prior information is available. For the shape parameter an 

informative normal distribution with mean 0.093 and standard deviation 0.12 is used. This distribution is adopted from a global 170 

study of extreme rainfall by Papalexiou and Koutsoyiannis (2013), which, to our knowledge, summarizes an analysis of shape 

parameters using the largest number of stations with hydrological data worldwide. Although rainfall extremes may be 

characterized by slightly different shape parameter than those of streamflow, our informative prior is very close to the 

“geophysical prior” of Martins and Stedinger (2000), which is often used to restrict the range of shape parameters based on 

previous hydrological experience (Renard et al. 2013). The latter prior was not preferred because it is bounded to the interval 175 

(-0.5, 0.5), while the distribution of Papalexiou and Koutsoyiannis (2013) allows more extreme shape values with a low 

probability. 

Five chains of 14,000 simulations, with the first half discarded as warmup period, are run for all parameters. Convergence is 

investigated by the potential scale reduction statistic ෠ܴ (Gelman and Rubin, 1992). Following Gelman (1996), we assume 

convergence for values of  ෠ܴ below 1.2. Thinning is applied to the post-warm up simulations to remove autocorrelation. Every 180 

tenth value from all chains is kept, leading to a final sample of 3,500 simulations for all each model and season. 

2.3 Model selection 

We apply a two-step methodology to select the optimal model among the classical and conditional competitors. First, we assess 

if the covariates have a significant effect on our extreme streamflow models by examining the posterior distribution of the 

slope μ1 of the location parameters (Εq. 7). Conditional models are considered as significant if the zero value is not included 185 

in the 90% posterior interval of the slope parameter (and thus not by means of a significance test). A second criterion is 

additionally adopted in order to select the distribution with the best performance by taking into consideration that complex 

models with more parameters tend to fit the data better. The Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) 

is chosen for model selection. The DIC was preferred against two more common tools, the Akaike Information Criterion (AIC; 

Akaike, 1974) and the Bayesian Information Criterion (BIC; Schwarz, 1978), because it is based on the posterior distribution 190 

of the model parameters and thus includes parameter uncertainties, while the AIC and BIC are based on maximum likelihood 

estimates of parameters. 

The deviance, used for the calculation of the DIC, is defined as: 

ሻࣂሺܦ ൌ െ2݈݃݋	ሺ݂ሺࣂ|ࢅሻሻ          (8) 

where θ is the parameter vector. The DIC is then given by the following equation: 195 

ܥܫܦ ൌ ഥܦ ൅  ஽           (9)݌

where ܦഥ	is the expectation of the deviance with respect to the posterior distribution, and ݌஽ ൌ ഥܦ െ  ഥሻ is the effectiveࣂሺܦ

number of parameters (penalty for model complexity, following Spiegelhalter et al., 2002). ࣂഥ is a vector of the expectation of 

parameters θ. Models with smaller DIC values are preferred.  

Conditional models satisfying both criteria are preferred to the classical model. The model comparison is performed in two 200 

steps: first, for each station and season, each climate-informed competitor is pairwise compared to the classical GEV. 

Subsequently, the model with the overall best performance is identified.  

2.4 Conditional flood quantiles 

In the classical or stationary approach one can define the n-year return level as the high quantile of the examined variable for 

which the probability of exceedance is 1/n. In this case, the same probability of exceedance is assigned to same events in 205 

different years. The concept of return period can then be introduced as the reciprocal of the probability of exceedance of a 

specific value or return level of the examined variable (Cooley, 2013). In engineering practice, return period is often used to 
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communicate risk and is understood either as the expected time interval at which the examined variable exceeds a certain 

threshold for the first time (average occurrence interval) or as the average of the time intervals between two exceedances of a 

given threshold (average recurrence interval) (Volpi et al., 2015). When the parameters of the distribution vary in time, as in 210 

the nonstationary or conditional frequency analysis, a different probability of exceedance is assigned to different years. In this 

case, the concept of return period becomes less straightforward to define. Thus, communicating risk by means of probabilities 

makes more sense (Cooley, 2013). Instead of the classical return levels the term “effective” return levels has been introduced 

(Gilleland and Katz, 2016) which represents the quantiles of the conditioned distribution under consideration of a particular 

value of the covariate during a given year. 215 

Here we assess whether the consideration of climatic drivers leads to a significant alteration of flood “effective” return levels 

or conditional quantiles in individual years. Differences of flood quantiles during years with high and medium values of the 

considered circulation indices are quantified. Since the model is linear, the effect of high and low covariate values on the 

extreme value distribution quantiles is approximately symmetric (it would be symmetric if the seasonal indices had a 

symmetric distribution around zero – see Fig. S6) and thus low covariate values are not considered. The 95th and 50th quantile 220 

of the considered climate index are chosen as high and medium index values, respectively. Index quantiles are calculated for 

the entire period 1950-2016. 

