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Abstract. In this study, we propose a data-driven approach to automatically identify rainfall-runoff events in discharge time 

series. The core of the concept is to construct and apply discrete multivariate probability distributions to obtain probabilistic 

predictions of each time step being part of an event. The approach permits any data to serve as predictors, and it is non-

parametric in the sense that it can handle any kind of relation between the predictor(s) and the target. Each choice of a particular 

predictor data set is equivalent to formulating a model hypothesis. Among competing models, the best is found by comparing 10 

their predictive power in a training data set with user-classified events. For evaluation, we use measures from information 

theory such as Shannon Entropy and Conditional Entropy to select the best predictors and models and, additionally, measure 

the risk of overfitting via Cross Entropy and Kullback-Leibler Divergence. As all these measures are expressed in “bit”, we 

can combine them to identify models with the best tradeoff between predictive power and robustness given the available data. 

We applied the method to data from the Dornbirnerach catchment in Austria distinguishing three different model types: Models 15 

relying on discharge data, models using both discharge and precipitation data, and recursive models, i.e., models using their 

own predictions of a previous time step as an additional predictor. In the case study, the additional use of precipitation reduced 

predictive uncertainty only by a small amount, likely because the information provided by precipitation is already contained 

in the discharge data. More generally, we found that the robustness of a model quickly dropped with the increase in the number 

of predictors used (an effect well known as the curse of dimensionality), such that in the end, the best model was a recursive 20 

one applying four predictors (three standard and one recursive): discharge from two distinct time steps, the relative magnitude 

of discharge compared to all discharge values in a surrounding 65-hour time window and event predictions from the previous 

time step. Applying the model reduced the uncertainty about event classification by 77.8 %, decreasing Conditional Entropy 

from 0.516 to 0.114 bits. To assess the quality of the proposed method, its results were binarized and validated through a 

holdout method, and then compared to a physically-based approach. The comparison showed a similar behavior of both models 25 

(both with accuracy near 90 %) and the cross-validation reinforced the quality of the proposed model.  

Given enough data to build data-driven models, their potential lies in the way they learn and exploit relations between data 

unconstrained by functional or parametric assumptions and choices. And, beyond that, the use of these models to reproduce a 

hydrologist's way to identify rainfall-runoff events is just one of many potential applications. 
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1 Introduction 

Discharge time series are essential for various activities in Hydrology and Water resources management. In the words of Chow 

(1988) “[…] the hydrograph is an integral expression of the physiographic and climatic characteristics that govern the relations 

between rainfall and runoff of a particular drainage basin”. Discharge time series are a fundamental component of hydrological 

learning and prediction since they i) are relatively easy-to-obtain, available in high quality and from widespread and long-5 

existing observation networks; ii) carry robust and integral information about the catchment state; and iii) are an important 

target quantity for hydrological prediction and decision-making.  

Beyond their value to provide long-term averages aiding water balance considerations, the information they contain about 

limited periods of elevated discharge can be exploited for baseflow separation, water power planning, sizing of reservoirs and 

retention ponds, design of hydraulic structures such as bridges, dams or urban storm drainage systems, risk assessment of 10 

floods and soil erosion. These periods, essentially characterized by a rising (start), peak and recession (ending) points (Mei 

and Anagnostou, 2015), will hereafter simply be referred to as “events”. They can have many causes (rainfall, snowmelt, 

upstream reservoir operation, etc.) and equally many characteristic durations, magnitudes, and shapes. Interestingly, while for 

a trained hydrologist with a particular purpose in mind, it is usually straightforward to identify such events in a time series, it 

is hard to identify them automatically based on a set of rigid criteria. One reason for this is that the set of criteria for discerning 15 

events from non-events typically comprises both global and local aspects, i.e., some aspects relate to properties of the entire 

time series, some to properties in time windows. And to make things worse, the relative importance of these criteria can vary 

over time, and they strongly depend on user-requirements, hydroclimate and catchment properties. 

So why not stick to manual event detection? Its obvious drawbacks are that it is cumbersome, subject to handling errors and 

hard to reproduce especially when working with long-term data. As a consequence, many methods for objective and 20 

automatized event detection have been suggested. The baseflow separation, and consequently the event identification (since 

the separation allows the identification of the start and end time of the events), has a long history of development. Theoretical 

and empirical methods for determining baseflow are discussed since 1893 as presented in Hoyt et al. (1936). One of the oldest 

techniques according to Chow et al. (1988) date back from the early 1930s, with the normal depletion curve from Horton 

(1933). As stated by Hall (1968), fairly complete discussions of baseflow equations, mathematical derivations, and applications 25 

were already present in the 1960s. In the last two decades, more recent techniques embracing a multitude of approaches 

(graphical-, theoretical-, mathematical-, empirical-, physical- and data- based) aim to automate the separation.  

Ehret and Zehe (2011) and Seibert et al. (2016) applied a simple discharge threshold approach with partly unsatisfactory 

results; Merz et al. (2006) introduced an iterative approach for event identification based on the comparison of direct runoff 

and a threshold. Merz and Blöschl (2009) expanded the concept to analyze runoff coefficients and applied it to a large set of 30 

catchments. Blume et al. (2007) developed the “Constant-k” method for baseflow separation employing a gradient-based 

search for the end of event discharge. Koskelo et al. (2012) presented the physically-based “Sliding Average with Rain Record” 

- SARR - method for baseflow separation in small watersheds based on precipitation and quickflow response. Mei and 
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Anagnostou (2015) suggested a physically-based approach for combined event detection and baseflow separation, which 

provides event start, peak, and end times. 

While all of these methods have the advantage of being objective and automatable, they suffer from limited generality. The 

reason is that each of them contains some kind of conceptualized, fixed relation between input and output. Even though this 

relation can be customized to a particular application by adapting parameters, it remains to a certain degree invariant. In 5 

particular, each method requires an invariant set of input data and sometimes it is constrained to a specific scale, which limits 

its application to specific cases and to where these data are available.  

With the rapidly increasing availability of observation data, computer storage, and processing power, data-based models have 

become increasingly popular as an addition or alternative to established modeling approaches in Hydrology and Hydraulics 

(Solomatine and Osfeld, 2009). According to Solomatine and Osfeld (2008, 2009), they have the advantage of not requiring 10 

detailed consideration of physical processes (or any kind of a priori known relation between model input and output); instead, 

they infer these relations from data, which however requires that there are enough data to learn from. Of course, including a 

priori known relations among data into models is an advantage as long as we can assure that they really apply. However, when 

facing undetermined problems, i.e., for cases where system configuration, initial and boundary conditions are not well known, 

applying these relations may be over-constraining, which may lead to biased and/or overconfident predictions.  Predictions 15 

based on probabilistic models that learn relations among data directly from the data, with few or no prior assumptions about 

the nature of these relations, are less bias-prone (because there are no prior assumptions potentially obstructing convergence 

towards observed mean behavior), and less likely to be overconfident compared to established models (because applying 

deterministic models is still standard hydrological practice, and they are overconfident in all but the very few cases of perfect 

models). This applies at least if there is sufficient data to learn from, appropriate binning choices were made (see the related 20 

discussion in Section 2.2), and the application remains within the domain of the data that were used for learning. 

In the context of data-based modeling in Hydrology, concepts and measures from information theory are becoming 

increasingly popular to describe and infer relations among data (Liu et al., 2016), quantify uncertainty and evaluate model 

performance (Chapman, 1986; Liu et al., 2016), estimate information flows (Weijs, 2011; Darscheid, 2017), analyze spatio–

temporal variability of precipitation data (Mishra et al., 2009; Brunsell, 2010), describe catchment flow (Pechlivanidis et al., 25 

2016), and measure quantity and quality of information in hydrological models (Nearing and Gupta, 2015).  

In this study, we describe and test a data-driven approach for event detection formulated in terms of information theory, 

showing that its potential goes beyond event classification, since it enables the identification of the drivers of the classification, 

to choose the most suitable model for an available data set, to quantify minimal data requirements, to automatically reproduce 

classifications for database generation, to handle any kind of relation between the data. The method is presented in Section 2. 30 

In Section 3, we describe two test applications with data from the Dornbirnerach catchment in Austria. We present the results 

in Section 4 and draw conclusions in Section 5. 
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2 Method description 

The core of the information theory method (ITM) is straightforward and generally applicable; its main steps are shown in Fig. 

1 and will be explained in the following.  

2.1 Model hypothesis step 

The process starts by selecting the target (what we want to predict) and the predictor data (that potentially contain information 5 

about the target). Choosing the predictors constitutes the first and most important model hypothesis, and there are almost no 

restrictions to this choice: They can be any kind of observational or other data, transformed by the user or not; they can be part 

of the target data set themselves, e.g., time-lagged or space-shifted; they can even be the output of another model. The second 

choice and model hypothesis is the mapping between items in the target and the predictor data set, i.e., the relation hypothesis. 

It is important for the later construction of conditional histograms that a 1:1 mapping exists between target and predictor data, 10 

i.e., one particular value of target is related to one particular value of predictor (in contrast to 1:n or n:m relationships). Often, 

the mapping relation is established by equality in time. 

