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Abstract. Lack of sufficient and reliable hydrological information is a key hindrance to water resource planning and 

management in Africa. Hence, the objective of this research is to examine the relationship between precipitation and runoff at 

three spatial scales, including the whole continent, 25 major basins and 55 countries. For this purpose, the long-term monthly 

runoff coefficient (Rc) was estimated using the long-term monthly runoff data (R) calculated from the Global Runoff Data 

Centre (GRDC) streamflow records and Global Precipitation Climatology Centre (GPCC) precipitation datasets for the period 15 

of time spanning from 1901 to 2017. Subsequently, the observed Rc data were interpolated in order to estimate Rc over the 

ungauged basins under guidance of key runoff controlling factors, including the land-surface temperature (T), precipitation (P) 

and potential runoff coefficient (Co) inferred from the land use and land cover, slope and soil texture information. The results 

show that 16% of the annual mean precipitation (672.52 mm) becomes runoff (105.72 mm), with a runoff coefficient of 0.16, 

and the remaining 84% (566.80 mm) evapotranspirates over the continent during 1901 – 2017. Spatial analysis reveals that the 20 

precipitation-runoff relationship varies significantly among different basins and countries, mainly dependent on climatic 

conditions and its inter-annual variability. Generally, high runoff depths and runoff coefficients are observed over humid 

tropical basins and countries with high precipitation intensity compared to those located in subtropical and temperate drylands. 
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1 Introduction 25 

In the 21st century water resources management becomes a major concern to human life and environmental protection 

(Cosgrove and Loucks, 2015). It is well known that precipitation is the source of freshwater on our planet, and its intensity 

varies from one region to another. Lacking precipitation often causes droughts which would further induces severe 

environment degradation, social conflicts and hunger crisis (Messer et al., 2001; Clover, 2003). Precipitation-to-runoff is the 

main source of water for rivers, lakes and ocean replenishment (Edwards et al., 2015). Precipitation scarcity aggravates poverty 30 
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to an estimate of 300 million people living in the Eastern  and  Western drylands of Africa and the number is expected to 

increase by 65-80% in 2030 (Cervigni and Morris, 2016). By 2050, it is estimated that 40% of the global population will be 

exposed to river basins that experience severe water stress, particularly in Africa and Asia (UNISDR, 2015). On the other 

hand, storm water-runoffs cause significant hazards and disasters such as soil erosion, floods, landslides, water pollution, and 

infrastructure damage (Goudie, 2000; Weng, 2001; Karamage et al., 2017a). For instance, the population exposed to flood 5 

threats increased from 0.5 to 1.8 million between 1970 and 2010 in Sub-Saharan Africa (UNISDR, 2011). Water-related 

problems have far-reaching effects in Africa, where, limited financial funds, sparse hydrological data and reliable scientific 

information bothers sustainable planning and management of water resources and related disasters (Oyebande, 2001; 

Karamage et al., 2016; Urroz et al., 2001).  

Although runoff studies have been conducted at global scale and in some local areas in Africa (Hong et al., 2007; 10 

Fekete et al., 2002), there is no study yet indicating the spatial relationship between precipitation and runoff within all African 

basins and countries. In this context, current study analyzed the precipitation-runoff relationship, using an indicative runoff 

coefficient within 25 major basins and 55 countries in Africa. Besides, this study proposed a novel method for estimating 

runoff coefficient over ungauged areas based on the environmental characteristics of gauged and ungauged basins. This method 

derived runoff coefficient by taking consideration of its major controlling factors, which might be useful to the scientists and 15 

water resource planners. The runoff coefficient is the ratio of runoff depth to rainfall intensity within a specific watershed 

(Kadioglu and ŞEN, 2001) and it varies between 0 and 1 (Blume et al., 2007). It is used to indicate how much waterflow 

converted from precipitation within a given time and catchment. In addition, runoff coefficient is very useful for catchment 

scale land use and flood management in any catchment (Sriwongsitanon and Taesombat, 2011). Geographical Information 

System (GIS) has evolved since its introduction in the 1960s, and now becomes a widely used tool able to deal with multiple 20 

variables regarding basin management. However, hydrological GIS-based studies rely strongly on databases (Terakawa, 2003).  