From the No-U-Turn sampling after thinning, 3,500 post-warm up sets of parameters are obtained, each corresponding to a 

flood quantile (for a given probability of exceedance). The median value of all 3,500 flood quantiles is chosen as a point 

estimate. The median estimate was preferred to the maximum a posteriori (MAP) estimate because it is more representative of 225 

the posterior distribution. Based on this approach, the percent relative difference Yp of the two flood quantiles for a particular 

probability of exceedance p, corresponding to the high and medium climate index quantiles, respectively, is calculated as 

follows: 

௣ܻ ൌ
௬೛,೓ି௬೛,೘

௬೛,೘
ሺ%ሻ          (10) 

where yp,h is a flood quantile for the probability p, incorporating a high value of the considered climate index (95th quantile). 230 

yp,m is the quantile value for the same probability p under consideration of the medium (50th quantile) climate index. The 

analysis is performed for probability of exceedance of 0.02 (corresponding to the 50-year return period of the classical case). 

2.5 Uncertainty analysis 

In the previous chapters an automatic methodology for the choice of an adequate model and a discussion of flood quantiles for 

different covariate values is presented. However, a visual comparison of point estimates and uncertainty intervals of the 235 

classical and conditional models can be useful, since it illustrates the differences but also the plausibility and possible 

drawbacks of the competing models. For this reason, we plot the time series of flood quantiles for a probability of exceedance 

of 0.02 for selected gauges and covariates based on both the classical and the climate-informed extreme value distribution. As 

discussed in the previous section, the median flood quantile for a probability of exceedance of 0.02 is chosen as point estimate 

(median quantile curve). Uncertainty of flood quantiles is quantified by means of posterior or credibility intervals, which are 240 

the Bayesian equivalent to frequentist confidence intervals, although there exist differences in the interpretation of the two 

types (Renard et al. 2013, Gelman et al., 2013). 

3. Results 

3.1 Spatial patterns of competing models 

For all seasonal indices climate-informed models are preferred over the classical distribution for a large number of stations; 245 

percentages of preferred models (based on both the DIC and the significance of the slope of the location parameter) are shown 
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in Table 1 and spatial patterns are mapped in Fig. 1-2. The climate-informed fits form spatial clusters that resemble the 

correlations between the climate indices and average seasonal precipitation (Fig. S1-S4), while a relation with the correlations 

of seasonal mean temperature is not straightforward. Particularly for NAO a dipole pattern is evident in winter, with a positive 

influence on extreme discharge in northern and Central Europe and a negative relationship south of the Alps (Fig. 1). The 250 

intra-annual shift of the NAO pressure centers is well captured. The positive influence of NAO on flood magnitudes during 

summer is only detected for northern Scandinavia (Fig. 2). Similar dipole structures, resembling the correlations with seasonal 

mean precipitation, are found for other indices. However, there are some deviations from the precipitation patterns. For 

example, contradicting results are found in Scandinavia during spring and summer for the SCA index.  Scandinavian rivers 

usually have small catchments and are particularly fed by snowmelt in spring, subsequently in this area, both temperature and 255 

precipitation are important for runoff generation. An opposite sign between correlations with precipitation and the slope of the 

location parameter can also be found during autumn in north-eastern Germany for the EA index.  

NAO is the covariate with the highest number of significant fits in winter (46%) and autumn (31%) and EA in spring (32%) 

and summer (18%). High percentages of preferred climate-informed models are also found for EA and SCA in winter, which 

is the season where most indices are characterized by their strongest influence on the European climate (Table 1). Worst overall 260 

results are found for EA/WR in spring (3%) and POL in summer (7%). It can be argued that these two latter cases could occur 

solely by chance or due to spatial correlation of nearby flood time series; however, results are coherent in space and cover 

large regions, which suggests a real influence of the circulation modes on the location parameter of the extreme value 

distributions, restricted though to certain sub-regions of Europe. 

