$$
\begin{equation*}
\Theta=\frac{\frac{d Q}{d t}-\frac{\Delta Q}{\Delta t}}{\frac{d Q}{d t}} \tag{7}
\end{equation*}
$$

the bias for the linear reservoir after introducing Eq. (4) and assuming that the derivative of flow is calculated in the center of the time interval Δt yields:

$$
\begin{equation*}
\Theta=1-\frac{\frac{Q_{0} e^{-a(t+\Delta t)}-Q_{0} e^{-a t}}{\Delta t}}{-a Q_{0} e^{-a\left(t+\frac{\Delta t}{2}\right)}}=1+\frac{e^{-c}-1}{c \cdot e^{-\frac{c}{2}}} \tag{8}
\end{equation*}
$$

where $c=a \cdot \Delta t$.