In this respect, this study generated Rc based on monthly runoff calculated from the Global Runoff Data Centre (GRDC) 

discharges (GRDC, 2018) and Global Precipitation Climatology Centre (GPCC) precipitation products for 1901 – 2017 

(Becker et al., 2013; Schamm et al., 2014) in gauged basins. The Rc data were then interpolated to the ungauged areas using 

the key factors such as land-surface temperature (T), Precipitation (P) and potential runoff coefficient (Co) estimated from the 25 

land use and land cover, soil texture and slope information by using GIS spatial analysis techniques. These environmental 

factors are critical to the estimation of runoff coefficient (Sriwongsitanon and Taesombat, 2011; Chen et al., 2007) . Impervious 

surfaces generally correspond to higher runoff coefficient and larger runoff volume than previous surfaces (Weng, 2001). 

Urbanization and cropland expansion reduces infiltration capacity and boosts the generation of surface water runoff (Goudie, 

2000; Weng, 2001). Evapotranspiration is generally less than precipitation in wet seasons, that is positive water balance due 30 

to groundwater accumulation, which results in an increased surface runoff. In dry seasons evapotranspiration exceeds 

precipitation because the plants absorb underground water and cause a water deficit. However, underground water can be 

ignored in the long-term annual mean water balance estimation due to a variety of wet and dry seasons (Long et al., 2014). 
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2 Data inputs and Methods 

2.1 Study area 

Africa (Figure 1) is the world’s second-largest continent (≃ 30.3 million km²) accounting for 6% of Earth's surface 

area and 20.4 % of land area (Sayre and Pulley, 1999; Mawere, 2017). It is the second-most-populous continent (1,256 million 

people) after Asia (4,504 million people) as of 2017 (UN-DESA, 2017).  5 

 

Figure 1. Hydrological map showing major rivers, lakes, 25 major basins and 55 countries of Africa. 
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The European Space Agency (ESA) Climate Change Initiative (CCI) land cover (LC) map 2015 (ESA-CCI, 2017) indicates 

that Africa is comprised of forests (24.52%), grassland (24.51%), cropland (16.14%), built-up areas (0.16%), wetlands 

(0.84%), inland water (0.99%), and bare areas (32.84%). Over 60% of the soil is dominated by hot, arid or immature soil 

assemblages: Arenosols (22%), Leptosols (18%), Cambisols (11%), Calcisols (5%), Regosols (3%) and Solonchacks/Solonetz 

(2%). Another 20% is characterized by tropical or sub-tropical features: Ferralsols (10%), Plinthisols (5%), Lixisols (4%) and 5 

Nitisols (2%) (Dewitte et al., 2013). Based on the Climatic Research Unit Timeseries (CRU TS) land-surface temperature 

dataset (1901 – 2016) (Harris et al., 2014), and the GPCC dataset (1901 – 2017) (Becker et al., 2013; Schamm et al., 2014), 

the African continent has an overall mean annual surface temperature (T) of 24oC and mean precipitation (P) of 672.52 mm. 

It has three major climate types including tropical (T = 25oC; P = 835 mm∙yr-1), subtropical (T = 22oC; P = 156 mm∙yr-1) and 

temperate zones (T = 18oC; P = 261 mm∙yr-1). The topography is  characterized  by large-scale   extensional   features   such   10 

as   the   East   African Rift, anomalously  subsided basins and uplifted domes (Moucha and Forte, 2011). The continent is 

divided into 25 major hydrological basins according to its hydrological characteristics (FAO, 2009). Drainage patterns are 

controlled by the distribution of basins and swells, about 95% is drained through permanent or ephemeral rivers. However, in 

arid areas (i.e., Northwest Sahara Desert and Somalia), drainage is sometimes absent or masked by sand seas. Approximately, 

60% of the African continent is drained by 10 large rivers (Congo, Limpopo, Niger, Nile, Ogooue, Orange, Senegal, Shebelle, 15 

Volta and Zambezi) and their tributaries (Paul et al., 2014). 