Similar spatial patterns are obtained from the same analysis if monthly covariates during the month of the seasonal discharge 265 

peaks are examined (Fig S7-S8). Clusters of stations with positive or negative slopes of the location parameter agree with 

those for seasonal indices, however in most cases the percentages of preferred fits are lower for the monthly covariates, with 

EA/WR in spring being an exception. In particular, the role of NAO in winter and autumn and of EA during the rest of the 

seasons is less pronounced in the monthly-scale analysis. NAO and SCA are the covariates with the highest number of preferred 

fits in spring and EA during the rest of the seasons, together with EA/WR in summer (Table 2). Regarding the spatial patterns 270 

of preferred fits, deviations from those for seasonal covariates can be found for EA/WR, SCA and POL during spring and 

summer.  

For all indices examined, a percentage of stations between 5 and 13%, depending on the season and the covariate, are 

characterized by lower DIC for the climate-informed model although the slope of the location parameter is not significant 

(illustrated as yellow points in Fig. 1 and 2). Only a few station records, up to three per season and index (not shown in Fig. 1 275 

and 2), are characterized by higher DIC value for the climate-informed model without showing a significant slope. These 

results indicate that DIC is a weaker criterion for model selection than the slope significance at 10% level.  

In order to illustrate the spatial structure of best models, the preferred model (classical or climate-informed) is mapped in Fig. 

3 and 4 for each station for seasonal covariates. Spatial patterns do not resemble the pattern of significant fits for separate 

indices (Fig. 1, 2), since the influence of the selected climate modes on flood frequencies is overlapping for some regions and 280 

some of the indices are correlated for particular seasons (Table S1). Winter (summer) is the season with the highest (lowest) 

overall percentage of preferred climate-informed models: 77% and 38%, respectively. In winter, NAO is the most influential 

climate mode, being preferred over the other modes for 28% of the gauges. The largest influence of NAO on flood frequencies 

is detected in Central Europe, Great Britain, parts of Scandinavia and the Iberian Peninsula (Fig. 3). The first three regions 

show also a high fraction of SCA-influenced models, which points towards a joint effect of NAO and SCA during winter. The 285 

two indices are significantly correlated during this season (Table S1). EA is identified as the best covariate in winter for Great 

Britain. In spring an expansion of the EA influence towards Central Europe is detected. The NAO influence is shifted to the 

south during the transition seasons (spring and autumn) and is completely dissolved in summer. Patterns for SCA are 
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heterogeneous throughout the year. The same results but for monthly covariates are shown in Fig. S7 and S8. Spatial patterns 

resemble those for seasonal covariates. Percentages of preferred climate-informed models are included in Tables 1 and 2. 290 

3.2 Conditional quantiles and uncertainty analysis 

In the previous section it is shown that models with monthly covariates do not outperform those with seasonal covariates for 

most indices and seasons. Hence, quantiles of climate indices are calculated at the seasonal scale only (Table 3). Figures 5 and 

6 show the relative differences of seasonal flood quantiles for a probability of exceedance of 0.02 between a (hypothetical) 

year with a climate index value equal to the 95th index quantile and a year with an index value equal to the median. For a 295 

probability of exceedance of 0.02, relative differences higher than 20% and up to 22% are detected in winter for NAO. For the 

rest of the seasons, maximum relative differences are lower than 20% with highest values for EA/WR in autumn (marginally 

below 20%). In spring and summer the highest value is considerably lower, between 11-13% for NAO and SCA in spring and 

EA and SCA in summer. 

A difference of 5-10% is quite common for NAO in winter. For example, a station with a positive slope of the location 300 

parameter and a probability of exceedance of 0.02 for a maximum seasonal discharge value of 600 m3/s during years 

characterized by a medium NAO index has an effective return level between 630 and 660 m3/s during years with a highly 

positive NAO state. Particularly for Great Britain and Scandinavia, high relative differences, positive or negative, are found in 

winter for different indices. Differences of extreme discharge higher than 10% are characteristic for variations of the EA index 

in south-eastern Britain and for EA/WR in Norway. Some stations with high differences are also found in Norway and northern 305 

Britain for NAO and SCA in spring. Summer is characterized by low relative differences, below 5% for most stations. On the 

contrary, in autumn clusters of stations with medium to high differences, positive or negative (higher than 5% and locally 

exceeding 10%), are found in Scandinavia for NAO and EA/WR, in entire northern Europe for EA and in the Alpine region, 

southern Great Britain and Norway for SCA.  