2.2 Model building step 

The next step is the first part of model building. It consists of choosing the value range and binning strategy for target and 

predictor data. These choices are important as they will frame the estimated multivariate probability mass functions (PMFs) 15 

constituting the model and directly influence the statistics we compute from them for evaluation. Generally, these choices are 

subjective and reflect user-specific requirements and should be made taking into consideration data precision and distribution, 

size of the available data sets and required resolution of the output. According to Gong et al. (2014), when constructing 

probability density functions (PDFs) from data via the simple bin-counting method, “[…] too small a bin width may lead to a 

histogram that is too rough an approximation of the underlying distribution, while an overly large bin width may result in a 20 

histogram that is overly smooth compared to the true PDF.”. Gong et al. (2014) also discussed the selection of an optimal bin 

width by balancing bias and variance of PDF estimation. Pechlivanidis et al. (2016) investigated the effect of bin resolution 

on the calculation of Shannon Entropy and recommended that bin width should not be less than the precision of the data. Also, 

while equidistant bins have the advantage of being simple and computationally efficient (Ruddell and Kumar 2009), hybrid 

alternatives can overcome weaknesses of conventional binning methods to achieve a better representation of the full range of 25 

data (Pechlivanidis et al., 2016).  

With the binning strategy fixed, the last part of the model building is to construct a multivariate PMF from all predictors and 

related target data. The PMF dimension equals the number of predictors plus one (the target), and the way probability mass is 

distributed within is a direct representation of the nature and strength of the relationship between predictors and target as 

contained in the data. Application of this kind of model for a given set of predictor values is straightforward: We simply extract 30 
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the related conditional PMF (or PDF) of the target, which, under the assumption of system stationarity, is a probabilistic 

prediction of the target value.  

If the system is non-stationary, i.e., when system properties change with time, the inconsistency between the learning and the 

prediction situation will result in additional predictive uncertainty. The problems associated with predictions of non-stationary 

systems apply to all modeling approaches. If a stable trend can be identified, a possible countermeasure is to do learning and 5 

prediction on detrended data and then reimpose the trend in a post-processing step. 

2.3 Model evaluation step 

2.3.1 Information theory – Measures  

In order to evaluate the usefulness of a model, we apply concepts from information theory to select the best predictors (the 

drivers of the classification) and validate the model. With this in view, this section provides a brief description of the 10 

information theory concepts and measures applied in this study. The section is based on Cover and Thomas (2006), which we 

recommend for a more detailed introduction to the concepts of information theory. Complementary, for specific applications 

to investigate hydrological data series, we refer the reader to Darscheid (2017). 

Entropy can be seen as a measure of the uncertainty about a random variable; it is a measure of the amount of information 

required on average to describe a random variable (Cover and Thomas, 2006). Let 𝑋 be a discrete random variable with 15 

alphabet 𝜒 and probability mass function 𝑝(𝑥), 𝑥 ∈  𝜒. Then, the Shannon Entropy H(𝑋) of a discrete random variable 𝑋 is 

defined by 

H(𝑋) =  − ∑ 𝑝(𝑥) log2 𝑝(𝑥)

𝑥 ∈ 𝜒

 (1) 

If the logarithm is taken to base two, an intuitive interpretation of Entropy is: “Given prior knowledge of a distribution, how 

many binary (Yes/No) questions need to be asked on average until a value randomly drawn from this distribution is 

identified?”. 20 

We can describe the Conditional Entropy as the Shannon Entropy of a random variable conditional on the (prior) knowledge 

of another random variable. The Conditional Entropy H(𝑋|𝑌) of a pair of discrete random variables (𝑋, 𝑌) is defined as 

H(𝑋|𝑌) =  − ∑ 𝑝(𝑦) ∑ 𝑝(𝑥|𝑦)

𝑥 ∈ χ 

log2 𝑝(𝑥|𝑦)

𝑦 ∈Υ

 (2) 

The reduction in uncertainty due to another random variable is called the Mutual Information 𝐼(𝑋, 𝑌), which is equal to 𝐻(𝑋) −

𝐻(𝑋|𝑌). In the study, both measures, Shannon Entropy and Conditional Entropy, are used to quantify the uncertainty of the 

models (uni- and multivariate probability distributions, respectively). The first is calculated as reference and measures the 25 

uncertainty of the target data set. The latter is applied to the probability distributions of the target conditional on predictor(s), 

and it corroborates to select the more informative predictors, i.e., the ones which lead to the most significant reduction of 

uncertainty about the target.  
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It is also possible to compare two probability distributions 𝑝 and 𝑞. For measuring the statistical “distance” between the 

distributions 𝑝 and 𝑞, it is common to use Relative Entropy or Kullback-Leibler Divergence 𝐷KL(𝑝||𝑞), which is defined as 

DKL(𝑝||𝑞) = ∑ 𝑝(𝑥) log2

𝑝(𝑥)

𝑞(𝑥)
𝑥 ∈ χ

 (3) 

The Kullback-Leibler Divergence is also a measure of the inefficiency of assuming that the distribution is 𝑞 when the true 

distribution is 𝑝 (Cover and Thomas, 2006). The Shannon Entropy H(𝑝) of the true distribution 𝑝 plus the Kullback-Leibler 

Divergence DKL(𝑝||𝑞) of 𝑝 with respect to 𝑞 is called Cross Entropy Hpq(𝑋||𝑌). In the study, we use these related measures 5 

to validate the models and to avoid overfitting, by measuring the additional uncertainty of a model if it is not based on the full 

data set 𝑝 but only a sample 𝑞 thereof. 

Note that the uncertainty measured by Eq. (1) to Eq. (3) depends only on event probabilities, not on their values. This is 

convenient as it allows joint treatment of many different sources and types of data in a single framework.  

2.3.2 Information theory – Model evaluation  10 

As a benchmark, we can start with the case where no predictor is available, but only the unconditional probability distribution 

of the target is known. As seen, the associated predictive uncertainty can be measured by the Shannon Entropy H(𝑋) of the 

distribution (here 𝑋 indicates the target). If we introduce a predictor and know its value in a particular situation a priori, 

predictive uncertainty is the entropy of the conditional probability function of the target given the particular predictor value. 

Conditional Entropy H(𝑋|𝑌), where 𝑌 indicates the predictor(s), is then simply the probability-weighted sum of entropies of 15 

all conditional PMFs. Mutual information I(𝑋, 𝑌)) is the difference between Shannon Entropy and Conditional Entropy and, 

like Conditional Entropy, is a generic measure of statistical dependence between variables (Sharma and Mehrotra, 2014), 

which we can use to compare competing model hypotheses and select the best among them.  

Obviously, advantages of setting up data-driven models in the described way are that it involves very few assumptions and it 

is straightforward to formulate a large number of alternative model hypotheses. However, there is an important aspect we need 20 

to consider: from the information inequality, we know that Conditional Entropy is always less than or equal to the Shannon 

Entropy of the target (Cover and Thomas, 2006). In other words, “information never hurts”, and consequently adding more 

predictors will always either improve or at the least not worsen results. In the extreme, given enough predictors and applying 

a very refined binning scheme, a model can potentially yield perfect predictions if applied to the learning data set. However, 

besides the higher computational effort, in this situation, the “curse of dimensionality” (Bellman, 1957) occurs, which “covers 25 

various effects and difficulties arising from the increasing number of dimensions in a mathematical space for which only a 

limited number of data points are available (Darscheid, 2017)”. This means that with each predictor added to the model, the 

dimension of the conditional target-predictor PMF will increase by one, but its volume will increase exponentially. For 

example, if the target PMF is covered by two bins and each predictor by 100, then a single, double and triple predictor model 

will consist of 200; 20 000 and 2 000 000 bins, respectively. Clearly, we will need a much larger data set to populate the latter 30 
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PMF than the first. This also means that increasing the number of predictors for a fixed number of available data increases the 

risk of creating an overfitted/non-robust model in the sense that it will become more and more sensitive to the absence or 

presence of each particular data point. Models overfitted to a particular data set are less likely to produce good results when 

applied to other data sets than robust models, which capture the essentials of the data relation without getting lost in detail. 

We consider this effect with a resampling approach: From the available data set, we take samples of various sizes and construct 5 

the model from the sample (see repetition statement regarding 𝑁 in Fig. 1). Obviously, as the model was built from just a 

sample, it will not reflect the target-predictor relation as well as a model constructed from the entire data set. It has been shown 

(Cover and Thomas, 2006; Darscheid, 2017) that the total uncertainty of such an imperfect model is the sum of two 

components: The Conditional Entropy H(𝑋|𝑌) of the “perfect” model constructed from all data and the Kullback-Leibler 

Divergence DKL between the sample-based and the perfect model. DKL measures the statistical “distance” between the two 10 

distributions, in other words, it quantifies the additional uncertainty due to the use of an imperfect model. For a given model 

(selection of target and predictors), the first summand is independent of the sample size as it is calculated from the full data 

set, but the second varies: the smaller the sample, the higher DKL. Another important aspect of DKL is that for a fixed amount 

of data, it strongly increases with the dimension of the related PMFs, in other words, it is a measure of the impact of the curse 

of dimensionality. In information terms, the sum of Conditional Entropy and Kullback-Leibler Divergence is referred to as 15 

Cross Entropy Hpq(𝑋||𝑌). A typical example of Cross Entropy as a function of sample size is, for a single model, shown in 

Fig. 2.  