2.2 Datasets and Application 

As presented by a conceptual framework (Figure 2), the goal of this study is achieved primarily using two types of 

data inputs (river discharge data and precipitation) in monitored basins and further auxiliary datasets comprising the land-

surface temperature, precipitation and potential runoff coefficient established based on the land use and land cover (LULC) 20 

maps, Digital Elevation Model (DEM) and soil properties employed to improve the interpolation accuracy of observed runoff 

coefficient (Rc). The data are processed and analyzed using the Esri ArcGIS software version 10.5, SDMToolbox version 2.2 

(Brown et al., 2017) and Excel VBA (Visual Basic for Applications) (Walkenbach, 2010). 
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Figure 2. A conceptual framework used for analyzing the precipitation-runoff relationship in Africa. 

2.2.1 Runoff coefficient estimation in gauged basins 

The runoff coefficient in monitored basins is estimated from two types of data: (1) the monthly time series of river 

discharge data for 341 African river basins (1901 – 2017) provided by request from the Global Runoff Data Centre (GRDC) 5 

(GRDC, 2018) and (2) monthly precipitation datasets acquired from the Global Precipitation Climatology Project (GPCP) 

(Becker et al., 2013). The GRDC  is an international organization based in Germany, a branch of the World Meteorological 
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Organization (WMO) that was established in 1988 to support scientific studies on global climate change and water resources 

management (GRDC, 2018). Figure 3 shows ungauged areas and gauged catchments of Africa under consideration of a 

complete set of 12 months in a year (from January to December) during the period of 117 years (1901 – 2017). The shapefile 

of 25 major African basins was provided by the Food and Agriculture Organization of the United Nations (FAO)  (FAO, 2009). 

 5 

Figure 3. Land area coverage of observed GRDC-WMO streamflow records within 25 major basins of Africa. 

On account of discharge data that were discontinuously recorded in different months and various stations, and which 

could not allow the possibility of monthly or annual trend analysis, the present study was carried out using the long-term mean 

monthly runoff and their corresponding rainfall input for the period 1901 – 2017. This method enabled us to obtain the 

streamflow records for all 12 months of the year and maximize the number of monitored basins, covering a total surface area 10 

of 12.37 million km2 (≃ 41.4% of the total African continent). Given that, streamflow records were provided in cubic meter 

per second (m3∙S-1), monthly runoff depths at basin scale were calculated by Eq. (1): 

R = 
(Q ∙ 1000 ∙ 24 ∙ n ∙ 3600)

A
                                                                                                                 (1) 

where, R is an average runoff depth (mm∙month-1) for the drainage area or basin of interest A; A is a drainage area (basin) in 

m2; Q is river discharge (m3∙S-1) drained from the basin of interest A (m2); n is the number of days in each month.  15 
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The long-term mean precipitation was computed from the Global Precipitation Climatology Centre (GPCC) version 7.0 at 0.5° 

resolution (Becker et al., 2013). This is the centennial GPCC Full Data Reanalysis of monthly global land-surface precipitation 

with a duration record of 10 years or longer from 75,000 stations worldwide. The temporal coverage of the dataset ranges from 

January 1901 to December 2013. The GPCC Full Data Reanalysis is the most accurate in situ precipitation dataset which 

supports studies on regional climate monitoring, model validation, and water resource assessment (Becker et al., 2013). The 5 

remaining period starting from 2014 to 2017 was completed by monthly total precipitation calculated and resampled at 0.5° 

from the GPCC First Guess Product at 1° resolution of daily global land-surface precipitation based on the station database 

(SYNOP) available via the Global Telecommunication System (GTS) of the World Meteorological Organization (WMO) at 

the time of analysis (3 – 5 days after the end of the analysis month). This product contains the daily totals for a month on a 

regular latitude/longitude grid with a spatial resolution of 1° x 1° latitude by longitude (Schamm et al., 2014). 10 

By following Eq. (2)  (Kadioglu and ŞEN, 2001), we estimated the long-term monthly runoff coefficient as the ratio of 

long-term runoff depth to long-term monthly precipitation for the study period 1901 – 2017.  

Rc = 
R

P
                                                                                                                                  (2) 

where, Rc is a runoff coefficient (dimensionless); R is a runoff depth (mm) and P is precipitation intensity (mm). 