The high relative differences of flood quantiles could partly reflect differences in catchment size or unreasonable posterior 310 

values of the shape parameter. A link with catchment size was, however, not found (not shown). Posterior shapes for all seasons 

and indices were further analyzed. Summary statistics of the median shape from the posterior distribution of each fitted model 

are given in Table 4. Little deviation is observed for different models (classical or climate-informed) during the same season 

but some inter-season variation is present. No unreasonable values are observed, thus we assume that the use of an informative 

prior distribution for shape adequately restricts the posterior distributions to reasonable limits. 315 

The results for three selected gauges with high relative differences Y0.02 are presented in detail. The selected stations cover 

different characteristic combinations with regard to the investigated season and the considered covariate. The time series of 

discharge values with a probability of exceedance of 0.02 are illustrated for the classical case and the climate-informed case 

for the three indices with the lowest DIC (Fig. 7). Conditional quantiles are calculated on a year-to-year basis, based on the 

observed values of the selected climate indices. Details about the streamflow gauges and the climate-informed fits are given 320 

in Table 5 and 6, respectively. Results show that the conditional and unconditional point estimates and uncertainty bounds can 

differ considerably, particularly for models with a high relative difference Y0.02 and a low DIC (subplots A1, B1 and C1 in Fig. 

7). Obviously results from the conditional models vary with time. For example, for the station Asbro 3 in Sweden, strongly 

different results are obtained by the classical and the NAO-conditional model in winter, particularly for the period 1960-1970, 

which was dominated by negative NAO conditions and reduced winter precipitation amounts over Northern Europe. The same 325 

applies for the station Teston in Great Britain during the period 1960-1980, if EA is considered as a covariate. These results 

show that the climate-informed models can modulate the estimated flood risk for single years or longer periods and thus 

substantially deviate from the estimation based on the classical distributions. For models characterized by small relative 

differences or insignificant slopes of the location parameter (subplots A3, B3 and C3), conditional uncertainty bounds tend to 
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converge to a straight line resembling the classical case. The classical case is theoretically a subcase of the climate-informed 330 

model. However, the two models are fitted independently and the two intervals do not always overlap.  

The uncertainty bounds of the climate-informed fits can be narrower or wider than those of the classical model. They are also 

asymmetric, contrary to uncertainty bounds that result from a method using a normal approximation. Asymmetric intervals are 

associated with the shape parameter of the GEV and are not uncommon (see for example Zeng et al., 2017). The range of 

uncertainty bounds reflects an interplay between model complexity and the additional information provided by the more 335 

complex models. In Fig. 7, uncertainty bounds are narrower in the case of the “best” conditional models (e.g. subplot A1). 

Uncertainty increases when extrapolations are made towards high and low index values. This can be more easily observed in 

Fig. 8. For the classical case, the range is about 94 m3/s. For the climate-informed case and NAO = 0 (close to its median 

value) the range is around 70 m3/s. The range increases to 74 m3/s for NAO = 1 and to 80 m3/s for the most extreme observed 

NAO value (NAO = -2.1). For a NAO value around 3/-3 the range of uncertainty bounds reaches that of the classical model.  340 

4. Discussion and conclusions 

This study explored whether a climate-informed flood frequency analysis provides insights and can improve the estimation of 

flood probabilities at the European scale. A site-specific model using a Bayesian framework was developed, and five Euro-

Atlantic circulation modes were investigated as potential covariates: the North Atlantic Oscillation (NAO), the East Atlantic 

pattern (EA), the Scandinavia pattern (SCA) and the Polar/Eurasian pattern (POL). Streamflow was analyzed at a seasonal 345 

time scale in order to account for the variable influence of the circulation modes on the European climate during different 

seasons of the year. Covariates were averaged and examined at both seasonal and monthly scales, contemporaneous to the 

season or month of the seasonal streamflow maxima, respectively.  