The curve represents the mean of several repetitions, which were randomly taken with replacement among these repetitions. 

Note that, comparable to the Monte Carlo cross-validation, the analysis presented in Fig.2 summarizes a large number of 

training and testing splits performed repeatedly, and, in addition, also in different split proportions (subsets of various sizes). 20 

The difference here is that, in contrast to a standard split where data sets for training and testing are mutually exclusive, we 

build the model in the training set and apply it in the full data set, where part of the data has not been seen yet, and part has. In 

other words, we use the training subsets for building the model (a supervised learning approach), and the resulting model is 

then applied to and evaluated on the full data set. If, on the one hand, the use of the full data set for the application includes 

data of the training set, on the other hand, the procedure favors the comparison of the results always with the same model. 25 

Thus, the stated procedure allows a robust and holistic analysis, in the sense it works with the mean of 𝑊 repetition for each 

subset and compares different sizes of training subset with a unique reference, the model built from the full data set.  

Particularly, Fig. 2 shows that for small sample sizes, DKL is the main contributor to total uncertainty, but when the sample 

approaches the size of the full data set, it disappears, and total uncertainty equals Conditional Entropy. From the shape of the 

curve in Fig. 2 we can also infer whether the available data are sufficient to support the model: When DKL approaches zero 30 

(Cross Entropy approaches its minimum), this indicates that the model can be robustly estimated from the data, or, in other 

words, the sample size is enough to represent the full data set. In an objective manner, we can also do a complementary analysis 

by calculating the ratio DKL/H(𝑋|𝑌), which is a measure of the relative contribution of DKL to total uncertainty. We can then 

compare this ratio to a defined tolerance limit (e.g., 5 %) to find the minimally required sample size. 
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Another application for Fig. 2 is to use these kinds of plots to select the best among competing models with different numbers 

of predictors. Typically, for small sample sizes, simple models will outperform multi-predictor models as the latter will be hit 

harder by the curse of dimensionality; but with increasing data availability, this effect will vanish, and models incorporating 

more sources of information will be rewarded.  

In order to reduce the effect of chance when taking random samples, we repeat the described resampling and evaluation 5 

procedure many times for each sample size (see repetition statement 𝑊 in Fig. 1) and take the average of the resulting DKL's 

and Hpq's . Based on these averaged results, we can identify the best model for a set of available data. 

The proposed Cross Entropy curve contains a joint visualization of model analysis and model evaluation, and at the same time 

provide the opportunity of comparing models with different numbers of predictors, being a support tool to decide, for a given 

amount of data, which number of predictors is optimal in the sense of avoiding both ignoring available information (by 10 

choosing too few predictors) and overfitting (by choosing too many predictors). And, since it incorporates a sort of cross-

validation in its construction, one of the advantages of this approach is that it avoids splitting the available data into a training 

and a testing set. Instead, it makes use of all available data to learn and provides measures of model performance across a 

range of sample sizes.  

2.4 Model application step 15 

Once a model has been selected, the ITM application is straightforward: From the multivariate PMF that represents the model, 

we simply extract the conditional PMF of the target for a given set of predictor values. The model returns a probabilistic 

representation of the target value. If the model was trained on all available data, and is applied within the domain of these data, 

the predictions will be unbiased and neither over- nor underconfident. If instead a model using deterministic functions is trained 

and applied in the same manner, the resulting single-valued predictions may also be unbiased, but due to their single-value 20 

nature will surely be overconfident.  

For application in a new time series, if its conditions are outside of the range of the empirical PMF or if they are within the 

range but have never been observed in the training data set, the predictive distribution of the target (event Yes/No) will be 

empty and the model will not provide a prediction. Several methods exist to guarantee a model answer, however at the cost of 

reduced precision. The solutions range from i) coarse-graining: where the PMF can be rebuilt with fewer, wider bins and an 25 

extension of the range until the model provides an answer to the predictive setting, as have been proposed by Darbellay and 

Vajda (1999), Knuth (2013) and Pechlivanidis et al. (2016); to ii) gap-filling: where the binning is maintained and the empty 

bins are filled with non-zero values based on a reasonable assumption. Gap-filling approaches comprise adding one counter to 

each zero-probability bin of the sample histogram, adding a small probability to the sample PDF, smoothing methods such as 

Kernel-density smoothing (Blower and Kelsall, 2002; Simonoff, 1996), or Bayesian approaches based on the Dirichlet and 30 

Multinomial distribution, or a Maximum-Entropy Method recently suggested by Darscheid et al. (2018). The latter being 

applied in the present study. 
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3 Design of a test application 

In this section, we describe the hydro-climatic properties of the data, and the two performed applications. For demonstration 

purposes, the first test application was developed according to the Section 2, in order to explain which additional predictors 

we derived from the raw data and related binning and other choices, and present our strategy for model setup, classification, 

and evaluation. For benchmarking purposes, the second application compares the proposed data-driven approach (ITM) with 5 

the physically-based approach proposed by Mei and Anagnostou (2015), the characteristic point method (CPM), and applies 

the holdout method (splitting the data set into training and testing set) for the cross-validation analysis. 

3.1 Data and site properties  

We used quality-controlled hourly discharge and precipitation observations from a 9-year period (Oct/31/1996–Nov/01/2005, 

78 912 time steps). Discharge data are from gauge “Hoher Steg”, which is located at the outlet of the 113 km² Alpine catchment 10 

of the Dornbirnerach River in north-western Austria. Precipitation data are from station “Ebnit” located within the catchment. 

For the test period, we manually identified hydrological events by visual inspection of the discharge time series. To guide this 

process, we used a broad event definition, which can be summarized as follows: “An event is a coherent period of elevated 

discharge compared to the discharge immediately before and after, and/or a coherent period of high discharge compared to the 

data of the entire time series”. We suggest that this is a typical definition if the goal is to identify events for hydrological 15 

process studies such as analysis of rainfall-runoff coefficients, baseflow separation, or recession analysis. Based on this 

definition, we classified each time step of the time series as either being part of an event (value “1”) or not (value “0”). 

Altogether, we identified 177 individual events covering 9092 time steps, which is 11.5 % of the time series. For the available 

9-year period, the maximum precipitation is 28.5 mm h-1, and the maximum and minimum discharge values are 237.0 m3 s-1 

and 0.037 m3 s-1, respectively.  A preliminary analysis revealed that all times with discharge exceeding 15.2 m³ s-1 were 20 

classified as event, all times with discharge below 0.287 m³ s-1 were always classified as non-event.  

Both, the input data and the event classification are shown in Fig. 3. 

3.2 Application I – ITM 

3.2.1 Predictor data and binning 

Since we wanted to build and test a large range of models, we did not only apply the raw observations of discharge and 25 

precipitation but also derived new data sets. The target and all predictor data sets with the related binning choices are listed in 

Table 1; additionally, the predictors are explained in the text below. For reasons of comparability, we applied uniform binning 

(fixed width interval partitions) to all data used in the study, except for discharge: Here we grouped all values exceeding 

15.2 m³ s-1 (the threshold beyond which an event occurred for sure) into one group to increase computational efficiency. For 

each data type, we selected the bin range to cover the range of observed data and chose the number of bins with the objective 30 

to maintain the overall shape of the distributions with the least number of bins.  
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3.2.1.1 Discharge 𝑸 [m³ s-1] 

This is the discharge as measured at Hoher Steg. In order to predict an event classification at time step 𝑡, we tested discharge 

at the same time step as a predictor – 𝑄(𝑡) –, and at time steps before – 𝑄(𝑡 − 1), 𝑄(𝑡 − 2) – and after – 𝑄(𝑡 + 1), 𝑄(𝑡 + 2). 

3.2.1.2 Natural logarithm of discharge 𝐥𝐧𝑸 [ln(m³ s-1)] 

We also used a log-transform of discharge to evaluate whether this non-linear transformation preserved more information in 5 

𝑄 when mapped into the binning scheme than the raw values. Note that the same effect could also be achieved by a logarithmic 

binning strategy, but as mentioned we decided to maintain the same binning scheme for reasons of comparability. As for 𝑄, 

we applied the log-transform also to time-shifted data. 

3.2.1.3 Relative magnitude of discharge 𝑸𝐑𝐌 [-] 

This is a local identifier of discharge magnitude at time 𝑡 in relation to its neighbors within a time window. For each time-step, 10 

we normalized discharge into the range [0, 1] using Eq. (4), where 𝑄max is the largest value of 𝑄 within the window and 𝑄min 

is the smallest. 