2.2.2 Runoff coefficient estimation in ungauged basins 15 

Numerous studies have established different climatic geospatial datasets such as precipitation and surface 

temperature, etc., using interpolation algorithms based on a certain number of recorded locations directed by the other auxiliary 

variables (i.e.: DEM) to improve the results (Ahmed et al., 2014; Huang and Hu, 2009; Sanabria et al., 2013). In this sense, 

the present study developed a hybrid interpolation method to estimate the Rc in ungauged basins of Africa using the Inverse 

Distance Weighting (IDW) interpolation algorithm directed by major runoff controlling factors (Potential runoff coefficient, 20 

surface temperature and precipitation). The potential runoff coefficient was estimated using the WetSpa (Water and Energy 

Transfer between Soil, Plants and Atmosphere) extension model (Liu and De Smedt, 2004) which incorporates three types of 

data inputs including land use and land cover, slope and soil texture classes as synthesized by a Table 1 (Liu and De Smedt, 

2004). The soil texture and slope rasters were resampled to the same spatial resolution (300 m) of LULC maps and initial 

resolution of potential runoff coefficient, which is also resampled at 0.5o resolution (the original resolution of the temperature 25 

and precipitation datasets) using the zonal statistic method. The potential runoff coefficient for impervious surfaces (IMP was 

estimated using Eq. (3) (Liu and De Smedt, 2004). 

Cu = IMP + (1 - IMP) Cgrass                                                                                           (3) 

where, Cu is the potential runoff coefficient for built-up areas, Cgrass is the potential runoff coefficient for grassland, and IMP 

is 0.50 that presents the percentage of impervious surfaces recommended for built-up zones.  30 
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The LULC maps (Figure 4) used in this study were reclassified from time series of annual global Climate Change Initiative 

Land Cover (CCI-LC) maps at 300 m spatial resolution covering a period of 24 years (1992 –  2015) (ESA-CCI, 2017).  

 

Figure 4. A time series of annual land cover maps of Africa with 7 classes (1992 – 2015). 
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These land cover maps were originally classified from the landcover imagery captured by five different satellites, including 

the Advanced Very High-Resolution Radiometer (AVHRR), Medium Resolution Imaging Spectrometer Full Resolution and 

Reduced Resolution (MERIS FR and RR), SPOT-Vegetation (SPOT-VGT), Project for On-Board Autonomy, with the V 

standing for Vegetation (PROBA-V), Environmental Satellite-Advanced Synthetic Aperture Radar (ENVISAT-ASAR). The 

CCI-LC map 2015 was validated using the GlobCover map 2009 with two overall accuracy levels of 71.45% and 75.4% (ESA-5 

CCI, 2017). Based on the CCI-LC product manual version 2.0 (ESA-CCI, 2017), all 24 CCI-LC maps were reclassified from 

the LCCS (Land Cover Classification System) legend to IPCC (Intergovernmental Panel on Climate Change) legend (Penman 

et al., 2003) that is consistent with a Table 1 of the Wetspa’s potential runoff coefficient (Liu and De Smedt, 2004). 

Table 1. Potential runoff coefficient for different land use and land cover types, slope and soil texture classes (Liu and De Smedt, 2004). Sa: 

Sand, LoSa: Loamy sand, SaLo: Sandy loam, Lo: Loam, SiLo: Silty loam, Si: Silt, SaClLo: Sandy clay loam, ClLo: Clay loam, SiClLo: 10 
Silty clay loam, SaCl: Sandy clay, SiCl: Silty clay, Cl: Clay. 