The developed climate-informed models were compared to the classical GEV with time-invariant parameters. For most seasons 

and covariates investigated, the climate-informed models were preferred over the classical GEV for a high percentage of 350 

stations (around 20% on average), with best results found in winter for NAO and EA, in spring for EA and in autumn for NAO 

(Table 1). Results were shown to be coherent in space, indicating that certain regions are influenced by particular circulation 

modes (Fig. 1-4). In winter 77% of the stations were found to be influenced by one of the climate modes which indicates a 

high potential for an improvement of flood probability estimations by including climate information into extreme value 

statistics. On the contrary, less than half of the stations examined were significantly affected by at least one of the five large-355 

scale indices during summer season, indicating a rather convective and non-predictable precipitation regime (Table 1). 

Based on the variability of the circulation indices, we identified regions that are characterized by preferred climate-informed 

fits and by steep slopes of the location parameter. For models with significant slopes, variations of the climate indices lead to 

highly varying flood quantile estimations for the same probability of exceedance. Particularly for northwest Scandinavia and 

the British Isles, variations of the climate indices result in considerably different extreme value distributions and thus highly 360 

different flood estimates for individual years (Fig. 5-6). This difference in estimates could be partly a result of unreasonable 

posterior values of the shape parameter, however, the use of an informative prior distribution for shape adequately restricts the 

posterior distributions to reasonable limits. Plots of extreme streamflow under consideration of a probability of exceedance of 

0.02 indicate that the deviation between the classical and climate-informed analysis concerns not only single years but can also 

persist for longer time periods (Fig. 7), which reflects the decadal-scale variability of NAO and other large-scale circulation 365 

indices (Fig. S5). 

Although the circulation indices examined are characterized by a high intra-seasonal variability, the seasonally averaged 

indices provided in most cases better fits compared with monthly values (Tables 1-2). This should be emphasized, since 

extreme precipitation events are most likely stronger related to monthly circulation states, which better represent the moisture 

fluxes into the target domain. On the contrary, the catchment wetness before the flood event is likely to be influenced by the 370 



10 
 

seasonal mean circulation and the associated precipitation sums. Hence, our result suggests that the skill of climate informed 

extreme values distributions is to a significant part a consequence of the important link between catchment wetness and 

flooding. Thus we assume, in line with recent studies (Blöschl et al., 2017; Merz et al., 2018; Schröter et al., 2015), that in 

many regions of Europe, catchment wetness plays an important role for flood generation. 

For the selection of the best model among the classical and climate-informed two criteria were adopted: the DIC and the 375 

significance of the slope of the location parameter μ1. For all indices and seasons, the DIC favored the climate-informed models 

over the classical distribution for a larger number of stations compared to the slope significance. DIC has received some 

criticism for not adequately penalizing complex models and tending to choose overfitted models (Silva et al., 2017; 

Spiegelhalter et al., 2014). Our results show that at least compared to the slope significance, DIC is a weaker criterion for 

model selection. A criterion comprising a higher penalty term for model complexity could alternatively be adopted. A more 380 

conservative version of DIC has been proposed by Ando (2011) but is not commonly used until today (Silva et al., 2017). 

The described methodology can be complemented in several ways.  

(a) Regional framework 

In this study, a local, site-specific flood frequency model was developed. This model allowed to identify spatial coherence in 

relations between streamflow extremes and large-scale atmospheric patterns. However, a shortcoming of this methodology is 385 

the high uncertainty of streamflow estimates for high probabilities of exceedance (corresponding for example to the 100- or 

200-year flood). Instead of a local framework, a regional framework can be alternatively implemented.  The latter, by 

considering all available streamflow information in a region, decreases uncertainty and offers the possibility of improving 

streamflow quantile estimation. 

(b) Alternative models 390 

A linear relationship was assumed between streamflow extremes and the large-scale atmospheric indices. This is a 

simplification of reality and some relations may be over- or underestimated due to existing non-linearities in the climate-

streamflow system. More complex, particularly non-linear models would also be possible candidates for describing the relation 

between climate indexes and flood probabilities.  However, with increasing model complexity, the chances for model 

overfitting also increase. In this study we assumed a symmetric influence of the positive and negative phases of the climate 395 

indices. However, an asymmetric relation may better describe the effect of certain climate modes on streamflow extremes. For 

example, Sun et al. (2014) used an asymmetric piecewise-linear regression to account for the different effects of El Niño and 

La Niña on rainfall extremes in Southeast Queensland, Australia. Furthermore, we also assumed a varying location parameter 

and constant scale parameter. A constant coefficient of variation as in Serago and Vogel (2018) would also be possible and as 

parsimonious as our model. In this case, a varying scale parameter linked to the location parameter would need to be 400 

implemented. 