QRM =  
𝑄(𝑡) − 𝑄min

𝑄max −  𝑄min

 (4) 

A value of 𝑄RM = 0 indicates that 𝑄(𝑡) is the smallest discharge within the analyzed window, a value of 𝑄RM = 1 indicates 

that it is the largest. We calculated these values for many window sizes and for windows with the time step under consideration 

in the center (𝑄RMC), at the right end (𝑄RMR) and at the left end (𝑄RML) of the window. The best results were obtained for a 15 

time-centered window of 65 hours. For further details see Section 3.2.2. 

3.2.1.4 Slope of discharge 𝑸𝐬𝐥𝐨𝐩𝐞 [m³ s-1 h-1] 

This is the local inclination of the hydrograph. This predictor was created to take into consideration the rate and direction of 

discharge changes. We calculated both the slope from the previous to the current time step applying Eq. (5) and the slope from 

the current to the next time step applying Eq. (6). Positive values always indicate rising discharge. 20 

Qslopebefore
=

𝑄(𝑡) − 𝑄(𝑡 − 1)

𝑡 − (𝑡 − 1)
 (5) 

Qslopeafter
=

𝑄(𝑡 + 1) − 𝑄(𝑡)

(𝑡 + 1) − 𝑡
 (6) 

3.2.1.5 Precipitation 𝑷 [mm h-1] 

This is the precipitation as measured at Ebnit. 
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3.2.1.6 Model-based event probability 𝒆𝐩 [-] 

In general, information about a target of interest can be encoded in related data such as the predictors introduced above, but it 

can also be encoded in the ordering of data. This is the case if the processes that are shaping the target exhibit some kind of 

temporal memory or spatial coherence. For example, the chance of a particular time step to be classified as being part of an 

event increases if the discharge is on the rise, and it declines if the discharge declines. We can incorporate this information by 5 

adding to the predictors discharge from increasingly distant time steps, but this comes at the price of a rapidly increasing 

impact of the curse of dimensionality. To mitigate this effect, we can use sequential or recursive modeling approaches: In a 

first step, we build a model using a set of predictors and apply it to predict the target. In a next step, we use this prediction as 

a new, model-derived predictor, combine it with other predictors in a second model, use it to make a second prediction of the 

target and so forth. Each time we map information from the multi-dimensional set of predictors onto the 1-dimensional model 10 

output, we compress data and reduce dimensionality while hoping to preserve most of the information contained in the 

predictors. Of course, if we apply such a recursive scheme and want to avoid iterations, we need to avoid circular references, 

i.e., the output of the first model must no depend on the output of the second. In our application, we assured this by using the 

output from the first model at time step 𝑡 − 1 as a predictor in the second model to make a prediction at time step 𝑡. Comparable 

to a Markov model, this kind of predictor helps the model to better stick to a classification after a transition from event to no-15 

event or vice versa. 

3.2.2 Selecting the optimal window size for the 𝑸𝐑𝐌 predictor 

To select the most informative window size when using relative magnitude of discharge as a predictor, we calculated 

Conditional Entropy of the target given discharge and the 𝑄RMC, 𝑄RML  and 𝑄RMR predictors for a range of window sizes on 

the full data set. The definition of the window sizes for the different window types and the Conditional Entropies are shown 20 

in Fig. 4.  

The best (lowest) value of Conditional Entropy was obtained for a time-centered window (𝑄RMC) with 2 ∙ 32 + 1 = 65 h of a 

total width. We used this value for all further analyses.  

3.2.3 Model classification, selection, and evaluation 

3.2.3.1 Model classification 25 

All the models we set up and tested in this study can be assigned to one of three distinct groups. The groups distinguish both 

typical situations of data availability and the use of recursive and non-recursive modeling approaches. Models in the 𝑄-based 

group apply exclusively discharge-based predictor(s). For models in the 𝑃-based group, we assumed that in addition to 

discharge, precipitation data are also available. This distinction was made because in the literature exist two main groups of 

event detection methods: One relying solely on discharge data, the other using precipitation data additionally. Finally, models 30 

in the Model-based group all apply a 2-step recursive approach as discussed in Section 3.2.1.6. In this case, the first model is 
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always from the 𝑄- or 𝑃-based group. Later, event predictions at time step 𝑡 − 1 of the first model application are then, together 

with additional predictors from the 𝑄- or 𝑃-based group, used as a predictor in the second model. 

3.2.3.2 Model selection 

In order to streamline the model evaluation process, we applied an approach of supervised model selection and gradually 

increasing model complexity: We started by setting up and testing all possible 1-predictor models in the 𝑄- and 𝑃-based group. 5 

From these, we selected the best performing model and combined it with each remaining predictor into a set of 2-predictor 

models. The best performing 2-predictor model was then expanded to a set of 3-predictor models using each remaining 

predictor and so forth. For the Model-based group, the strategy was to take the best-performing models from both the 𝑄- and 

the 𝑃-based group as the first model and then combine it with an additional predictor. In the end, we stopped at 4-predictor 

models, as beyond the uncertainty contribution due to limited sample size became dominant. 10 

3.2.3.3 Model evaluation 

Among models with the same number of predictors, we compared model performance via the Conditional Entropy (target 

given the predictors), calculated from the full data set. However, when comparing models with different numbers of predictors, 

the influence of the curse of dimensionality needs to be taken into account. To this end, we calculated sample-based Cross 

Entropy and Kullback-Leibler Divergence as described in Section 2.3.2 for samples of size fifty up to the size of the full data 15 

set, using the following sizes [50; 100; 500; 1000; 1500; 2000; 2500; 5000; 7500; 10 000; 15 000; 20 000; 30 000; 40 000; 

50 000; 60 000; 70 000; 78 912]. To eliminate effects of chance, we repeated the resampling 500 times for each sample size 

and took their averages. In Appendix A, the resampling strategy and the choice of repetitions are discussed in more detail. 

3.3 Application II – CPM 

The second application aims to compare the performances of ITM and another automatic event identification method in a more 20 

familiar perspective. The predictions were performed in a new data set, and, as a measure of diagnostic, concepts from the 

receiver operating characteristic (ROC) curve quantified the hits and misses of the predictions of both models according to a 

time series of user-classified events (considered the true value). More about the ROC analysis can be found in Fawcett (2005).  

For the comparison, the characteristic point method (CPM) was chosen because, in contrast with the data-driven ITM, it is a 

physically-based approach for event identification, which is applicable and recommended to the characteristics of the available 25 

data set (hourly time scale data on catchment precipitation and discharge) and open source. The essence of the method is to 

characterize flow events with three points (start, peak(s) and end of the event) and then associate the event to a corresponding 

rainfall event (Mei and Anagnostou, 2015). For the event identification, a baseflow separation is previously needed and 

proposed by coupling the revised constant k method (Blume et al., 2007) and the recursive digital filter proposed by Eckhardt 

(2005). More about CPM can be attained in Mei and Anagnostou (2015).  30 
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Since the outcome of CPM is dichotomous, such as event and non-event, the probabilistic outcome of ITM must be converted 

into a binary solution. The binarization was reached in the study by choosing an optimum threshold of the probabilistic 

prediction (𝑝threshold), where all time steps with probabilities equal or greater than it were classified as being part of an event. 

The objective function of the optimization was based on the ROC curve and sought to minimize the distance  to the top-left 

corner of the ROC curve, i.e., the Euclidean distance between the true positive rate (𝑅TP, proportion of events correctly 5 

identified in relation to the total of true events) and false positive rate (𝑅FP, proportion of false events in relation to the total of 

true non-events) to the perfect model (where 𝑅TPperfect
= 1 and 𝑅FPperfect

= 0), as expressed in the Eq. (7). A discussion about 

the cut-off values of ROC curve can be found in Habibzadeh et al. (2016).  

min √(1 − 𝑅TP)2 + (0 − 𝑅FP)2 (7) 

Even though the physically-based CPM method theoretically does not require a calibration step, for avoiding misleading 

comparison, the parameter 𝑅nc (rate of no-change, used to quantify null-change ratio in recession coefficient k) were optimized 10 

by Eq. (7). 𝑅TP,  𝑅FP 𝜖 [0,1] and are calculated as a function of the optimized parameter 𝑝threshold (for ITM) and 𝑅nc (for 

CPM).  

Due to the 𝑝threshold and 𝑅nc optimization and to enable the cross-validation of the models in a new data set, the available data 

were divided into training and testing sets. And, since ITM model requires a minimum data set size to guarantee the model 

robustness, the holdout split was based on the data requirement of the selected ITM model obtained according to the 15 

application I, Section 3.2. Therefore, the training data set was used to build the ITM model of the target and selected predictors, 

and to calibrate the 𝑝threshold (needed for the binarization) and 𝑅nc.  