Land use Slope (%) Sa LoSa SaLo Lo SiLo Si SaClLo ClLo SiClLo SaCl SiCl Cl 

Forestland < 0.5 0.03 0.07 0.10 0.13 0.17 0.20 0.23 0.27 0.30 0.33 0.37 0.40 

 0.5 - 5 0.07 0.11 0.14 0.17 0.21 0.24 0.27 0.31 0.34 0.37 0.41 0.44 

 5 - 10 0.13 0.17 0.20 0.23 0.27 0.30 0.33 0.37 0.40 0.43 0.47 0.50 

  > 10 0.25 0.29 0.32 0.35 0.39 0.42 0.45 0.49 0.52 0.55 0.59 0.62 

Grassland < 0.5 0.13 0.17 0.20 0.23 0.27 0.30 0.33 0.37 0.40 0.43 0.47 0.50 

 0.5 - 5 0.17 0.21 0.24 0.27 0.31 0.34 0.37 0.41 0.44 0.47 0.51 0.54 

 5 - 10 0.23 0.27 0.30 0.33 0.37 0.40 0.43 0.47 0.50 0.53 0.57 0.60 

  > 10 0.35 0.39 0.42 0.45 0.49 0.52 0.55 0.59 0.62 0.65 0.69 0.72 

Croplands < 0.5 0.23 0.27 0.30 0.33 0.37 0.40 0.43 0.47 0.50 0.53 0.57 0.60 

 0.5 - 5 0.27 0.31 0.34 0.37 0.41 0.44 0.47 0.51 0.54 0.57 0.61 0.64 

 5 - 10 0.33 0.37 0.40 0.43 0.47 0.50 0.53 0.57 0.60 0.63 0.67 0.70 

  > 10 0.45 0.49 0.52 0.55 0.59 0.62 0.65 0.69 0.72 0.75 0.79 0.82 

Bare lands < 0.5 0.33 0.37 0.40 0.43 0.47 0.50 0.53 0.57 0.60 0.63 0.67 0.70 

 0.5 - 5 0.37 0.41 0.44 0.47 0.51 0.54 0.57 0.61 0.64 0.67 0.71 0.74 

 5 - 10 0.43 0.47 0.50 0.53 0.57 0.60 0.63 0.67 0.70 0.73 0.77 0.80 

  > 10 0.55 0.59 0.62 0.65 0.69 0.72 0.75 0.79 0.82 0.85 0.89 0.92 

Built-up areas < 0.5 0.57 0.59 0.60 0.62 0.64 0.65 0.67 0.69 0.70 0.72 0.74 0.75 

 0.5 - 5 0.59 0.61 0.62 0.64 0.66 0.67 0.69 0.71 0.72 0.74 0.76 0.77 

 5 - 10 0.62 0.64 0.65 0.67 0.69 0.70 0.72 0.74 0.75 0.77 0.79 0.80 

  > 10 0.68 0.70 0.71 0.73 0.75 0.76 0.78 0.80 0.81 0.83 0.85 0.86 

Wetlands & Water 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Referring to the soil textural triangle developed by the United States Department of Agriculture (USDA) (Fernandez‐

Illescas et al., 2001), the soil texture dataset at 300 m resolution (Figure 5) was estimated based on sand, clay, and silt fractions 
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available at 250 m resolution from the Africa Soil Information Service (AfSIS) (Hengl et al., 2015). Because the AfSIS data 

have gaps over the Sahara desert, in this region the soil texture was classified from the WorldGrids’ s sand, clay, and silt 

fractions available at 1 km spatial resolution (Hengl et al., 2014). The slope map at 300 m resolution (Figure 5) was established 

from the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) available at 250 m spatial resolution of the U.S. 

Geological Survey (USGS) and the National Geospatial-Intelligence Agency (NGA) (Danielson and Gesch, 2011). 5 

 

Figure 5. Maps of sand, clay, and silt fractions, soil texture and slope of Africa. 

The long-term monthly land-surface temperature (Figure 6) was calculated from the 4.01 release of the CRU TS 

(Climatic Research Unit Timeseries) dataset spanning a period of 116 years (1901 – 2016) (Harris et al., 2014). This dataset 

was developed, subsequently updated, improved and maintained with support from a number of funders, principally by the 10 

UK's Natural Environment Research Council (NERC) and the US Department of Energy. Long-term support is currently 

provided by the UK National Centre for Atmospheric Science (NCAS), a NERC collaborative center (Harris et al., 2014). 
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Figure 6. Maps for runoff controlling factors: potential runoff coefficient (Co), surface temperature (T) and precipitation (P) utilized to 

establish the Co, T and P overlay intersections for the interpolation guidance of the observed runoff coefficient (Rc). 

 

 5 
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2.2.3 Estimation of runoff and annual evapotranspiration 

The long-term runoff depth was estimated using Eq. (4).  