(c) Number of covariates 

Single covariate models were developed, focusing on the separate effect of each individual climate mode. The methodology 

can be extended to a model considering several covariates at the same time. In that case, dependencies between the covariates, 

if existent, should be taken into consideration. López and Francés (2013) overcame this problem by using the principal 405 

components of climatic indices as covariates for the flood frequency analysis. This, however, increases the model complexity 

considerably and thus the chances of model overfitting. This needs to be considered in developing models with multiple 

covariates. 

(d) Contemporaneous and lagged relationships  

In this paper we considered contemporaneous relationships between streamflow extremes and pressure modes that directly 410 

shape the European climate and hydrology. However, lagged relationships may prove more useful for flood risk management 

and the (re-)insurance industry, since they would allow forecasts of temporal variable flood quantiles for the following month 

or season. The contemporaneous streamflow-covariate setup presented here can be used, together with a seasonal prediction 
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of indices, for an ahead-season forecast of streamflow quantiles. In this case covariate uncertainty must be additionally 

considered. A second possibility is to operate the presented model in a forecast mode under consideration of different time 415 

lags between selected covariates and observed streamflow maxima. Our results suggest that catchment wetness has an 

important role in shaping seasonal maximum streamflow. In a follow up study, we will systematically test the skill of various 

predictor variables, describing both the climate and catchment state, in forecasting runoff extremes in Europe. 
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Figures 585 

 

Figure 1: Results comparing the climate-informed and the classical GEV models for all covariates examined for the winter and 
spring season. Nonsignificant models preferred only by the DIC (yellow points) are plotted on top of stations for which climate-
informed models were not chosen by any of the two criteria (grey points). Preferred climate-informed models chosen by both criteria 
(blue/red triangles) are illustrated on top of the other models so that they can be better distinguished. 590 
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Figure 2: Same as Fig. 1 but for the summer and autumn season.  
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Figure 3: Best overall models among the five climate-informed and classical GEV tested for the winter and spring season. Mean 
seasonal covariates are examined.  595 
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Figure 4: Same as Fig. 3 but for the summer and autumn season.  
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Figure 5: Percent relative difference of the streamflow for an exceedance probability of 0.02 between a (hypothetical) year with a 
climate index value equal to the 95th quantile and a year with an index value equal to the median index. Results are shown for winter 600 
and spring and seasonal mean covariates. 
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Figure 6: Same as Fig. 5 but for the summer and autumn season.  
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Figure 7: Annual maximum discharge time series (lower panel: 4) and climate-informed quantiles (upper panels: 1-3) with credibility 605 
intervals for an exceedance probability 0.02 and for three selected gauges (Table 5, 6). Climate-informed quantiles are compared 
with those of the classical GEV. The three best climate-informed models based on the DIC are shown for each site, with increasing 
DIC from top to bottom. 
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Figure 8: Comparison of climate-informed and classical streamflow quantiles for station A (see Fig. 7 and Tables 5, 6 for more 
details), an exceedance probability 0.02 and NAO as covariate of the climate-informed model. The legend is the same as in Fig. 7. 
Observed streamflow is indicated with black dots. 

 615 
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Tables 

 

Table 1: Percentage of stations with climate-informed fits preferred to the classical GEV model. Indicated is the result of the pairwise 
comparison of each covariate with the classical model and the percentage of preferred fits for each covariate when all models are 620 
compared (in brackets). Results are shown per season and for mean seasonal covariates. 

Index Winter Spring Summer Autumn 

NAO 46 (28) 19 (10) 13 (8) 31 (24) 

EA 29 (20) 32 (26) 18 (11) 19 (13) 

EA/WR 24 (10) 3 (1) 10 (7) 20 (13) 

SCA 26 (11) 14 (12) 10 (6) 15 (11) 

POL 24 (9) 14 (11) 7 (6) 13 (5) 

All indices (77) (60) (38) (66) 

 

Table 2: Same as Table 1 but for monthly covariates at the same month as the seasonal streamflow extremes. 