After that, the calibrated models (ITM and CPM) were applied in a new data set (testing data set) and measures of quality 

based on the ROC curve were computed in order to evaluate and compare their performance, such as: i) the true positive rate 

(𝑅TP), which represents the percentage of event classification hits (counting of events correctly classified by the model, 𝑃T, 20 

divided by the amount of the true events in the testing data set, 𝑃); ii) the false positive rate (𝑅FP), which represents the 

percentage of false events identified by the model (counting of events misclassified by the model, 𝑃F, divided by the amount 

of the true non-events in the testing data set, 𝑁); iii) the accuracy, which reflects the total proportion of events (𝑃T) and non-

events (or true negative, 𝑁T) that were correctly predicted by the model; and iv) the distance to the perfect model given by the 

Eq. (7), which represents the norm between the results obtained by the method and a perfect prediction. 25 

4 Results and discussion 

4.1 Results for application I  

4.1.1 Model performance for the full data set 

Here we present and discuss the model results when constructed and applied to the complete data set. As we stick to the 

complete data set, Kullback-Leibler divergence will always be zero, and model performance can be fully expressed by 30 
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Conditional Entropy (see Section 3.2.3.3), with the (unconditional) Shannon Entropy of the target data H(𝑒) = 0.516 bits as 

an upper limit, which we use as a reference to calculate the relative uncertainty reduction for each model. In Table 2, 

Conditional Entropies and their relative uncertainty reductions are shown for each 𝑄- and 𝑃-based 1-predictor model. 

1-predictor models based on 𝑄 and ln𝑄 reduced uncertainty to about 50 % (models #1-10 in Table 2, column 4), with a slight 

advantage of 𝑄 over ln𝑄. Interestingly, both show their best results for time offset 𝑡 + 2, i.e., future discharge is a better 5 

predictor for event detection than discharge at the current time step. As we were not sure whether this also applies to 2-predictor 

models, we decided to test both the 𝑡 + 2 and 𝑡 predictors of 𝑄 and ln𝑄 in the next step. Compared to 𝑄 and ln𝑄, relative 

magnitude of discharge 𝑄RMC and discharge slope 𝑄slope performed poorly, and so did P, the only model in the 𝑃-based group. 

Most likely this is because for a certain time step, to be part of an event is not so much dependent on precipitation at this 

particular time step, but rather on the accumulated rainfall in a period preceding it. Despite its poor performance, we decided 10 

to use it in higher-order models to see whether it becomes more informative in combination with other predictors. 

Based on these considerations and the model selection strategy described in Section 3.2.3.2, we built and evaluated all possible 

2-predictor models. The models and results are shown in Table 3. 

As could be expected from the information inequality, adding a predictor improved the results, and for some models (#16 and 

#20), the 𝑡-predictors outperformed their 𝑡 + 2 counterparts (#17 and #21, respectively). Once more, 𝑄 predictors performed 15 

slightly better than ln𝑄, such that for all higher-order models, we only used 𝑄(𝑡) and ignored 𝑄(𝑡 + 2), ln𝑄(𝑡) and ln𝑄(𝑡 +

2). 

In the 𝑃-based group, adding any predictor greatly improved results by about 50 %, but not a single P-based model 

outperformed even the worst from the 𝑄-based group. 

Finally, from both the 𝑄- and 𝑃-based group, we selected the best model (#16 and #23, respectively) and extended them to 3-20 

predictor models with the remaining predictors. The models and results are shown in Table 4. 

Again, for both models, the added predictor improved results considerably, and we used both of them to build a recursive 4-

predictor model as described in Section 3.2.3. The new predictor, 𝑒p(𝑡 − 1) is simply the probabilistic prediction of a model 

(#27 or #28, in this case) for time step 𝑡 − 1 of being part of an event, with value range [0, 1]. This means 𝑒p#27
(𝑡 − 1) carries 

the memory from the previous predictions of model #27 (and 𝑒p#28
(𝑡 − 1) from model #28, accordingly), and the new 4-25 

predictor models #29 and #30 as shown in Table 5 are simply copies of these models, extended by a memory term: 𝑒p(𝑡 − 1). 

Again, model performance improved, and model #29 was the best among all tested models. Though, so far the effect of sample 

size was not considered, which might have a strong impact on the model rankings. This is investigated in the next section. 

4.1.2 Model performance for samples 

The sample-based model analysis is computationally expensive, so we restricted these tests to a subset of the models from the 30 

previous section. Our selection criteria were to i) include at least one model from each predictor group; ii) include at least one 

model from each dimension of predictors; and iii) choose the best performing model. Altogether we selected the seven models 
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shown in Table 6. Please note that despite our selection criteria, we ignored the 1-predictor model using precipitation due to 

its poor performance. 

For these models, we computed the Cross Entropies between the full data set and each sample size 𝑁 for 𝑊 repetitions and, in 

the end, for each sample size 𝑁, we took the average of the 𝑊 repetitions The results are shown in Fig. 5. For comparison, the 

Cross Entropies between the target data set and samples thereof are also included and labeled as model #0.  5 

In Fig. 5, the Cross Entropies at the right end of the x-axis, where the sample contains the entire data set, equal the Conditional 

Entropies, as the effect of sample size is zero. However, with decreasing sample size, Cross Entropy grows in a non-linear 

fashion as DKL starts to grow. If we walk through the space of sample sizes in the opposite direction, i.e., from left to right, we 

can see that as the samples grow, the rate of change of Cross Entropy decreases, the reason being that the rate of change of 

DKL decreases, which means that the model learns less and less from new data points. Thus, by visually exploring these 10 

“learning curves” of the models we can make two important statements related to the amount of data required to inform a 

particular model: We can state how large a training data set should be to sufficiently inform a model, and we can compare this 

size to the size of the actually available data set. If the first is much smaller than the latter, we gain confidence that we have a 

well-informed, robust model. If not, we know that it may be beneficial to gather more data, and if this is not possible, we 

should treat model predictions with caution. 15 

As mentioned in Section 2.3.2, besides Fig. 5 informing the amount of data needed to have a robust model (implying that 

sample size is enough to represent the full data set), it allows comparing competing models with different dimensions and 

select the optimal number of predictors (taking advantage of the available information and avoiding overfitting). In this sense, 

in the 𝑃-based group and for sample sizes smaller 5000, the 1-predictor model #23 performs best, but for larger samples sizes, 

the 4-predictor model #30 takes the lead. Likewise, in the 𝑄-based group and for sample sizes smaller than 2500, the single-20 

predictor model #3 is the best but is outperformed by the 2-predictor model #16 from 2500 until 10 000, which in turn is 

outperformed by the 4-predictor model #29 from 10 000 to the end. Across all groups, models #3, #16 and #29 form the lower 

envelope curve in Fig. 5, which means that one of them is always the best model choice, depending on the sample size.  

Interestingly, the best performing model for large sample sizes (#29) includes predictors which reflect the definition criteria 

that guided manual event detection (Section 0): 𝑄(𝑡) and 𝑄(𝑡 + 2) contain information about the absolute magnitude of 25 

discharge, 𝑄RMC expresses the magnitude of discharge relative to its vicinity, and 𝑒p#27
(𝑡 − 1) relates to the requirement of 

events to be coherent.  

We also investigated the contribution of sample-size effects to total uncertainty by analyzing the ratio of DKL and H(𝑋|𝑌) as 

described in Section 2.3. As expected, for all models the contribution of sample-size effects to total uncertainty decreases with 

increasing sample size, but the absolute values and the rate of change strongly differ. For the 1-predictor model #3, DKL 30 

contribution is small already for small sample sizes (circa 65 % for sample size equal 50), and it quickly drops to almost zero 

with increasing sample size. For multi-predictor models such as #29, DKL contribution to uncertainty exceeds that of H(𝑋|𝑌) 
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by a factor of seven for small samples (circa 700 % for sample size equal 50), and it decreases only slowly with increasing 

sample size. 

In Table 7 (column 5), we show for each model the minimum sample size to keep the DKL contribution below a threshold of 

5 %.  

As expected, the models with few predictors require only small samples to meet the 5 % requirement (starting from a subset 5 

of 12.6 % of the full data set for 1-predictor model to 37.3 % for 2-predictor), but for multi-predictor models such as models 

#29 and #30, more than 60 000 data points are required (87.6 % and 79.4 % of the full data set, respectively). This happens 

because the greater the number of predictors, the greater is the number of bins in the model. This means that we need a much 

larger data set to populate the PMF with the largest number of bins, for example: model #29 has 279 752 bins and requests 7.9 

years of data). Considering that the amount of data available in the study is limited, this also means that increasing the number 10 

of predictors/bins, the risk of creating an overfitted/non-robust model also increases. Thus, the ratio DKL/H(𝑋|𝑌) and visual 

inspection of the curve in Fig. 5 orientate the user when to stop adding new predictors to avoid overfitting. In this fashion, 

Table 7 shows that each of the models tested meets the 5 % requirement, claiming up to 87.6 % of the available data set (69 102 

out of 78 912 data points for model #29), which indicates that all of them are robustly supported by the data. In this case, we 

can confidently choose the best-performing among them (#29, with uncertainty equal to 0.114 bits) for further use. 15 

Interestingly, with this analysis, it was also possible to identify the drivers of the user classification, which, in the case of 

model #29, were the predictors 𝑄(𝑡), 𝑄RMC, 𝑄(𝑡 + 2), and 𝑒p(𝑡 − 1). 