R = Rc × P                                                                                                                                             (4) 

where, R is a runoff depth (mm∙month-1), Rc is a runoff coefficient (dimensionless), and P is the precipitation intensity 

(mm∙month-1). The long-term annual Rc is the average of all monthly long-term Rc for the period starting from 1901 to 2017. 5 

The current study estimated the long-term annual mean evapotranspiration according to the principle of water budget 

expressed by Eq. (5) referring to the concept of water balance, where ground water changes is approximately zero on the long-

term annual period basis due to the patterns of wet and dry seasons of the year (Edwards et al., 2015). 

ET =  P – R                                                                                                                                (5) 

where, ET is a long-term mean evapotranspiration in mm∙yr-1, P is a long-term mean precipitation in mm∙yr-1, and R is a long-10 

term mean runoff depth in mm∙yr-1. Thus, the evapotranspiration coefficient (ETc) can be expressed as the ratio of 

evapotranspiration to precipitation intensity received within the same basin and the identical period (Yang et al., 2018) as 

presented by Eq. (6). 

ETc =  
ET

P
                                                                                                                                (6) 

3 Results 15 

Figure 7 presents the resultant maps of long-term mean monthly and annual runoff coefficient, precipitation, and runoff at 0.5° 

spatial resolution for the period starting from 1901 to 2017 utilized to produce the zonal statistics at continental level, within 

25 major basins and 55 countries of Africa. 
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Figure 7. Maps of long-term mean monthly and annual runoff coefficient, precipitation and runoff (1901 – 2017). 
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3.1 Precipitation-runoff relationship over the continent of Africa 

The zonal statistical analysis at continental level indicates that the runoff (105.72 mm∙yr-1) counts 16% of the long-

term mean precipitation (672.52 mm∙yr-1) and evapotranspiration (566.80 mm∙yr-1) comprises the remaining 84% (Figure 8). 

 

Figure 8. Long-term average annual water balance of Africa (1901 – 2017). 5 

Assessment of the long-term monthly rainfall-runoff relationship revealed that the continent of Africa had the highest 

and lowest long-term mean precipitation intensities of 70.33 mm∙month-1 and 44.15 mm∙month-1 in August and June, 

respectively. The greatest and smallest long-term mean runoff depths of 11.16 mm∙month-1 and 5.64 mm∙month-1 are observed 

in October and June, respectively. The greatest rainfall-runoff correlation is noticed in October with a Rc = 0.2. While, the 

lowest Rc = 0.1 are recorded in July whenever P = 57.36 mm∙month-1 and R = 6.3 mm∙month-1 (Fig. 9). The long-term monthly 10 

mean observed runoff and runoff coefficient had better agreements with interpolated observed ones. Some minor mismatches 

observed in May, June, August, September, October and November are due to different mean precipitation estimates from two 

distinct zones (monitored area and whole continent) (Figure 9). 

 

Figure 9. Long-term monthly precipitation-runoff relationship over the African continent (1901 – 2017). 15 
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3.2 Precipitation-runoff relationship within 25 major African basins 

Figure 10 compares the long-term mean monthly and annual precipitation, interpolated observed runoff, interpolated 

observed runoff coefficient and long-term mean annual evapotranspiration within 25 major African basins (1901 – 2017). 

 

5 Figure 10. Precipitation-runoff relationship within 25 major basins of Africa (1901 – 2017). 
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Top eight tropical basins out of 25 major African basins that comprised the highest runoff depths > 100 mm∙yr-1 are: 

Madagascar (575.42 mm∙yr-1), Gulf of Guinea (573.65 mm∙yr-1), Congo (355.02 mm∙yr-1), Africa-West Coast (227.68 mm∙yr-

1), Africa-Indian Ocean Coast (143.89 mm∙yr-1), Angola-Coast (132.34 mm∙yr-1), Africa-East Central Coast (122.88 mm∙yr-1), 

and Rift Valley (101.95 mm∙yr-1). These basins also have the highest long-term annual rainfall intensities among others, 

ranging from 811.88 mm∙yr-1 to 1,594.88 mm∙yr-1, and are amongst the top ten basins with the strongest correlation between 5 

rainfall and runoff compared to others with a mean runoff coefficient ranging from 0.13 to 0.39. The basins with weak 

precipitation-runoff relationship indicates higher ET proportions. Figure 10 also illustrates the details about monthly 

precipitation-runoff relationship within 25 major basins of Africa. 