Index Winter Spring Summer Autumn 

NAO 33 (28) 16 (12) 13 (9) 13 (8) 

EA 27 (18) 15 (12) 15 (10) 22 (18) 

EA/WR 26 (14) 14 (9) 13 (11) 17 (12) 

SCA 15 (8) 17 (12) 12 (9) 13 (9) 

POL 7 (4) 16 (13) 6 (4) 10 (7) 

All indices (72) (58) (43) (54) 

 

 625 

Table 3: Seasonal quantiles of the five climate indices: median and in the parenthesis the 95th quantile are provided. 

Index Winter Spring Summer Autumn 

NAO -0.26 (1.04) -0.15 (0.84) 0.02 (1.14) 0.17 (0.96) 

EA -0.37 (1.07) -0.13 (0.70) -0.07 (0.80) -0.19 (0.69) 

EA/WR -0.19 (0.78) -0.04 (0.78) 0.15 (1.23) 0.11 (1.29) 

SCA 0.21 (1.25) 0.05 (0.90) 0.09 (1.33) 0.21 (1.44) 

POL 0.11 (1.44) 0.07 (0.90) -0.11 (0.94) -0.02 (0.91) 
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Table 4: Summary statistics of median posterior shape parameter of all stations examined. Statistics are taken over all models for 
one season. In the parenthesis the maximum deviation of all the models fitted (classical and climate-informed) is provided. 635 

 Winter Spring Summer Autumn 

Min -0.420 (0.072) -0.365 (0.057) -0.303 (0.058) -0.303 (0.074) 

Q5 -0.137 (0.013) -0.104 (0.007) -0.055 (0.009) -0.057 (-0.010) 

Q25 -0.008 (0.007) 0.002 (0.010) 0.062 (-0.005) 0.045 (-0.06) 

Median 0.062 (0.006) 0.066 (0.006) 0.165 (0.005) 0.127 (-0.008) 

Mean 0.063 (0.003) 0.066 (0.005) 0.165 (0.002) 0.125 (-0.008) 

Q75 0.133 (-0.006) 0.133 (-0.005) 0.271 (-0.005) 0.200 (-0.010) 

Q95 0.262 (-0.014) 0.226 (-0.009) 0.385 (-0.006) 0.316 (0.009) 

Max 0.461 (-0.053) 0.381 (-0.019) 0.537 (-0.020) 0.527 (-0.031) 

 

 

Table 5: General information about selected sites shown in Fig. 7. Ref. code is the number of the subplot of Fig. 7. 

Ref. code 
Station 

name 
Country 

GRDC 

No 
Latitude Longitude 

Catchment 

size (km2) 

A ASBRO 3 Sweden 6233100 57.240 12.310 2160.2 

B TESTON United Kingdom 6607851 51.251 0.447 1256.1 

C BULKEN Norway 6731200 60.630 6.280 1102.0 

 

 640 

Table 6: Climate-informed results as shown in Fig. 7. Ref. code is the number of the subplot of Fig. 7. Mean seasonal covariates for 
the same season as streamflow extremes are examined. dDIC is the difference from the DIC value of the classical distribution. Y0.02 
is the percent relative difference of streamflow with exceedance probability 0.02 for the 95th quantile of the covariate (y0.02,h) and of 
streamflow with exceedance probability 0.02 for the median (y0.02,m). The sign of the slope is reported if it is significantly different 
than zero at the 10% significance level. 645 

Ref. 

code 
Season Covariate dDIC Slope 

Y0.02  

[%] 

y0.02,m 

[m3/s] 

y0.02,h 

[m3/s] 

A Winter NAO -22.9 Positive 17.7 242.7 285.6 

  SCA -4.3 Negative -7.9 255.3 235.2 

  POL -0.5 Nonsignificant - - - 

B Winter EA -9.4 Positive 14.7 260.5 299.0 

  POL -4.6 Negative -12.0 273.8 241.0 

  EA/WR -4.2 Negative -8.5 276.8 253.3 

C Autumn SCA -15.5 Negative -15.8 613.7 516.8 

  EA/WR -5.9 Negative -11.2 615.4 546.0 

  EA -3.6 Positive 7.7 601.6 648.0 

 