4.1.3 Model application 

In the previous sections, we developed, compared and validated a range of models to reproduce subjective, manual 

identification of events in a discharge time series. Given the available data, the best model was a 4-predictor recursive model 20 

applying 𝑄(𝑡), 𝑄RMC, 𝑄(𝑡 + 2), and 𝑒p(𝑡 − 1) as predictors and built with the full data set (#29, Table 7). This model reduced 

the initial predictive uncertainty by 77.8 %, decreasing Conditional Entropy from 0.516 to 0.114 bits. This sounds reasonable, 

but what do the model predictions actually look like? As an illustration, we applied the model to a subset of the training data, 

April 26 to June 21, 2001. For this period, the observed discharge, the manual event classification by the user and the model-

based prediction of event probability are shown in Fig. 6. 25 

In the period from June 01 to 21, four distinct rainfall-runoff events occurred which were also classified as such by the user. 

During these events, the model-based predictions for event probability remained consistently high except for some times at 

the beginning and end of events, or in times of low flow during an event. Obviously, the model here agrees with the user 

classification, and if we wished to obtain a binary classification from the model, we could get it by introducing an appropriate 

probability threshold (as further described in Section 4.2). 30 

Things look differently, though, in the period of April 26 to May 10, when snowmelt induced diurnal discharge patterns. 

During this time, the model identified several periods with reasonable (above 50 %) event probability, but the user classified 
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none. Arguably, this is a difficult case for both manual and automated classification, as the overall discharge is elevated, but 

not much, and diurnal events can be distinguished, but are not pronounced. In such cases, both the user-based and the model-

based classification are uncertain and may disagree.  

To identify snowmelt events or potentially improve the information contained in the precipitation set, other predictors could 

have been used in the analysis (such as aggregated precipitation, snow depth, air temperature, nitrate concentrations, moving 5 

average of discharge, etc.) or the target could have been classified according to it type (rainfall, snowmelt, upstream reservoir 

operation, etc.), instead of having a dichotomous outcome, such as event and non-event. The choice of target and potential 

predictors occurs according to user interest and data availability.  

Another point that may be of interest to the user is the improvement of the consistency of event duration. This can be reached 

by selection of predictors or through a post-processing step. As previously discussed in Section 3.2.1.6, by applying a recursive 10 

predictor 𝑒p(𝑡 − 1) a memory effect is incorporated into the model, bringing some inertia for the transition from event to no-

event or vice versa. If it is the user interest, the memory effect could be further enhanced by adding more recursive predictors, 

such as 𝑒p(𝑡 − 2), 𝑒p(𝑡 − 3) , and so on. An alternative option to clear very-short discontinuous time steps or very-short events 

would be to increase event coherence in a post-processing step with an autoregressive model, with model parameters found by 

maximizing agreement with the observed events. 15 

Finally, in contrast to the evaluation approach presented, where the subsets are compared to the full data set (subset data plus 

data not seen during training), the next section will present the evaluation of ITM and CPM applied for mutually exclusives 

training and testing sets. 

4.2 Results for application II 

Section 4.1 showed that, for the full data set, the best model was the recursive one with 𝑄(𝑡), 𝑄RMC, 𝑄(𝑡 + 2), and 𝑒p(𝑡 − 1) 20 

as the drivers of the user classification (model #29, Table 7), which could be robustly built with a sample size of 69 102. Thus, 

to assure its robustness for the second application, since we are creating a new PMF based only on the training data set, the 

split of the data sets (discharge, precipitation and user event classification) divided the 78 912 time steps in two periods 

composed by: i) 87.6 % of the full data set (69 102 time steps) forming the training data set (from Oct/31/1996 1:00 to 

Sep/18/2004 6:00); and the remaining 12.4 % (9810 time steps) the testing data set (from Sep/18/2004 7:00 to Nov/01/2005 25 

00:00). The characteristics of the user event classification data set, used as the true classification for accounting the hits and 

misses of ITM and CPM, is presented in Table 8. 

For model training, input data from both models, ITM and CPM, were smoothed. First, a 24-hour moving average was applied 

to the discharge of CPM (this was recommended by the first author of the method in personal communication) and, to avoid 

misleading comparison, it was then applied to the probabilities of ITM right before the binarization. The smoothing improved 30 

the results of both models and worked as a post-processing filter which removed some noise (very-short-duration events) and 
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attenuated effects from snow melting. Note that this is a feature of our training data set, and therefore it is not necessarily 

applicable to other similar problems and neither is a required step. 

Following the data smoothing, we proceeded with the optimization of parameters: threshold for the probability output of ITM 

and rate of no-change for CPM (Section 3.3). The results of the two models also improved with the optimization performed. 

The optimum parameters obtained were 𝑝threshold = 0.26 and 𝑅nc = −6.6. For these values, the final distances in the training 5 

data set given by Eq. (7) were: 0.05 and 0.23 for ITM and CPM, respectively.  

After the model training, the calibrated models were applied to the testing data set to predict binary events. The event 

predictions were then compared to the true classification (Table 8, training line) and their hits and misses were calculated in 

order to evaluate and compare their performance. The results are compiled in Table 9.    

The quality parameter presented in Table 9 show that the ITM true positive rate equals 96.6 %, i.e., 12.2 % higher than CPM 10 

𝑅TP). On the other hand, CPM false negative rate is equal to 9.9 %, while ITM  𝑅FP is equal to 11.7 % (1.8 % higher). These 

results indicate that ITM is more likely to predict events than the CPM but at the cost of increasing the false positive rate. 

Combining these two rates into a single success criterion according to Eq. (7) showed ITM to be slightly superior to CPM.  

Considering only the hits of the models, both models performed similarly, reaching almost 90 % of accuracy, with CPM being 

slightly better than ITM. However, it should be emphasized that although the accuracy of the model gives a good notion of the 15 

model hits, it was not used as a criterion for success because it is a myopic criterion for the false event classifications. False 

positives are essential in the context of event prediction, since most of the data are non-events (88.2 % of the training data set, 

Table 8), and a blind classification of all time steps as being non-event, for example, would overcome the accuracy obtained 

by both models (90.4 % of the testing data set, Table 8), even though it is not a useful model. 

As an illustration, in the context of the binary analysis, the observed discharge, the true event classification (manually made 20 

by an expert), ITM predicted events and CPM predicted events are shown in Fig. 7 for a subset of the testing data, April 22 to 

August 23, 2005.  

For the analyzed subset, nine distinct rainfall-runoff events occurred and were identified as such by ITM and CPM. However, 

differently from the true identification, both models grouped some of these events (July 20, August 07 and 16) in events with 

longer duration. False events were also observed in both models, where three false events were identified by ITM (July 5, July 25 

7 and July 26) and two (but contemplating the same period as ITM) by CPM. It should be noted that they are false in relation 

to the user classification; however, we can not exclude the possibility of false classification by the visual inspection process. 

A further criticism is that the holdout cross-validation involves a single run, which is not as robust as multiple runs. 

Nevertheless, the way that the split was proposed recognizes the logical order of obtaining the data. Thus, despite the 

subjectivity of event selection by a user and the application of a simplified method of cross-validation, it is possible to conclude 30 

that, overall, ITM and CPM behaved similarly and provided reasonable predictions, as seen numerically in Table 9 and 

qualitatively through Fig. 7. 

An interesting conclusion is that ITM was able to overcome CPM requiring only discharge data and a training data set of 

classified events (also based on the discharge set), while CPM demanded precipitation, catchment area and discharge as inputs. 
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On the other hand, since CPM is a physically-based approach, it does not require a training data set with identified events 

(although the optimization in the calibration step has representatively improved its results) and there are no limitations in terms 

of data set size, which disappears with the robustness analysis, being then a method more easily implemented. The binarization 

of the ITM predictions and parameter optimization in CPM are not included in the original methods, however, they were 

essential adaptations to allow the comparison of the models. Finally, the suitability or not of the existing event detection 5 

techniques depends mainly on the user's interest and the data available for application. 

5 Summary and conclusions 

Typically, it is easy to manually identify rainfall-runoff events, due to the high discriminative and integrative power of the 

brain-eye system. However, this is i) cumbersome for long time series; ii) subject to handling errors; and iii) hard to reproduce 

since it dependents on acuity and knowledge of the event identifier. To mitigate these issues, this study has proposed an 10 

information theory approach to learn from data, and to choose the best predictors, via uncertainty reduction, to create predictive 

models for automatically identifying rainfall-runoff events in discharge time series.  