3.3 Precipitation-runoff relationship within 55 African countries 

Figure 11 correlates the long-term mean monthly and annual precipitation (P), interpolated observed runoff (R), 10 

interpolated observed runoff coefficient (Rc) and long-term mean annual evapotranspiration (ET) during 1901 – 2017 in 55 

countries of Africa. P ranges from 21.38 mm∙yr-1 to 2,820.92 mm∙yr-1; R ranges from 1.06 mm∙yr-1 to 1,410.68 mm∙yr-1, in 

Egypt and Mauritius, respectively; Rc ranges from 0.01 in Gambia to 0.5 in Mauritius; ET ranges from 20.32 mm∙yr-1 in Egypt 

to 2,099.14 mm∙yr-1 in Sierra Leone. It should be noticed that, with the highest runoff depths > 300 mm∙yr-1, the top 12 

countries, including Mauritius, Equatorial Guinea, Gabon, Sierra Leone, Liberia, Madagascar, São Tomé and Príncipe, 15 

Republic of Congo, Cameroon, D. R. Congo, Seychelles, and Guinea-Bissau are ranked among the top 20 out of 50 countries 

that experiences the greatest rainfall-runoff correlation with runoff coefficients range from 0.17 to 0.50. For comparative 

illustration of the long-term average monthly precipitation, runoff and runoff coefficient between 55 countries of Africa, see 

Figure 11. 
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4 Discussions 

Streamflow and rain gauging stations are known as a trustable source of reliable data for different hydrological studies 5 

(Urroz et al., 2001). The GRDC river discharges and GPCC precipitation datasets have outreaching accuracy for spatial 

analysis of the precipitation-runoff relationship rather than relying solely on the runoff model-based estimates which are likely 

associated with huge uncertainties caused by non-error free data and sometimes un-well-constructed models (Loucks et al., 

2005). The study conducted by the University of New Hampshire-Global Runoff Data Centre (UNH-GRDC): “high‐resolution 

fields of global runoff combining observed river discharge and simulated water balances” that has been considered as reference 10 

to validate the runoff-related hydrological studies since the beginning of 21st century (Fekete et al., 2002; Hong et al., 2007)  

Figure 11. Precipitation-runoff relationship within 55 countries of Africa (1901 – 2017). 
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was compared with the current study based on the latitudinal zones at 1° interval scale (Figure 12).  This analysis indicates 

that the long-term mean annual mean rainfall (1920 – 1980) version 2.01 (Willmott et al., 1998; Fekete et al., 2002) that was 

utilized to simulate the UNH/GRDC composite runoff (Fekete et al., 2002) is roughly matching with the long-term  (1901 – 

2017) mean annual GPCC precipitation estimated in the current study (Figure 12). Our comparative analysis also shows better 

agreements over the northern hemisphere between 36oN and 14oN, in the southern hemisphere between 17oS and 34oS latitudes, 5 

and in the equatorial zone laying between 4oN and 8oS. Major differences are between 14oN and 4oN in the northern hemisphere 

and in the southern hemisphere between 8oS and 17oS latitudes. These differences are possibly due to the UNH/GRDC method 

that assigned the same runoff depths in observed and unobserved basins that led to overestimation of the runoff in drylands of 

Australia and Africa (Fekete et al., 2002). It should be noted that the interpolation method of observed runoff coefficient under 

consideration of environmental characteristics (land use and cover types, slope, soil texture classes, surface temperature and 10 

precipitation) has improved of both runoff coefficient and runoff over unobserved African regions rather than assuming similar 

runoff depths to different catchments with different environmental characteristics.  

 

The latitudinal profile analysis revealed that 1oS latitude is the most hotspot region of Africa for both high mean annual rainfall 15 

intensity (1,486 mm∙yr-1), and runoff depth (357.26 mm∙yr-1), followed by the equatorial zone at 0o latitude with a mean annual 

Figure 12. Comparison of the precipitation-runoff relationship between the UNH-GRDC  (Fekete et al., 2002) and the present study. 
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rainfall intensity of 1,466.46 mm∙yr-1, runoff depth of 346.66 mm∙yr-1, highest runoff coefficient value of 0.24 for both 1oS and 

equatorial zone (0o latitude). These latitudinal zones also comprised of the highest evapotranspiration rates ranging between 

1,119.8 mm∙yr-1 and 1,157.24 mm∙yr-1. This might be one of the remarkable proofs showing good estimates of the present 

study based on the well-known distribution of precipitation across different latitudinal climatic zones (Peel et al., 2007).  