The method was established in four main steps: model hypothesis, building, evaluation, and application. Each association of 

predictor(s) to the target is equivalent to formulating a model hypothesis. For the model building, non-parametric models were 

constructing discrete distributions via bin-counting, requiring at least a discharge time series, and a training data set containing 15 

a Yes/No event identification as  target. In the evaluation step, we used Shannon Entropy and Conditional Entropy to select 

the more informative predictors, and Kullback-Leibler Divergence and Cross Entropy to analyze the model in terms of 

overfitting and curse of dimensionality. Finally, the best model was applied to its original data set to compare the predictability 

of the events. For benchmarking purpose, a holdout cross-validation a comparison of the proposed data-driven method with 

an alternative physically-based approach was performed. 20 

The approach was applied to discharge and precipitation data from the Dornbirnerach catchment in Austria. In this case study, 

30 models based on 14 predictors were built and tested. Among these, seven predictive models with a number of predictors 

varying from one to four were selected. Interestingly, across these models, the three best performing ones were obtained using 

only discharge-based predictors. The overall best model was a recursive one applying four predictors: discharge from two 

different time steps, the relative magnitude of discharge compared to all discharge values in a surrounding 65-hour time 25 

window and event predictions from the previous time step. Applying the best model, the uncertainty about event classification 

was reduced by 77.8 %, decreasing Conditional Entropy from 0.516 to 0.114 bits. Since the Conditional Entropy reduction of 

the models with precipitation was not higher than the ones exclusively based on discharge information, it was possible to infer 

that: i) the information coming from precipitation was likely already contained in the discharge data series; and ii) the event 

classification is not so much dependent on precipitation at a particular time step, but rather on the accumulated rainfall in the 30 

period preceding it. Furthermore, precipitation data are often not available for analysis, which makes the model exclusively 

based on discharge data even more attractive. 
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Further analysis using Cross Entropy and Kullback-Leibler Divergence showed that the robustness of a model quickly dropped 

with the number of predictors used (an effect known as the curse of dimensionality) and that the relation between number of 

predictors and sample size was crucial to avoid overfitting. Thus, the model choice is a tradeoff between predictive power and 

robustness given the available data. For our case, the minimum amount of data to build a robust model varied from 9952 data 

points (1-predictor model with 0.260 bits of uncertainty) to 69 102 data points (4-predictor model with 0.114 bits of 5 

uncertainty). Complementarily, the quality of the model was verified in a more traditional way, by a cross-validation analysis 

(where the model was built and validated in a training data set), and a comparative investigation between our data-driven 

approach and a physically-based model. As a result, in general, both models presented reasonable predictions and reached 

similar quality parameters, with almost 90 % of accuracy. In the end, the comparative analysis and cross-validation reinforced 

the quality of the method, previously validated in terms of robustness using measures from information theory.  10 

In the end, the data-driven approach based on information theory is a consolidation of descriptive and experimental 

investigations, since it allows to describe the drivers of the model through predictors and it investigates the similarity of the 

model hypothesis with respect to the true classification. In summary, it presents advantages such as: i) It is a general method 

that involves a minimum of additional assumptions or parametrizations; ii) Due to its non-parametric approach, it preserves as 

much as possible the full information of the data, which might get lost when expressing the data-relations by functional 15 

relationships; iii) It obtains data-relations from the data itself; iv) It is flexible in terms of data requirement and model building; 

v) It allows to measure the amount of uncertainty reduction via predictors; vi) It is a direct way to account for uncertainty; 

vii) It permits explicitly comparing information from various sources in a single currency, “bit”; viii) It allows to quantify 

minimal data requirements; ix) It enables to investigate the curse of dimensionality; x) It is a way of understanding the drivers 

(predictors) of the model (also useful in machine learning, for example); xi) It permits to choose the most suitable model for 20 

an available data set; and xii) The predictions are probabilistic, which compared to a binary classification additionally provides 

a measure of the confidence of the classification. 

Although the procedure was employed to identify events from a discharge time series, which for our case were mainly triggered 

by rainfall and snowmelt, the method can be applied to reproduce user classification of any kind of event (rainfall, snowmelt, 

upstream reservoir operation, etc.) and even identify them separately. Moreover, one of the strengths of the data-based 25 

approach is that it potentially accepts any data to serve as predictors, and it can handle any kind of relation between the 

predictor(s) and the target. Thus, the proposed approach can be conveniently adapted to another practical application. 

6 Data availability 

The Event Detection program, containing the functions to develop multivariate histograms and calculate information theory 

measures, is published alongside this manuscript via GitHub https://github.com/KIT-HYD/EventDetection. The repository 30 

also includes scripts to exemplify the use of the functions, and the data set of identified event, discharge and precipitation time 

series from the Dornbirnerach catchment in Austria used in the case study. 
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7 Author contribution 

UE and PD developed the model program (calculation of information theory measures, multivariate histograms operations, 

event detection) and developed a method to avoid infinitely large values of DKL (Darscheid et al., 2018)). ST performed the 

simulations, cross-validation, parameter optimization, comparative analysis to a second model and the justification of the 

number of repetitions of the resampling stage. ST and UE directly contributed to the design of the method and test application, 5 
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Appendix A: Resampling strategy and number of repetitions 

In the study, samples of size 𝑁 from the data set were obtained through bootstrapping, i.e., they were taken randomly, but 

continuously in time, with replacement among the 𝑊 repetitions. For each sample size, we repeated draws 𝑊 times and took 

the average Cross Entropy and DKL to eliminate effects of chance (see repetition statements 𝑁 and 𝑊 in Fig. 1). 

Thus, in order to find the value of 𝑊 which balances statistical accuracy and computational efforts, we did a dispersion analysis 15 

through calculating the Shannon Entropy (as a measure of dispersion) of the Cross Entropy distribution of the (unconditional) 

target model (model #0 in Table 7). Sixty one bins ranging from 0 to 6 in steps of 0.1 bits were used, which contemplates the 

range of all possible Cross Entropy values among the tested pairs of 𝑁 and 𝑊. Fig. A1 presents the Shannon Entropy applied 

as a dispersion parameter to analyze the effect of the number of repetitions 𝑊 for different sample sizes 𝑁.  

Considering the graph in Fig. A1, in general, the behavior of the Shannon Entropy among the repetitions is similar for each 20 

sample size analyzed, indicating the dispersion of the results according to the number of repetitions does not vary too much, 

i.e., the bins are similarly filled. However, it is possible to see that, as the sample size increases, the Shannon Entropy for the 

different number of repetitions approaches that for the 50 000 repetitions. For sample sizes up to 7500, the bars from 50, 100 

and 300 repetitions present some peaks and troughs, indicating some dispersion in filling the bins. Thus, in this case study, the 

minimum of 500 repetitions was assumed as a reasonable number of repetitions to compute the mean of the Cross Entropy in 25 

the sample size investigation. This number of repetitions was also validated considering the smoothness and logical behavior 

of the curves obtained during the data size validation and curse of dimensionality analyzes (Fig. 5 in Section 4.1.2). 
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Table 1: Target and predictors – Characterization and binning strategy. 

Target (𝑿) Symbol Unit 
Bins*  

[start:end] 

Number 

of bins 

User-based event classification 

at time 𝑡 
e [-] [0:1]  2 

Predictors (𝒀) Symbol Unit 
Bins* 

[start:step:end] & [start:end] 

Number 

of bins 

Discharge at times 𝑡-2, 𝑡-1, 𝑡, 

𝑡+1, 𝑡+2 

𝑄(𝑡-2), 𝑄(𝑡-1), 𝑄(𝑡), 
𝑄(𝑡+1), 𝑄(𝑡+2) 

[m³ s-1] [0:0.5:16] & [16:end] 34 

Natural logarithm of discharge 

at times 𝑡-2, 𝑡-1, 𝑡, 𝑡+1, 𝑡+2 

ln𝑄(𝑡-2), ln𝑄(𝑡-1), 
ln𝑄(𝑡), ln𝑄(𝑡+1), 

ln𝑄(𝑡+2) 
[𝑙𝑛(m³ s-1)] [-3.5:0.2:2.9] & [2.9:end] 34 

Relative Magnitude of 

discharge in time windows 

(centered, left-ended, right-

ended) 

𝑄RMC, 𝑄RML, 𝑄RMR [-] [0:0.1:1] 11 

Discharge slope between  

time steps 𝑡-1 and 𝑡  

& time steps 𝑡 and 𝑡+1 

𝑄slopebefore  

𝑄slopeafter
 

[m³ s-1 h-1] [-50:5:90] 29 

Precipitation at time 𝑡 𝑃 [mm h-1] [0:1:30] 31 

Model-based event probability 

at time step 𝑡-1 
𝑒p(𝑡-1) [-] [0:0.1:1] 11 

* Bins identified by their central values [leftmost center value : step : rightmost center value]  
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Table 2: Conditional Entropy and relative uncertainty reduction of 1-predictor models. 

# Predictive model (𝑿|𝒀) 𝐇(𝑿|𝒀) [𝐛𝐢𝐭]  𝐇(𝑿|𝒀)/𝐇(𝑿)* 

𝑄-based group 

1 𝑒 | 𝑄(𝑡 − 2) 0.269 52.1 % 

2 𝑒 | 𝑄(𝑡 − 1) 0.264 51.3 % 

3 𝑒 | 𝑄(𝑡) 0.260 50.3 % 

4 𝑒 | 𝑄(𝑡 + 1) 0.255 49.4 % 

5 𝑒 | 𝑄(𝑡 + 2) 0.250 48.6 % 

6 𝑒 | ln𝑄(𝑡 − 2) 0.269 52.2 % 

7 𝑒 | ln𝑄(𝑡 − 1) 0.265 51.3 % 

8 𝑒 | ln𝑄(𝑡) 0.260 50.4 % 

9 𝑒 | ln𝑄(𝑡 + 1) 0.255 49.4 % 

10 𝑒 | ln𝑄(𝑡 + 2) 0.251 48.6 % 

11 𝑒 | 𝑄RMC 0.505 97.9 % 

12 𝑒 | 𝑄slopebefore
 0.473 91.8 % 

13 𝑒 | 𝑄slopeafter
 0.473 91.8 % 

𝑃-based group 

14 𝑒 | 𝑃 0.472 91.6 % 
* H(𝑋) = H(𝑒) = 0.516 bits 
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Table 3: Conditional Entropy and relative uncertainty reduction of 2-predictor models. 

# Predictive model (𝑿|𝒀) 𝐇(𝑿|𝒀) [𝐛𝐢𝐭]  𝐇(𝑿|𝒀)/𝐇(𝑿)* 

𝑄-based group 

15 𝑒 | 𝑄(𝑡 + 2), 𝑄(𝑡) 0.226 43.9 % 

16 𝑒 | 𝑄(𝑡), 𝑄RMC 0.182 35.3 % 

17 𝑒 | 𝑄(𝑡 + 2), 𝑄RMC 0.191 37.1 % 

18 𝑒 | 𝑄(𝑡), 𝑄slopeafter
 0.254 49.3 % 

19 𝑒 | ln𝑄(𝑡 + 2), ln𝑄(𝑡) 0.233 45.1 % 

20 𝑒 | ln𝑄(𝑡), 𝑄RMC 0.185 35.8 % 

21 𝑒 | ln𝑄(𝑡 + 2), 𝑄RMC 0.194 37.5 % 

22 𝑒 | ln𝑄(𝑡), 𝑄slopeafter
  0.254 49.3 % 

𝑃-based group 

23 𝑒 | 𝑄(𝑡), 𝑃 0.248 48.2 % 

24 𝑒 | 𝑄(𝑡 + 2), 𝑃 0.247 48.0 % 

25 𝑒 | ln𝑄(𝑡), 𝑃 0.249 48.2 % 

26 𝑒 | ln𝑄(𝑡 + 2), 𝑃 0.249 48.2 % 
* H(𝑋) = H(𝑒) = 0.516 bits 
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Table 4: Conditional Entropy and relative uncertainty reduction of 3-predictor models. 

# Predictive model (𝑿|𝒀) 𝐇(𝑿|𝒀) [𝐛𝐢𝐭]  𝐇(𝑿|𝒀)/𝐇(𝑿)* 

𝑄-based group 

27 𝑒 | 𝑄(𝑡), 𝑄RMC , 𝑄(𝑡 + 2) 0.144 28.0 % 

𝑃-based group 

28 𝑒 | 𝑄(𝑡), 𝑃, 𝑄RMC 0.167 32.5 % 
* H(𝑋) = H(𝑒) = 0.516 bits 
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Table 5: Conditional Entropy and relative uncertainty reduction of recursive 4-predictor models. 

# Predictive model (𝑿|𝒀) 𝐇(𝑿|𝒀) [𝐛𝐢𝐭]  𝐇(𝑿|𝒀)/𝐇(𝑿)* 

Model-based group 

29 𝑒 | 𝑄(𝑡), 𝑄RMC , 𝑄(𝑡 + 2), 𝑒p#27
(𝑡 − 1) 0.114 22.2 % 

30 𝑒 | 𝑄(𝑡), 𝑃, 𝑄RMC, 𝑒p#28
(𝑡 − 1) 0.142 27.6 % 

* H(𝑋) = H(𝑒) = 0.516 bits 
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Table 6: Models selected for sample-based tests. 

Model group 1 predictor 2 predictors 3 predictors 4 predictors 

𝑄-based group 
𝑄(𝑡) 

#3 

𝑄(𝑡), 𝑄RMC 

#16 

𝑄(𝑡), 𝑄RMC, 𝑄(𝑡 + 2) 

#27 
- 

𝑃-based group - 
𝑄(𝑡), 𝑃 

#23 
𝑄(𝑡), 𝑃, 𝑄RMC 

#28 
- 

Model-based group 

with 𝑄-based predictors 
- - - 

𝑄(𝑡), 𝑄RMC, 𝑄(𝑡 + 2), 𝑒p#27
(𝑡 − 1) 

#29 

Model-based group 

with 𝑃-based predictors 
- - - 

𝑄(𝑡), 𝑃, 𝑄RMC, 𝑒p#28
(𝑡 − 1) 

#30 
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Table 7: Application I – Curse of dimensionality and data size validation for models in Table 6. 

# Predictive model 
𝐇(𝑿) 

[bit] 
𝐇(𝑿)/𝐇(𝑿)* 

Sample size where 

𝐃𝐊𝐋/𝐇(𝑿) ≤ 𝟓 %  
and % of the full 

data set** 

Sample size 

[a] 

Number 

of bins 

0 𝑒 0.516 100 % ≥ 4398 (5.6 %) 0.5 2 

# Predictive model 
𝐇(𝑿|𝒀) 

[bit] 
𝐇(𝑿|𝒀)/𝐇(𝑿)* 

Sample size where 

𝐃𝐊𝐋/𝐇(𝑿|𝒀) ≤ 𝟓 % 

and % of the full 

data set** 

Sample size 

[a] 

Number 

of bins 

3 𝑒 | 𝑄(𝑡) 0.260 50.4 % ≥ 9952 (12.6 %) 1.1 68 

16 𝑒 | 𝑄(𝑡), 𝑄RMC 0.182 35.3 % ≥ 29 460 (37.3 %) 3.4 748 

23 𝑒 | 𝑄(𝑡), 𝑃 0.248 48.2 % ≥ 18 880 (23.9 %) 2.2 2108 

27 𝑒 | 𝑄(𝑡), 𝑄RMC , 𝑄(𝑡 + 2) 0.144 28.0 % ≥ 60 178 (76.3 %) 6.9 25 432 

28 𝑒 | 𝑄(𝑡), 𝑃, 𝑄RMC 0.167 32.5 % ≥ 50 377 (63.8 %) 5.8 23 188 

29 𝑒 | 𝑄(𝑡), 𝑄RMC , 𝑄(𝑡 + 2), 𝑒p#27
(𝑡 − 1) 0.114 22.2 % ≥ 69 102 (87.6 %) 7.9 279 752 

30 𝑒 | 𝑄(𝑡), 𝑃, 𝑄RMC, 𝑒p#28
(𝑡 − 1) 0.142 27.6 % ≥ 62 667 (79.4 %) 7.2 255 068 

* H(𝑋) = H(𝑒) = 0.516 bits 

** size of the full data set: 78 912 data points (9 years) 
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Table 8: Cross-validation data set – Characteristics of the user event classification set. 

Data set 

Time steps classified 

as positive events  

(𝑷) 

Time steps classified 

as non-events  

(𝑵) 

Percentage of 

events  

(𝑷/𝑻) 

Percentage of 

non-events  

(𝑵/𝑻) 

Total  

(𝑻) 

Training 8150 60 952 11.8 % 88.2 % 69 102 

Testing 942 8868 9.6 % 90.4 % 9810 

Sum 9092 69 820 11.5 % 88.5 % 78 912 
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Table 9: Application II – ITM and CPM performance. 

Event detection 

method 

True Positive 

(𝑷𝐓) 

𝑹𝐓𝐏 

(𝑷𝐓/𝑷*) 

False Positive 

(𝑷𝐅) 

𝑹𝐅𝐏 

(𝑷𝐅/𝑵*) 

Accuracy %  

((𝑷𝐓 + 𝑵𝐓**)/( 𝑷*+𝑵*)) 

Eq. (7) 

distance*** 

ITM 911 96.7 % 1038 11.7 % 89.1 % 0.12 

CPM 796 84.5 % 877 9.9 % 89.6 % 0.19 

* 𝑃 = 942, 𝑁 = 8868 (Table 8) 

** 𝑁T = 𝑁 − 𝑃F 

** Distance to the perfect model of the ROC curve  
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Figure 1: Main steps of the ITM. 
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Figure 2: Investigating the effect of sample size through Cross Entropy and Kullback-Leibler Divergence. 
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Figure 3: Input data – Discharge, precipitation, user-based event classification. Overview of the time series on the left and detailed 

example on the right.  
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Figure 4: Window size definitions for window types. a) 𝑸𝐑𝐌𝐂, b) 𝑸𝐑𝐌𝐋, c) 𝑸𝐑𝐌𝐑 window definitions, and d) window size analysis. 
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Figure 5: Cross Entropy for models in Table 6 as a function of sample size. 
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Figure 6: Application I – Probabilistic prediction of 4-predictor model #29 (Table 5) to a subset of the training data.  
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Figure 7: Application II – Binary prediction of ITM and CPM to a subset of the testing set.  
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Figure A1: Dispersion analysis of the Cross Entropy. The effect of the number of repetitions in the target model (#0 in Table 7). 

 

 