Based on the following six latitudinal climate zones: northern (N) tropical (0°Equator ≤ latitude ≤ 23.4°N), southern 5 

(S) tropical (23.4°S ≤ latitude < 0°Equator), N subtropical (23.4°N ≤ latitude ≤ 30°N), S subtropical (23.4°S ≤ latitude ≤ 30°S), 

N temperate (30°N < latitude ≤ 72°N), and S temperate (30°S < latitude ≤ 72°S), the long-term annual mean of the water 

balance’s variables, including precipitation (P), evapotranspiration (ET), interpolated observed runoff (R) and their 

corresponding interpolated observed runoff coefficient (Rc) for the period of 117 years (1901 – 2017) were estimated and 

presented in Table 2 to provide tangible statistics corresponding to Figure 12. 10 

Table 2. Long-term annual water balance and runoff coefficient within the African latitudinal climatic zones (1901 – 2017). 

Latitudinal climatic zones % area Africa P (mm∙yr-1) ET (mm∙yr-1) R (mm∙yr-1) Rc 

Tropical 75 835 699 136 0.16 

N tropical 48 703 607 96 0.14 

S tropical 26 1,076 865 211 0.20 

Subtropics 17 156 143 13 0.08 

N subtropical 13 37 31 6 0.16 

S subtropical 5 468 437 31 0.07 

Temperate zones 8 261 243 18 0.07 

N temperate 6 210 195 15 0.07 

S temperate 2 432 406 26 0.06 

Because of the Saharan desert located in northern Africa, the northern tropical and temperate zones have lower mean 

annual precipitation and runoff compared to southern tropical and temperate zones. Compared to the tropical zone, subtropics 

and temperate zones of Africa had low rainfall and runoff amounts (Figure 12 and Table 2), which expose them to the water 

scarcity problem and less rainfall-runoff related disasters. The problem of insufficient water resource in drylands and semi-15 

humid regions can be managed through the use of groundwater, minimization of water losses, establishment of dams, inter-

basins water transfer, wastewater reuse, and surface water desalination instead of relying on unmodernized water supply 

technologies that are no longer meeting the water demand for our contemporary development associated with fast population 

growth (Maliva and Missimer, 2012). The tropical zone comprises high precipitation intensity which produces huge runoff 

volumes enough for underground and surface water replenishment. While, excessive surface waterflow induces significant 20 

damages which require adequate strategies by promoting practical stormwater management systems (e.g.: forestation, different 

types of terraces and dams, etc.) that have potential ability to curb the movement and effects of surface water runoffs (Ponette-

González et al., 2015; Karamage et al., 2017b). 
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5 Conclusions 

The present study investigated the spatial relationship between precipitation and runoff using the runoff coefficient 

as the measurement indicator, estimated from the long-term monthly runoff calculated based on the Global Runoff Data Centre 

(GRDC)’s streamflow records and Global Precipitation Climatology Centre (GPCC) rainfall data for a temporal period of 117 

years (1901 – 2017) within monitored basins covering ≃ 41.4% of the total African continent. The interpolation method of 5 

observed runoff coefficient directed by the ancillary data (potential runoff coefficient, land-surface temperature, and 

precipitation) that affect the runoff generation process has improved the estimation of runoff coefficient and runoff depths in 

ungauged basins. Thus, this study provides insightful hydrological information on the precipitation-runoff relationship at three 

spatial scales, including the whole continent, 25 major basins and 55 African countries which could raise the awareness to a 

wide range of relevant stakeholders. This study also suggested that the problem of water scarcity in drylands and semi-humid 10 

region can be handled through the use of groundwater, minimization of water losses, establishment of dams, inter-basins water 

transfer, wastewater reuse, and water desalination technologies. The tropical stormwater-runoffs require suitable water 

management programs such as for example forestation, establishment of different types of terraces and dams, etc. in order to 

minimize the waterflow-related disasters. 
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